
Max-Planck-Institut für demografische Forschung
Max Planck Institute for Demographic Research
Konrad-Zuse-Strasse 1 · D-18057 Rostock · GERMANY
Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202;
http://www.demogr.mpg.de

This working paper has been approved for release by: James W. Vaupel (jwv@demogr.mpg.de)
Head of the Laboratory of Survival and Longevity.

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review.
Views or opinions expressed in working papers are attributable to the authors and do not necessarily
reflect those of the Institute.

MAXIM

A system for simulation of demographic
processes in populations of related
individuals

Version 2.3
User and programmer manual

MPIDR WORKING PAPER WP 2008-010
MARCH 2008

Arseniy S. Karkach

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7127516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MAXIM

A system for simulation of demographic processes
in populations of related individuals

Version 2.3

User and programmer manual

Arseniy S. Karkach, 2005-2007

July 18, 2005
March, 2007

 2

Introduction..5

Basic ideas and areas of application...5
Differences between MAXIM and SOCSIM...6
Stochastic event model...8

New features of MAXIM ...10
Improved usability ...10
Support of complex models ...10

How it works...11
Compiling..12
Running...13
The command (supervisory) (.sup) file ..14

Overview of top-level structure of the file...14
Comments ..15
Example of a .sup file...15
“Inheritance” of control information between the segments............................17
Structure of rate tables ...17
Keywords and basic model parameters..18
Inheritance of group ...21
Inheritance of additional parameters..22
Inheritance of heterogeneous fertility ..22
Support of the Lee-Carter mortality model (not implemented in MAXIM)....23
Rate patterns...25
Choosing relevant rate pattern ...26
Included rate tables ..26
Lee-Carter Rate Files (not implemented in the current version)......................28
Case 1: The kt values are given by a formula ..28
Case 2: The kt values are read via the rate file ..28

Defining vital rates and loading data tables .. 28
Notation..29
Rates defined by a life table (lx, qx or mx values)...29
Rates defined by a plugin...29
Arbitrary data defined by tables...30
Modification of rates given by life tables ..30
Modification of rates defined by a plugin ..30
Transition rates – general definition ..30
Comments ..31
Limitations for tables ...31
General syntax of sup file expressions...32

Files describing population ...34
Files describing individuals (.opop) .. 34

Modifications to the .opop file ...36
Population file fields ..37
Population file format ..37

Marriage file (.omar) ... 38
Marriage file format ...38

File defining additional parameters of individuals (.opox)................................. 38
Example..39
Modifications to the .opox file ...39
Notes ..39

 3

Known problems ..40
Demographical processes in MAXIM ..41

Main ideas. Rate patterns ...41
Rate patterns lookup. Specific-to-general priority rule....................................41
1. Age- or period- specific rates defined by a rate table41
2. Age- or period- specific rates defined by a rate table modified by a modifier

plugin ...42
3. Age- or period- specific rates defined by a rate table modified by a plugin 42
Defining complex vital rates without programming ..42
Comments ..43

Mortality.. 45
Rates given by rate tables...45
Rates specified by functions...45

Marriage .. 45
Fertility.. 45

Customizing MAXIM ..48
Maximum age in model ...48

Generating a start population...49
Example set-ups for different models...50

Modelling on a different time scale ...50
One sex population with births and deaths ..50
Marriage success depending on education...50
Using wildcards to define vital rates..51

Running speed and optimization ..53
Memory requirements and management in MAXIM ..54
Logging, debugging and troubleshooting...56

Frequent errors .. 56
get_xtra_param() ..56

Programmer guide ...58
Hierarchy of function calls.. 58
Modules and functions .. 59
Main.cpp.. 59

Segment.cpp ...59
marriage.cpp...59
random.cpp...59
Population.cpp..59
Person.cpp ..60

Call structure ... 60
MAXIM Classes.. 61

class TABLE_ROW...61
class TABLE ..61
class SUP_OBJECT...62
class STAT_PLUGIN ..62
class RATE_SOURCE...62
class PERSON..62
class MARRIAGE..62
class POPULATION..63
class SEGMENT ..66

Extending MAXIM. Programming new and modifying existing modules68
How to…... 68

 4

Change the spouse selection model and scoring function................................68
Programming plug-ins... 68
Generator/alternator plugins.. 69

Compiling...69
Accessing data from plugins ..69
Invoking plugins...71
Invoking alternator plugins ..71
Invoking generator plugins ..72
Invoking modifier plugins..73

Statistical plugins .. 73
Compiling...73
Accessing data from plugins ..74
Invoking statistical plugins ..74

Plugins built into MAXIM .. 74
Hints and warnings...75

Practical examples of plugins.. 75
Parametric models of vital rates...75
Inheritance of individual parameters..76
Big example ...76

Algorithm diagrams .. 77
Testing for occurrence of specific event to an individual77
Parsing .sup file – description of rates ...78

 5

Introduction
MAXIM belongs to the class of “microsimulation” population projection programs

[ref. to Wachter] and is based on the ideas, and further develops the code of SOCSIM
created by K. Wachter and collaborates [references about SOCSIM]. The MAXIM
software development project was started by J. Oeppen and A.S. Karkach in January,
2005.

The name MAXIM commemorates Max-Planck Institute for Demographic Re-
search where it was developed.

MAXIM is open-source modelling software ready for extension and modification.
The program is written in C++ programming language, should compile and run under
any operation system as a command line application with no or slight modifications.

MAXIM is a complete rewrite of SOCSIM with many enhancements. Still most of
the syntax and algorithms are the same. Hence the user is expected to familiarize him-
self with the SOCSIM documentation first [………]. The difference between the two
programs and new features of MAXIM are described in this document.

MAXIM is not “back compatible” to SOCSIM. Files prepared for simulations
under SOCSIM will not run on MAXIM. Still they will usually require only slight
modifications.

This manual describes the main differences between SOCSIM and MAXIM and
how to set-up MAXIM for different model set-ups. The reader is assumed to be ac-
quainted with the SOCSIM documentation beforehand.

Basic ideas and areas of application
SOCSIM, which MAXIM bases upon, was originally developed for human popula-

tions but it allows simulating a much broader range of system.
MAXIM can be used to simulate 1- or 2-sex populations. In 1 sex set-up all indi-

viduals are treated as females.
Reproduction may be sexual and a-sexual (in 1-sex population) births can be le-

gitimate or illegitimate.
Simulation involves estimating the time when all or some of the following events

happen:
birth Creation of a new individual (happens to females). Changes in-

formation of mother and father
marriage start of search of a partner of opposite sex and eventually mar-

riage
divorce split of a marriage
cohabita-

tion
similar to marriage, with slightly different state change laws and

possibly different rates
split split of cohabitation
death end of individual life
transition migration. Realized as a change in “group” characteristic/
The meaning of these events may be re-interpreted, but new events can hardly be

added.
Individuals can have arbitrary number of parameters which can eventually influ-

ence the rates with which events happen – for self or other individuals in the popula-
tion (e.g. neighbours, kin). Genetic evolution, characteristics such as education influ-
encing mating success, even infectious diseases that can spread in the population can
be easily modelled with MAXIM.

 6

Area of utilization of MAXIM covers and widens that of SOCSIM.
Modelling goes by discrete time steps.
The current state of each individual in the population can be fully characterized by

its
Basic variable: age,
Basic characteristics: sex, marital status (which can be “single”, “married”, “di-

vorced”, “cohabiting”, “widowed”), parity (total number of children born to a woman)
and group number (integer value denoting belonging to one of the population groups),

Predefined individual parameters: fertility multiplier, etc.,
User-defined individual parameters: any number of constant or age-dependent

characteristics which can be expressed as double values.
Above described events change the basic characteristics. For each individual of the

population each time step occurrence of all possible events is tested based on the vital
rates which may depend of base characteristics of ego, additional characteristics set by
parameters, possibly current characteristics of other individuals and population-wide
parameters.

Additional individual and population-wide parameters may change every time step.
Reproduction event can create only one offspring at a time. So simulation of sys-

tems with multiple offspring (e.g. birds and egg clutches) is so far not possible, but it
is not too hard to implement it in MAXIM.

Differences between MAXIM and SOCSIM
Most differences between the programs are given in the following table.
 SOCSIM MAXIM
Programming lan-

guage and style
Initially written in Pascal,

later ported to C. Functional
C++. Object-oriented

Event scheduling Scheduling (evaluation of
time) of next event. Event
competition model

“Real time” testing for oc-
currence of event every time
step

Modelling time
step

1 month User-defined (integer
months)

Population size Limited by amount of
RAM

Limited by amount of RAM

Simulation time
period

Unlimited Unlimited

Maximum age of
individuals

100 years, changeable 100 years, changeable

Simulation Proceeds by segments.
Unlimited number of seg-
ments

Proceeds by segments.
Unlimited number of segments

Life history rates Can not change within a
segment due to limitation of
event-scheduling scheme

Can change within a seg-
ment since event occurrence
depends upon the current rates

Definition of vital
rates

Tables of age-specific
monthly rates, Lee-Carter
age- and time-specific rates.
Ages denote end of the pe-
riod when the rate acts

Age-specific tables of an-
nual rates, ages denote start of
the period when the rate acts.

Rate-generator and altering
plug-ins.

“Rate patterns” allow to de-
fine similar rates (e.g. migra-

 7

tion rates for all groups) using
asterisks (*).

Maximum parity 16 unlimited
Number of popula-

tion groups (used as
“families”, “tribes”,
“countries” etc.)

Defined by a constant. 16
by default

unlimited

Additional parame-
ters

Definition difficult. Only
individual parameters

Simple definition in form of
a rectangular table. Parameters
defined by names. Individual
and population-wide parame-
ters. Can be easily set, initial-
ized and updated during the
simulation by the user-defined
plug-ins

Support of com-
ments in rate, popula-
tion, marriage, addi-
tional parameters and
command files

No Yes (3 types)

Descriptive headers
in population, mar-
riage, additional pa-
rameter files

No Yes, automatic

Restart ability Yes Yes
Execution Each modelling segment

is read, model executed,
than the next segment is
read

Commands and data for all
segments is read into memory,
then all segments are executed
sequentially

Extendibility Needs programming and
good knowledge of the pro-
gram

Needs programming. Plug-in
framework:
4 types of user-defined plug-
ins with standardized simple
interfaces (3 types) and invoca-
tion:

plugins altering personal
state. Invoked by life-history
and simulation events (such as
start of time period)

plugins generating vital rates
(mx). Invoked when a specific
rate is required

“statistical” plug-ins, col-
lecting and dumping informa-
tion about the population to
files. Invoked periodically,
dump information to files

Modifier plugins – functions
changing output of rate genera-
tor plugins

 8

Robustness and
user-friendliness

Original version provided
by K. Wachter ran under
Unix. After porting to MS
Windows many annoying
bugs that were previously
masked or hard to find.
Many memory-
management errors were
found. Error messages
sparse and obscure. If a user
provided wrong information
is very hard to figure out
what went wrong

Version developed under
DEV C++ compiler under
Windows contains enhances
error codes and hints for the
user. New code contains in-
creased number of comments.
Increase number of checks
against errors in data, user in-
put or OS issues (e.g. file ac-
cessibility). Support of directo-
ries, multiple modelling ex-
periments

Suitability Fast, suitable for slowly-
changing segment-constant
vital rates, simple model-
ling set-ups, modelling
times much longer that in-
dividual life span

Slower, more precise, suit-
able for quickly changing vital
rates, modelling of population
density loop-backs and other
“real time” changes that influ-
ence the individual life history
between events, complex set-
ups with many individual pa-
rameters (e.g. mutation-
selection problems) etc.

Stochastic event model
In order to model which event happens to an individual and when SOCSIM uses

model of event competition with scheduling of next events. In simple form it works as
follows. Vital rates are unchanged within one modelling segment. So the possibility of
events happening to any individual being in a certain state (age, marital status etc.) is
defined by a known before hand set of rates corresponding to their age, sex, group,
marital status, parity etc. till the next event. Ages of all possible events that can hap-
pen to the individual are evaluated and the closest event is selected. This is called an
“event competition model”. Usually an event changes the status of the individual (e.g.
marital status, or parity), and, hence, the set of possible events for the individual and
corresponding rates. Each time an event happens to an individual “event competition”
is repeated and a new event in scheduled. Events are rescheduled and again the next
closest event is selected. The process is repeated until the death of the individual.

Such system is computationally effective, since each month only individuals with
events scheduled for that month are processed. These usually comprise only a small
fraction of all population.

The drawback of such event scheduling model is inability to adjust the rates dy-
namically. For an example, consider a child born to a mother. At birth a next event is
scheduled for the child based on vital rates acting at births, suppose this is the “mar-
riage” event. If his mother dies soon, most probably, his mortality rate strongly in-
creases. Although in SOCSIM there is no way to influence his life history before the
next scheduled event, in our case, “marriage”, happens. So the death of mother will
never lead to higher mortality of children.

More important events that change mortality rates, such as epidemics, wars, can
only be modelled by splitting the timeline into “segments” with different rates, in the

 9

modelling. Modelling of rates depending on kin, resources and such parameters
changing unpredictably is impossible in SOCSIM.

In MAXIM all individuals alive in the population at current time step of simulation
are tested against all possible events, based on rates of events depending on their cur-
rent states (and possibly, states of other members of the population and parameters).
This requires much more computation time, but the system become more “respon-
sive” to changes.

 10

New features of MAXIM
Improved usability
Files describing model and rates (.sup files), population (.opop files), marriage and

cohabitation unions (.omar files) and additional parameters of individuals (.opox
files) may contain comments. A comment in MAXIM is a line or part of the line start-
ing from one of characters: #, %, or from //. Moreover, .sup file parser supports
comments in any place of the file and at the end of the lines with commands. In .opop
and .opox files comments may be only in the beginning of the file.

Result .opop, .omar and .opox files generated by the program contain headers
which explain the file structure and contain additional information about the simula-
tion.

Additional parameters defined for individuals in .opox files and for the population
in .sup files are referenced by names.

Data checking and error reporting are enhanced in comparison to SOCSIM. All er-
rors report names of functions in which they occur thus simplifying debugging.

Support of complex models
Modelling of every life history process requires a different approach. For example,

mortality may be described by age- or age- and time-specific mortality rates, which
may be defined in the program by stepwise rates by means of a table, or in parametric
from by formulas. Fertility is a process with totally different rules which may be de-
scribed by age-specific or period-specific birth rates, birth intervals, ages of start of
reproduction and age-specific sterility factors. Mortality of children and female fertil-
ity may be influenced by different factors such as available resources.

It is impossible to implement all possible models for different life history processes
keeping the modelling ideas simple and the program robust. A modeller needs a flexi-
ble, yet simple, event-simulation framework which can be extended by new modules
that take into account specifics of certain processes and implement certain models of
them.

MAXIM offers such possibility since it can easily be extended by means of plug-
ins.

MAXIM plug-ins are functions with a simple standardized interface which may be
added, compiled into the program and invoked by simple commands in .sup files.

Plug-ins that come with MAXIM and how to create the new ones is explained in
section “Extending MAXIM. Programming plug-ins” of this manual.

 11

How it works
When started MAXIM reads command file with extension sup which describes the

model. It defines
- how long does the simulation do and what is the time step
- which files describing population use for input and output
- describes rates transitions between the states of individual by means of rate ta-

bles or rate generating plugins (compiled into the program beforehand). Com-
mand file can include other files (e.g. tables of age-specific rates). It also de-
scribe what statistics about the population should be collected and written to
files

- Information about the starting population consisting of information about indi-
viduals, their unions (marriages, cohabitations) and values of individual pa-
rameters are read in

- The modelling processes by defined time step. Some error and diagnostic in-
formation is printed to the screen and sent to log file during the simulation. Es-
timated time till the end is displayed

- After the end of the simulation information about all individuals ever lived
during the simulation, their kin relations, marriages and parameters is written
to a file

MAXIM supports 5 marital statuses of individuals: single, married, cohabiting,

divorced and widowed. Possible transitions between them are shown on Fig. 1.

Figure 1. Marital statuses and possible transitions between them in MAXIM

Single

Married

Cohabiting

Divorced Widowed

Di-
Marriage

Cohabitation

Split
Death of part-

Mar-

Death of part-

Mar-

Cohabita-

 12

Compiling
MAXIM distribution contains the source code, precompiled binary for MS Win-

dows system (file MAXIM.exe) and example model files. You can start experiment-
ing with MAXIM under MS Windows immediately using the binary.

In order to run the program under other operation systems or if you decide to extend
the program by adding plug-ins you will need to recompile it. This can be done from
the source code using any C++ compiler. MAXIM is a command line program that
does not use any system-specific functions and (theoretically) should compile and run
under any operation system. Build it as a command prompt C++ program. Consult the
manual of your compiler how to do it.

MAXIM makes heavy use of the Standard Template Library. Your compiler should
support it.

 13

Running
MAXIM executable can be invoked from the command prompt
MAXIM sup_file rnd_number left_trunc right_censoring [/v]

sup_file Filename describing mode of work and rates of the life

processes. These files should have a .sup extension. sup_file
is the name without extension. This name is also used to
generate names for log files. Name may be given relative to
the directory of maxim executable. In this case all input and
output files referenced from the .sup file are searched for
relative to this directory

random_number Arbitrary positive integer number – initial seed of the
quazi-random number generator used in simulation

left_trunc Integer denoting month. Used as the start of simulation.
All individuals in the input population file not marked as
dead are assumed to survive till this date

right_censoring Integer denoting month. Not used
/v Switch on verbatim mode, print abundant runtime infor-

mation. Optional.
/l
Example
We want to run a simulation described by file evolution.sup. Input population

contains information about the population up to time 1200 months (end of the previ-
ous simulation). All files are located in directory simulation. A command
maxim simulation/evolution 1 1201 2400 /v
run a simulation starting from month 1201. Length of the simulation and all pa-

rameters are defined by file simulation/evolution.sup. All results are writ-
ten relative to directory simulation.

 14

The command (supervisory) (.sup) file
Command files have extension .sup and describe mode of work, parameters, rates

and most information required for the modelling. These files were referred to as su-
pervisoru (hence the name) in SOCSIM documentation.

The format of files is almost back compatible, so SOCSIM files may work in
MAXIM with some modifications.

Unlike SOCSIM in MAXIM data for all segments of the multi-segment simulation
are first read into memory at start and then the simulation starts.

Overview of top-level structure of the file
Command files are easiest to understand as nested structures. The outermost part

gives information that will characterize the entire simulation--the rate and population
files used and the parameter settings--and the control commands. It's probably a good
idea to set all parameters in the top level file and provide source information (as com-
ments) for all lower-level files (which typically contain rate sets), just to make sure
that the simulation can be reproduced.

Any number of simulation segments can be nested within this outermost structure.
A "simulation segment" refers to a period of simulated time characterized by specific
rate regime and parameters (hence the close association between segments and dis-
tinct rate files). For example, one might wish to model a population that experienced
100 years under a high fertility/high mortality regime and then underwent a demo-
graphic transition to low fertility/low mortality rates. Such a simulation may be set
using two simulation segments. Modelling the kinship structure of a country with a
census (and a new rate set) every 10 years could be done with as many 10-year seg-
ments, each with a distinct set of rates, as necessary.

In addition to changing the demographic rates, each segment may also be governed
by a distinct set of options and variables which govern the behaviour of the simulated
population during that period. For example the average inter-birth interval, the ratio of
male/female births, or the level of heterogeneity of fertility may change from simula-
tion segment to segment. These should be set in the highest level file, as this localizes
required changes and makes it easier to keep consistent.

include filename
commands allow to include other text files. These have the effect of splicing the

named file into the input stream at that point. This works for any files but is most use-
ful for rate tables, which tend to be quite long, full of numbers, relatively static once
they are created. (The top level command file could simply have contained all in-
cluded files directly but that would have made it somewhat harder to use - it also
would be much longer and much more difficult to understand.)

Filenames may include directories.

The example below sets up a two-segment simulation: segment 1 is 480 months
long and is governed by rates stored in file "RATES/rates.1840.1879" and parameters
bint and hetfert set in the toplevel file. Segment 2 is 360 months long and is gov-
erned by rates stored in "RATES/rates.1880.1909" and parameters bint and hetfertset
in the toplevel file.

 15

Comments
In MAXIM command files comments may be added using #, % or // (C-style) char-

acters. Any line or part of line starting with any of these characters will be treated as a
comment and not parsed.

Note: the character * which was used to denote comments in SOCSIM should not
be used any more as it now denotes wildcard (“any”) in rate patterns.

Example of a .sup file
segments 2
input_file test
output_file test.out
duration 480
bint 12
hetfert 0
include RATES/rates.1840.1879
run
duration 360
bint 24
hetfert 0
include RATES/rates.1880.1909
run

This is an annotated file version of the file shown above and would be processed

identically. The rate-set provenance comments would be appropriate even in an oth-
erwise uncommented file:
number of segments in the simulation
segments 2 # segment command is obsolete in MAXIM

 # but still can be used

input file prefix. Read files test.opop, test.omar,
in the current directory
input_file test

output file prefix. Write files test.out.opop, test.out.omar
in directory */tmp.
output_file /tmp/test.out

set up segment 1
duration of segment 1
model to approximate 1840-end of 1879
duration 480

birth interval setting for segment 1
bint 12 # 12 months

hetergeneous fertility setting for segment 1
hetfert 0

file containing the birth, death, marriage and divorce rates
for segment 1 is rates.1840.1879
in the directory RATES, which is one below this one
include RATES/rates.1840.1879

save information for the first segment of the simulation
and continue reading this file
run

Set up segment 2

 16

duration of segment 2
model to approximate 1880-end of 1909
duration 360

birth interval setting for segment 2
bint 24

hetergeneous fertility setting for segment 2
hetfert 0

file containing the birth, death, marriage and divorce rates
for segment 2
is rates.1880.1909 in the directory RATES,
which is one below this one
include RATES/rates.1880.1909

Ends defining the second segment of the simulation.
Segment 2 is the last segment so the modelling will start now
run

SOCSIM .sup files may work in MAXIM with some modifications. Most variable

names and table structure of SOCSIM should work in MAXIM (see note about the
rate table structure)

MAXIM parser is more robust than that of SOCSIM. It allows for any level of re-
cursion in the .sup files, tables can be “cut” between files in any place (see limitations
below). More comment delimiters are supported.

MAXIM .sup file parser works in 2 steps.
Step 1 unfolds the inclusion of .sup files and presents all the information as one

piece of text. During this process all empty lines and comments, beginning with sym-
bols #, % and // are stripped. This allows to use comments starting at the end of lines.
E.g. lines
death 1 F single # death rate for single females in group 1
0 1 0.010000 # rate acts in ages 0 and 1 complete month

will be first stripped by preparser to
death 1 F single
0 1 0.010000

and then parsed.
Step 2 parses the information from the .sup files and loads it into variables and

rate tables for one or several segments.
In SOCSIM each segment contains the information about parameter values and rate

tables fixed and acting on certain time interval of simulation. This idea remains in
MAXIM although the rates have possibility to vary within segment (see further). In
SOCSIM the number of segments is defined by command segments, information for
each segment is terminated by a run command. Thus a .sup file
…..
run

…..
run

defines 2 segments.
MAXIM parser ignores the segments commands used to define number of seg-

ments in SOCSIM and uses just run commands to delimit the segments. Each run

 17

command defines marks the end of the definition of the current segment. Number of
segments corresponds to the number of encountered run commands. Hence the .sup
file defining only one time segment must have run command at the end.

If for a simulation more than one segment was defined, the parses acts as following:
The information from the first block (parameters, rate tables) until the run com-

mand is read and saved for the second segment.

 “Inheritance” of control information between the segments
The rules of inheritance are different in MAXIM. They are rather simple.
Everything - the values of parameters (built-in, population-wide), defined rate pat-

terns, rate tables, link of rate patterns to rate table and plugins, … acting in the seg-
ment - are inherited by the next segment. So if you desire to change only one or sev-
eral parameters you don’t need to worry about all the others.

Information read for the second segment updates one set for the first segment. This
allows changing only values of some parameters or replacing only some of rate tables.
Each following piece of data between run commands updates information of the pre-
vious segment, and the updated information is saved into the new segment.

Of course you may as well define all parameters and rates for a new segment. An
example may clarify the subject. Consider a code fragment:
…
bint 9
hetfert 0
…
run

…
bint 20
…
run

…
bint 30
hetfert 1
…
run

This defines 3 segments. In the first bint=9, hetfert=0, in the second bint=20 and

hetfert remains 0, in the third both parameters get new values: bint=30, hetfert=1.

Structure of rate tables
Age-specific (and other???) rate tables are stored in MAXIM in a more natural for-

mat different from somewhat awkward and error-prone format of SOCSIM. The
MAXIM format implies that the given rate starts at the defined month. The last
rate may be given for any age, it is assumed to be acting further on.

The rate definition should start at age 0 otherwise an error message is issued.
death 1 F single
0 0 0.5
0 2 0.10000
1 0 0.08948
2 0 0.03314
3 0 0.01105
4 0 0.00601
…..

 18

100 0 1.0

The rate that the table defines is coded in its header as “event group sex marstatus”

and “parity” for birth rates.
The first number in every line with numbers denotes year, the second – month of

the first date when the current rate starts. The third number defines the monthly
rate. In this example monthly mortality rate 0.01 will act during life months 0 and 2
till age 11 months, then rate 0.008948 will start at age 1 year etc.

Such form is comfortable since in the rate tables typically found in the literature
time defines the moment starting with which the rate acts.

Keywords and basic model parameters
Keyword Interpretation Examples Notes
General control
in-

put_file

input files prefix - ac-
tual files will be name
prefix.opop, pre-
fix.omar

input_file test1
input_file

testruns/test1

Explanation: in

the first case,
the starting popu-
lation will be in
file test1.opop
and starting mar-
riage file will be
in file test1.omar
(both in the cur-
rent directory).
In the second, the
files have the
same names but are
in directory
testruns (a subdi-
rectory of the
current direc-
tory).

Analogous
keyword: out-
put_file

segments

number of segments
expected in the simula-
tion. There isn't any limit
on the number, but seg-
ment information must be
provided for each seg-
ment.

segments 1
segments 78

Obsolete in
MAXIM. End of
segments (and
hence, their num-
ber) is defined by
the “run” com-
mand

duration Assign the integer fol-
lowing to the integer
variable dura-
tion_of_segment, which
is the duration of the cur-
rent segment in months.

duration 10
duration 1200
default value: 0

(this triggers an
error message)

birthtar-
get

interpretation: Modify
rates to get a number of
births close to the value

 birthtarget
2 100
 birthtarget

1 1500

caveat: it's not
always possible
to to achieve too

 19

in target in the given
segment. When targets
are specified a crude cal-
culation of the expected
number of births in that
segment (based on the
rate structure and the par-
ity and age distributions)
is used to scale the birth
rates by a fixed factor for
all individuals in a par-
ticular group. The rates
themselves are un-
changed and can be used
in later segments. Note
that some feedback is
possible while the simula-
tion is running--the target
can be read from a file
created using the execute
command.

 high a target by
increasing birth
rates alone--the
age/sex structure
of the population
may not be fa-
vorable.

Note: is not
implemented in
MAXIM. May be
implemented by a
user plugin.

include

Read the file that fol-
lows as though it's con-
tents were spliced into the
current file from that
point on.

examples:
include

rates.segment1
include

rates/mor-
tality.seg4

Directory
names may be
used in the
names

execute

interpretation: interpret
the rest of the line as a
string to be passed to the
UNIX "system com-
mand." Control is trans-
ferred to the shell and
reading doesn't continue
until the command is
executed and returns.
Commands that produce
screen output will place
their results at this point
in the output stream.
Commands that generate
ratefiles will generate the
file before reading the
next line (which can be a
command to include that
file, as above)

example:
 execute ls
 execute

generate_rates 1 5
0 >mortality.seg4
 execute

sleep 10
 execute

date
 execute

echo

this section is-

n't very clear
explanation: ls and

date are Unix com-
mands and the output
will appear on the
screen. sleep 10 will
pause for 10 seconds,
and the echo command
will print out the dis-
claimer. If the line in-
cluding generate_rates
is a correct command
line (and generates

Not yet im-
plemented in
MAXIM

 20

rates in the proper
form for socsim), the
results of the com-
mand will be in file
mmortality.seg4 and
eligible for inclusion
by the next line.

run

interpretation: run the
next program segment.
This command should
only be in the "highest"
level file, i.e., in the file
that is named on the
command line. This top-
level file is bookmarked
at the next reading posi-
tion (so reading can re-
sume at the end of the
segment), the rate file is
closed, and the segment
processing begins.

run End defini-
tion of data
for the cur-
rent segment

Rate patterns
* Used in definition of

rate patterns. Replaces
any possible value in its
position

death 1 *
married – defines
death rate for married
individuals of group 1
and both sexes

M Used in definition of
rate patterns. Defined rate
pattern applies to males.

death 1 M mar-
ried
marriage 1 M

single

Analogous
keyword: F

single

Used in definition of
rate patterns. Defined
rates apply to marital
status “single”

birth 1 F single
0
death 1 M single
marriage 1 M

single

Analogous
keywords: di-
vorced married
widowed [co-
habiting]

death

The rest of the line will
represent the group, sex,
and marital status of a set
of agents in the popula-
tion. The rate set or out-
put of plugin that follows
will apply to them and to
all agents whose rate sets
default to this set.

Within the simulation
the rates may be duration-
specific. For example,

death 1 M mar-
ried
death 1 F di-

vorced

analogous
keywords: mar-
riage divorce

Note: in
MAXIM an extra
parameter in the
line may denote
name of the rate
plig-in. It re-
places the defini-
tion of the rate by
a rate table

 21

divorce rates are based on
the "age" (duration) of
the union.

birth

The rest of the line will
represent the group, sex,
marital status, and parity
(which starts at 0) of a set
of female agents in the
population. The rate set
or plugin that follows will
apply to them and to all
agents whose rate sets
default to this set.

If rate is defined by a
table the next lines will
be interpreted as rate ta-
ble.

birth 1 F mar-
ried 0

birth 1 F married 14

transit The line will represents
rate pattern of a “transi-
tion” event which
changes “group” of the
individual. Follow: the
starting group, sex, mari-
tal status, and destination
group of a set of female
agents in the population.

The rate may be de-
fined by a rate generating
plugin (following posi-
tion – its name) or a rate
table in the next lines.
There is no need for a
complete set of migration
rates, allowing this sort of
rate to model general
status transitions. The
maximum number of
groups is unlimited in
MAXIM

transit 1 F mar-
ried 2
transit 3 M sin-

gle 2

The first example

gives the migration
rates for group 1 mar-
ried women who are
migrating to group 2;
while the second ap-
plies to group 3 single
men who migrate to
group 2.

Inheritance of group
A newborn individual inherits its population group from one of its parents. This is

controlled by a keyword
child_inherits_group
with possible values
MOTHER, FATHER, SAME_SEX_PARENT, OPPOSITE_SEX_PARENT

Example:

 22

if .sup file defines for the current segment
child_inherits_group OPPOSITE_SEX_PARENT
a newborn girl will inherit her group from her father if he is known. Else she inher-

its the group from her mother.

Inheritance of additional parameters
A newborn individual inherits the set and values of additional parameters from one

of its parents. This simplifies programming of models with additional parameters. The
values of parameters may be further adjusted by plugins hooked to the birth event
which occurs just after the creation of a new individual.

The inheritance behaviour is controlled by keyword
child_inherits_parameters
with possible values
MOTHER, FATHER, SAME_SEX_PARENT, OPPOSITE_SEX_PARENT

Example:
if .sup file defines for the current segment
child_inherits_parameters FATHER
a newborn boy will inherit values of all individual-level additional parameters de-

fined for his father if he is known. Else he inherits them from mother.

Inheritance of heterogeneous fertility
It's useful to have a mechanism that allows the daughters of large families to be

more likely to have large families themselves. Alphas and betas are used in pairs
(.1/1.05, .2/1.10,.4/1.15, etc). The values default to those that are there, effectively,
when there is only the heterogeneous fertility setting: alpha = 0, beta = 1.

alpha
interpretation: proportion of an individual daughter's fertility multiplier--when het-

erogeneous fertility holds sway--that is inherited from her mother. The rest come from
a call to a funtion that generates random numbers with a beta distribution. Or as in the
code:
 daughter->fmult = alpha * mother->fmult + (1 - alpha) * fert-

mult();
example:
alpha .1
default value: 0 (reassigned at start of segment)
beta
interpretation: once the child's fertility multiplier (daughter->fmult) is established, it

can be modified using the code
daughter->fmult = 2.5 * exp(beta*log(daughter->fmult/2.5));
example:
beta 1.05
default value: 1 (reassigned at start of segment)
factor
interpretation: modify a particular set of rates (a single event, group, sex, marital

status index into the rate set) by the given value. In the case of birth rate sets, all pari-
ties are modified by the value for the given group and maritial status.

example:
factor birth 1 single 1.1
factor death 1 M single .9
factor transit1 2 M single .9
default value: 1 (reassigned at start of segment)

 23

Note: not implemented in MAXIM
Commands setting values of predefined parameters
Key-

word
Interpreta-

tion
Assigns

value of
parameter

Possible
values, de-
fault

Examples Notes

sex_rati
o

Percentage of
births that are
male.

prop_mal
es

0..1.
0.5112

(reas-
signed at
the start
of a new
segment)

sex_ratio
0.5112
sex_ratio

0.3333

het_fert It's reassigned
at the start of the
simulation and
each segment (as
are the analogous
keywords which
follow). Note
that turning the
flag on and off is
not a good idea.

assign a
value to het-
fert,

0(FALSE
)/1(TRUE)
(flag)

default: 1

hetfert 1
hetfert 0

analogous
keywords:
hhmigration
(migrants emi-
grate with their
entire house-
hold, default 0)
endogamy
(marriage
within groups,
only, default 0)

bint A double pre-
cision value rep-
resenting the
minimum inter-
val between
births (in
months). Birth
rates are then
adjusted (in-
flated) to keep
the intended
value for the
monthly prob-
ability of giving
birth, however,
when the bint is
too large it's pos-
sible that some
births will be lost

bint, bint 9
bint 24

Acts only if
birth rate is
given by age-
specific table of
rates. Does not
act when rate is
given by a rate
generating
plugin

timeste
p

Modelling
time step in
months

model-
ling_time_st
ep

1

Support of the Lee-Carter mortality model (not implemented in
MAXIM)

Lee-Carter mortality uses several parameters to create on-the-fly rate sets based on
the age of the individual at the time of the event competition and the "year" in the
simulation the competition occurs. The format for parameters ax and bx is similar to

 24

ordinary rate sets, while the kt format is completely different. In particular, the kt can
be specified using arbitrary start and stop points (so there must be support for delimit-
ers), or by initial values and a formula (which requires specification keywords). All
parameters (including one whole set for some version of the kt values) must be speci-
fied before a set is "complete." It's also necessary to inform SOCSIM of the corre-
spondence between simulation month and "year" (e.g., 1990). The formula to use
when extrapolating beyond the values provided is computed from the values provided,
unless all values are specified by formula from an initial value supplied in a kc_k_val
line. A simulation may run until year "2030," but SOCSIM has to have 100 years of
event horizon at all times: the "year" parameters must be available for years up to
2129 for use in the last running year of the simulation. Lee-Carter rates are broken up
by sex and group, only. The starting year is specified by an parameter to the lc_init
keyword. This means that the entire set of Lee-Carter parameters and specification
can be kept in one file and read -- via the "include" keyword in the top level command
file-- during each segment, with a different start year (corresponding to the point in
the simulation) specified in a higher level file (that is, higher with respect to nested
reads).

lc_init
interpretation: the mortality model for this population class will be Lee-Carter. This

command sets a flag that triggers Lee-Carter completeness checks (and doesn't doesn't
complain about the absence of ordinary death rates) and allocates space for the new
rate set components. If there is an extra argument, interpret this as the starting year if
the kt values are read in. (Otherwise, assume that the values will be generated using a
formula). In practice the init command can be at the top level while the rest of the LC
specification can be in a separate file. The start year option allows the same file--with
hundreds of kt values--to be included, unaltered, for each of several segments. In that
case, the init commands should precede the inclusion commands. The command can
appear in the included file, too, without ill effect and without the need for a start year (
only the first start year is recognized, and one must be specified before the list of kt
values can be processed).

example:
 lc_init 1 F 1938
 lc_init 1 M 2030
lc_ax
interpretation: the ax values follow: these are specified in the manner of other rates,

even though they're parameters
example:
 lc_ax 1 F single
analogous keyword: lc_bx
lc_k_val
interpretation: Initial value to use when the kt values are computed using the mean,

standard deviation, and a starting value, base on the iterative formula:
 kt_value[i+1] = kt_value[i] + lc->mean + lc->std_dev * normal();
The linear continuation after the last value is read is similar, without the standard

deviation term.
example:
 lc_k_val 1 F -3.5123
lc_k_mean
interpretation: the lc->mean, as above. Mean difference between successive kt val-

ues.
example:

 25

 lc_k_mean 1 F -.31
lc_k_std_dev
interpretation: the lc->std_dev, as above. Standard deviation between successive kt

values.
example:
 lc_k_std_dev 1 F 0
lc_k_start_list
interpretation: Begin reading kt values. These values have a different format which

would be incorrect in any other context (while typically correct ones are wrong) so
there is a need to inform the error checking mechanisms.

example:
 lc_k_start_list 1 M
done
interpretation: end of the list of supplied kt values. Additional values will have to

come from extrapolation (SOCSIM uses a linear continuation).
example:
 done

Rate patterns
Simulation of demographic processes even in simple cases will require defining

many rates of transitions between various states in which individuals can be.
The modeller should define ALL necessary rates in order for the model to work.

For example if births are allowed in the population one should define birth rates for all
parities. Similarly death rates for all possible states should be defined.

The model will not run until one defines rates for all possible transitions.
Experimenter may choose to define some rates as similar. In SOCSIM maximum

parity and number of groups are predefined and so a set of possible states of the or-
ganism is always limited (and equal to #events * #marital_statuses * #sexes * #pari-
ties * #groups). Thus is was possible to define only some “major” rates and the other
missing rates were duplicated from them before the simulation. This was done by a
clever, but complicated and fixed algorithm.

In MAXIM the number of parities and groups and, hence, states, is unlimited. Thus
one can not create all possible rates. Moreover, we wanted to give the user more free-
dom in defining the rates.

A new idea of “rate patterns” is implemented in MAXIM. A rate pattern is a de-
scription of one or more rates of transitions between states done with the use of wild-
cards.

A rate is defined by a combination of event, sex, marital status, group and parity. A
wildcard (* symbol) can replace any value in a given position.

All rate patterns have the same syntax:
[event] [group] [sex] [marital status] [parity]
where
event is one of words {birth, death, marriage, divorce, cohab-

iting, split, transition}
group is integer 1, 2, …
sex is “M” or “F”
marital status is one of letters {“s”, “m”, “d”, “c”, “w”} standing

for single, married, divorced, cohabiting, widowed correspondingly.
parity is integer 0, 1, … (parity is the number of ever born children, so first

child is born at parity 0)

 26

A wildcard (*) can be used in any or all positions of the rate pattern and will denote
ANY value in the corresponding position.

Example: rate pattern
death * F * 0

will denote mortality rate for females of any group, any marital status with parity 0.
Example:
* * * * *
0 0 0
defines zero rates of all events that may happen. Given such rates only the individ-

ual will age with their states unchanged and die when they reach maximum age al-
lowed in MAXIM (100 years).

Choosing relevant rate pattern
Patterns may define intersecting ranges of rates. For example birth rates can be de-

fined for all parities
birth * F * *
………
and specifically for parities 1, 2 and 3:
birth * F * 1
………
birth * F * 2
………
birth * F * 3
………
When a program needs a specific rate it looks for all patterns relevant to this rate

and selects the most specific pattern – the pattern with least wildcards (*) or first one
from several patterns with the same number of wildcards.

If in our example MAXIM will need a rate for parity 2 if will find 2 relevant pat-
terns: birth * F * * and birth * F * 2. Of them pattern birth * F
* 2 will be chosen since it has less wildcards.

Included rate tables
It's obviously easier to separate sets of rates by segment and keep all the commands

in a single "command file" (even though they could all be jointed together in single
large file). The rates can then be put into arbitrarily many sets of other files. This is
made possible by the include command. The command has a single argument--the
name of the file--and treats the contents of the named file as though they were spliced
into the current file at that point. The command can nest--the included file can include
others in turn. For example, all individual segment rate files can include a one file
which contains one set of Lee-Carter parameters.

Note: Lee-Carter rates are not implemented in the current version of MAXIM

For example, this can be the file named cn the command line when the simulation is
run:

segments 3
input_file test
output_file test.out

segment 1
duration 120

 27

bint 12
hetfert 1
include RATES/rates.1950
run

segment 2
duration 120
bint 12
hetfert 1
include RATES/rates.1960
run

segment 3
duration 120
bint 12
hetfert 1
include RATES/rates.1970
run

In addition, each of the rate files can contain lines to include other files. One reason
there is a specified start year for the Lee-Carter mortality model is so that the parame-
ter file doesn't need to be modified when it is used for several different segments--the
same file can be read unchanged using the include command but the point at which
the kt values become relevant can be specified. Accordingly, in file
RATES/rates.1950 expect to find lines like:

lc_init 1 F 1950
lc_init 1 M 1950
include lee_carter_us
and in RATES/rates.1960:

lc_init 1 F 1960
lc_init 1 M 1960
include lee_carter_us
and finally, in RATES/rates.1970

lc_init 1 F 1970
lc_init 1 M 1970
include lee_carter_us

The same initialization can be done at an even higher level, in the top-level .sup
file:

lc_init 1 F 1950
lc_init 1 M 1950
include RATES/rates.1960
run
...more lines
lc_init 1 F 1960
lc_init 1 M 1960
include RATES/rates.1960
run
...more lines
lc_init 1 F 1970
lc_init 1 M 1970
include RATES/rates.1970
run

 28

Lee-Carter Rate Files (not implemented in the current version)
Lee-Carter kt values can be read in via a file (with eventual linear continuation, as

necessary) or specified using a formula. The program checks to determine whether a
complete set--in either form--is specified. In all cases it is necessary to set up Lee-
Carter mortality structures for each group and sex modeled using a separate rate set
using the lc_init command, analogous to what is shown in the previous section. The
year to use as the index into the kt array must be specified here:

lc_init 1 F 1990
lc_init 1 M 1990
SOCSIM must find one of the following sets before the next run command (it can

find one form for some of the rates, and the other for the others). The ax values have
to appear before the corresponding bx. It's not an error if the start year is after the last
specified kt value--it will be within the range of the linear continuation.

Case 1: The kt values are given by a formula
lc_ax 1 F
.. the values
 lc_bx 1 F
.. the values
lc_k_val 1 F -12.17
lc_k_mean 1 F -.496
lc_k_std_dev 1 F 0.651

Case 2: The kt values are read via the rate file
lc_ax 1 F
.. the values
 lc_bx 1 F
.. the values
lc_k_start_list 1 M
1900 18.3796
1901 17.8665
1902 17.0566
1903 17.0231
...many years
1988 -10.1178
1989 -10.7226
everything before 1990 will be ignored
1990 -11.10
1991 -11.47
1992 -11.85
..many more years
2061 -37.71
2062 -38.08
2063 -38.46
2064 -38.83
2065 -39.21
done

Defining vital rates and loading data tables
Several possible model applications require using data in table form. For example

transitions of individuals between different life states may be described by life tables

 29

– age-specific tables giving correspondence between age and lx, qx or mx values for a
certain process.

MAXIM can use life table data given in form of lx, qx or mx (annual rate) values.
The user should specify what type of data is supplied.

Transitions between states may also be described by a certain model (usually pa-
rameteric). Such a model may be implemented inside a function written by user in
form of a MAXIM generator/alternator plugin. The plugin will be used to generate
transition rates for certain transitions and is expected to return annual rates for the
process (mx values).

Sometimes in a model lx, qx or mx values obtained from a table or mx values re-
turned by a plugin need to be modified based on some laws and possibly values of
population-wide or individual parameters – e.g. scaled or shifted. This can be most
easily implemented using alternator plugins.

A generator plugin returning mx values for some rate pattern or alternator plugin
changing parameters may contain a complicated algorithm inside and require some
age- or period-specific data. It is convenient to load such data from the .sup file. Gen-
eral data tables containing arbitrary data in the time-value format (year month value
triples) can be loaded from .sup files, stored in the segment and further referenced
from plugins by names.

The following describes all possible ways of loading data into MAXIM and possi-
ble applications.

Notation
We denote any possible rate pattern by * * * * *. This does not necessary mean

the “any rate” which is defined by 5 wildcards, but can be any specific pattern like
birth 1 F single 2.
{…} denotes arbitrary commands that may be absent
[…|…|…] denotes a command that should be present in one of variants
0 0 0
: : :
0 0 0
denotes age- or time-specific data in form of year month value triples. These

should not be necessary zeroes. Limitations for specific types of tables are given in
the end.

Other words are keywords – they should be typed exactly as shown.

Rates defined by a life table (qx, mx, or lx values)
* * * * *
{type [qx|mx|lx|}
0 0 0
: : :
0 0 0

The command orders MAXIM to describe the processes corresponding to the rate

pattern by data from the given table. Data is treated as lx, qx or mx life table. If type
command is unspecified data is treated as values of annual mx rates.

Rates defined by a plugin
* * * * * plugin pligin_name

 30

The command orders MAXIM to describe the processes corresponding to the rate
pattern by mx annual rate generated by the plugin_name plugin.

Arbitrary data defined by tables
table name
0 0 0
: : :
0 0 0

The command defines a table “name”, stores it in the data for current segment. Data

is treated as year month value triples. Values can have any meaning, not limited
to rules for lx, qx or mx rules. Time specifications should be increasing by rows. Data
is treated as a step-wise value(time) function.

A plugin (state alternator, rate generator, rate modified, statistical) can get a value
from a loaded table using function
double table_lookup(string table_nema, int age_months).
Note: if data is given as time-specific, addressing still goes by months.
E.g. for a table defined as
table table1980
1980 0 0.01
1980 1 0.02
1981 0 0.03
one will obtain the following results:
table_lookup(“table1980”, 1980*12) == 0.01
table_lookup(“table1980”, 1980*12+5) == 0.02 etc.

Modification of rates given by life tables
* * * * * mod modplugin_name
{type [qx|mx|lx}
0 0 0
: : :
0 0 0
Here a plugin modplugin_name will process all values requested by the table for

given rate pattern.

Modification of rates defined by a plugin
* * * * plugin pligin_name mod modplugin_name
or
* * * * * mod modplugin_name plugin pligin_name

The values returned by a plugin_name will be passed through the modplugin_name

and then treated as mx annual rate to calculate rates of transition given by the rate pat-
tern.

This can be summarized to the following general definition

Transition rates – general definition
* * * * * {mod modplugin_name} [plugin plugin_name |

{type [lx|qx|mx|}
0 0 0
: : :
0 0 0]

 31

Comments
1. All tables and, generally, any text of a .sup file, can be loaded from nested files

using include command. E.g. the following construction:
file data1.txt containing
1980 0 0.01
1980 1 0.02
1981 0 0.03
together with a command in a .sup file
table table1980
include data1.txt
is equivalent to expression
table table1980
1980 0 0.01
1980 1 0.02
1981 0 0.03

2. No modification plugins are allowed for general data tables given by table com-

mand, so expressions like
table table1980 mod modplugin_name
1980 0 0.01
1980 1 0.02
1981 0 0.03
are illegal.
3. Models when life table data is obtained from tables, transformed and then used

for a rate pattern can be programmed in 2 ways:
a) by a rate pattern – mod plugin – table combination
* * * * * mod modplugin_name
{type [lx|qx|mx|}
0 0 0
: : :
0 0 0
or
b) by a rate – generator plugin combination and a table expression loading table,

which is used by the plugin:
* * * * * plugin plugin_name

table table_name
0 0 0
: : :
0 0 0
where plugin plugin_name uses data from table table_name.

Limitations for tables
These conditions are checked directly after load of table from a .sup file.
All tables are defined by rows of year month value triples. Year and month

jointly define an age or time calculated as year*12+month [months].
Values are treated as step-wise, acting from the given age till the last month before

defined by the next rate line. The values defined for the last line act unlimited
age/time onwards.

In all tables ages/times defined by year and month should be increasing.
Tables of values used in conjunction with rate patterns define age-specific values.

Table should begin with age 0, i.e. the first line should be
0 0 ……..

 32

Tables of values used in conjunction with rate patterns and treated as life tables
containing lx, qx or mx values should conform to the following rules:

lx tables
Define proportion of population surviving at certain age.
Values should start with 1 at age 0, i.e. first row be 0 0 1.0
Values should be non-negative, non-increasing with time
qx tables
Define proportion of population alive at a certain time point that will die by the be-

ginning of next time point.
Values should belong to [0, 1]
Last values should be 0
mx tables
Define annual incidence rates for events.
Values should be non-negative

General syntax of sup file expressions
Typewriter font denotes keywords that should be typed exactly as written. “[|]”

means “one of”. Braces {} denote parts that can be omitted.
Finalising the current segment data

run
File inclusion

input_file filename
output_file filename

Global parameters
segments integer
duration integer
bint integer
hetfert number
sex_ratio real
timestep integer
read_xtra [0 | 1]

Event hooking
birth plugin name
death plugin name
marriage plugin name
divorce plugin name
cohabitation plugin name
split plugin name
timestep_once plugin name
timestep_each plugin name
newborn plugin name

Group inheritance
child_inherits_group [MOTHER | FATHER]
child_inherits_parameters [MOTHER | FATHER]

Collection of statistics (stat plugins)
stat stat plugin name integer (period in months)

Custom model parameters
param parameter name real

 33

Vital rate definitions
1. Rates defined by a rate table

event
[birth|death|
marriage|
divorce|
cohabitation|
split|*]

group
[number|*]

sex
[M|F|*]

marital status
[s|m|v|w|*]

parity
[number|*]

type [lx|qx|mx] time
[age|tlc|tlm|
tlv|tlw]

year
integer

month
integer

rate
real

… … …
integer integer real

2. Rates defined by a rate table modified by a plugin
event
[birth|death|
marriage|
divorce|
cohabitation|
split|*]

group
[number|*]

sex
[M|F|*]

marital status
[s|m|v|w|*]

parity
[number|*]

mod plugin
name

type [lx|qx|mx] time
[age|tlc|tlm|
tlv|tlw]

 year
integer

month
integer

rate
real

… … …
integer integer real

3. Rates defined by a plugin
event
[birth|death|
marriage|
divorce|
cohabitation|
split|*]

group
[number|*]

sex
[M|F|*]

marital status
[s|m|v|w|*]

parity
[number|*]

plugin plugin
name

Definition of a named data table
table table name
type [lx|qx|mx] time

[age|tlc|tlm|tlv|tlw]
integer integer real
… … …
integer integer real

 34

Files describing population
Modelled population is described by means of 3 jointly used files having the same

name and different extensions
.opop – individuals (population)
.omar – marriages and cohabitation unions
.opox – additional (extra) parameters of the individuals
These files are read in the start of modelling and written at the end. MAXIM can

use the files it had generated for input, so experiments may be chained.
SOCSIM and MAXIM files are incompatible. Although the population has the

same structure the files have different number of fields (columns) and different cod-
ing.

SOCSIM files can be recoded into MAXIM files using the tables described further.
This document is a reworked edition of SOCSIM help file.

Files describing individuals (.opop)
The input and output files, describing the structure of the population (.opop files) in

SOCSIM contain information about all individuals of the population, which lived be-
fore or are still alive at the beginning of simulation. Files are in ASCII form and con-
tain one line of text per individual. Each line contains 14 numbers separated by
spaces.

Table 1. Format of the SOCSIM input and output population file
Position Meaning Coding Comments
1 Person id Positive integer number. Should

be unique among all population
members

2 Sex 0 – Male
1 - Female

3 Group
4 Next Scheduled

Event
3 - Death, if al-
ready dead

Seems to be useless and is dis-
carded (new events are scheduled
after the population is read). The
moment of next event is not
stored anyway

5 Date of birth In months, starting from some
arbitrary starting point

6 Mother's per-
son-id

 Same type as pos. 1. 0 if from
unrelated starting population or a
child born outside of marriage or
cohabitation (father unknown)

7 Father's person-
id

 Same as pos. 6

8 Person id of
eldest sibling
via mother

 0 if from unrelated starting popu-
lation

9 Person id of
eldest sibling
via father

 0 if from unrelated starting popu-
lation

10 Person id of

 35

last-born child
11 Marriage id of

last union
 Positive integer number. Should

be unique among all marriages
12 Marital status

1 Single
2 Divorced
3 Widowed
4 Married
5 Cohabiting

. Partners in broken cohabitations
(or in cases where the cohabiting
partner dies) revert back to their
last marital status before the start
of the cohabitation.

13 Date of death 0 if alive, other-
wise month of
death

14 Fertility multi-
plier

For females, fer-
tility multipliers
in model:
round(fmult*100
0000)
For females,
otherwise: 0
For males:0

Seems, that in reality they are
stored as float numbers, so as
plain fmult instead

Comment: if the “illegitimate” birth rate (for single women) is set to non zero,

births can occur to single mothers. In this case the father of the child is set to “un-
known” (id=0) and SOCSIM/MAXIM stop to be a “closed simulation system” in a
strict sense of a system in which the full kinship may be traced till the starting popula-
tion. If the birth rate outside marriages is set to zero both parents are always known
for the child and SOCSIM/MAXIM behave as closed simulation systems.

To avoid errors when interpreting integer codes of sex and marital statuses and

make the files more human readable MAXIM deals internally with one-character rep-
resentations of sex and marital status (Table 2).

Table 2. Coding of sexes and marital statuses in SOCSIM and MAXIM
Meaning In SOCSIM

file
Internally, in SOCSIM In MAXIM I\O .opop

files and in the pro-
gram: string

Male 0 MALE = 0 “m”
Female 1 FEMALE = 1 “f”

Unknown 0 MS_NULL = 0 Not used. Error-

triggering value “-“
Single 1 SINGLE = 1 “s”
Divorced 2 DIVORCED = 2 “v”
Widowed 3 WIDOWED = 3 “w”
Married 4 MARRIED = 4 “m”
Cohabiting 5 COHABITING = 5 “c”
Since each member of the population has references to his/her mother and (possibly

also) father except for the members of the initial population, references to the Person
id of eldest sibling via mother, Person id of eldest sibling via father, and Person id
of last-born child are superfluous. One can always collect offspring of any individual
searching through the table (though there may be certain complications when the

 36

starting population is a “census” of all living at that moment and children, that died by
the moment of the census, will not be included – and the number of individuals and,
hence, parity would be incorrect. These issues will be discussed further, when we dis-
cuss problems concerning reading the initial population).

Analogously, every marriage record includes id’s of both partners, So it is not nec-
essary to store the marriage information in person records.

As was noted before, it is makes little sense to keep the next scheduled event in
SOCSIM, and it is absolutely useless in MAXIM due to a different stochastic event
model.

All this results in a different, simplified format of the MAXIM input/output popula-
tion files, that have only 9 parameters, and sex and marital status are coded as sym-
bols.

Table 3. Format of the MAXIM input and output population file
Posi-

tion
Meaning Coding Comments

1 Person id Positive integer number.
Should be unique among all
population members

2 Sex m – Male
f - Female

3 Group
4 Date of

birth
 In months, starting from

some arbitrary starting point
5 Mother's

person-id
 Same type as pos. 1. 0 if

from unrelated starting popula-
tion or a child born outside of
marriage or cohabitation (fa-
ther unknown)

6 Father's
person-id

7 Marital
status

s – Single
v – Divorced
w – Widowed
m – Married
c - Cohabiting

. Partners in broken cohabi-
tations (or in cases where the
cohabiting partner dies) revert
back to their last marital status
before the start of the cohabita-
tion.

8 Date of
death

0 if alive, otherwise month of
death

9 Fertility
multiplier

For females, fertility multipliers in
model: fmult or: 0

For males: 0

Similar modifications were made to the input/output marriage (.omar) file format

[TO BE DESRIBED].

Modifications to the .opop file
--- here describe problems with reconstructing start/end date and type of population

data (censor, initial, mixed)
 introduce new header to the .opop files

 37

Several problems arise when reading in the starting population and starting a new
simulation in SOCSIM. The first is related to the starting month of the simulation.
What month shall we start from? The input population contains dates of death for
dead – so the starting month should be at least max(date of death)+1. But the survi-
vors might have survived past that date actually till some later date, at which the
population was dumped. We need to have information about the last month of the
previous simulation, or the month at which the starting population (or census) was
dumped. In other words, we need to know the right censoring date. In MAXIM the
right censoring date is a command line parameter. Moreover, we might want to store
some comments about the starting population in the .opop file – e.g. the date of dump,
or census date. To support this MAXIM understands comments in the beginning of
the .opop file also (see more about the comments further.

Population file fields

• 1 Person id
• 2 Sex

o 0 Male
o 1 Female

• 3 Group
• 5 Date of birth
• 6 Mother's person-id (0 if from unrelated starting population)
• 7 Father's person-id (0 if from unrelated starting population or if unknown)
• 12 Marital status. Partners in broken cohabitations (or in cases where the co-

habiting partner dies) revert back to their last marital status before the start of
the cohabitation.

o 1 Single
o 2 Divorced
o 3 Widowed
o 4 Married
o 5 Cohabiting

• 13 Date of death (0 if alive)
• 14 Fertility multipler

o For females, fertility multipliers in model: round(fmult*1000000)
o For females, otherwise:0
o For males:0

Population file format
PERSON_ID
SEX
GROUP
NEXT_EVENT
DATE_OF_BIRTH
MOTHER_ID
FATHER_ID
LBORN
MARSTATUS
DATE_OF_DEATH
FMULT

 38

Marriage file (.omar)

A single system applies to marriages and to more general unions.

1 Union id

2 Wife's person-id

3 Husband's person-id

4 Union start date

5 Union end date (0 = none)

6 Reason (current) union ended--shown by code:

2 Divorce, marriages only

3 Death, marriages only

16 Null--marriage hasn't ended

4 Break off cohabitation

5 Cohabitation followed by marriage (which has its own union
structure)

6 Cohabiting partner dies

Marriage file format

MARR_ID

WIFE_ID

HUSBAND_ID

DATE_START

DATE_END

REASON_END

File defining additional parameters of individuals (.opox)
Extra file is an ASCII file. Extra file start with zero or more comment lines. A

comment line should start from # or % sign. The first non-comment line is treated as
table header. Each part of it separated by space or tab sysmols is treated as the column
name. These should be the names of the individual parameters.

Then the program expects to read lines of text with the number of real values sepa-
rated by spaces or tabs. The number of parameter lines should correspond to the num-

 39

ber of the individuals in the .opop file. Note: there is no ID fiels in the MAXIM .opox
file. The parameters are loaded into the xtra structures of the corresponding individu-
als.

Example
Suppose, the .opop file gives information about 5 individuals. Then the correspond-

ing .opox file may look like
a1 a2 a3 b1 Siler_par1
.1 .1 1 1 .01
.2 .1 1 1 .017
.1 .1 3 1 .01
0 .1 4 1 .012
.1 .1 5 1 .01

Modifications to the .opox file
New format of the .opox file supported by MAXIM includes header, describing

what individual parameters are loaded. Elsewhere in the program the blocks will ad-
dress these parameters by name. E.g. .opox file beginning with

alpha beta age_sterile
0.1 1 50.0
0.11 2 47.0

Defines 3 parameters with names alpha, beta and age_sterile correspondingly for
individuals denoted by 1st and 2nd lines of the .opop file

These parameters are loaded into the aux_param[] map of the corresponding indi-
vidual as [string index – double value] pairs:

aux_param[“alpha”] = 0.1;
aux_param[“beta”] = 1;
aux_param[“age_sterile”] = 50.0;

The functions that need any of individual parameters, can get values from the
aux_param[] map (using double get_indiv_param(string name) function. The
function produces an error if some parameter is quiered, but missing.

Value of individual parameter may be set by function void
set_indiv_param(string name, double value).

These functions are members of class PERSON

Notes
Population-wide parameters (defined in .sup file) override individual-level parame-

ters (define in .opox file)
Population-wide parameters are segment-specific since new values of population

parameters can be defined for each segment.
The output .opox file contains values for all additional parameters defined in the

models – population-wide and individual, resorted in alphabetical order. Since popu-
lation-wide parameters have the same value for all individuals their value will be
same for all individuals written in this file write (read section “Memory management”
about the procedure of periodic saving of the population).

Since population-wide parameters have higher priority you can always define a pa-
rameter with a name existing in the input .opox file as population-wide to override it.

Hint
To replace values of some individual parameter to a new value define a population-

wide parameter and run a model with duration 0. The input population will be written
to the output population unprocessed and the parameter values will be replaced.

 40

Advise
Although you may use long names for parameters it is best to make them no longer

than 8 symbols.

Known problems
The .opop, .opox and .omar files are single for all segments. The header is written

for the first segment. So we can not change set (number and names) of population-
wide parameters – the .opox file will have different number and order or parameters in
different rows (for individuals written during different segments). Although in prac-
tice models and pop. parameters may be totally different for different segments…

 41

Demographical processes in MAXIM
Main ideas. Rate patterns
In MAXIM things happen to an individual, which may be in (characterised by)

some state, more specifically, a certain subset of state characteristics. They are:
group: 1, 2, …
sex: M/F
marital status:
parity: 0, 1, …
The event which happened to an individual may be:
event: birth (of a child), death, marriage, divorce, cohabitation, split, transition (not

implemented).
So should define the rates, or probabilities (or the rules to evaluate them) for all

possible events for individuals in all possible states which may be encountered dur-
ing the modeling. This is done in .sup file(s).

We have to define rates for many possible combinations of event-state, and this is
simplified by the using of wildcards. A star symbol (*) used in a position for and rate
of state characteristics represents any value of it.

Rate patterns lookup. Specific-to-general priority rule
We may like to define distinct rates for certain cases and one rate for all the others.

This can be easily done if we know how the rates are looked-up and used.
MAXIM implements an event competition model. This means that on each time

step (1 month) each individual is tested across all possible events that may happen to
him/her. E.g. a single female may bet married, start cohabitation, give birth to a child,
migrate or die. Thus the program needs to know probabilities of certain events hap-
pening to a person being in a certain state. It searches among the set of rates using the
specific-to-general priority rule:

for each state (e.g. parity=2) rate(s) defined specifically for this state (parity=2) get
priority over rate(s) defined for a general case (parity=*).

Example: if we define rates as following:
birth * * * 0
{rate definition A}
birth * * * *
{rate definition B}
birth * * * 3
{rate definition C}

rate definition A will be used for parity 0, C – for parity 3 and B for all the others.

The order in which these definitions go in .sup file is not important.
Ways to define a rate
MAXIM provides flexibility in defining the vital rates. They can be defined as age-

specific or duration-specific using tables (time-rate), tables modified by “modifier
plugins” (mod plugin) or by functions (plugins). The following patterns may be:

1. Age- or period- specific rates defined by a rate table
{event} {group} {sex} {m_status} {parity}
type {lx|qx|mx| {age|tlc|tlm|tlv|tlw}
xxx xxx xxx
….
xxx xxx xxx

 42

The first line is the event-state combination previously desribed. The secong line
tells which type of rate is it (lx, qx or mx rates) and are the age- or duration-specific.

The difference between age- or period-specific rates is basically how we define the
“clock”, the time. For age-specific rates time is age, for duration-specific it is duration
– usually time since last event of a certain kind.

The 3-letter combinations define the duration:
Value Duration Type of rate
age age age-specific
tlc time since last child duration-specific
tlm time since last marriage duration-specific
tlv time since last divorce duration-specific
tlw time since last widowhood duration-specific
The 3rd and later lines define a rate table of the form
year – month – value

2. Age- or period- specific rates defined by a rate table modified by a modifier plugin
{event} {group} {sex} {m_status} {parity} mod {plugin name}
type {lx|qx|mx| {age|tlc|tlm|tlv|tlw}
xxx xxx xxx
….
xxx xxx xxx
Same as previous, but the rate is requested from a “modifier plugin” which gets the

table for it’s input. The user should program the plugin and recompile the program
(see the “Programming plug-ins” section)

3. Age- or period- specific rates defined by a rate table modified by a plugin
{event} {group} {sex} {m_status} {parity} plugin {plugin name}
type {lx|qx|mx| {age|tlc|tlm|tlv|tlw}
The plugin is used to return the rate. No table is loaded into memory. The plugin is

a generator plugin programmed by the user. It’s values are treated as lx, qx or mx
rates with a certain time (age|tlc|tlm|tlv|tlw) given to the plugin.

The type {lx|qx|mx| {age|tlc|tlm|tlv|tlw} specification should always be

present.

Defining complex vital rates without programming
Example 1. Define birth rate which is a combination of age-specific for the first

child and period-specific for the subsequent children.
To do this write in .sup file something like this:
birth * * * 0
type qx age
{table 1 of age-specific rates}
birth * * * *
type qx tlc
{table 2 of duration-specific rates}
In this case the age-specific rate (defined by table 1) will be used for the risk of first

birth (parity 0) and period-specific (table 2) for the risk of next births.
You can define rates differently depending on marital status.
Example 1A: same as Ex. 1 but rates different for married, cohabiting and unmar-

ried
birth * * m 0
type qx age
{table 1_married of age-specific rates}

 43

birth * * c 0
type qx age
{table 1_cohabiting of age-specific rates}
birth * * * 0
type qx age
{table 1_default of age-specific rates}
birth * * m *
type qx tlc
{table 2_married of duration-specific rates}
birth * * c *
type qx tlc
{table 2_cohabiting of duration-specific rates}
birth * * * *
type qx tlc
{table 2_default of duration-specific rates}

Comments
Certain combinations of rates, states and clock make sence, others don’t. Here is a

table of what you can do
Event Clock Type of rate
birth (Child

birth)
age age-specific birth rate

 tlc (time since last child) duration-specific birth rate
Marriage age age-specific marriage rate
 tlv (time since last divorce) duration-specific marriage rate
 tlw (time since last widowed) duration-specific marriage rate
Divorce tlm (time since last marriage) duration-specific divorce rate
Note that not all clocks are always defined:
Clock When defined
age always
tlc for parities > 0
tlm for married
tlv for divorced
tlw for widowed
If the clock can not be defined in order to evaluate the rate the program will stop

and complain. Change the way you define the rates. Example:
The following definition:
birth * * * *
type qx tlc
…

will produce an error when testing for event “birth” for a childless woman since tlc is
not defined for her. The correct way to define the births rate in this case would be:
birth * * * 0
type qx age
…..
birth * * * *
type qx tlc
…..

In this case the age-specific rate will be used for the child-less (parity=0) women.

 44

To run a model rates for all possible transitions should be defined. At least the fol-
lowing rates should be defined:

During simulation other possible transitions may be encountered and MAXIM will
require other rates. SOCSIM creates the complete set of all possible rates by creating
missing rates from the defined one according to the following rules:

Figure … Rules for creation of missing rate tables in SOCSIM
1. Ensure that the essential rates are defined:
Process

rate
Sex Group Mar.

Status
Parity

birth female 1 single 0
birth female 1 married 0
death female and

male
1 single -

marriage female and
male

1 single -

divorce female and
male

1 married -

2. Create tables for all marital statuses, group 1, parity 0 by copying rate tables for
other marital statuses as follows:

"s"->"v"->"w"->"m"->"c"
E.g. if only table for state “s” (single) is present, all others will be created from it. If

“w” is present, “m” and “c” are made from it.
3. For all marital statuses other than ”s”, group 1, parity 1 copy data from previous

parity.
4 For groups numbers greater than, all marital statuses, copy data from previous

group
5. Similarly for the non-birth rates start with group 1 and default back by marital

status.
The number of parities is limited by a compile-time constant (10, hence parities are

possible 0..9). Rate tables for all parities were created.
The number of groups is limited by a constant (16). Rate tables for all parities are

created.
MAXIM does not create “all possible rates” since their set may be unlimited. It re-

quires that all needed rates be defined but allows to define multiple rates in one ex-
pression. This method is called “rate patters” and is explained in detail in the “Rate
patterns” section of this manual.

 45

Mortality

Fig. 1. Flow chart of generating rates describing death (mortality rates) in

MAXIM
MAXIM comes with a Siler parametric model of mortality implemented as a

plugin. It is described in the section “Extending MAXIM. Programming plug-ins”.
You can implement your own parametric models of mortality. Consult the above

mentioned section and study the plugin implementing the Siler model to get a feeling
of how a MAXIM plugin works.

Rates given by rate tables
If no mortality_rate function is specified (invoked from the .sup file), the mortality

rates are taken from the tables. In this case the common requirements and rules com-
mon for SOCSIM and MAXIM act (Table …)

Rates specified by functions
If a mortality_rate function is specified, it should be able to handle any combination

of person parameters, or any age, sex, marstatus, group, parity.

Marriage
Awaiting for description
Models, describing distribution of time of entry into marriage:
Coale-McNeill, Hermes (Henry?) (not implemented)

Fertility
Rates can be given as age-specific and parity-specific yearly probabilities of birth

for females for different marital status and parity. This is all coded by the rate table
header.

The user can also supply a birth interval using parameter with interval in months:
bint 5

Empirical rates block (table(s) of
age-specific annual qx rates)

E.g. Coale-Demeny life tables

Models of mortality block (para-
metric description of age-specific
death rates)

Siler model (parametric descrip-
tion of juvenile, mid-age and Gom-
petz-type mortality in advanced ages)

Bray relation

Arithmetic modifier
block (e.g. multiply rates
in all ages by some value
or apply some transfor-
mation. Includes identi-
cal transformation o

Mortality
events genera-
tor

Trasmits age and marital status
Monthly-specific mortality rate for cur-

rent age and marital status

 46

In this case the randomly generated birth events within bint from the previous birth,
are dropped, and the internal (crude) rate is “inflated” to achieve the same output, net
rate.

Awaiting for description

Other models of fertility: (Not implemented)
PPRs
Sterility model (Pittenger)
Partial fertility models (Bath, Zaba)
Birth intervals

Birth-spacing models – Bongaarts, Hilary Poge, Pollerd, Brant Keeling

Remarrige/Re-cohabitition delay after widowhood/Divorce.

Rate look-up and conversion
Here we describe how the rates are looked-up in the rate tables and converted from

the supported formats (lx, qx, mx) to the internal format (annual qx).

The vital rate tables have a general form
type [lx|qx|mx] duration
y1 m1 r1
y2 m2 r2
.........

Every row is year, month and value. Rewrite time as t=12y+m and consider 2 rows
t1 r1
t2 r2
Suppose we look up for a value at time t. t1<=t<t2 (else we look up in other rows)
The internal format used for the event-competition model in MAXIM is annual qx

rates, or risk of event in a year time (denote it qx_12). There can be 3 cases:

Input rate given as qx
Rate qx corresponds to the interval t1..t2. To convert it to annual probability we as-

sume that the risk of this event per unit time is constant. In this case the risk per year
is calculated as follows. Suppose the period length for which the input rate is defined
is T=t2-t1. Then

px_12 = px_T^(12/T) where px = 1-qx. So
qx_12 = 1-(1-qx_T)^(12/T).

Input rate given as lx
Lx is survival over the period. S(x1->x2)=exp(-\int(_x1^x2 h(q) dq)
where h(q) is the hazard rate over the interval x1..x2. Assume that it is constant

over the interval. Then we have
lx_T = exp(-hT)
px_12 = exp(-12h)
So log px_12 = log lx_T*(12/T) and
qx_12 = 1-exp(log lx_T * 12/T) = 1-lx_T^(12/T)

 47

Input rate given as mx
To be implemented

 48

Customizing MAXIM
Maximum age in model
The maximum age that an individual may attain is limited in MAXIM. When a per-

son reaches this age a “death” event is generated automatically. Individuals will die at
this age even if the mortality rate is set to zero.

The maximum age in years is defined by the constant MAXYEARS in file com-
mon_declarations.h. Its default value is 100. Change it if your model requires a
different maximum age. Be sure to rebuild the program for the change to take effect.

 49

Generating a start population
MAXIM may generate a simple test starting population of given size and sex rate.

Call the program with parameters….
NOT IMPLEMENTED

 50

Example set-ups for different models
Modelling on a different time scale
The “base” (minimum) modelling time step in the program is expressed as “1

month”. Rate tables and rate generators are expected to return “annual” rates of
events. But the meaning of this “month” is abstract; this can be any time step. The
base time step can be arbitrary and the rates should be output per 12 of such time
steps.

E.g. suppose rate tables and rate plug-ins assume and return daily rates of events.
Then the “base” modelling time step will be 2 hours. In all input and output words
“months” should be treated as these 2-hour periods.

One sex population with births and deaths
- create a starting population file population.opop where all individuals are

females (column 2: “f”), single (column 7: “s”) and have non-zero fertility multipliers
(column 9)

- create files describing age-specific mortality and fertility rates mort.txt and
fert.txt

- write a .sup file including the following important lines:

input_file population
output_file population_final # any name
duration 120 # [months]. Any duration

sex_ratio 0.0 # prop. of males all newborns are females
timestep 1 # time step: 1 month
read_xtra 0 # no additional individual parameters read

* * * * # any, i.e. default rate
0 0 0 # is zero

death 1 F * # mortality in group 1, females, any

status
include mort.txt # described by a rate table from this file

birth 1 F single *
include fert.txt

run # end of information for this segment

This file denotes a simulation running 120 months, progressing by time step equal 1

month, starting with population population. Zero rates are defined for all events ex-
cept birth to single females and death of single females.

Marriage success depending on education
- take or create a starting population file population.opop
- create a file of extra parameters population.opox including parameter edu-

cation. Set it to value 0 for individuals of the starting population.
- create a plug-in called plugin_education in plugins.cpp file (how to do it was

described earlier). This plugin will be called every time step for each individual. The

 51

plugin should model how the education of the individual changes over time. The cur-
rent level of education should be stored as value of the education parameter.

- create a plug-in called plugin_marriage_education. It will be called whenever it is
tested whether the current individual should start marital search. It should return the
annual rate of marriage depending on the value of education parameter and basic
parameters of the individual.

- recompile the program
- write a .sup file including the following important lines:
input_file population
output_file population_out # any name
duration 1200 # any duration

sex_ratio 0.5112 # typical ratio proportion of newborn

males
timestep 12 # any time step
read_xtra 1 # read additional individual parameters

monthly plugin_education
…definitions of vital rates except marriage # define

 # rates for other events

marriage * * * plugin_marriage_education

run

This file denotes a simulation running 100 years, progressing by time step equal 12

months, starting with population population. Zero rates are defined for all events
except birth to single females and death of single females.

Using wildcards to define vital rates
To define constant rate for all ages In the .sup file write string like
death * * *
0 0 0.005

This defines mortality rate for all groups, sexes and parities as 0.005/year starting
with age 0 years o months.

Similarly
* * * * *
0 0 0.0

Defines zero rates for all processes.
Note 1: the rate definition should always start with age 0 years 0 months.
Specific definitions override “wildcard” ones.
birth * * * *
0 0 0.0

birth * * * 1
0 0 0.0
15 0 0.8
50 0 0

birth * * * 2
0 0 0.0
15 0 0.5
50 0 0

This defines birth rate 0.8/year for parity 1, 0.5/year for parity 2 both acting from
age 15 to 50 years, rates for other parities and ages would be zero.

 52

Rate generation plugins and rate tables may be mixed. For example we could write
birth * * * *
0 0 0.0

birth * * * 1 plugin_birth_rate_parity_1

birth * * * 2 plugin_birth_rate_parity_2

Here birth rate for parities 1 and 2 are defined by 2 separate plugins. The default
rate acting for other parities is zero.

Note: you can NOT use both plugin AND rate table definitions for the same rate
pattern, i.e. write like this:
birth * * * 1 plugin_birth_rate_parity_1
0 0 0.0
15 0 0.8
50 0 0

 53

Running speed and optimization
Depends on many factors such as size of the population, how the transition rates are

calculated at each time step, how many user-plugins have been hook to the program.
Some operations are repeated many times in cycle and so are most critical for the

speed. Such operations are operations performed every modelling time step for every
individual – e.g. testing for events. Some events are possible (and, hence, tested for)
for only a part of the population (e.g. divorce or birth), some are tested for everyone
(e.g. death). So e.g. if a mortality rate is calculated by a plugin, it’s processing speed
will have a big influence.

Without plugins processed every time step for every individual and vital rates given
by tables the processing speed is 2-6*T mln person-years/h on a 4 GHz Intel PC under
MS Windows (given modelling time step equal T months). E.g. simulation of a 100
thousand population during 1 hour allows for 240-720 time steps. If 1 time step equals
1 year this will give us 240-720 years of “model” time.

To increase the modelling speed consider the following important points.
- the program and all data should fit into operation memory without swapping.

Swapping may decrease the processing speed 100 times or more. Swapping
begins when the memory size requested by the program exceeds total amount
of installed physical memory minus minimum amount necessary for OS and
other programs. In MAXIM most memory is consumed by the population map
which stores all individuals – alive and dead and so grows all the time
throughout the simulation. Rate of increase depends on rate of birth of new in-
dividuals and greatly – on the number of additional parameters of the indi-
viduals. To avoid swapping close all unnecessary programs and avoid unnec-
essary individual parameters.

Example:
in a model where individuals have additional parameters each individual record

consumes 500-800 bytes of memory. On a computer with 512 mb of physical
memory about 490 mb of it may be allocated without swapping, which allows to
create a population map of about 600 thousand records. This may be a 10 thou-
sand human population modeled for 60*generation_time ~ 1500 years.
- optimize most critical plugins (such as generators of rates of death and other

processes experienced by many members of the population)
- disable unnecessary plugins
- when possible invoke plugins with a bigger time period.

Example:
You may design plugins that collect some information about the population pe-

riodically (e.g. size, age structure, total wealth) and store it in population-wide pa-
rameters which are then used by other plugins to calculate vital rates. Collecting
information about the whole population is costly, so you may consider doing it
every n-th model time step.

(YET NOT INPLEMENTED TO INVOKE managing PLUGINS LESS
OFTEN THAN every time step. But note stat plugins!!!!)

 54

Memory requirements and management in MAXIM
MAXIM stores information about individuals, their unions and parameters in opera-

tive memory and actively uses it during simulation. When amount of memory re-
quired for MAXIM increases above the amount of operative memory that the opera-
tion can offer without swapping (this amount equals roughly amount of installed
RAM minus 50 mb for MS Windows) swapping begins and the processing speed may
drop thousand times or so. Swapping can be avoided by installing more RAM and
economical memory management.

Most of memory required for MAXIM is used to store information about individu-
als (alive and dead) (including variable number of additional parameters) and infor-
mation about the marriage unions (in program these are maps popmap and marmap).

The number of individuals and unions generated depends on rates of fertility, mar-
riage and cohabitation, these are model-dependant.

The complete historic record of all individuals from a long term or big-population
simulation may contain millions of records. All this information is need to track the
kin structure and evolution of the population, but it is impractical to keep it all in
RAM.

To use the operation memory more economically MAXIM stores in RAM informa-
tion only about individuals that were born and unions that started more recent than
2*maximum life span (2*MAXYEARS years). Information about more ancient indi-
viduals and unions is periodically written to output .opop, .opox and .omar files and
these individuals and unions are erased from the maps.

Time lag 2*MAXYEARS years ensures that parents and most probably, grand par-
ents of living individuals are kept in the working map at each time. Still more ancient
ancestors may be already absent.

Warning:
when writing plugins that access information about individuals that may be dis-

eased and unions that started long time ago check their presence in the popmap and
marmap (by unique IDs)!

Clearing of the maps occurs periodically – each 100 model time steps, so it should
not impair the modelling speed too much.

Amount of memory required for MAXIM may be estimated in the following way.
Suppose we have a population with constant birth rate (amount of births per unit

time) b [indiv/year] (this may be a stationary population with a constant birth rate)
and a constant marriage/cohabitation rate m [union/year]. Suppose at some point we
have a stationary population of size N with number of marriage/cohabitation unions
M. Suppose a model time step is T years. Let size_p define size of individual record
and size_m – union record in bytes. Then RAM will contain about N +
N*b*2*MAXYEARS individual and M + M*b*2*MAXYEARS union records just af-
ter the clearing of maps and N + N*b*(2*MAXYEARS + 100*T) and M +
M*m*(2*MAXYEARS + 100*T) after 100 timesteps, just before the next clearing,
correspondingly. The memory requirement of MAXIM would be changing over time,
having a saw profile with peaks
size_p N(1+b(2MAXYEARS+100T))+

size_m M(1+m(2MAXYEARS+100T)) bytes approx.
The size of one individual record (without additional parameters) is about 300

bytes, and 200 bytes for a union.
Real life example

 55

A stationary human population of about 5000 individuals with typical rates is mod-
elled. Individuals have 25 additional parameters, no unions are generated. Model time
step is 1 year. In this set-up the long term peak memory requirement of MAXIM is
about 460 mb.

 56

Logging, debugging and troubleshooting
Program writes much information to the screen and creates a file with program log

(basename.log) and a file with population pyramid and base information about the
population measured in the beginning and end of each modelling segment
(beasename.pyr). Here basename is the name of your .sup file. These files are
created in the same directory where the model .sup file is located.

The command line parameter /v forces the program to produce more verbatim out-
put.

Error, notification and debug messages of MAXIM contain name of the function in
which the message was raised. This helps to track the problem.

Many functions have an int debug parameter which controls output of debug-
ging information by that function. If you suspect a problem in certain function(s) set
this parameter to 1 (in the code) and rebuild the program.

In case of problems it may be helpful to run the program with /v switch and reroute
the program printout to a file. This can be done with a > command, e.g.
maxim evolution 1 1201 2400 /v > output.txt

Consult sections “Programming: functions” and “call structure” of the manual.
A very detailed report about events that happen to the population can be obtained

by setting debug=1 in process_time_step() function in population.cpp.

Frequent errors
Errors in MAXIM may occur from wrong input data (rate tables and population

data), wrong .sup files, faulty user plugins or errors of the program itself. Here we de-
scribe typical errors and effective ways to trace and fix them.

get_xtra_param()
Screen error text:
Error: get_xtra_param(): could not find parameter "xxx" for person

id=xxx neither in current segment, not in person xtra map!
xxx segment parameters:

xxx = xxx
 ……

xxx = xxx
xxx personal parameters:

xxx = xxx
 ……

xxx = xxx
Hint: get_xtra_param(): do you have inheritance of individual pa-

rameters (hooked to event birth)?

Reason:
function get_xtra_param() was called from a plugin to get a value of individual or

population-wide parameter but did not find it.
Solution:
The list of existing parameters is given in the error message. Inspect it. Does it have

the necessary parameter?
The error may occur on invocation of generator/modifier or stat plugin. They are

called by plugin() and stat_plugin() functions respectively.

 57

1. Find which plugin generates the error. For that set parameter debug to 1 in
functions plugin() and stat_plugin in plugins.cpp and rebuild the program.

2. After having ran the program you will see as line
Debug: plugin(): called plugin 'plugin_xxxxxxxxxxxx'
or
Debug: stat_plugin(): called stat plugin 'plugin_xxxxxxxxxxxx'

just before the error message.
3. Find this plugin in the plugins.cpp file. Check whether this plugin is in-

voked at the right time and requests the right parameters. Are this parameters
properly initialized at birth of a new organism?

Symptom: unexpected operations are performed upon individuals
Debug: find out what plugins are invoked. To see this turn on the invoke messages

in the plugin “switchboards” (calling routines). To do this set internal constant de-
bug=1 in plugin(), stat_plugin() and mod_plugin() in plugins.cpp. Recompile.

Another useful measure is to check what is actually happening to the individuals:
what events happen and what happens to their state. In order to do this go to proc-
ess_time_step() in population.cpp and set debug=1. Recompile. This will print the
diagnostics of the form:
Debug: process_time_step: performing event b on individual (state

before process.): id862 sexf grp1 bd1406 dd0 moth116 fath0 msts
prmst- fmult1 marity0 parity1,chil{1521 }
Debug: process_time_step: processing possible plugins for id=862

hooked to event b
State after event processing:id862 sexf grp1 bd1406 dd0 moth116

fath0 msts prmst- fmult1 marity0 parity2,chil{1521 1598 }

This gives the event type (b), state before and the event (id, sex, grp=group,

bd=birth date, dd=death date, moth, fath = parent ids, mst=marital status (s=single),
prmst = previous marital status, chil=children ids).

Note that many functions have a debug constant defined inside them. Normally it is

set to 0. It you set it to 1 the function will prints some relevant diagnostics.

 58

Programmer guide

Hierarchy of function calls
Note: functions may be located in different cpp files. Use search to locate them.

Certain functions may be called conditionally, not always. Some functions may be
called in another order (e.g. several times within one function, with different parame-
ters. Here are displayed the links, not the order. Each function is shown only once.

Dashed lines – function calls, dotted lines – functional links (e.g. pref =
&best_spouse)

To be continued…

main()

process_time_step()

process_event_plugins()

event_this_time_step()

death(p)

birth(p)

marriage(p)

divorce(p)

transit()

plugin() plugin_*** ()

test_for_event()

get_rate_source()

get_annual_qx()

new_marriage()

(*marqueue_ref).remove()

marmap.insert()

pref() best_spouse() check_spouse()

score()

score4()

mod_plugin()

lookup_annual_qx()

plugin()

last_child_birth_date()

last_marriage_date()

last_divorce_date()

last_widowhood_date()

load_segments()

 59

Modules and functions
This section tells about MAXIM functions and their meaning. Functions are col-

lected by modules in which they are implemented.

Main.cpp
main()

Segment.cpp
int SEGMENT:: compose_table_name(string& table_name, string

rate_type, string event, int group, string sex, string marstatus, int parity)

int SEGMENT:: get_rate(double& rate, string rate_type, string event,
int group, string sex, string marstatus, int parity, int time, int age)

double SEGMENT:: table_lookup(int age, vec-
tor<RATE_TABLE_ROW> table)

int SEGMENT:: rate_set(int group, string event, string sex, string
mstatus, vector<RATE_TABLE_ROW>& table)

int SEGMENT:: birth_rate_set(int group, string mstatus, int parity,
vector<RATE_TABLE_ROW>& table)

int SEGMENT:: cohab_probs(int group, string sex, vec-
tor<RATE_TABLE_ROW>& table)

void SEGMENT:: print_rate_tables(ostream& f)
void SEGMENT:: print_rate_table(ostream& f, vec-

tor<RATE_TABLE_ROW>& rate_table)

int SEGMENT:: set_param(string parname, string parvalue)
void SEGMENT:: print_params(ostream& f)
void SEGMENT::report(POPULATION *ptr_pop, ofstream& fd)
int SEGMENT:: fill_missing_LC_rate_tables()
int SEGMENT:: fill_missing_rate_tables(POPULATION* ptr_pop)
void SEGMENT::initialize_segment_vars()

marriage.cpp
void MARRIAGE::write(ofstream& fd)

random.cpp
int irandom()
int irandom_ab(int a, int b)
double rrandom()
double normal()
double fertmult()

Population.cpp
void POPULATION::birth(PERSON *p, double prop_males)
void POPULATION:: death(PERSON *p)
void POPULATION:: marriage(PERSON *p)
void POPULATION::new_marriage(PERSON *p, PERSON *spouse)
void POPULATION:: divorce(PERSON *p)
int POPULATION::check_spouse(PERSON *p1, PERSON *p2)
void POPULATION:: transit(PERSON *p, int hhmigration, int destgroup)
void POPULATION::add_minor_children(PERSON *p, list<int> transit_list)
void POPULATION::assemble_household(PERSON *p, list<int> transit_list,

int hhmigration)

int POPULATION::time_on_marqueue(string sex)
void POPULATION::process_month()
int POPULATION::count_current_population(string sex, int group)
void POPULATION:: event_this_month(PERSON* p, string& event, int&

new_group)

void POPULATION:: pyramid(int current_month, ofstream& fd_pyr)
MARRIAGE* POPULATION::plast_marriage(PERSON *p)

 60

PERSON* POPULATION::pspouse(PERSON *p)
PERSON* POPULATION::pgrand_p(PERSON *p, string kincode)
int POPULATION::get_expected_number_of_births(int group)
int POPULATION::get_expected_number_of_transits(int from, int dest)
void POPULATION::census(int current_month)
void POPULATION::child_census(int current_month)
int POPULATION:: read_permap_MAXIM(ifstream& f, int input_left_t, int

input_right_c){

int POPULATION:: read_permap_SOCSIM(ifstream& f, int input_left_t, int
input_right_c){

void POPULATION:: write_population_MAXIM(ofstream& f){
int POPULATION::read_marmap(ifstream& f){
void POPULATION::read_xtra(ifstream& fd)
void POPULATION:: write_xtra(ofstream& fd)
void POPULATION::cross_link_input(){
void POPULATION:: report(ofstream& f, string text)
int POPULATION:: generate_initial_population(string type, int pop_size, dou-

ble prop_male, string fname)

void POPULATION:: marriage_tally(int current_month, ofstream& fd)

Person.cpp
void PERSON:: print_person_MAXIM(ostream& f)
void PERSON::write_person_MAXIM(ofstream& fd)

Call structure

main()
├load_segments() Loading parameters and rates from the

.sup file
Loads parameters of modeling – scalar

parameters, rate tables, action hooks –
segment- and population-wide parame-
ters

├preparse_sup_file() Unwinds the recursion of included
.sup files, puts all lines into an array

├curr_seg.set_param() If found a par_name par_value pair
and par_name is not a hook name, try to
set a segment-wide variable with that
name

-- prints data defined for segments --
├read_permap_MAXIM() Loads population
├read_marmap_MAXIM() Loads marriage info
├cross_link_input() Builds links between individuals and

marriages in the population
├report() Report on the current population
├pyramid() Pop. pyramid
└Main simulation loop: loop over seg-

ments; monthly loop:
├process_time_step()

model operations over the population
performed every period of time defined
by timestep (external) / model-
ling_time_step (internal) variable

├event_this_time_step() evaluates an event that will happen to
the individual during current time step

├test_for_event() test if event of a certain kind happens

 61

during the current time step to a certain
individual

└get_annual_rate() Annual incidence rate for specified
event

├death()
├birth()
├marriage()
├divorce()
├transit()

Perform scheduled event actions upon
individuals (in random order)

MAXIM Classes
All MAXIM classes are defined in MAXIM.h. Implementations are located in .cpp

files with the names of classes.

class TABLE_ROW
Describes a row of a table having 2 coulmns – integer and double.

class TABLE
Describes tables as vectors TABLE_ROW rows, additional parameters of tables

(name, type). This class stores life tables and 2-row data user-defined tables with arbi-
trary data. TABLE supports several types of data corresponding to table of mx, lx, qx
or free “” type. Type of the table is stored as a public parameter name. The type de-
fines limitations on the data and verification procedures that the function check per-
forms.

TABLE supports two methods of table look-up.
Public parameters
vector <TABLE_ROW> ta-

ble
Table itself

vector <TABLE_ROW>:: it-
erator row_iter

Iterator

string name Name of the table used to address it from the
lookup plugins

string type Type of the table. Influences checking and con-
version. Possible values are "", "mx", "lx" or "qx"

Member functions
double lookup(int month); General look-up of stepwise function value de-

fined by table without value conversions
double lookup_mx(int month) Looks-up the mx value corresponding to month.

Conversion from the original format of table (lx or
qx values for life tables) is performed based on ta-
ble type

void clear() Clears table
int check() Checks consistency of a table according to its

defined type
void print(ostream& f) Returns the data dump of a table by the f refer-

ence

 62

class SUP_OBJECT
Preparsing of .sup files and commands to work with its lines by tokens. On instanti-

ating of the class .sup file is loaded, nesting files merged, comments and empty lines
stripped. Member functions allow to get the contents of lines by tokens – parts sepa-
rated by spaces or tabs.

Member functions:
int preparse_sup_file(vector <string>& command_file_lines, string dir, string

file_name); - does the preparsing
 string current_line();
int num_tokens(); - number of tokens in the current line
string token(int n); - token number n (n=1,2…)
int find_token(string text); - Find token with text (case sensitive)
void next_line(); - Move to next line
int file_ended(); - TRUE if passed the end of .sup file

class STAT_PLUGIN
Instance contains information about a plugin calculating and dumping some stat

info. On init opens an output file, on destroy - closes it.

class RATE_SOURCE
Contains information how to evaluate a rate - from life table, a plugin, possibly

modified by a mod plugin. This is described by 3 string parameters: table ID, plugin
ID, modifier plugin ID. Rate patterns refer to instances of this class

Member functions:
string print() – prints values of parameters.
void clear() – clears data

class PERSON
Contains all information about an individual of the population.
Member functions:
void write_person_MAXIM(ofstream& f) –person info as a line of .opop file
void print(ostream& f); - person info for screen print
double get_xtra_param(POPULATION* ptr_pop, string parname); - get additional

individual/population parameter by name
int set_xtra_param(POPULATION* ptr_pop, string parname, double value); - set

value of parameter
void update_maxid() – function used to update auto ID counter of the class

class MARRIAGE
All information about a marriage or cohabitation union.
Member functions:
void write(ofstream& f);
void print(ostream& f);
void update_maxid()
See class PERSON for descriptions.

 63

class POPULATION
Root class. Contains all information about the simulation, population, marriages

and data by model segments. Only one instance is created in the beginning of the
simulation.

Public variables and structures
map <int, PERSON> permap; // map, stores all persons
map <int, PERSON>:: iterator piter;

map <int, MARRIAGE> marmap; // map, stores all marriages
map <int, MARRIAGE>:: iterator miter;
list<SEGMENT> segment_list;
list<SEGMENT>::iterator segiter;
int current_segment, num_segments; // id of current and number of segments
SEGMENT *ptr_seg; // pointer to the current segment

list<PERSON*> marqueue_m; // marriage queue, males
list<PERSON*> marqueue_f; // marriage queue, females
list<PERSON*> *marqueue_ref; // reference to a marriage list
list<PERSON*>:: iterator marqiter;

vector<string> marstatuses; // vector of 1-letter abbreviations of all
// marital statuses. For iterating through list
vector<string> sexes; // same for sexes
vector<string> events; // same for sexes

map <int, GROUP> groupmap; // map, stores data for all groups
map <int, GROUP>:: iterator giter;

// if POPULATION is input it has a Left-Truncation date
int input_left_trunc, input_right_censor, numgroups, firstyear, current_month;
static size_t living;

// filenames
string title, input_file, output_file;
string base_dir, rate_fname, log_fname, rate_fname_root;

// string pop_in_fname, mar_in_fname, xtra_in_fname; // input files
string pop_out_fname, mar_out_fname, xtra_out_fname; // output files
string pyr_out_fname, stat_out_fname, prefix_out_fname;
string rnd_fname;

string pop_out_fname_seg, mar_out_fname_seg, xtra_out_fname_seg;
string pyr_file_fname_seg, stat_file_fname_seg;

// files
ifstream fd_pop, fd_mar, fd_xtra;
ofstream fd_out_pop_seg, fd_out_mar_seg, fd_out_xtra_seg;
//ofstream fd_out_pop, fd_out_mar, fd_out_xtra;
ofstream fd_rn, fd_stat;

 64

//int a_tally[NUMSEXES][A_NUMCAT];
map<string, map<int, int> > a_tally;
//int c_tally[NUMSEXES][C_NUMCAT];
map<string, map<int, int> > c_tally;

// vector<int> size_of_pop; // by groups
int write_output_each_seg;
int read_xtra_file;

//int time_waiting[NUMSEXES]; /*person months on mqueue*/
map<string, int> time_waiting;

Member functions
map <int, PERSON>:: iterator

find_person(int id)

void birth(PERSON *p) Performs all necessary operations
when a birth event happens to parent p

void marriage(PERSON *p) Performs marriage search start and/or
marriage for partner p

void new_marriage(PERSON *p, PER-
SON *spouse)

void death(PERSON *p) Performs all operations for event
death to person p

void divorce(PERSON *p) Performs divorce initiated by person
p

void transit(PERSON *p, int hhmigra-
tion, int destgroup)

Performs transit of person p from
group p->group to destgroup.

NOT FULLY IMPLEMENTED
void assemble_household(PERSON *p,

list<int> transit_list, int hhmigration)
Returns a list of ID of members of

household headed by person p
void add_minor_children(PERSON *p,

list<int> transit_list)

int check_spouse(PERSON *p1, PER-
SON *p2)

Check whether people p1 and p2 are
close relatives and hence can not be
married

PERSON* pgrand_p(PERSON *p, string
kincode)

Return pointer to grand-parent identi-
fied by string = mm, mf, ff, fm

MARRIAGE *plast_marriage(PERSON
*p)

Return pointer to PERSON's last
marriage

PERSON* pspouse(PERSON *p); Return pointer to PERSON's spouse
in last marriage

PERSON and SEGMENT utilities
void event_this_time_step(PERSON* p,

string& event, int& new_group)
Returns event that will happen this

time step as string:
"b" - child birth to parent p
“d” – death
“m” – start of marriage search

 65

“d” – divorce initiated by p
“c” – start of cohabitation search
“t” – transit to a new group
Returns "" if no event happens
If event ="t" new_group contains

number of the new group
MODE “T” NOT TESTED

int process_time_step() Performs all operations to model the
population processes during 1 model
time step

int date_and_event_rt(PERSON *p) NOT IMPLEMENTED
void modify_rates(PERSON *p, int

event, struct age_block * first_block)
NOT IMPLEMENTED

int lc_datev(PERSON *p, int g, int s, int
age, SEGMENT *ptr_seg)

NOT IMPLEMENTED

void create_working_mqueue(PERSON
*p)

 NOT IMPLEMENTED

int datev_rt(struct age_block *
first_block, int age, int time_shift)

NOT IMPLEMENTED

SEGMENT utilities
int get_expected_number_of_births(int

group)
OBSOLETE

int get_expected_number_of_transits(int
from, int dest)

OBSOLETE

POPULATION utilities
int generate_initial_population(string

type, int pop_size, double prop_male,
string fname)

Not fully implemented. Generates
initial population according to a certain
built-in lifetable

int read_permap_MAXIM(int in-
put_left_trunc, int input_right_c)

Load individual data from .opop file
in MAXIM format

int read_permap_SOCSIM(int in-
put_left_trunc, int input_right_c)

Load individual data from .opop file
in MAXIM format (for compatibility)

void read_xtra_MAXIM() Load values of individual parameters
from .xtra file into individual parameter
maps

int read_marmap_MAXIM() Load marriage data from .omar file
void cross_link_input() Cross link individuals and marriages
void save_pop_data(string fname, string

msg, int max_birth_date, int mode)

//void write_marriages(ofstream& f,
string msg)

//void write_xtra(ofstream& f, string
msg)

//void POPULATION:: pre-
pare_output_files(int segnum)

POPULATION reporting
oid census1(int current_month)
void census2(int input_right_censor)
void child_census(int current_month)

 66

void marriage_tally(int current_month,
ofstream& f)

void report(ofstream& f, string text)
void pyramid(int mode)
 int count_current_population(string sex,

int group)

 int time_on_marqueue(string sex)
//static size_t count() OBSOLETE Returns number of liv-

ing/
Group-related methods
void groups_print(ostream& f) Print current info about groups to f
void groups_add_person(PERSON *p) Add a person to the group defined by

p->group
void groups_update(string event, PER-

SON *p, int new_group)
Group “housekeeping” for event

event
Called for event = “birth”, “death” or

“transit”. Updates group sizes.
Creates new and removes empty

groups as needed.
In mode=“transit” new_group is

used, p->group should contain original
group (group before transit).

Method does not change p->group,
only GROUP internals.

double lookup_table(string tablename,
int month);

Lookup in a table defined by table-
name. For use in user-defined plugins
that require data from tables. No data
conversion, time-specific data in tables
is treated as stepwise. Value is looked
up at time time.

Data should be read into tables by
means of table command in the control-
ling .sup file

class SEGMENT
Holds all data (rates, life and data tables, plugin references, standard parameters

etc.) relevant to the current simulation segment.
Member functions:
void initialize_segment_vars();
int fill_missing_LC_rate_tables(); OBSOLETE
//int fill_missing_rate_tables(POPULATION*

ptr_pop);
DEPRECATED

int fill_rate_gaps(POPULATION *ptr_pop);
void dump_rates(POPULATION *ptr_pop);
void report(POPULATION *ptr_pop, ostream&

fd);
// Information: print data de-

fined for the current segment
void print_params(ostream& f); Prints parameters defined for

the segment
 void print_tables_rate_patterns(ostream& f); Prints all data tables (typed

 67

and free-type) defined for the
current segment to stream f

 void print_event_plugin_hooks(ostream& f); Prints hooks to event-driven
plugins

 void print_stat_plugin_hooks(ostream& f); Prints hooks to time-driven
statistical plugins

 int stat_init(POPULATION* ptr_pop);
 int stat_dump(POPULATION* ptr_pop);
int set_param(string parname, string parvalue); Works with standard set of

segment parameters (SOCSIM
set)

Work with vital rates stored in tables and
generated by model plugins

 int compose_table_name(string& table_name,
string rate_type, SUP_OBJECT *sup_object);

Composes table name for
look-up

 RATE_SOURCE get_rate_source(string event,
PERSON *p);

 int get_annual_rate(POPULATION *ptr_pop,
PERSON *p, RATE_SOURCE rate_source, string
event, int time, double& rate);

 //int birth_rate_set(int group, string mstatus, int
parity, TABLE& table);

Alias, custom case of
get_rate

 int cohab_probs(int group, string sex, TABLE&
table);

Alias, custom case of
get_rate. Returns the whole rate
table for cohabitation probs

//double table_lookup(int age, TABLE table); Low level routine. Returns
rate in action for given age

//int rate_set(int group, string event, string sex,
string mstatus, TABLE& table)

Returns the whole rate table
for use in POPULTION::
get_expected_number_of_births

void process_event_plugins(POPULATION
*ptr_pop, PERSON *p, string event)

Plugin-support functions.
Processes all plugins hooked to
event event upon individual p

void print_rate_patterns_cache() Prints current contents of the
rate patterns cache

 68

Extending MAXIM. Programming new and modifying
existing modules

How to…

Change the spouse selection model and scoring function
The partner is selected for cohabitation or marriage from the marriage queue of the

opposite sex based on the partner selection model and score.
The partner selection model (e.g. random, avoid close relatives or something more

elaborate) is given by the symbol link to a function
PERSON::pref in the maxim.h. MAXIM is shipped with pref= &best_spouse
In this case the function best_spouse() (located in misc.cpp) performs the checks

and selection of the partner.
In it first the unacceptable candidates (close relatives) are removed and the rest are

ranked using the score function.
The type of the score fucntione is defined by
PERSON::score in the maxim.h. MAXIM is shipped with score = &score4
To change program the new spouse selection routine and/or score function, change

the symbolic links and rebuild.

Programming plug-ins
Functionality of MAXIM can be greatly extended by means of so called “plugins”.

A plugin is a function in C++ language, which should be written by user and put into
plugins.cpp file. After the program is recompiled this function is available to the
program.

Functions have standardized interface (list of input parameters and result) and in
principle have access to all information about the population. Hence plugin functions
can collect and modify information about the individuals.

Note: it is a good idea to understand how the MAXIM plugins work by studying
built-in plugins before your start creating your own. Plugins are powerful, but you
can cause yourself lots of trouble if you do things in a wrong way. Badly written
plugins can easily cause to run time errors and such things.

There are 4 types of plugins (with 3 different interfaces):
1. Rate generators. Called for a certain individual and return a double value.

Used to generate a value treated as annual rate mx for some event. This allows writ-
ing rate models of vital rates based on the current state of the individual and (possibly)
other individuals and values of population-wide parameters.
2. State alternators. They are called for a certain individual and return a double

value.
The output value is ignored, such plugins are used to modify the state of the indi-

vidual (e.g. value of his parameters). This allows implementing inheritance models,
models for additional parameters of the individuals such as education and similar.

3. Rate modifier plugins. These are used to modify the annual mx rate obtained a
generator plugin or a life table based on individual or population-wide parameters –
e.g. to easily scale rates or create a family of rates from one by some functional trans-
positions.

4. Statistical plugins. Called for the whole population and return a string.

 69

Such plugins are referred to as “statistical” since they collect some information
about the population which is then written to a text file. Of course they can collect not
just statistical, but any kind of information about the population.

Both types of plugins have access to all members of the population, alive or dead,
individual and population-wide parameters, can read and alter them.

Here we describe both types plugins, how to program and use them and plugins that
are provided with MAXIM.

Rate generators and state alternator plugins have the same prototype.

Generator/alternator plugins

Compiling
Should be located in plugins.cpp file.
To implement a new plugin you should create a function with interface
double plugin_name(POPULATION *ptr_pop, PERSON *p) {
}
and modify function plugin() located in plugins.cpp by adding 2 lines:
else if (plugin_name == "plugin_name")
 return(plugin_name(ptr_pop, p));

in the long if else if … statement similarly to the statements for other plugins

already present there. The pligin() function acts as a switch box, calling that or
the other generator/modifier plugin by name.

Here plugin_name should be replaced by your name of the plugin. It should not
repeat names of other plugins.

Theoretically you can give your plugin any name but to avoid possible names
clashes with other functions of MAXIM we advise to call all generator/modifier
plugins plugin_*****, where ***** is any name you like.

In the plugin interface ptr_pop is the pointer to the instance (only one existent) of
the class POPULATION that contains all the information about the population, model-
ling segments etc.
p is a pointer to the instance of class PERSON which contains information about the

individual for which the plugin was called.
Both classes are defined in maxim.h file.

Accessing data from plugins
Standard, built-in variables of the individual and his basic traits (such as sex, mari-

tal status, current age) can be accessed by expressions of the form
p->variable
where variable is any of individual parameters. See the complete list and descrip-

tion in maxim.h.
Most widely used are:
string sex # “f” or “m”
string mstatus # marital status
int group, birthdate, deathdate;
int mother, father
double fmult # fertility multiplier, used for females if hetfert=1
int marity, parity # number of marriages, children
Others:
int prev_group # previous group
int migration_date;

 70

string prev_marital_status;
int factor;
int mqueue_month;
int birth_group;

For example we can obtain birth date of the individual as p->birthdate.
Similarly parameters defined in the POPULATION class can be accessed by using

the ptr_pop pointer. For example we can get the current month of the simulation
(the first month of the time step if it is longer than 1 month) as
ptr_pop->current_month
Example: to get the age of the individual we can use
int age = ptr_pop->current_month - p->birthdate;

In order to read and update additional (extra) individual and population-wide pa-

rameters MAXIM provides 2 functions:
double PERSON:: get_xtra_param(POPULATION* ptr_pop, string parname)
int PERSON:: set_xtra_param(POPULATION* ptr_pop, string parname,

double value)
get_xtra_param searches for the parameter named parname first in the list

of the population-wide and then individual parameters and return its value. Individual
parameters override values of population-wide parameters with same names.

If parameter is not found, fatal error occurs and the program pauses and terminates.
Example:
Getting a value of parameter “userpar” from a plugin function:
double userpar;
userpar = p->get_xtra_param(ptr_pop, "userpar");
// do something

Function set_xtra_param updates the value of an existing population or indi-

vidual parameter. If parameter does not exist, fatal error occurs and the program
pauses and terminates.

The set of all additional parameters for an individual is created from data in .opox
file for initial population and at birth for newborns. Users can not create additional
individual parameters during runtime.

If parameter does not exist, fatal error occurs and the program pauses and termi-
nates.

The user does not have to worry about whether a parameter is defined on the popu-
lation or individual level. If their names are different they would be accessed cor-
rectly.

Note: newborn individuals have no individual parameters defined. It is the duty of
the user to supply an “inheritance” function which is hooked to newborn event which
would create and initialize his individual parameters based on parents’ values or
some defaults.

A bit more elaborated is accessing information about parents and other individuals.
Generally the easiest way to get it is to get the pointer to the record of the other indi-
vidual and then get all the required information.

Example. Getting information about mother
integer id of mother is stored in the p-> mother. Check that it is not zero.

ptr_pop->permap[p->mother] is the instance of class PERSON that stores
information for mother. So if we want to get the value of par1 for mother we could
write
double par1;

 71

if (p->mother !=0)
 par1 = (ptr_pop->permap[p->mother]).get_xtra_param(ptr_pop,

"par1")
else
 // define parameter if no mother exits

Invoking plugins
The generator/modifier plugins actually comprise 2 types: generator and modifier

plugins invoked in different ways.

Invoking alternator plugins
Plugins whose return value is ignored and which are used to modify information of

the individuals are alternator and should be “hooked” to events.
Events can happen to an individual when his is born, dies or his state changes, to all

individuals in the beginning of the modelling time step or once in the beginning of the
modelling time step. They are described in the table

Hook name Occurrence Called for Examples of application
timestep_once In the be-

ginning of
each simula-
tion time step
before indi-
viduals are
processed

No real in-
dividual.
Called with a
pointer to a
dummy indi-
vidual

Actions performed once for
the whole population such as
collection of statistics upon the
population used later by plugins
(e.g. counting), models of the
environment (food, temperature,
infection)

timestep_each In the be-
ginning of
each simula-
tion time step

For each
living indi-
vidual, before
event testing

Model events that always
happen to the individual such as
hunting, consumption, internal
model of disease for individual
etc.

newborn Directly af-
ter the new
individual is
born

This, new-
born individ-
ual

Initialization of the individual
variable of the newborn – e.g.
inheritance

birth After the
offspring is
born

Mother Update the state of the
mother, e.g. her resources

death After death
of the individ-
ual

Individual
that has been
just diseased

Decrease the size of the fam-
ily, group

marriage After the
event

To both
partners (???)

divorce After the
event

To both
partners (???)

cohabit After the
event

To both
partners (???)

split After the
event

To both
partners (???)

transit After the
event

Transiting
individual

 72

The plugin is invoked by adding a line of the form hook plugin_name to
the .sup file.

Example:
timestep_once plugin_pop_size

Calls plugin_pop_size for a dummy individual once in the beginning of
each time step (counts population and stores total number in population-wide pa-
rameter "pop_size")

newborn plugin_inheritance
Calls plugin plugin_inheritance for the newborn just after it has been

created (initializes his parameters based on those of parents, i.e. performs inheri-
tance)

Invoking generator plugins
Plugins that typically do not alter values of individual parameters but generate some

output double value based on the current state of the individual, population and its
variables are referred to as generators. Their value may be used as the annual rate for
some event.

Examples of such plugins are various parametric models of mortality, fertility and
other processes that return rates based on state of individual and values of some pa-
rameters. These can of course be more complex functions like table look-ups etc.

Such plugins are “hooked” to rate patterns as was described previously.
Example:
One of the standard MAXIM plugins is the Siler model of mortality [W. Siler A

competing risk model for animal mortality Ecology 60(4), 1979, pp. 750-757]. It de-
scribes annual mortality rate basing on 5-parameter model:

mu(x) = a1*exp(-b1*x)+a2+a3*exp(b3*x),
where x is age in years.

- define population-wide parameters siler_a1, siler_b1, siler_a2,
siler_a3, siler_b3 in the .sup file or individual, in the .opox file

- already have the built-in plugin plugin_mortality_model_siler defined in the
plugins.cpp file:

double plugin_mortality_model_siler(POPULATION *ptr_pop, PERSON *p)
{
 // Siler 5-parameter model for death rates
 // W. Siler A competing risk model for animal mortality
 // Ecology 60(4), 1979, pp. 750-757.

 // ANNUAL RATES
 // Model: m(age) = a1*exp(-b1*age)+a2+a3*exp(b3*age)
 // for Italy1931male_single_death.txt good estimation
 // a1=0.038 b1=1.105 a2=0.001 a3=0.0005 b3=0.074

 int age_months;
 double age;
 double a1, a2, a3, b1, b3; // parameters of the Siler model
 double rate=0;
 int debug=1;

 age_months = ptr_pop->current_month - p->birthdate;
 if (age_months<0 || p->deathdate!=0) {
 cerr<<"Error: plugin_mortality_model_siler(): person age

negative or already dead!\n";
 system("pause");
 exit(1);

 73

 }
 // for these parameters we need age in years
 age = (double) age_months/(double)12;

 a1 = p->get_xtra_param(ptr_pop, "siler_a1");
 b1 = p->get_xtra_param(ptr_pop, "siler_b1");
 a2 = p->get_xtra_param(ptr_pop, "siler_a2");
 a3 = p->get_xtra_param(ptr_pop, "siler_a3");
 b3 = p->get_xtra_param(ptr_pop, "siler_b3");
 rate = a1*exp(-b1*age) + a2 + a3*exp(b3*age);
 return(rate);
}

- Hook this plugin to the mortality rate pattern, e,g, for all individuals, adding a
line to the model .sup file:

death * * * plugin_mortality_model_siler

Invoking modifier plugins
Plugins input a value treated as annual mx rate and output a function of it.
Conversion function may as simple as a constant (e.g. built-in plugin

mod_plugin_unity) or depending on parameters of individual or population.
Examples of such plugins are scaling models.
Such plugins are “hooked” to rate patterns usind mod command.
Example:
death 1 f single * plugin plugin_mortlaity_female mod

mod_plugin_times2

Mortlaity rate (mx) for group 1, females, single, all parities is generated by a rate

generator plugin plugin_mortlaity_female and passed through a modifier
plugin mod_plugin_times2 which increases the rate two times.

Statistical plugins
These are invoked periodically, collect some information about the population and

return a string with text result, usually a row of the file.

Compiling
Should be located in plugins.cpp file.
To implement a new stat plugin you should
create a function with interface
string stat_plugin_name(POPULATION *ptr_pop, int mode)

and modify function stat_plugin() located in plugins.cpp including 2

lines:
 else if (plugin_name == "stat_plugin_name")
 return(stat_plugin_name (ptr_pop, mode));
in the long if else if … statement similarly to the statements for other plugins al-

ready present there. The stat_pligin() function acts as a switch box, calling that
or the other stat plugin by name.

Here plugin_name should be replaced by your name of the stat plugin. It should
not repeat names of other plugins.

Theoretically you can call your plugin any name. But to avoid possible names
clashes with other functions of MAXIM we advise to call all stat plugins
stat_plugin_*****, where ***** is any name you like.

 74

In the stat plugin interface ptr_pop is the pointer to the instance (only one exis-
tent) of the class POPULATION that contains all the information about the population,
modelling segments etc.

mode is a flag telling the plugin whether is should return a descriptive header of the
file (typically containing column names) (value 0) or a table row with values (value
1).

Class POPULATION is defined in maxim.h file.

Accessing data from plugins
Data can be accessed by the stat plugins in the same way as it is done by genera-

tor/modifier plugins.
Example: a simple stat plugin counting the population (included in MAXIM)
string stat_plugin_pop_size(POPULATION *ptr_pop, int mode)
{
 char s[255];
 if (mode==0) {
 sprintf(s, "%6s %7s %7s", "time", "males", "females");
 } else {
 sprintf(s, "%6d %7d %7d", ptr_pop->current_month,
 ptr_pop->count_current_population("m", 1),
 ptr_pop->count_current_population("f", 1));
 }
 return(s);
}
Note how the sprintf() function is used to format rows so that names and num-

bers align in 3 columns.
It is a good habit to include time as the first column in the plugins output since that

obviously would output time-varying data

Invoking statistical plugins
Invoking is done from the model .sup file with a line of the form
stat stat_plugin_name period filename

where stat is a key word, stat_plugin_name is the name of your plugin, period is an

integer value, describing how often a plugin should be called – in time steps. So 100
will mean “every 100th model time step”, filename is the name of the file where the
output should go, e.g. “pop_size.txt”.

Plugins built into MAXIM
Plugin name Plugin

type
Note

plugin_template genera-
tor/modifier

Template to create a user plugin

plugin_mortality_
model_siler

generator Return annual mortality rate calculated ac-
cording to the Siler model [W. Siler A compet-
ing risk model for animal mortality Ecology
60(4), 1979, pp. 750-757]

Rate is evaluated by formula m(x)=a1*exp(-
b1*x)+a2+a3*exp(b3*x), where x is age in
years

Requires population-wide or individual pa-
rameters with names siler_a1, siler_b1,

 75

siler_a2, siler_a3, siler_b3
Good approximation for modern mortality

(Italy, 1931, single males) is obtained with pa-
rameters a1=0.038 b1=1.105 a2=0.001
a3=0.0005 b3=0.074

plugin_pop_size modifier Counts the population and stores the total
population size in variable pop_size

For correct work a population-wide parame-
ter with this name should be defined in .sup file

stat_plugin_templ
ate

stat Template for user statistical plugins

stat_plugin_pop_
map_size

stat Size of the population map. Outputs data for
time and pop_map_size

stat_plugin_pop_s
ize

stat Count number of males and females in all
groups

stat_plugin_pop_p
yr

stat Calculate population size and proportions of
individual in age groups (“population pyra-
mid”) separately by sexes, for all groups

Hints and warnings
Plugins are powerful and potentially dangerous to the stability of the program. Be-

fore creating your own plugins study templates and those provided with MAXIM.
Copy and modify them as required.

Every generator/modifier plugin is invoked for a specific individual. When a plug-
in is invoked the whole information about this individual is available via p pointer.
Study the PERSON class to understand what variables you can use. DO NOT
CHANGE VALUES OF THE MAIN PARAMETERS OF THE INDIVIDUAL unless
you understand what you do. Read them, do not alter them!

Parameters of the current segment, such as mostly used, current_month, can be ob-
tained using the pointer to the population. The construction ptr_pop-
>current_month get the current month. The same rule applies: read, use the value,
but do not alter it!

Write robust programs! Check the input data and result codes and generate error
messages when needed! In MAXIM error result 0 generally means “OK” and non
zero codes mean “Error”.

Practical examples of plugins

Parametric models of vital rates
A simple way to define a vital rate is to write a parametric function (similar to

p.d.f.) defining how the rate depends on parameters. This requires passing one or sev-
eral parameters to the function. In a heterogeneous population the parameter values
typically vary from person to person, but they also can be same for all individuals
(such parameters are referred to as population-wide here).

Additional individual parameters, i.e. those beyond standard parameters, describing
the state of the living individual (birthdate, sex, motherid, fatherid, marstatus,
group, marity, parity) are loaded from the .opox file and stored in the map<string,
double> aux_param structure. They can be obtained by get_xtra_param function.

 76

Inheritance of individual parameters
All additional personal parameters used in the model in addition to the base set

need to be initialized when a new individual is born. This may be described as inheri-
tance of parameters. The set of individual parameters of the offspring may be fixed, or
depend on the values or mother and father, maybe in a stochastic way.

To simplify things, the program initializes base parameters and then generates a
newborn event to which user can hook a modifier plugin which will perform the pa-
rameter initialization.

The plugin will be called with the pointer to the newborn, using the pointer to the
population ptr_pop it can access information from the records of father and mother
(chack existence!) and then create individual parameters of the newborn with required
values.

Use function create_xtra_param to create a new individual parameter for the
newborn.

Big example
The following example demonstrates how to setup a model describing a hunter-

gatherer population in which people hunt and share resources among the whole tribe.
Idea:
Tribe has a common pool of food. Hunters hunt and add food to this pool every

time step. All individuals get food from the food pool.
Food units are kilocalories
.opox file:
Individuals have 1 parameter: individual reserve.
People get food from the population food pool and add to the
personal food reserve. They spend reserve according to
their requirements.
Personal amount of reserve (“fat”) influences individual
mortality and fertility

Define some starting nonzero amount enough for 1-2 months
2000*30 = 60000

personal_reserve
60000
60000
60000

….
60000
.sup file:
Males hunt and get certain age-specific amounts of food monthly
Gathered food is added to the population food pool
Every month each individual gets a certain amount of food
from the pool
Amount of food influences fertility and mortality
…… # load or generate an initial population
param population_pool 6000000 # Population-wide parameter.
 # Some nonzero initial value
 # value to prevent people
 # from dying on the first month

param pop_size 100 # Set to the initial population size

It is slow to calculate the population size on every time step

 77

Alternative was is to update is: increment upon birth and
decrement upon death

Time-driven plugins are called for each living individual
every time period
monthly plugin_hunt # defines age- and sex- specific produc-

tion.
 # Adds hunted food to population_pool

month plugin_consume # Take a share from the population_pool
 # and add it to the personal_reserve.
 # Consume some from personal reserve
 # may use some population “statistics” –

e.g.
 # stored in pop_size variable

birth plugin_birth_rate_modifier # Calculate birth rate using
 # information about the amount of
 # personal reserve

death plugin_death_rate_modifier # Similar to the birth rate block
birth plugin_increment_popsize #
death plugin_decrement_popsize # Event-driven plugin.
 # Updates the pop_size parameter
birth plugin_inheritance # Init. parameters of newborn
 # Called after a child is created
 # Set the child’s xtra parameters
 # based on those of his mother and father (if

any)

birth 1 F single * plugin_birth_energy # model evaluating
 # birth rate depending from enrgy level

death 1 F single plugin_death_energy
…. table ….
death 1 M single
…. table ….
marriage 1 * single
……
divorce 1 * married
………
run

Algorithm diagrams
These diagrams show schematically the flow of most important stages of program

work so that a programmer could be able to understand and modify the program eas-
ier.

The diagrams are simplified in comparison to the original algorithms.
Brackets () denote names of MAXIM functions

Testing for occurrence of specific event to an individual
Testing for event X, individual in state {group, sex, mar_status, parity}

test_for_event()
compose rate pattern from event and status: birth 1 f s 2 “b_1_f_s_2”
search for pattern in rate pattern cache.
Found?

 78

yes: get rate_source from cache
no: match pattern and find appropriate rate_source using get_rate_source()

Have rate_source. Get annual mx rate by get_annual_rate()
is rate_source.table_ID defined? Y: rate = lookup_mx()

Get data from table by name and convert data for given time to mx
format based on table type

else is rate_source.genplugin_ID defined? Y: rate = plugin()
Invoke built-in or user plugin programmed in plugins.cpp by name

- get rate from table or plugin
Is rate_source.modplugin_ID defined? Y: rate = mod_plugin() – modify rate

by a modifier plugin
Invoke built-in or user modifier plugin programmed in plugins.cpp

by name
Evaluate probability of event to happen within the timestep.
Perform stochastic test for event with this probability
Return 1 if test successful

Parsing .sup file – description of rates
Line not numeric, found 5 or more tokens
token1 in dictionary of events?
Y: convert tokens 1..5 to rate pattern by compose_table_name()
N: error
Conversion OK?
Y: make new rate_source instance

Search line for “plugin” keyword. Found in position n?
Y: get plugin name: rate.source.genplugin_ID = token(n+1)
N: No plugin defined. So are expecting table. Set context=”lifetable”
Search line for “mod” keyword. Found in position n?
Y: get mod plugin name: rate.source.modplugin_ID = token(n+1)
N: No plugin defined. Expecting to find a life table next. Set con-

text=”lifetable”

Non-numeric lines mean end of reading table (if context is not “”) except for ex-
pression type **** that concretises the type of the life table.

and table ****
2 token line:

token(1)==”type”?
Y: context==”lifetable”?

Y: set type of the current table to token(2)
N: error: “type command outside of table context”

token(1)==”table”?
Y: create a new TABLE instance, set name, set context = “datatable”

