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ESTIMATING AGE-STATUS-SPECIFIC DEMOGRAPHIC RATES THAT ARE

CONSISTENT WITH THE PROJECTED SUMMARY MEASURES IN FAMILY

HOUSEHOLDS PROJECTION1

         Zeng Yi, Eric Stallard, and Zhenglian Wang2

Abstract

       This paper proposes procedures for estimating age-status-specific demographic rates

to ensure that the projected summary measures of marriage/union formation and

dissolution and marital and non-marital fertility in the future years are achieved

consistently. The procedures proposed in this paper can be applied in both macro and

micro models for family household or actuarial/welfare projections and simulations that

need the time-varying age-status-specific demographic rates as input.
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ESTIMATING AGE-STATUS-SPECIFIC DEMOGRAPHIC RATES THAT ARE

CONSISTENT WITH THE PROJECTED SUMMARY MEASURES IN FAMILY

HOUSEHOLDS PROJECTION

Introduction

          Family households projections with changing age-status-specific demographic

rates as input are useful in socio-economic, actuarial and welfare planning, policy

analysis, and market trend studies. For example, several welfare programs in the United

States restrict eligibility to single-parent families (Yelowitz 1998). As a result, projecting

the costs of such programs depends heavily upon projections of the numbers, types and

sizes of single-parent family households in the future (Moffitt 2000). What would

happen to Chinese family households structure and family support for the elderly in the

next decades, if the fertility and mortality rates continue to decrease to a very low level,

but divorce rates increase substantially? Family households projections with changing

age-status-specific demographic rates are highly responsive to this kind of policy

analysis concern (Hammel et al. 1991; Zeng, Vaupel, and Wang 1997; 1998). Another

example illustrating the usefulness of family households projection using changing age-

status-specific demographic rates as input is that creating a new household, e.g., by

divorce or union dissolution, generates an immediate increase in energy consumption. A

divorce, by creating a new household, may cause more CO2 emissions than an additional

birth would (Mackellar, Lutz, Prinz, and Goujon 1995). The consumption and market

analysis for housing and consumer durables, such as appliances, furniture, health care,

cars, water, gas, electricity, the development of household related public utilities and

services, needs family households projections, which are among statistical offices’ best

sellers (George 1999: 8-9).
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        The practical usefulness explains why family households projection models have

received considerable attention from demographers (e.g. Hammel, McDaniel, and

Wachter 1981; Van Imhoff and Keilman 1992; Wolf 1994; Wachter 1997; Zeng, Vaupel,

and Wang 1997; Zeng, Vaupel, and Wang 1998; Wachter 1998; Tomassini and Wolf

2000).

       Yet a technical problem remains to be resolved: how do we estimate demographic

rates including age-sex-specific marital status transitions and age-parity-specific marital

and non-marital fertility for projecting or simulating family households in the future

years? As Keyfitz (1972) pointed out, projection with trend extrapolation of each age-

specific rate can result in an excessive concession to flexibility and readily produce

erratic results. We, therefore, focus on projection of the demographic summary measures

of propensities of marital status transitions, Total Fertility Rate (TFR), and the ratio of

the non-marital general fertility rate to the marital general fertility rate, based on trend

extrapolation (or expert opinion). We also use a set of age-specific standard schedules to

define the age patterns of the demographic processes.

        The propensities of marital status transitions are defined as the total number of

events of transition from marital status i to j divided by the total number of events that

lead to entering marital status i in the context of multi-state marital status life tables

(Schoen 1988:95)1. For example, the propensity of divorce in a period or a cohort is

defined as the total number of divorces divided by the sum of total numbers of first

marriages and remarriages during the whole life course of a hypothetical cohort or a real

cohort. The period propensities refer to the probabilities of marriage/union formation and

dissolution of a hypothetical cohort of persons if they experience the period age-specific

rates of the marital status transitions in their life.

        The propensities of marital status transitions are clearly defined and easily
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understandable demographic summary measures that represent the overall average

intensity of occurrence of the events of the marital status changes among the at-risk

population in the life table context.  For example, that the propensity of divorce in year t

is 0.4 means that 40% of all marriages would eventually end in divorce, if a hypothetical

cohort experienced the observed (or projected) rates of the marital status transitions in

year t.  TFR and the ratio of the non-marital general fertility rate to the marital general

fertility rate are clearly defined and easily understandable summary measures that

represent the overall fertility level and fertility differentials between non-married and

married women. The projected summary measures that reflect the anticipated changes in

marital status and marital and non-marital fertility may be the results of time series

analysis or forecasting based mainly on experts options2.

         The needed standard schedules of age-specific rates of marital status transitions

and marital and non-marital fertility rates are derived from the recent demographic data

resources. We need only one set of the age-specific standard schedules based on recent

data from the population under study or from another population that has similar age

patterns of the demographic rates as compared to the study population. The age-specific

standard schedules define the age pattern of marital status changes and marital and non-

marital fertility based on the empirical data and serve as a baseline for estimating the

time-varying age-status-specific demographic rates to be consistent with the projected

summary measures in the future years. The age-specific standard schedules can either be

fixed or include systematic changes in timing and shapes in the projection years3.

       The projected summary measures and the needed standard schedules in the family

households projection are similar to the requirement of standard schedules of age-

specific fertility, mortality, and migration rates and the projected future years’ TFR, life

expectancies at birth, and Total Migration Rates in the classical population projection.
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The basic strategy for estimating future years’ age-specific rates adopted in the family

households projection is similar to the one used in the classical population projections,

but the procedures differ substantially.

         The classical population projection forecasts age and sex distributions. It includes

births, deaths, and migration only, but disregards marital, parity and family status

changes. In this case, one may follow either non-parametric or parametric approaches

(e.g. Lee and Carter 1992; Rogers 1989) to estimate the needed time-varying age-

specific fertility, mortality and migration rates independently. The simplest non-

parametric approach inflates or deflates the standard age-specific schedules of fertility,

mortality, and migration to get age-specific rates that are in consistent with the projected

TFR, life expectations at birth, and Total Migration Rates in the future years. For

example, if the projected TFR increases by 10%, one may simply inflate all age-specific

fertility rates by 10%, independent of changes in age-specific mortality and migration

rates.

         But the estimation of the age-specific marital status transition rates and age-parity-

marital status-specific fertility rates in the family households projection cannot be

carried out by simply inflating or deflating each set of age-specific standard schedules of

the demographic rates independently. This is because interrelations and consistencies of

changes in transitions among various marital statuses and the fertility differentials of

married and non-married women must be considered. For example, changes in the

propensity of one marital status transition affect the at-risk population and the number of

events of other marital status transitions. Changes in the propensities of first marriage

and remarriages cause changes in the at-risk population and the number of events of

divorce; changes in the propensity of divorce affect the at-risk population and the

number of events of remarriage. This interrelation between the events and at-risk



6

populations of various marital status changes is the reason why the projected x% of

changes in the propensity of the marital status change cannot be achieved through simply

inflating or deflating the corresponding age-specific transition rates by x%.

       As an example for purposes of illustration, we consider the observed age-specific

probabilities of marital status transitions in 1990-1994, based on the U.S. National

Survey of Family Households and National Survey of Family Growth, as the standard

schedules. Five marital statuses (single, cohabiting, married, widowed, divorced4) are

distinguished; nine sets of possible age-specific probabilities of transitions among the

five marital statuses are involved (denoted as pij(x,s), i, j = 1,2,3,4,5; x is from 15 to 99;

“s” refers to the standard schedule).  We use these standard schedules to construct a

multi-state life table to get a initial set of propensities of marital status transitions

(A1(i,j,s), “s” refers to the standard schedule). Suppose that the absolute values of the

differences between the projected propensities (A(i,j,t), “t” refers to the projection year)

and the initial ones (A1(i,j,s)) are 2-10%. We use 
),,(

)1,,(
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1
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+=  to get the

adjusted p1
ij(x,t) (p1

ij(x,t) = X1(i,j,t) pij(x,s)). We then use the adjusted p1
ij(x,t) to

construct a new multi-state life table, but the resulted propensities of the marital status

transitions based on p1
ij(x,t) differ from the projected ones by 2-9%. Such descriptions

(see Appendix for detailed numerical results) demonstrates clearly why the projected x%

of changes in propensity of the marital status changes cannot be achieved through simply

inflating or deflating the corresponding age-specific probabilities of the marital status

transitions by x%. This is entirely different from the case in the classical population

projection that x% changes in TFR can be achieved through simply inflating or deflating

the age-specific fertility rates by x%. Thus, estimations of age-specific rates of marital

status transitions and non-marital and marital fertility in the future years need procedures

that ensure that the projected propensities of marital status changes and fertility will be



7

achieved consistently. We have not seen publications that deal with such estimation

procedures. We aim to investigate a systematic approach in this paper to estimate age-

status-specific demographic rates to be in consistent with the projected summary

measures of demographic changes for enhancing the family households projection.

      One may consider projecting the summary measures and age-status-specific

demographic rates for each cohort and following the cohort approach to project family

households. This, however, is often impractical, since the cohort data on changes in

marital status, fertility, mortality, and migration, on which the extrapolation into future

trends of each cohort are based, are usually unavailable or incomplete. In contrast, the

period data, which can be based on cross-sectional and retrospective survey data or vital

statistics, are much easier to obtain.  We, therefore, practically follow the period

approach to estimate the age-status-specific demographic rates for the family households

projection5, although the procedures proposed in this paper are in principle applicable to

both period and cohort approaches.  We will present the procedures for estimating age-

specific probabilities of marital status transitions and age-parity-marital status-specific

probabilities of fertility in the following two sections6.

Estimating Age-Specific Probabilities of Marital Status Transitions that are

Consistent with the Projected Propensities of Marriage/Union Formation and

Dissolution

        The marital status life table is constructed based on the age-specific probabilities,

which are translated from the occurrence/exposure rates of marital status transitions.

Instead of using the general term “rates”, as was used in the Introduction for simplicity,

we will use the more precisely defined term “probabilities” in the rest of this paper. We

will establish a set of general simultaneous equations, that yield a consistent set of
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projected propensities of marital status transitions. Based on the general simultaneous

equations, we will then discuss an iterative procedure for estimating the age-specific

probabilities of marital status transitions that are consistent with the projected

propensities of marriage/union formation and dissolution.

        Let A(i,j,t+1) (i,j=1, 2 , ... M, , where M is the number of marital statuses

distinguished) denote the projected propensity of transition from marital status i to j in

year t+1, i.e., the life table proportion of events of transition from marital status i to j

among all events of transitions leading to marital status i in year t+1; li(x,t+1), the

number of persons aged x with marital status i in the life table population in year t+1;

pij(x,t+1), the probability of transition from marital status i to marital status j between

age x and x+1 in year t+1. Thus,
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      Where α and ω are the lowest and the highest ages at which the marital status

transition may occur. Our task is to estimate the unknown pij(x,t+1) based on the known

pij(x,t), and to estimate pij(x,t+2) based on pij(x,t+1), …, and so forth. We start with t=T0,

the starting year of the projection, and let pij(x,T0-1) be equal to the standard schedules

of probabilities of marital status transitions, which are estimated based on the recent

demographic data.  The question now is: how can one estimate an unknown pij(x,t+1)

that are in consistent with the projected A(i,j,t+1) based on the known pij(x,t)?

     Let X(i,j,t) denote the factor for adjusting pij(x,t) in order to estimate pij(x,t+1). We

replace pij(x,t+1) by pij(x,t) X(i,j,t) in the simultaneous Eqs. (1):
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         If we knew li(x,t+1), the simultaneous Eqs. (2) would be analytically solvable and

the unknown adjusting factors X(i,j,t) would be derived directly and analytically,

because the number of equations is equal to the number of unknowns in the simultaneous

Eqs. (2). Yet li(x,t+1), which can be derived only through construction of a multi-state

marital status life table based on the age-specific schedule of pij(x,t+1) (see, e.g.,

Willekens 1987; Schoen 1988), are, however, unknown. Thus, we cannot directly and

analytically solve Eqs. (2) to derive the adjusting factors X(i,j,t). Since lk(x,t+1) and

lk(x,t) in the two adjunct years are generally close to each other, we replace lk(x,t+1) by

lk(x,t) as an approximation in Eqs. (2):
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       Note that li(x,t) and pij(x,t) are known, X(i,j,t) are unknown, and  the left side and

right side are approximately equal in Eqs. (3). Here we adopt an iterative procedure to

drive pij(x,t+1) that are in consistent with the projected A(i,j,t+1).

       We first use pij(x,t) to construct a multi-state life table to get the first set of

propensities of marital status transitions in year t (A1(i,j,t)), which are not equal to

A(i,j,t+1), when the propensities are changing. We then use 
),,(

)1,,(
),,(

1
1

tjiA

tjiA
tjiX

+= as

the first approximation of X(i,j,t) to get the first adjusted p1
ij(x,t) = X1(i,j,t) pij(x,t). We

use the adjusted p1
ij(x,t) to construct a new multi-state life table to get a new set of

approximations A2(i,j,t), which are not equal, but closer to A(i,j,t+1), as compared to
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A(i,j,t). We then get 
),,(
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+= , where X2(i,j,t) is the second

approximation of X(i,j,t). We get p2
ij(x,t) = X2(i,j,t) p1

ij(x,t). We use the adjusted p2
ij(x,t)

to construct another new multi-state life table to get another new set of approximations

A3(i,j,t), which are closer to A(i,j,t+1). We repeat this iterative process for n times, until

all of the An(i,j,t) are almost exactly equal to A(i,j,t+1). For example, the absolute value

of the relative discrepancy rate is less than 0.001, namely,

001.0
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+−+
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tjiAtjiAn

. The numerical applications have shown that the

above described procedure converges to the true estimates of pij(x,t+1) that are precisely

consistent with the projected propensities of marriage/union formation and dissolution

(A(i,j,t+1)). The number of the iterations depends on the number of marital statuses

distinguished in the model and the magnitude of the changes in the propensities between

year t and t+1.

      We present in the Appendix an illustrative numerical application to verify the

convergence including nine sets of age-specific marital status transition probabilities

among five marital statuses (Single, Married, Widowed, Divorced, and Cohabiting).

After 46 iterations (n=46) in this illustrative application, each Xn(i,j,t) is equal to 1.000;

each An(i,j,t) is extremely close or equal to project A(i,j,t+1); all absolute values of the

discrepancy rate between An(i,j,t) and A(i,j,t+1) are less than 0.001. The discrepancy rate

can be reduced further with additional iterations. For example, the discrepancy rate is

less than 0.0001with 91 iterations. We therefore consider that that convergence is

achieved, and the goal of estimating pij(x,t) to be consistent with the projected A(i,j,t+1)

has been achieved.

        In theory, there are M x M equations with M x M unknowns (X(i,j,t)) in

simultaneous Eqs. (3). The M x M equations include some equations containing zeros
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that represent impossible direct transitions, such as from single to divorced and from

married to single. In practice, there are 4 equations and 4 unknowns, 9 equations and 9

unknowns, and 12 equations and 12 unknowns in the models of 4, 5, and 6 marital

statuses, respectively7. The number of unknowns is equal to the number of equations, so

the simultaneous Eqs. (3) are solvable. In our preliminary work, we derived the solutions

of the simultaneous Eqs.  (3) for the models of 4, 5, and 6 marital statuses. Solving the

simultaneous Eqs. (3) involves extremely complicated algebra; the solutions consist of

several pages of mathematical expressions (Zeng and Wang 1998). Furthermore, the

solutions of Eqs. (3) are the approximations of X(i,j,t) only, since we replace lk(x,t+1) by

lk(x,t) as proxies in deriving Eqs. (3), and we have to follow basically the same iterative

procedure as the one discussed above to derive pij(x,t+1). The solutions of Eqs. (3) and

the iterative procedure led to almost the same results of convergence with A(i,j,t+1) as

the ones obtained based on the simpler procedure described above. Such consistency

demonstrates that the simpler iterative procedure described above is valid. The simpler

procedure is adopted since it avoids unnecessary complications while it produces equally

accurate results. We do not present the extremely complicated mathematical expressions

of the solutions of Eqs. (3) in this paper (they are available upon request), because they

do not make any additional contributions.

Estimating Age-Parity-Marital Status-Specific Probabilities of Births that are

Consistent with the Projected Summary Measure of Fertility in the Future Years

        Let m denote marital status (e.g. m=1,2,3,4,5, referring to never-married, married,

widowed, divorced, and cohabiting);

p, parity status (p=0,1,2,3,…C, where C is the highest parity considered);

fs(x,m,p), standard schedules of age-parity-marital status-specific probabilities of birth
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(p≥1);

w(x,m,p,t), number of women of age x, marital status m, and parity p in year t before

parity status changes are calculated8;

 f(x,m,p,t), age-parity-marital status specific probabilities of birth in the projection year t

(p≥1);

TFR(p,t), parity-specific total fertility rates for women of all marital statuses combined

(p≥1); r(m,t), ratios of non-marital fertility to marital fertility; r(m,t) is defined as the

ratio of the general fertility rate of women with non-married status m to the general

fertility rate of currently married women9; the marital status specific general fertility rate

is defined as the number of births given by women with marital status m divided by the

total number of women with reproductive ages (15 to 49) and marital status m.

   The projected or assumed TFR(p,t) and r(m,t) are known. fs(x,2,p), the standard

schedule of fertility for married women, is required and known. The standard schedule

of fertility for non-married women (fs(x,m,p), m≠2) is optional, and is either known or

can be estimated. w(x,m,p,t) in year t is known from the projection of the preceding year

t-1. When t is the starting year (T0), w(x,m,p,T0) is derived from the census sample (or

100%) data file. f(x,m,p,t) is unknown, and will be estimated to be consistent with the

projected summary measures of fertility (TFR(p,t) and r(m,t)) using the following

procedures.

 Step 1. Initial estimates of f(x,m,p,t)

       We let the known age-parity-marital status specific probabilities of birth in year t-

1 (f(x,m,p,t-1)) be the initial estimate of the unknown age-parity-marital status specific

probabilities of birth in year t, denoted as f’(x,m,p,t), namely, f’(x,m,p,t)=f(x,m,p,t-1). In

the starting year (t=T0) of the projection, f’(x,m,p,T0) is equal to fs(x,m,p). If fs(x,m,p)

for non-married women (m≠2) are not available, the f’(x,m,p,T0) in the starting year is



13

estimated as f’(x,m,p,T0)=fs(x,2,p) r(m,t), where fs(x,2,p) are standard schedule of age-

parity specific probabilities of birth for currently married women. In this case, one

assumes that the age trajectory (rather than level) of fertility of unmarried women is the

same as that for married women.

Step 2. Estimate B(• ,t)

           Using the known age-parity-marital status-specific number of women (w(x,m,p,t)) at

the beginning of year t and the initial estimate of f’(x,m,p,t), we get initial estimates of

TFR’(p,t):

TFR’(p,t)=∑
=

β

αx ∑∑

∑ −

p m

m

tpmxw

tpmxftpmxw

),,,(

),,,(’),1,,(
                   (p≥1)        (3) 

    where α and β are the lowest and highest ages at childbearing. TFR’(p,t) are not

equal to the projected TFR(p,t) if TFR(p,t) change over time. Using

[TFR(p,t)/TFR’(p,t)] as an adjusting factor, we get the second estimate of f’’(x,m,p,t):

 f’’(x,m,p,t) = f’(x,m,p,t) [TFR(p,t)/TFR’(p,t)]  (4)

where f’’(x,m,p,t) are consistent with the projected TFR(p,t). Using w(x,m,p,t) and

f’’(x,m,p,t), we can get the first estimate of the projected total numbers of births given

by women of marital status m (denoted as B’(m,t)) and the total number of births

given by all women of all marital statuses combined in year t (denoted as B(• ,t)):

B’(m,t) = ∑∑
px

[w(x,m,p-1,t) f’’(x,m,p,t)]

B(• ,t) = ∑
m

B’(m,t).

         B(• ,t) are consistent with the projected TFR(p,t) and the age-parity-marital status

distribution of women (w(x,m,p,t)). B(• ,t) is not marital status specific, so it is not

affected by changes in r(m,t) in year t as compared to t-1, and is the right estimate of
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the total number of births for year t. But B’(m,t) and f’’(x,m,p,t) are marital status

specific, and may not be consistent with the projected ratio of non-marital fertility to

marital fertility (r(m,t)) in year t, if r(m,t) changes over time. In other words, although

the total number of births given by all women is correctly projected now for year t

(i.e. B(• ,t)), its marital status specific composition may differ from the right ones due

to possible changes in the ratio of non-marital fertility to marital fertility in year t (i.e.

r(m,t)). Therefore, we need to further perform the following computations.

Step 3. Estimate B(m,t)

      With the estimated B(• ,t) and the projected (or assumed) r(m,t), and the total

number of women of reproductive ages with marital status m in the year t (i.e. tw(m,t)

= ∑∑
px

w(x,m,p,t)), we can estimate the projected general fertility rate by the

marital status of women  in year t, denoted as gf(m,t). gf(m,t) is defined as the number

of births with mother’s marital status m divided by the total number of women with

marital status m and reproductive ages from 15 to 49 in year t. This implies that

B(• ,t) =  ∑
m

tw(m, t) gf(m,t) = ∑
m

[tw(m,t) gf(2,t) r(m,t)],

Therefore,

gf(2,t)=B(• ,t) /∑
m

[tw(m, t) r(m,t)]  (6)

gf(m,t)=gf(2,t) r(m,t)                                                                                             (7)

B(m,t) = tw(m,t) gf(m,t)

        B(m,t) are consistent with the projected TFR(p,t) and the age-parity-marital

status distribution of women, as well as the projected ratio of non-marital fertility to

marital fertility (r(m,t)) in year t.

Step 4. The final estimate of f(x,m,p,t)

Let f(x,m,p,t) = f’’(x,m,p,t) [B(m,t)/B’(m,t)] (8)
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then f(x,m,p,t) are consistent with the projected TFR(p,t) and the age-parity-marital

status distribution of women, as well as the projected ratio of non-marital fertility to

marital fertility (r(m,t)) in year t.

        Note that r(m,t) are not parity-specific to avoid unmanageable complications. This

implies that we implicitly assume that the pattern of parity differentials in ratios of

marital fertility and non-marital fertility in the projection years are the same as what

were observed in the recent past, which were reflected by the age-parity-specific

standard schedules of marital and non-marital fertility. But the ratio of non-marital

fertility to marital fertility may change over time. One may wish to consider

projecting parity-marital status-specific total fertility rates (TFR(m,p,t)) in the future

years. If so, there would be 5x5=25 values of TFR(m,p,t) to be projected for each year

of the projection period assuming 5 marital statuses and a highest parity of 5. It would

be too difficult to project (or assume) so many parameters of TFR(m,p,t), because of

the lack of observed TFR(m,p,t) in the past and the difficulty in keeping them

consistent with the overall projected (or assumed) TFR. Thus, we use TFR(p,t) rather

than TFR(m,p,t) because we want model to be manageable and the combination of

parity-specific TFR(p,t) and marital status specific r(m,t) works reasonably well in

presenting the parity and marital status differentials of fertility.

      As shown in Eqs. (4)-(8), we use the projected age-parity-marital status-specific

number of women in year t before fertility is computed plus other related information

to estimate the age-parity-marital status-specific probabilities of birth in year t that are

consistent with the projected TFR(p,t). Although we extended our projection to

marital status and parity, this is basically similar to what is done in the classical

population projections that use projected age-specific number of women in year t and

age-specific fertility rates in year t-1 to achieve the projected TFR in year t.
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         The age-specific probabilities of marital status transitions in year t that are

consistent with the projected propensities in year t cannot be estimated based on the

age-marital status-specific number of persons at beginning of year t and age-specific

probabilities of marital status transitions in year t-1 (or the standard schedules when

t=T0). This is because the propensity is defined as the total number of events of

transition from marital status i to j divided by the total number of events that lead to

entering marital status i during the entire life course in the context of marital status

life table (Schoen 1988:95).  It makes no sense to compute the ratio of total number of

events of transitions from i to j to the total number of events leading to status i in the

same year t. For example, we cannot compute propensity of divorce in year t through

dividing total number of divorce in year t by total number of marriages in year t,

because almost all divorces in year t are dissolution of marriages occurred before year

t. We, therefore, need to follow the period life table approach plus the iterative

procedure to estimate the age-specific probabilities of marital status transitions to

achieve the projected propensities in year t as described in previous section10. This is

basically similar to and an extension of the life table approach for estimating age-

specific probabilities of death that are consistent with the projected life expectancy at

birth in year t in the classical population projection.

       In short, the procedures proposed in this paper for estimating age-status-specific

demographic probabilities that are consistent with the projected summary measures in

family households projections are extensions of the approaches of estimating age

specific mortality and fertility rates in the classical population projections.

Concluding Remarks

       Family households projection/simulation or other relevant projection/simulation

(e.g. actuarial forecasting) needs to estimate the age-status-specific demographic rates
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to achieve the projected (or assumed) summary measures of demographic changes in

the future years. The estimation cannot be done by simply inflating or deflating each

set of age-specific probabilities of marital status transitions independently, as in

estimating fertility rates in the classical population projections. This is because the

changes in the propensity of one status transition affect the at-risk population and the

number of events of other status transitions. This paper presents procedures for

estimating age-status-specific demographic probabilities to ensure that the projected

summary measures are achieved consistently. The method proposed in this paper can

be applied in both macro and micro models for family households or actuarial/welfare

projections and simulations that need the time-varying age-status-specific demographic

probabilities as input.
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1 Note that the measurement “propensity of marital status transitions” used in this

paper is equivalent to the “probability of marital status transitions” used in Schoen’s

book (1988: 95). Schoen defines “probability of marital status transitions” as the total

number of events of transitions from marital status i to j divided by the total number

of events leading to marital status i, which is the same as the definition of

“propensity” in this paper. We prefer to use the word “propensity”, rather than

“probability”, in order to distinguish it from the age-specific probabilities of marital

status transitions, which are frequently used in multi-state marital status life table

construction and family household projection.

2 One may fit the observed age-specific rates of divorce (or other marital status

transitions) to a parametric model (Rogers 1986) with parameters α, β, and γ or more;

one (or more than one) of these parameters represents the intensities of divorce (or

other marital status transitions). Such parametric modeling is useful in theoretical

analysis, but less attractive in the practical application of family household projections

because the main parameters α, β and γ are most likely demographically un-

interpretable (Rogers 1986: 60), and more difficult for policy makers and the public to

understand. It is thus difficult to formulate assumptions about the future trends of

these parameters for estimating the age-status-specific demographic rates needed in

the family household projections aiming at policy analysis or planning. Furthermore,

linking α, β and γ with socio-economic and human behavior variables to better

understand or forecast demographic rates is even more implausible. Therefore, we

follow the nonparametric approach and use the demographically interpretable and

easily understandable summary measures plus the age-specific standard schedules to

estimate the age-status-specific demographic rates in the future years.
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3 For cases in which fertility is delaying or advancing, one may simply shift the age-

specific standard schedule of fertility to the right or left by the anticipated amount of

increase or decrease in the mean age at childbearing, while the shape of the fertility

schedule remains unchanged. Or one may assume that fertility would be delayed or

advanced while the curve becomes more spread or more concentrated, or, more

specifically, assume that young people delay birth more than older people do, or vice

versa, through parametric modelling (Zeng et al. 2000).

4 “Divorced” also includes “legally separated”.

5 The classical population projection also follows the period approach. It projects the

age and sex distribution in year t +1 (or t+5 if 5-year age data and a 5-year projection

interval are employed) based on the age and sex distribution in year t.  The age-

specific demographic rates in year t+1 (or t+5) are estimated based on the age-specific

demographic rates in year t.

6 All the rates and propensities referred to in this article are also sex-specific, but we

omit the sex dimension in the presentations for simplicity.

7 The 4 marital statuses model includes single, married, widowed, and divorced; The 5

marital statuses model includes single, married, widowed, divorced, and cohabiting;

The 6 marital statuses model includes single, married, widowed, divorced, cohabiting,

and separated.

8 In order to consider the impacts of marital status changes on marital and non-marital

fertility, one may take w(x,m,p,t) as the average of w’(x,m,p,t) at beginning of the

year before marital status changes in year t are computed and the w’’(x,m,p,t) after

the marital status changes in year t are computed; both w’(x,m,p,t) and w’’(x,m,p,t)

are before fertility in year t are computed. The strategy of computing marital status

changes and fertility at different points of time in the single year age interval in year t
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was first proposed by Bongaarts (1987), and mathematically and numerically verified

by Zeng (1991: 61-63 and 81-84).

9 Obviously, r(2,t) = 1.0, when m=2 (currently married).

10 One may consider using general rates of marital status transitions as summary

measures of marital status changes and age-marital status-specific number of women

at beginning of year t to estimate the age-specific probabilities of marital status

transitions in year t. The general rate of marital status transitions is defined as total

number of events of transition from marital status i to j divided by the total number of

persons of marital status i in year t. Such approach is, however, not recommendable,

because the general rates of marital status transitions whose denominators include all

persons of marital status i may be heavily distorted by age distribution of the

population.
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Appendix: An Illustrative Numerical Application to Verify the Convergence

Codes of marital statuses and the marital status transitions:
i,j=1, 2, 3, 4, 5
1. Single; 2. Married; 3. Widowed; 4. Divorced; 5. Cohabiting

Let pij(x,s) denote the standard schedule of age-specific probabilities of transition
from marital status i to marital status j;
pij(x,t+1), to-be-estimated age-specific probabilities of transition from marital status i
to marital status j in year t+1;
A(i,j,t+1), projected propensities of transition from marital status i to marital status j
in year t+1;
Xn(i,j,t), nth factor for adjusting pij(x,t) to estimate pij(x,t+1).

Standard schedules estimated based on the U.S. National Survey of Family
Growth and National Survey of Family Households
 x     p12(x,s)  p15(x,s)  p24(x,s)   p32(x,s)  p35(x,s)  p42(x,s)   p45(x,s)  p51(x,s)   p52(x,s)
 15  0.0269  0.0380  0.0566  0.0737  0.0636  0.0921  0.3906  0.0830  0.2188
 16  0.0310  0.0439  0.0565  0.0737  0.0636  0.0913  0.3864  0.0844  0.2171
 17  0.0350  0.0495  0.0564  0.0737  0.0636  0.0904  0.3822  0.0858  0.2154
 18  0.0400  0.0567  0.0563  0.0737  0.0636  0.0896  0.3780  0.0873  0.2138
 19  0.0467  0.0663  0.0562  0.0737  0.0636  0.0888  0.3740  0.0888  0.2121
 20  0.0533  0.0758  0.0562  0.0737  0.0636  0.0880  0.3699  0.0903  0.2105
 21  0.0599  0.0852  0.0561  0.0737  0.0636  0.0872  0.3658  0.0918  0.2089
 22  0.0665  0.0945  0.0560  0.0737  0.0636  0.0864  0.3616  0.0933  0.2072
 23  0.0673  0.0994  0.0539  0.0737  0.0636  0.0883  0.3482  0.0935  0.2047
 24  0.0623  0.1000  0.0498  0.0737  0.0636  0.0930  0.3250  0.0922  0.2012
 25  0.0574  0.1006  0.0457  0.0737  0.0636  0.0976  0.3009  0.0910  0.1978
 26  0.0524  0.1011  0.0416  0.0737  0.0636  0.1022  0.2759  0.0898  0.1943
 27  0.0474  0.1017  0.0375  0.0737  0.0636  0.1068  0.2501  0.0886  0.1908
 28  0.0443  0.0987  0.0347  0.0737  0.0636  0.1069  0.2278  0.0870  0.1836
 29  0.0431  0.0921  0.0332  0.0737  0.0636  0.1024  0.2095  0.0849  0.1726
 30  0.0419  0.0854  0.0318  0.0737  0.0636  0.0980  0.1907  0.0828  0.1614
 31  0.0407  0.0787  0.0303  0.0737  0.0636  0.0935  0.1714  0.0806  0.1501
 32  0.0395  0.0719  0.0289  0.0737  0.0636  0.0890  0.1517  0.0785  0.1386
 33  0.0376  0.0672  0.0277  0.0680  0.0632  0.0848  0.1377  0.0763  0.1313
 34  0.0351  0.0645  0.0267  0.0565  0.0623  0.0809  0.1296  0.0740  0.1282
 35  0.0325  0.0619  0.0258  0.0449  0.0614  0.0769  0.1214  0.0717  0.1251
 36  0.0299  0.0592  0.0248  0.0332  0.0606  0.0730  0.1132  0.0693  0.1221
 37  0.0273  0.0566  0.0239  0.0213  0.0597  0.0690  0.1048  0.0670  0.1190
 38  0.0262  0.0540  0.0228  0.0153  0.0593  0.0643  0.0967  0.0637  0.1156
 39  0.0265  0.0516  0.0216  0.0153  0.0593  0.0587  0.0890  0.0596  0.1119
 40  0.0268  0.0491  0.0204  0.0153  0.0593  0.0532  0.0811  0.0554  0.1082
 41  0.0272  0.0466  0.0192  0.0153  0.0593  0.0476  0.0732  0.0512  0.1045
 42  0.0275  0.0441  0.0179  0.0153  0.0593  0.0419  0.0652  0.0470  0.1008
 43  0.0262  0.0414  0.0169  0.0149  0.0547  0.0374  0.0586  0.0465  0.0998
 44  0.0234  0.0383  0.0159  0.0141  0.0454  0.0341  0.0533  0.0496  0.1016
 45  0.0206  0.0352  0.0149  0.0133  0.0361  0.0308  0.0480  0.0527  0.1034
 46  0.0178  0.0322  0.0139  0.0125  0.0267  0.0274  0.0427  0.0558  0.1051
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 47  0.0150  0.0291  0.0129  0.0116  0.0171  0.0241  0.0373  0.0589  0.1069
 48  0.0138  0.0253  0.0124  0.0112  0.0124  0.0220  0.0325  0.0612  0.1045
 49  0.0142  0.0208  0.0122  0.0112  0.0124  0.0210  0.0281  0.0625  0.0980
 50  0.0000  0.0163  0.0120  0.0112  0.0124  0.0201  0.0237  0.0638  0.0914
 51  0.0000  0.0118  0.0118  0.0112  0.0124  0.0192  0.0193  0.0652  0.0848
 52  0.0000  0.0072  0.0116  0.0112  0.0124  0.0182  0.0149  0.0665  0.0782
 53  0.0000  0.0050  0.0107  0.0109  0.0115  0.0178  0.0127  0.0671  0.0748
 54  0.0000  0.0050  0.0091  0.0104  0.0099  0.0178  0.0127  0.0671  0.0748
 55  0.0000  0.0050  0.0074  0.0099  0.0082  0.0178  0.0127  0.0671  0.0748
 56  0.0000  0.0050  0.0058  0.0093  0.0065  0.0178  0.0127  0.0671  0.0748
 57  0.0000  0.0050  0.0041  0.0088  0.0049  0.0178  0.0127  0.0671  0.0748
 58  0.0000  0.0045  0.0033  0.0085  0.0040  0.0168  0.0116  0.0654  0.0719
 59  0.0000  0.0035  0.0034  0.0085  0.0040  0.0149  0.0095  0.0619  0.0661
 60  0.0000  0.0025  0.0036  0.0085  0.0040  0.0129  0.0074  0.0584  0.0602
 61  0.0000  0.0015  0.0037  0.0085  0.0040  0.0110  0.0053  0.0549  0.0542
 62  0.0000  0.0005  0.0037  0.0085  0.0040  0.0090  0.0032  0.0514  0.0483
 63  0.0000  0.0000  0.0036  0.0082  0.0037  0.0080  0.0021  0.0496  0.0453
 64  0.0000  0.0000  0.0030  0.0076  0.0031  0.0080  0.0021  0.0496  0.0453
 65  0.0000  0.0000  0.0025  0.0070  0.0025  0.0080  0.0021  0.0496  0.0453
 66  0.0000  0.0000  0.0020  0.0064  0.0018  0.0080  0.0021  0.0496  0.0453
 67  0.0000  0.0000  0.0015  0.0058  0.0012  0.0080  0.0021  0.0496  0.0453
 68  0.0000  0.0000  0.0012  0.0055  0.0009  0.0077  0.0019  0.0496  0.0453
 69  0.0000  0.0000  0.0010  0.0055  0.0009  0.0072  0.0015  0.0496  0.0453
 70  0.0000  0.0000  0.0007  0.0055  0.0009  0.0066  0.0011  0.0496  0.0453
 71  0.0000  0.0000  0.0005  0.0055  0.0009  0.0060  0.0006  0.0496  0.0453
 72  0.0000  0.0000  0.0003  0.0055  0.0009  0.0054  0.0002  0.0496  0.0453
 73  0.0000  0.0000  0.0005  0.0050  0.0008  0.0051  0.0000  0.0496  0.0453
 74  0.0000  0.0000  0.0010  0.0041  0.0006  0.0051  0.0000  0.0496  0.0453
 75  0.0000  0.0000  0.0016  0.0032  0.0004  0.0051  0.0000  0.0496  0.0453
 76  0.0000  0.0000  0.0022  0.0023  0.0003  0.0051  0.0000  0.0496  0.0453
 77  0.0000  0.0000  0.0027  0.0014  0.0001  0.0051  0.0000  0.0496  0.0453
 78  0.0000  0.0000  0.0028  0.0009  0.0000  0.0051  0.0000  0.0448  0.0408
 79  0.0000  0.0000  0.0025  0.0009  0.0000  0.0051  0.0000  0.0350  0.0319
 80  0.0000  0.0000  0.0021  0.0009  0.0000  0.0051  0.0000  0.0251  0.0229
 81  0.0000  0.0000  0.0018  0.0009  0.0000  0.0051  0.0000  0.0152  0.0138
 82  0.0000  0.0000  0.0014  0.0009  0.0000  0.0051  0.0000  0.0051  0.0046
 83  0.0000  0.0000  0.0012  0.0008  0.0000  0.0051  0.0000  0.0000  0.0000
 84  0.0000  0.0000  0.0009  0.0007  0.0000  0.0051  0.0000  0.0000  0.0000
 85  0.0000  0.0000  0.0006  0.0005  0.0000  0.0051  0.0000  0.0000  0.0000
 86  0.0000  0.0000  0.0004  0.0003  0.0000  0.0051  0.0000  0.0000  0.0000
 87  0.0000  0.0000  0.0001  0.0001  0.0000  0.0051  0.0000  0.0000  0.0000
 88  0.0000  0.0000  0.0000  0.0000  0.0000  0.0046  0.0000  0.0000  0.0000
 89  0.0000  0.0000  0.0000  0.0000  0.0000  0.0036  0.0000  0.0000  0.0000
 90  0.0000  0.0000  0.0000  0.0000  0.0000  0.0026  0.0000  0.0000  0.0000
 91  0.0000  0.0000  0.0000  0.0000  0.0000  0.0015  0.0000  0.0000  0.0000
 92  0.0000  0.0000  0.0000  0.0000  0.0000  0.0005  0.0000  0.0000  0.0000
 93  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 94  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 95  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
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 96  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 97  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 98  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 99  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

     In the starting year T0, let pij(x,t) = pij(x,s). We first use the pij(x,t) to construct a
multi-state life table to get the first set of propensities of marital status transitions in
year t (A1(i,j,t)), which are not equal to A(i,j,t+1), when the propensities are changing.

We then use 
),,(

)1,,(
),,(

1
1

tjiA

tjiA
tjiX

+=  to get the first adjusted p1
ij(x,t) (p1

ij(x,t) =

X1(i,j,t) pij(x,t)). We use the adjusted p1
ij(x,t) to construct a new multi-state life table

to get a new set of approximations A2(i,j,t).

Number of iterations = 1 (n=1)
I→j 1→2 1→5 2→4 3→2 3→5 4→2 4→5 5→1 5→2
X1(i,j,t) 1.08 1.07 1.10 1.08 0.98 1.08 1.07 1.06 0.97
A(i,j,t+1) 0.4973 0.5895 0.4502 0.0505 0.0295 0.3288 0.5137 0.3593 0.6356
A2(i,j,t) 0.4605 0.5509 0.4093 0.0468 0.0301 0.3044 0.4801 0.3390 0.6553
% diff. -7.4 -6.5 -9.1 -7.4 2.0 -7.4 -6.5 -5.7 3.1
 % diff. = 100 x [A2(i,j,t)-A(i,j,t+1)] / A(i,j,t+1)

       The absolute values of “% diff.” are 2-9%. This demonstrates why the projected
x% of changes in propensity of the marital status change cannot be achieved through
simply inflating or deflating the corresponding age-specific probabilities of the
marital status transitions by x%.

    After 46 iterations (n=46), the pn
ij(x,t) which match the projected A(i,j,t+1) are

estimated and listed as follows. The Xn(i,j,t), An(i,j,t) and the % diff. are listed and
discussed at the end of the following table.

Number of iterations = 47 (n=47)
  x    P12(x,t+1)  p15(x,t+1) p24(x,t+1)  p32(x,t+1)  p35(x,t+1)  p42(x,t+1)  p45(x,t+1)  p51(x,t+1)  p52(x,t+1)

 15  0.0450  0.0698  0.0604  0.0773  0.0587  0.1212  0.4784  0.0892  0.2100
 16  0.0518  0.0807  0.0603  0.0773  0.0587  0.1201  0.4733  0.0907  0.2084
 17  0.0584  0.0910  0.0603  0.0773  0.0587  0.1190  0.4681  0.0922  0.2068
 18  0.0669  0.1044  0.0602  0.0773  0.0587  0.1180  0.4630  0.0938  0.2052
 19  0.0780  0.1220  0.0601  0.0773  0.0587  0.1169  0.4580  0.0954  0.2036
 20  0.0891  0.1394  0.0600  0.0773  0.0587  0.1159  0.4530  0.0970  0.2021
 21  0.1001  0.1567  0.0599  0.0773  0.0587  0.1148  0.4480  0.0987  0.2005
 22  0.1110  0.1738  0.0598  0.0773  0.0587  0.1137  0.4429  0.1003  0.1989
 23  0.1124  0.1829  0.0576  0.0773  0.0587  0.1163  0.4265  0.1004  0.1965
 24  0.1041  0.1839  0.0533  0.0773  0.0587  0.1224  0.3980  0.0991  0.1932
 25  0.0958  0.1850  0.0489  0.0773  0.0587  0.1285  0.3685  0.0978  0.1898
 26  0.0875  0.1860  0.0445  0.0773  0.0587  0.1346  0.3380  0.0965  0.1865
 27  0.0791  0.1871  0.0400  0.0773  0.0587  0.1406  0.3063  0.0952  0.1832
 28  0.0739  0.1815  0.0370  0.0773  0.0587  0.1407  0.2790  0.0935  0.1762
 29  0.0719  0.1693  0.0355  0.0773  0.0587  0.1348  0.2565  0.0912  0.1657
 30  0.0700  0.1571  0.0340  0.0773  0.0587  0.1290  0.2335  0.0889  0.1549
 31  0.0680  0.1447  0.0324  0.0773  0.0587  0.1231  0.2100  0.0867  0.1441
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 32  0.0660  0.1322  0.0309  0.0773  0.0587  0.1171  0.1858  0.0844  0.1331
 33  0.0628  0.1235  0.0296  0.0714  0.0583  0.1116  0.1686  0.0820  0.1260
 34  0.0585  0.1187  0.0286  0.0594  0.0575  0.1065  0.1587  0.0795  0.1231
 35  0.0543  0.1138  0.0276  0.0472  0.0567  0.1013  0.1487  0.0770  0.1201
 36  0.0499  0.1090  0.0265  0.0349  0.0559  0.0961  0.1386  0.0745  0.1172
 37  0.0456  0.1041  0.0255  0.0224  0.0551  0.0909  0.1284  0.0720  0.1142
 38  0.0437  0.0994  0.0244  0.0161  0.0547  0.0847  0.1185  0.0685  0.1109
 39  0.0443  0.0948  0.0231  0.0161  0.0547  0.0774  0.1090  0.0640  0.1074
 40  0.0448  0.0903  0.0218  0.0161  0.0547  0.0700  0.0993  0.0595  0.1039
 41  0.0454  0.0857  0.0205  0.0161  0.0547  0.0626  0.0896  0.0550  0.1003
 42  0.0459  0.0812  0.0192  0.0161  0.0547  0.0552  0.0799  0.0505  0.0968
 43  0.0438  0.0761  0.0180  0.0157  0.0505  0.0493  0.0717  0.0499  0.0958
 44  0.0392  0.0704  0.0170  0.0148  0.0419  0.0449  0.0653  0.0533  0.0975
 45  0.0345  0.0648  0.0159  0.0139  0.0333  0.0405  0.0588  0.0567  0.0992
 46  0.0297  0.0591  0.0149  0.0131  0.0246  0.0361  0.0523  0.0600  0.1009
 47  0.0250  0.0535  0.0138  0.0122  0.0158  0.0317  0.0457  0.0633  0.1026
 48  0.0230  0.0465  0.0132  0.0118  0.0114  0.0289  0.0398  0.0657  0.1003
 49  0.0237  0.0383  0.0130  0.0118  0.0114  0.0277  0.0344  0.0672  0.0941
 50  0.0000  0.0300  0.0128  0.0118  0.0114  0.0265  0.0291  0.0686  0.0878
 51  0.0000  0.0217  0.0126  0.0118  0.0114  0.0252  0.0237  0.0700  0.0814
 52  0.0000  0.0133  0.0124  0.0118  0.0114  0.0240  0.0183  0.0715  0.0750
 53  0.0000  0.0091  0.0114  0.0115  0.0106  0.0234  0.0156  0.0722  0.0718
 54  0.0000  0.0091  0.0097  0.0109  0.0091  0.0234  0.0156  0.0722  0.0718
 55  0.0000  0.0091  0.0079  0.0104  0.0076  0.0234  0.0156  0.0722  0.0718
 56  0.0000  0.0091  0.0062  0.0098  0.0060  0.0234  0.0156  0.0722  0.0718
 57  0.0000  0.0091  0.0044  0.0092  0.0045  0.0234  0.0156  0.0722  0.0718
 58  0.0000  0.0082  0.0036  0.0090  0.0037  0.0221  0.0143  0.0703  0.0690
 59  0.0000  0.0064  0.0037  0.0090  0.0037  0.0196  0.0117  0.0666  0.0634
 60  0.0000  0.0046  0.0038  0.0090  0.0037  0.0170  0.0091  0.0628  0.0578
 61  0.0000  0.0027  0.0039  0.0090  0.0037  0.0144  0.0065  0.0590  0.0521
 62  0.0000  0.0009  0.0040  0.0090  0.0037  0.0119  0.0039  0.0552  0.0464
 63  0.0000  0.0000  0.0038  0.0087  0.0034  0.0106  0.0026  0.0533  0.0435
 64  0.0000  0.0000  0.0033  0.0080  0.0029  0.0106  0.0026  0.0533  0.0435
 65  0.0000  0.0000  0.0027  0.0074  0.0023  0.0106  0.0026  0.0533  0.0435
 66  0.0000  0.0000  0.0022  0.0067  0.0017  0.0106  0.0026  0.0533  0.0435
 67  0.0000  0.0000  0.0016  0.0061  0.0011  0.0106  0.0026  0.0533  0.0435
 68  0.0000  0.0000  0.0012  0.0058  0.0008  0.0102  0.0023  0.0533  0.0435
 69  0.0000  0.0000  0.0010  0.0058  0.0008  0.0094  0.0018  0.0533  0.0435
 70  0.0000  0.0000  0.0008  0.0058  0.0008  0.0087  0.0013  0.0533  0.0435
 71  0.0000  0.0000  0.0006  0.0058  0.0008  0.0079  0.0008  0.0533  0.0435
 72  0.0000  0.0000  0.0003  0.0058  0.0008  0.0071  0.0003  0.0533  0.0435
 73  0.0000  0.0000  0.0005  0.0053  0.0008  0.0068  0.0000  0.0533  0.0435
 74  0.0000  0.0000  0.0011  0.0043  0.0006  0.0068  0.0000  0.0533  0.0435
 75  0.0000  0.0000  0.0017  0.0034  0.0004  0.0068  0.0000  0.0533  0.0435
 76  0.0000  0.0000  0.0023  0.0024  0.0002  0.0068  0.0000  0.0533  0.0435
 77  0.0000  0.0000  0.0029  0.0015  0.0001  0.0068  0.0000  0.0533  0.0435
 78  0.0000  0.0000  0.0030  0.0010  0.0000  0.0068  0.0000  0.0481  0.0392
 79  0.0000  0.0000  0.0026  0.0010  0.0000  0.0068  0.0000  0.0376  0.0306
 80  0.0000  0.0000  0.0023  0.0010  0.0000  0.0068  0.0000  0.0270  0.0220
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 81  0.0000  0.0000  0.0019  0.0010  0.0000  0.0068  0.0000  0.0163  0.0133
 82  0.0000  0.0000  0.0015  0.0010  0.0000  0.0068  0.0000  0.0055  0.0044
 83  0.0000  0.0000  0.0012  0.0009  0.0000  0.0068  0.0000  0.0000  0.0000
 84  0.0000  0.0000  0.0010  0.0007  0.0000  0.0068  0.0000  0.0000  0.0000
 85  0.0000  0.0000  0.0007  0.0005  0.0000  0.0068  0.0000  0.0000  0.0000
 86  0.0000  0.0000  0.0004  0.0003  0.0000  0.0068  0.0000  0.0000  0.0000
 87  0.0000  0.0000  0.0001  0.0001  0.0000  0.0068  0.0000  0.0000  0.0000
 88  0.0000  0.0000  0.0000  0.0000  0.0000  0.0061  0.0000  0.0000  0.0000
 89  0.0000  0.0000  0.0000  0.0000  0.0000  0.0047  0.0000  0.0000  0.0000
 90  0.0000  0.0000  0.0000  0.0000  0.0000  0.0034  0.0000  0.0000  0.0000
 91  0.0000  0.0000  0.0000  0.0000  0.0000  0.0020  0.0000  0.0000  0.0000
 92  0.0000  0.0000  0.0000  0.0000  0.0000  0.0007  0.0000  0.0000  0.0000
 93  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 94  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 95  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 96  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 97  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 98  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 99  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000

Number of iterations = 46 (n=46)
i→j 1→2 1→5 2→4 3→2 3→5 4→2 4→5 5→1 5→2
Xn(i,j,t) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A(i,j,t+) 0.4973 0.5895 0.4502 0.0505 0.0295 0.3288 0.5137 0.3593 0.6356
An+1(i,j,t) 0.4969 0.5889 0.4503 0.0505 0.0295 0.3288 0.5139 0.3593 0.6357
% diff. -0.09 0.097 0.02 0.01 0.01 0.03 0.04 0.01 0.02
 % diff. = 100 x [Ani,j,t)-A(i,j,t+1)] / A(i,j,t+1)

      After 46 iterations, each Xn(i,j,t) is equal to 1.000; each An(i,j,t) is extremely close
or equal to A(i,j,t+1); all absolute values of the discrepancy rate (% diff.) are less than
0.1%. The discrepancy rate can be reduced further with additional iterations. For
example, the discrepancy rate is less than 0.01% with 91 iterations. We therefore
consider that that convergence is achieved, and the goal of estimating pij(x,t) to be
consistent with the projected A(i,j,t+1) has been achieved.


