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1. Introduction
It has been acknowledged that the rate of ageing of the force of mortality slows

down at older ages. The age-trajectory of mortality seems to follow a logistic pattern
with deceleration at advanced ages (Vaupel et al., 1979; Horiuchi and Coale, 1990;
Manton and Vaupel, 1995; Thatcher et al.,1998). The most popular explanation is that
individuals from the same cohort differ in their susceptibility to diseases and death.
Biological differences as well as life styles, environmental and living conditions may
cause individual frailty (Vaupel and Yashin, 1985; Vaupel and Carey, 1993).
Accordingly, the observed deceleration in the force of mortality may be the result of
selection processes towards low-frailty individuals that is changes in the composition
of heterogeneous populations. Thus, the logistic behaviour of the population’s force of
mortality (observed) may result from individual’s forces of mortality (unobserved)
which may follow a very different pattern such as an exponential law.

Deeper understanding of the observed mortality trajectory and its underlying
mechanisms at individual level hinges on statistical models that take into account the
selective survival hypothesis. In 1979, Vaupel, Manton and Stallard devised a frailty
model for studying mortality that incorporates the concept of individual susceptibility
to death in the analysis of survival data. Let

)x(z)z,x( 0µµ =
be the force of mortality at age x for an individual with unobserved frailty z, where

)x(0µ , the baseline hazard function, is the force of mortality at age x for a standard
individual, that is an individual with frailty equal to 1. If frailty is gamma distributed

with mean 1 and variance 2σ , then the observed force of mortality in a population at
age x is:
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where )x(s is the observed survivorship function.
The frailty model for univariate data is still widely used in demography because

of its simplicity: it exploits observed data at a population level to provide information
on what is not observable, that is the degree of heterogeneity in individual frailty. On
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the other hand, the univariate frailty model implies some shortcomings and strong
assumptions. One of these is the parametric estimation of the age-trajectory of
mortality for individuals, that is the parametric specification of the baseline function. It
has been recently stressed that there is no real evidence for the shape of the force of
mortality for individuals. In the classic frailty model, usually, the baseline hazard
function is assumed to follow a Gompertz curve. But alternative assumptions can
produce very different results of the degree of the population heterogeneity (Vaupel
and Carey, 1993).

The correlated frailty model is a possible solution to this not negligible problem
when data on twins or other related individuals are available (Yashin et al., 1995). This
approach is based on the correlation of the frailties of the related individuals. The
information provided by bivariate data permits to elude the assumptions about the
parametric form of the age-trajectory of mortality for individuals. Instead, it suggests
the non-parametric estimation of this function based on an estimate of the degree of
the population heterogeneity, that is the variance of frailty. Applications of this
approach to Danish twins showed that the estimated value of the variance in frailty
was about 1.5. As a result, the rise of the underlying force of mortality for individuals
was even faster than a Gompertz curve (Yashin and Iachine, 1997). It is clear that,
given a population mortality curve decelerating at advanced ages, the more rapid the
pace of mortality increase with age for individuals, the greater the heterogeneity in
frailty. Results on variance in frailty from Italian, French, Swedish, Japanese and US
data, obtained by applying the univariate frailty model, where the Gompertz curve was
assumed to describe the individual force of mortality, set at lower levels (Manton et
al., 1986; Barbi, 1998; Horiuchi and Wilmoth, 1998; Barbi et al., 1999). Further
analyses with larger samples of related individuals from different countries are
required to shed light on this question. Unfortunately, data at such detailed level are
not commonly available. Thus, such a fruitful approach has been only partly exploited.

Another possible solution to avoid the parametric specification of the baseline
function, this time suitable for aggregate data, is that devised by Caselli, Vaupel and
Yashin in 2000. Here, the value of the variance in frailty is estimated by minimising
the variance in rates of mortality improvement across ages and time. In the application
to Italian mortality data, from 1965 to 1994 and between ages 50 and 99, the degree of
heterogeneity is modelled as a constant for all cohorts involved in the period under
study. The estimated value was close to 0,5 for both women and men. This result is
apparently inconsistent with those obtained by the parametric approach - where the
values are lower both for males and females and the sex pattern is different (women
are generally more heterogeneous than men) - as well as with higher values estimated
by the correlated frailty model.

The goal of this study is to shed light on the rate of ageing of the human
population using easily available data at aggregate level. In the next Section, we
describe a simple approach, suitable also for grouped data, to estimate the variance in
frailty without assuming any arbitrary functional form of the baseline function. Then
we turn to mortality surfaces. We first describe a two-dimensional parametric frailty
model and then, generalising the approach illustrated in the next Section, we devise a
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two-dimensional non-parametric frailty model. Finally, both the parametric and the
non-parametric frailty models are applied to mortality surfaces of Italian extinct or
almost extinct cohorts.

2. A non-parametric frailty model for aggregate data
To elude any assumption about the parametric form of the baseline hazard

function, additional ancillary information are required. Similarly to the approach of
stress experiments (Yashin et. al. 1995), Vaupel et al. (2000) suggest the non
parametric estimation of the baseline hazard function using data with proportional-
hazard covariates and named the method covariate identified frailty model. A
reasonable assumption about the relationship between the baseline functions of two
different sub-populations permits a non parametric estimation of the baseline function
or force of mortality for individuals, based on an estimate of the degree of the
population heterogeneity. Although the approach is more feasible with individual data,
due to the possibility to exploit a larger number of individual characteristics, there is
no reason not to apply such approach to demographic aggregate data.

Following the classic frailty model where frailty is gamma distributed with

mean 1 and variance 2σ , let us define
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as the forces of mortality of population A and population B, respectively, where, as

shown in Section 1, )x(
A0µ  and )x(

B0µ  are the baseline hazard functions, 2
Aσ  and

2
Bσ  are the variances in frailty and )x(sA  and )x(sB are the observed survivorship

functions of the two populations.
Now, let us assume that the relationship between the two unobserved forces of

mortality for individuals is given by
)x()x(

BA 00 αµµ = .

In other words, the baseline functions of the populations A and B are assumed to be
proportional to each other. Then, it is easy to show that

22
AB )x(s)x(s)x()x( ABBA

σσµαµ −= .
Notice that the only parameters of the model to be estimated are the proportionality

factorα  and the variances in frailty 2
Aσ  and 2

Bσ .
Comparisons of the hazard functions may be carried out by sex, by cause of

death, by geographical origins, by race etc., that is by all those covariates that are
commonly recorded at aggregate level. Accordingly, it is theoretically always possible
to elude the parametric specification of the force of mortality for individuals even
when dealing with grouped data.
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3. Frailty models for Mortality Surfaces
Mortality surfaces represent mortality rates as function of age and time. They

can well summarise the impact of all those factors - biology, genetics, environment
and living conditions – which in fact can differently affect mortality depending on age
and time. The analysis of mortality surfaces offers hence the advantage of
simultaneously capturing age, period and cohort effects on mortality and their possible
hidden interactions more easily than the analysis of age-specific mortality rates at a
given time or the analysis of mortality rates over time for a given age (Arthur and
Vaupel, 1984; Caselli et al.,1985; Vaupel et al., 1997).

Since 1987, different softwares were devised to perform demographic surfaces
(see Vaupel et al., 1997). Mortality surfaces in this paper have been performed using
Lexis, a program devised by Kirill Andreev (1999).

3.1 Parametric approach

A parametric two-dimensional function, also accounting for selection, for the
analysis of mortality surfaces is that devised by Jim Vaupel in 1999.

Let
[ ] [ ])y(expc)y(exp)x(z)z,y,x( ψφµµ −+−= 0

be the force of mortality at age x and time y for individuals with unobserved frailty z,
where )x(0µ  is the baseline function (the force of mortality for a standard individual),

c is a positive constant and the two time-specific functions, φ and ψ, denote period
effects. If z follows a Gamma distribution with mean 1 at the starting age of
observation x0 and the baseline function is specified by the Gompertz model then, the
force of mortality at the population level, at age x and time y, is (Vaupel et al., 1979):

[ ] [ ])(exp),,()(exp),( )(
0

2

ycxyxxsybxayx xy ψφµ σ −+−−= − ,

where )xy,x,x(s −0  is the proportion of the cohort born at time y-x that survived from

age x0 to x and σ2(y-x)  is the cohort-specific variance of the Gamma distribution at the
starting age of observation x0 . Thus the model is able to decompose mortality surfaces
into age, period and cohort patterns.

Italian mortality surfaces have been analysed in this paper via a simplified
version of the model where, in order to save degrees of freedom, the two parameters φ
an ψ are modelled as follows:

y)x( φφ =  and y)x( ψψ = ,
and the heterogeneity in frailty is also assumed to be constant over cohorts. The
resulting six-parameter function is still suitable to capture mortality surfaces.
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3.2 Non-parametric approach

Exploiting the general result given in Section 2, it is easy now to devise a
suitable expression to analyze mortality surfaces in a non-parametric framework. Let
us denote

2
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)xy,x,x(s)y,x()y,x( AA
σµµ −=      and

2
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)xy,x,x(s)y,x()y,x( BB
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as the surfaces of the force of mortality, defined over age x and time y, of population A
and population B respectively, where )y,x(

A0µ and )y,x(
B0µ are the unobserved

surfaces of force of  mortality for individuals and the other parameters have the same
meaning as in Section 3.1 but refer to the two populations A and B. If the relationship
of the two baseline mortality surfaces is given by:

)y,x()xy()y,x(
BA 00 µαµ −= ,

where )xy( −α is the proportionality factor relative to the cohort born at time y-x, then
the mortality surface of population A is defined by:
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4. Applications to Italian Mortality Surfaces
Age-specific probabilities of dying experienced by the Italian cohorts born

between 1873 and 1895, in the range of age from 50 to 98, are depicted in figure 1 for
both men and women1. The maps offer a panoramic view of the male and female
evolution of mortality over cohorts. The shading goes from blue to red as the surfaces
rise from low to high mortality.

The period impact of the Second World War is easily traced on the maps by the
elongated diagonal that is obviously much more evident for men. As it is clear from
the figure, women experienced a more and more fast reduction in mortality at all ages.
This trend contrasts with the extremely low decline in male mortality, especially
among the older cohorts and at ages above 60-70. As a consequence, women enjoy a
considerable advantage over men that, among the youngest cohorts, becomes more and
more appreciable even at older ages.

Surfaces of Italian mortality for both men and women have been analyzed, first,
via the parametric frailty model and then via the non-parametric approach described
respectively in Sections 3.1 and 3.2. The non-parametric approach has been performed
through the following comparisons: (1) female mortality versus male mortality; (2)
male mortality versus female mortality; (3) female mortality versus total mortality; (4)
male mortality versus total mortality. Both in the parametric and the non-parametric
approaches, mortality functions are estimated using the maximum likelihood method.
                                                          
1 The data used in this paper include cohort life tables from Caselli’s database for ages 50 to 85. After age 85,
probabilities of dying have been constructed using Kannisto-Thatcher database on old age mortality
(http://www.demogr.mpg.de).
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Table 1 shows the results of the fitting process via the parametric approach. As
expected, due to the different evolution in mortality between men and women, the
period factors have a larger impact on women (φfemale=0.01734 and ψfemale=0.02022;
φmale=0.00665 and ψmale=-0.00329) than on men. The negative value of the parameter
ψ for men is anyway negligible especially when considering the low value estimated
for the parameter c. The exponential coefficient of the Gompertz model is higher for
women than for men (bfemale=0.13083 and bmale=0.11123). Thus, the force of mortality
for the standard individual rises faster for women than for men. As a consequence, as
discussed in Section 1, women have a higher degree of heterogeneity in frailty with
respect to men (σ2

female=0.14663 and σ2
male=0.09710), in accordance with what has

been found in previous studies on different developed countries. However, the
estimated values of the variance in frailty are set to quite low levels for both sexes.

Figure 1: Mortality Surfaces (probabilities of death) for Italian cohorts 1873-1895.

Table 2 shows the results of the fitting process via the non-parametric approach
through the four comparisons. In all the applications and for both sexes, the variance in
frailty assumes much higher values with respect to the parametric model, determining
so a quite rapid pace of the mortality increase with age at individual level. Moreover,
the fits with the model where the variances of frailty were imposed to be equal for the
two compared populations have led to bad estimates (not shown), assuring us about the
statistical significance of their difference. In figure 2 are depicted the trends of the
estimated proportionality factors α.  They reflect the different mortality evolution over
cohorts between men and women discussed above. Thus, a standard woman enjoys
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lower mortality risks with respect to a standard man (and, consequently, with respect
to the total population) and her advantage rises more and more as cohorts are younger.

Table 1: Parameters with standard errors of the frailty-model for mortality surface
fitted to Italian cohorts (1873-1895) from ages 50 to 98.

Parametric approach.

Fitted Italy

Parameters Females Males

est. s.e. est. s.e.

a 0.00417 2.07E-05 0.00567 0.00004

b 0.13083 0.000264 0.11123 0.00033

c 0.00604 4.22E-05 0.00586 0.00005

φ 0.01734 6.97E-09 0.00665 0.00000

ψ 0.02022 1.68E-07 -0.00329 0.00000

σ2 0.14663 0.001586 0.09710 0.00180

Loglikelihood -21218055 -21259226

Table 2: Parameters with standard errors of the frailty-model for mortality surface
fitted to Italian cohorts (1873-1895) from ages 50 to 98.

Non-parametric approach.

Fitted Italian female mortality Italian male mortality

Parameters vs    Italian male mortality vs    Italian female mortality

est. s.e. est. s.e.

σ 2
 females 0.718904 0.007784 0.798088 0.008517

σ 2
 males 0.649594 0.006381 0.720569 0.006958

loglikelihood -21212313 -21247627

Fitted Italian female mortality Italian male mort.

Parameters vs    Italian total mortality vs    Italian total mortality

Est. s.e. est. s.e.

σ 2
 sex 1.243005 0.023199 0.344210 0.012189

σ 2
 total 1.186763 0.021305 0.358940 0.013660

Loglikelihood -21207173 -21243717
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Figure 2: Estimated proportionality factor α of Italian cohorts, 1873-1895.
Non parametric approach.

What is remarkable here, is that values of heterogeneity in frailty seem not only
inconsistent with those found via the parametric approach, as expected, but also
amongst themselves. While the values of variances for the first two comparisons,
being one the opposite of the other, (female mortality versus male mortality and male
mortality versus female mortality) are of the same size order and still comparable
(σ2

female=0.718904 and 0.798088; σ2
male=0.649594 and 0.720569), those obtained from

the other two applications (female mortality versus total mortality and male mortality
versus total mortality) are enormously different (σ2

female=1.243005; σ2
male=0.344210;

σ2
total=1.186763 and 0.358940). The higher incongruence between the two values of

the degree of heterogeneity estimated for the total population is probably due to
possible non-linear interactions between the variance in frailty for women and that for
men.

The log-likelihoods and the Akaike Information Criterion (table 3) show how
the better estimates are obtained with the non-parametric approach for both men and
women. In this framework, the model comparing the population by sex to the total
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population gives the best fit for both sexes and the higher degrees of heterogeneity in
frailty for both men and women. Although the high levels reached by the log-
likelihoods make this test poorly indicative, we are incline to believe that results from
this model are the most reliable for two different reasons.

Table 3: Goodness of fit. Akaike Information Criterion (AIC).

Models
number of the model p*

AIC
-2loglik. + 2p

To be compared to
model n°

1 –  Italian female mortality
       Parametric approach 6 42436122 3 and 5
2 –  Italian male mortality
       Parametric approach 6 42518464 4 and 6
3 –  Female mortality vs male mortality
       Non parametric approach 25 42424676 1 and 5
4 –  Male mortality vs female mortality
       Non parametric approach 25 42495304 2 and 6
5 –  Female mortality vs total mortality
       Non parametric approach 25 42414396 1 and 3
6 –  Male mortality vs total mortality
       Non parametric approach 25 42414396 2 and 4

*p= number of parameters

First, we should consider that the non-parametric approach is very sensitive to
the choice of the populations to be compared. The assumption of proportionality
between the baseline hazard functions of two populations whose one is part of the
other is intuitively the most reasonable. Although, as noted in Section 2, comparisons
of the baseline hazard functions may be carried out by a number of different
covariates, not all comparisons may make sense. For instance, our application of the
method through the comparison Italian mortality versus Swedish mortality (not shown)
did not give good results. In this perspective, comparisons might then be more
reasonable when considering, for instance, regional mortality versus mortality at
national level or mortality by race versus total mortality.

Second, the estimated value of the heterogeneity in frailty, at least for women,
match better with that found for the Danish twins (about 1.5) through a completely
different method, the correlated frailty model. A similar large value of heterogeneity
has been obtained also by Kohlers (2000) by applying the covariate identified frailty
model to male and female mortality of Bulgaria. However, the authors consider this
value unrealistically high.

Results obtained for Italy seem to confirm that the age-trajectory of the force of
mortality for standard individuals may rise even dramatically faster than a Gompertz.
The impact of selection would be then already considerable at younger ages and, as a
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consequence, the average frailty of the cohorts would be soon reduced. In such a
situation, accounting for individual frailty but imposing an arbitrary parametric form
for the baseline hazard function may still result in biased demographic life tables. As
already noted by Caselli et al. (2000), corrections for unobserved heterogeneity are
hence needed not only for the oldest old but also for adult ages.
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