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ABSTRACT: Simple models for the failure (mortality) rate change point are consid-
ered. The relationship with the mean residual lifetime function change point problem
is discussed. It is shown that when the change point is random, the observed failure
(mortality) rate can be obtained via a specific mixture of lifetime distributions. The
shape of the observed failure (mortality) rate is analyzed and the corresponding sim-
ple but meaningful example is considered.
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1. INTRODUCTION.

In lifetime data analyses it is often reasonable to assume that early failures obey one
distribution (sometimes it is called the “infant mortality” cumulative distribution
function (Cdf)), whereas after some time another distribution usually with a smaller
failure rate comes into play. It is well known that the mortality rate of humans is de-
scribed by the exponentially increasing Gompertz curve for adults and decreases in
the earlier part of life. Alternatively, an engineering device, starting its performance at
some small level of electrical load can experience an increase of this load at some in-
stance of time z, or other parameters, characterizing the regime of functioning are
changed at z . Most often, a change in the original pattern of the failure (mortality)
rate is caused by some external factors (e.g., a change in environment). Therefore, the
corresponding models should capture this combined pattern of the failure (mortality)
rate. Considering the simplest models of this kind is the topic of this note. We discuss
here only some general initial approaches to be specified in further studies.
     Numerous demographic studies show that mortality rates of humans at all ages are
consistently declining with chronological time (see [10] for recent data on the increase
in life expectancy, for instance) at least for the last two centuries. On the other hand,
along with these gradual processes, populations can experience change points due to
positive or negative ‘environmental’ influences. The implementation of the better
healthcare in the former East Germany after the reunification can be considered as an
example of such a positive influence [13], whereas the demographic situation during
the transitional period in Russia after the collapse of the USSR shows a negative im-
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pact on mortality rates. It is clear that the change point in the mortality rate can take
place in both of these cases and the corresponding analysis can help to understand the
true pattern of the mortality curve.
     The concept of a random change point seems to be more natural in engineering
applications than in demography. However, unobserved time of a change point in the
mortality rate can be also encountered in population studies. On the other hand, this
concept is reasonable for forecasting future mortality rates, when the change point is
likely to occur, but its time is unknown.
     We discuss in this note some new models for the failure (mortality) rate and the
mean remaining lifetime (life expectancy) change point analysis. The corresponding
general approaches are common to a certain extent for the demographic mortality
studies and for the failure analysis of engineering systems as well. For the sake of
presentation we shall use reliability notation )(tλ  for the failure rate, having also in
mind demographic and actuarial notation )(tµ  for the mortality rate (force of mortal-
ity). In order to keep this analogy as close as possible we, in fact, assume the cohort
survivorship approach in the mortality rate modeling.  In this case all survivors expe-
rience the change point at the same age. Generalization to the period survivorship
with age specific change points for survivors is the topic for the future research.
     General theoretical models to be considered can help to analyze the shape of the
failure (mortality) rate, which is important for the failure (death) time analysis. It will
be shown, for instance, that the random change point can be interpreted as an addi-
tional source of frailty in a population [14], which eventually bends down the mortal-
ity curve and exhibits an effect of  “the weakest populations are dying out first” [4].
    In Section 2 two main models for the failure (mortality) rate with a change point
and the corresponding Cdfs are formulated. Section 3 is devoted to the relation be-
tween the change points in the failure (mortality) rate and the mean remaining lifetime
(life expectancy at a given instant of time). In sections 4 and 5 the failure (mortality)
rate with a random change point is defined and its shape is analyzed. Section 6 is de-
voted to a brief discussion. We also defer the discussion of inferential aspects of the
change point analysis to future publications.

2. MODELS

Consider an object, which starts its lifecycle at 0=t  in some environment (e.g., load,
stress, or lifestyle, living conditions), which has been changed at zt = .  The simplest
failure rate model with a change point of this kind can be defined directly via the fail-
ure rates [10]:

0);()()()(),( 21 ≥≥+<= tztItztItzt λλλ ,                                 (1)

where )(1 tλ  is the failure rate before the change point and )(2 tλ  is the failure rate
after it; ),( ztλ  is the ‘combined’ failure rate, and )(),( ztIztI ≥<  are the corre-
sponding indicators:
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It is clear that formally equation (1) can be also written via the proportional hazards
(PH) model:

)(),(),( 1 tztzt λθλ =
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where 1),( =ztθ  for zt <  and )(/)(),( 12 ttzt λλθ =  for zt ≥ . This interpretation can
be helpful, as the PH model usually reasonably describes the impact of a changing
environment.
     Denote the Cdfs which correspond to )(),( 21 tt λλ  and ),( ztλ  by )(),( 21 tFtF  and

),( ztF , respectively. It is easy to see that relation (1) leads to the following equation

for the survival function ),(1),( ztFztF −≡ :
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duuzFtF )(exp)(/)( 222 λ  is the conditional survival probability in

),[ tz  for an object with the Cdf )(2 tF .
      Relation (1) sets a change point model when z  is fixed or when the failure rate
after the change point does not depend on z.  It is clear that in this case one cannot
obtain information on the location of the change point by observing the failure rate
after the change point (which means: observing failures of an object). In some in-
stances, however, the failure rate after the change point depends on z . Therefore, re-
lation (1) can be generalized to

0);(),()()(),( 21 ≥≥+<= tztIztztItzt λλλ                             (3)
Equation (2) is also valid for this generalization, which can be seen after substitution

)(/)( 22 zFtF  by ),(/),( 22 zzFztF , where ),(2 ztF  is defined by the failure rate

),(2 ztλ  in a usual way.

Example 1. a. Consider an object’s lifetime in some baseline regime described by the
Cdf )(1 tF  with the failure rate )(1 tλ . At zt = , the regime is switched on to a more

severe one, characterized by a larger value of the failure rate: )()( 12 tt λλ ≥ . It is clear
that this setting is described by the model (1).

b. Assume now that the change point is defined by the change (e.g., increase) in the
derivative (slope) of the failure rate: ztzt ttzz == ′>′= |)(|)();()( 1212 λλλλ  For instance,

we can consider linear failure rates with 012 >> λλ :

zttt <≤= 0,)( 11 λλ ,

 ztztzt ≥−−= ,)(),( 1222 λλλλ
and this is, clearly, the second, more general model.

c. The mortality rate of the Gompertz distribution is given by the following relation:
.0,0};exp{)( >>= babtatµ  A pure jump to a larger level can be modeled by

}exp{bta′ , where aa >′ , whereas the change point in the slope similar to the previ-
ous case can be defined as:

ztbtat <≤= 0},exp{)(1µ ,

bbzttbzbbat >′≥′′−= ;},exp{})exp{()(2µ .

Remark 1. This example illustrates the fact that the change point in the failure rate is
usually characterized either by the jump in zttzt =∂∂ |/),(λ  or by a jump in ),( ztλ  at

zt =  (the latter can be also combined with the jump in the slope). In fact, the smooth
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case also exists, when there are no jumps in the function and its derivative, but there is
a ‘substantial change’ in tzt ∂∂ /),(λ  in the neighborhood of zt = . A bathtub shape of
the failure rate, when initially the failure rate decreases, reaches a single minimum
and then increases (or upside-down bathtub shape of the failure rate), illustrates this
possibility.

3. CHANGE POINT IN MRL

In many instances analysis of the failure rate goes along with analysis of the mean
remaining lifetime (MRL) function. Therefore, change points in the MRL function are
also often of interest, although defining the change point via the failure rate concept is
more traditional. The MRL change point concept was not practically explored in the
literature so far, although we think it can present a reasonable and a ‘more weak’ al-
ternative.  The following question arises in this respect: does the change point in the
failure rate always lead to the change point in the MRL at the same point? An imme-
diate answer is obviously “no”, whereas the more detailed considerations are pre-
sented in the rest of this section.
     Let tX  denotes the remaining lifetime (at time t ) of an object with a governing

Cdf )(xF  and a failure rate )(xλ . Then, in accordance with a standard definition
[6,9], the MRL function )(tm (life expectancy at time t ) is given by:
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     Assume that )(tm  is differentiable. By differentiating the quotient in (4) the fol-
lowing important relation can be easily obtained:
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or, equivalently [5]:
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=λ .                                                        (6)

Equation (6), in fact, defines the relationship between these two important functions.
For exponential distribution: m/1=λ .
     It follows immediately from definition (4) that )(tm  is a continuous function for
an absolutely continuous )(xF  and that the jumps in the failure rate do not lead to the
jumps in the MRL. Analyzing relation (6), it is easy to conclude that the jump in )(tλ
at zt =  corresponds to the jump in )(tm′  at the same point.

Example 2. Consider the specific case of the model (1): 2211 )(;)( λλλλ == tt . It is
easy to see integrating by parts that:
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where )|)((|)( ztzt tmtm
+− == ′′  denote the value of the derivative with respect to t  just

before (after) zt = . Thus, the jump 12 λλ −  in )(tλ  leads to the jump 
2

11
λ
λ−  in )(tm′

at zt = .♦

 It is usually more difficult to define the change point for the MRL in the ‘no-jump
situation’ (see the Remark 1). It is worth mentioning that the change points in the fail-
ure rate and in the MRL (if any) do not coincide in this case. The following result il-
lustrates this assertion and describes the relation between the shapes of )(tλ  and

)(tm , when )(tλ  has a bathtub shape[5,7,9]:

Let )(tλ  be a differentiable bathtub failure rate.
     (i) If

01)0()0()0( <−=′ mm λ
then )(tm  is decreasing in ),0[ ∞ .
     (ii) If 0)0( >′m , then )(tm  has an upside-down bathtub shape.

The symmetric result is valid for the upside-down bathtub failure rate. Thus, the
change point in the failure rate in this case does not necessarily lead to the change
point in ).(tm

4. RANDOM CHANGE POINT

In many instances the change point is unobserved or, alternatively, is random. This
means that we know )(1 tλ  and )(2 tλ  (or the functional form of ),(2 ztλ ), but we do
not know z. The resulting (observed) failure rate )(tλ  is of a prime interest for this
setting.
     Consider the model (1). The forthcoming reasoning can be easily applied to the
model (3) as well. Denote the random change point variable by Z  and let )(zπ  be its
probability density function (pdf) with support in ),0[ ∞ . Then the corresponding haz-
ard rate process (random failure rate) [6] is defined as

)()()()(),( 21 ZtItZtItZt ≥+<= λλλ .                                 (7)
It is clear that the lifetime Cdf of an object operating in an environment with a random
change point can be modeled by  the corresponding mixture:
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The mixture failure rate for the general case is defined by.
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where the conditional pdf )|( tzπ  is [4,8,11]:
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Applying these relations to models under consideration and taking into account rela-
tion (2):
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The similar result is valid for the model (3):
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Relations (11) and (12) can be used for describing the shape of the observed failure
rate, which is usually rather cumbersome and only the simplest settings can be ana-
lyzed directly.

5. THE SHAPE OF THE FAULURE (MORTALITY) RATE

It follows from formulas (11) and (12) that the shape of the observed mortality rate
)(tλ  differs from the shapes of )(1 tλ  and )(2 tλ . We shall discuss some general prop-

erties of the shape of the mortality rate curve for a simpler and more frequently used
model (1)-(2), (11). The analysis for model  (3) is more complicated and usually
should be performed using numerical methods.
     It is interesting to find, at first, when the following asymptotic relation:

)()( 2 tt λλ →                                                      (13)
holds as ∞→t [3]. By relation (13) we mean:

∞→+= tott )),1(1)(()( 2λλ                                       (14)

When )(2 tλ  is bounded: 0;0)(2 ≥∀>≤ tCtλ , relation (14) is equivalent to

0|)()(| 2 →− tt λλ  as .∞→t  Denote:
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Then equation (11) turns to

1)(
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Consider, as in Example 1, the case of the more severe regime after the change point,
when 0),()( 12 >∀> ttt λλ  (the case or a lighter regime after the change point is ana-

lyzed in a similar way). Therefore, if ∞→)(1 tλ , the evident sufficient condition for
(14) is

∞→→ ttt ,0)()( 1λα                                           (16)

On the other hand, if )(1 tλ  is bounded, then 0)( →tα  guarantees that

0|)()(| 2 →− tt λλ  as .∞→t  Monotonicity properties of )(tλ  for the general case can
be studied by considering )(tλ ′ , but the corresponding expression is rather cumber-
some and explicit results can be obtained only for specific cases.
     It follows from equation (15) that under given assumptions 0),()( 2 >∀< ttt λλ .

On the other hand, even for the bounded rates the distance )()(2 tt λλ −  does not nec-
essarily tend to 0 .  This interesting fact is illustrated by the following meaningful ex-
ample.

Example 3. The direct analysis of the shape of )(tλ  for the following setting is of in-

terest. Let: 2211 )(;)( λλλλ == tt  and )(zπ  be also exponential: }exp{)( zz ss λλπ −= .

Using relation (11), after simple rearrangements:
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a. Let sλλλ +> 12 . Then from relation (17)

st t λλλ +=∞→ 1)(lim                                              (18)

Thus, in this case 21 )( λλλ <∞<  and for sufficiently small sλ  the pdf )(zπ  gives

more “weight” to smaller values of t , where 1)( λλ =t  with a larger probability. Dif-
ferentiating the right hand side of (17), it can be easily shown that 0,0)( ≥∀>′ ttλ ,

which means that )(tλ  monotonically increases from the level 1λ  to the level sλλ +1

as ∞→t . It can be easily checked that condition 0)( →tα  as ∞→t  does not hold
in this case.

b. Let  sλλλλ +<< 121 .  Then from relation  (17):

2)(lim λλ =∞→ tt                                               (19)

as the probability distribution in this case gives more weight to larger values of t ,
where 2)( λλ =t  with a larger probability. It can be also checked that the general con-
dition 0)( →tα  as ∞→t  holds in this case.
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c. Finally, the limit (19) also holds for 12 λλ <  (the improved mortality rates after the
change point, which is characteristic for the current demographic practice).  This fact
can be easily seen from equation  (17). Another interpretation of the shape of )(tλ  is
due to the well-known property: the mixture of Cdfs with decreasing failure rates is
the Cdf with the decreasing failure rate as well [1,2]. It is worth noting, that the pres-
ervation of the increasing failure rate property under operation of mixing was also ob-
served in specific cases a. and b. of this example, whereas it is not true for the general
case of increasing rates [4]. ♦

Remark 2. In fact, it is rather surprising that )(lim tt λ∞→  in this example depends on

the relationship between 21 ,λλ  and sλ .

Remark 3. The random change point introduces specific heterogeneity in the model
and the effect of the mortality rate bending down with age can be explained also by
this effect.

6. CONCLUDING REMARKS

We have considered two rather general models for the failure (mortality) rate change
point and have analyzed the shape of the observed rate )(tλ , when the change point is
random. It turns out that the random change point model is a specific case of mixing
and some general results on the failure rates of mixtures can be applied. For instance,
it is well known that the class of Cdfs with decreasing failure rates is closed under the
operation of mixing. On the other hand, this operation is not closed for the class of
Cdfs with increasing failure rates. However, the specific cases of Example 3 show
that under additional assumptions this property can still hold.
     It is natural to define the change point via the failure (mortality) rate, because it
describes the direct effect of environment on a lifetime of an object. Due to relation-
ship (6), the corresponding change point in the MRL function can be also analyzed. It
was shown that under certain assumptions the MRL function does not have a change
point (though )(tλ  has) and the jump in the failure rate corresponds to the jump in the
derivative of the MRL function at the same instant of time.
     As it was mentioned in section 1, we exploit the analogies between demographic
and engineering applications to a full extent and assume the cohort survivorship ap-
proach in the mortality rate modeling. Generalization to the period survivorship with
age specific change point for survivors and the corresponding inferential problems are
the topics for the further research.
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