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Abstract

Frailty was first introduced in survival analysis to control for unobserved heterogeneity.
Frailty models represent an extension of the proportional hazards model in which both the
frailty term and the covariate effects are assumed to act multiplicatively on the baseline hazard.
Multivariate frailty models were then developed with the aim to introduce mutual dependence
between the life spans of related individuals.

In this study we use a correlated log-normal frailty model in order to analyse breast cancer
data from the Swedish Twin Registry. An estimate of the narrow sense heritability for the
individual susceptibility towards breast cancer is given via the application of three genetic
models.

We solve the inferential problem in a Bayesian framework and the numerical work is carried

out using MCMC methods. Limitations and possible extensions of the model are discussed.
1. Introduction

Frailty was first introduced in survival analysis in order to assess unobserved heterogene-
ity (Vaupel et al. 1979). Frailty models represent an extension of the proportional hazards
model (Cox 1972) in which both the frailty term and the covariate effects are assumed to act
multiplicatively on the baseline hazard. The term including covariates allows for observed het-
erogeneity, while the frailty term captures that part of the individual heterogeneity that refers
to unobserved risk factors. Individuals differ substantially in their susceptibility towards mor-
tality (overall or cause specific mortality) and it is often impossible to include in the model all
the relevant covariates. More frail individuals die earlier than the stronger ones and this leads
to a systematic selection effect over time. When unobserved heterogeneity is introduced in the
model, it is possible to identify the influence of selection on the observed hazard and to analyse
the individual risk of mortality at different frailty levels (Vaupel and Yashin 1985).

In this work, we are dealing with multivariate frailty models, which were created with the
aim to assess mutual dependence between the lifespans of related individuals. The first approach
developed in the literature, and still much employed, is based on the concept of ’shared frailty’
(Clayton 1978, Oakes 1982, Hougaard 1984, Vaupel et al. 1992, Sahu et al. 1997). Groups

of individuals (family, litter, clinic or recurrent events from the same individual) share the



same frailty and their durations are assumed to be conditionally independent, given the frailty
variable.

Shared frailty models are useful when we want to explain correlations within groups, but they
have some limitations. First, they deal with a definition of frailty, which is not consistent with
the definition given in the univariate framework (Vaupel et al. 1979). The frailty term in fact
represents a part of individual frailty, only capturing the components, which are ’shared’ by all
individuals within a cluster. Second, they force all unobserved risk factors to be the same within
a cluster, which is not always reasonable. For example, when one deals with pairs of twins there
is no reason to assume that both partners in a pair share the same unobserved heterogeneity.
Third, shared frailty will only induce positive association within a group. However, in some
situations it could be useful to allow also for a negative correlation between lifespans within the
groups (Xue and Ding 1999).

To overcome these limitations, a ’correlated frailty’ approach has been developed. The
importance of taking into account the dependence between heterogeneity variables describing
different processes related to the same individual was first emphasised by Butler et al. (1986)
and Lillard (1993). Yashin et al. (1995) introduced a correlated gamma frailty model to describe
bivariate survival data, focusing their attention to the analysis of pairs of related individuals,
for example twins. The correlated frailty assumption is more flexible than the shared frailty one
in the sense that the model includes different - but correlated - frailties for the two individuals
in a pair. It is of interest to estimate the correlation coefficient between these two variables,
that is the degree of dependence between frailties in each pair. As in the shared frailty model,
the two lifespans in a pair are assumed to be conditionally independent given the frailties.

In the correlated frailty model, unobserved risk factors are not forced to be the same in
each group, the frailty term represents the entire susceptibility towards death exactly as in
the univariate framework, and the possibility of a negative association between survival times
is taken into account. In addition, the correlated frailty concept allows for the integration of
survival data for related individuals with different levels of relationship, for example identical
(monozygotic) and fraternal (dizygotic) twins, and to merge traditional approaches of quan-
titative genetics and epidemiology with survival analysis methods (Yashin and Iachine 1995,
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Two important assumptions in frailty models are related to the shape of the underlying
hazard and the distribution of the frailty variables.

Shared and correlated frailty models have been estimated both parametrically and semi-
parametrically. The most adopted parametrical hypothesis is the Gompertz baseline hazard
(Vaupel et al. 1992, Tachine et al. 1998, Wienke et al. 2001) but other shapes are also possible,
for example Weibull (Sahu et al. 1997) or exponential (Xue and Ding 1999). Yashin and Iachine
(1994) derived a semiparametric representation for the correlated gamma frailty model, which
opened new opportunities for the statistical analysis of bivariate data. This representation al-
lows to estimate the model without making assumptions about the shape of the baseline hazard.
The semiparametric approach was also adopted in a Bayesian framework to estimate different
shared frailty models by Clayton (1991) and Spiegelhalter et al. (1996), among others.

Every distribution of a positive random variable can be adopted to model frailty. The
gamma distribution has been widely applied in the literature (Clayton 1978, Vaupel et al.
1979, Oakes 1982, Yashin and Iachine 1994, Hougaard 2000, Wienke et al. 2001). The gamma
choice is convenient from a mathematical point of view, because of the simplicity of the Laplace
transform, which allows for the use of traditional maximum likelihood procedures in parameter
estimation. Another possibility is to assume that frailty is log-normal distributed (Korsgaard
et al. 1998, Spiegelhalter et al. 1996, Xue and Ding 1999, Ripatti and Palmgren 2000).
The log-normal approach is much more flexible than the gamma model in creating correlated
but different frailties as required in the case of the correlated frailty model. Unfortunately,
with a log-normal assumption it is impossible to derive the marginal likelihood function in an
explicit form and parameter estimation has to be performed with the help of more sophisticated
estimation strategies, such as numerical methods of integration or Bayesian MCMC methods
(see Section 3).

In the present study, we work with correlated frailty models. Section 2 provides a general
description of the theory of correlated frailty models. In Section 3, the estimation procedure is
presented. An interdisciplinary approach based on quantitative genetics models is described in
Section 4. Sections 5 and 6 show results of the analysis of Swedish breast cancer data. Some

comments and suggestions for further research can be found in Section 7.



2. The model description

We assume that, given some bivariate observations, for example life spans of twins or age
at the onset of some disease in pairs of related individuals, the hazard of individual j (j = 1,2)

in the pair i (i = 1,...,n) takes the form:

w(®, Zij) = Zijpo () (1)

where /i (x) denotes some baseline hazard function and Z;; are unobserved random effects or

b2). We are not

frailties. In this study, we adopt a Gompertz baseline hazard (y, (z) = ae
taking into account covariate effects.
Let (X;1, X;2) be the vector of life spans for the two individuals from the pair i (i = 1, ...,n).

We are assuming that X;; and X2 are conditionally independent given the frailties Z;; and Z;o:
XilZin, Zio L Xio| Zin, Zso. (2)

The conditional likelihood of the model is given by:

n

L(x|2) = T] Fxi, X2, 2 (Wi, Tiz|2i1, 2i2) (3)
=1

where © = (21, ...,2p), ; = (Ti1,%2); Z = (Z1,...,2n), Zi = (Zi1,Zi2) and IXi1, X0\ Zir, Zeo
represents the bivariate conditional density of the life spans for the pair ¢. The conditional

independence of the life spans given the frailties (2) allows us to rewrite (3) as follows:

n 2
L(x|Z) = [T 11 fx.,12; (wiilzis) (4)

i=1j=1

where now we deal with the univariate densities fx, |z, (j =1,2).

Given the relations:

fxiz (@lz) = p(x,2) Sz (2]2) ()

Sx|z (x]z) = exp(=ZHo(x)),



where S| is the conditional survival function and Hy (z) = [ pto (u) du represents the cumu-

lative baseline hazard function, we obtain the following expression for the conditional likelihood:

n 2
8is
L(x,612) = I I] [Zijio (2i5)]°7 exp (= ZijHo (2i5)) - (6)
i=1j=1
where 6 = (61,...,.0n), 8i = (61, 0s2), with 6;; representing the censoring indicator for the

individual j (j = 1,2) in the pair ¢ (¢ = 1,...,n).

Integrating out the random effects, we obtain the marginal likelihood function:
n 2 s
L(x,6) = H// T [zig00 (235)]°9 exp (=ziHo (245)) f2:1, 2.5 (i1, 2i2) dzindzso (7)
i=1 j=1

where fz,, 7., represents the joint density function of the vector of frailties (Z;1, Zi2).

To complete the model, it is necessary to make assumptions about the form of fz, z.,.
In this study, the vector of frailties is assumed to follow a log-normal distribution. This one
is adopted because of its large flexibility in multivariate modelling, especially when we are
interested in introducing a correlation between frailties, as in the case of the correlated frailty
model.

For identifiability reasons, we have to make a restriction on the parameters of the frailty
distribution. Following the usual definition of frailty used in demography (Clayton 1978, Vaupel
et al. 1979), the expected value of frailty is constrained to be equal to one (E (Z;;) = 1, for
i=1,...,n and j=1,2). In that way, one is assuming that the hazard function of a ’standard’
individual corresponds to the baseline hazard function, and any individual in the population
has the hazard rate multiplicatively distorted by his frailty value z;;. We also assume that the
two frailties in each pair have the same variance o2, because of the symmetry of twin data,
which are the object of applications in the present paper (see Sections 5 and 6).

Hence, we deal with the following distribution of the vector of frailties:

Z; 1 o po

~ LogN , i=1,...n (10)
Z; 1 po’ o

with logN denoting the bivariate log-normal distribution. This can be obtained by assuming a



Yi Zi1
bivariate normal distribution on the logarithm of the frailty vector ‘ = log “ | whose

Yio Zi
parameters are some functions of the frailty parameters o2 and p (see for example Hutchinson

and Lai 1991):

Ya —3log (0% +1) log (62 + 1) log [po? + 1]
Yio —1log (0% +1) log [po? +1] log (0?2 +1)

with N denoting the bivariate normal distribution.
3. Estimation strategy

Methods that have been adopted for parameter estimation in frailty models can be approxi-
mately classified into the two categories of maximum likelihood and Markov chain Monte Carlo
(MCMC) methods.

Procedures based on the maximum likelihood have been applied in the gamma context,
where an explicit representation of the likelihood function is always available (Yashin and
Tachine 1994, Yashin et al. 1995, Wienke et al. 2001). The maximum likelihood method has
also been adopted in the lognormal framework with the help of different numerical algorithms
(McGilchrist and Aisbett 1991, McGilchrist 1993, Lillard 1993, Lillard et al. 1995, Sastry 1997,
Ripatti and Palmgren 2000, Arbeev et al. 2003). These methods are also implemented in the
aML software package (aML version 1, see Lillard and Panis 2000).

Bayesian MCMC methods have also been applied as estimation procedures especially in
shared frailty models (Clayton 1991, Spiegelhalter et al. 1996, Sahu et al. 1997, Sinha and
Dey 1997) but also in correlated frailty models (Xue and Ding 1999). The Bayesian framework
is in fact natural when we are dealing with conditionally independent observations and we are
working with hierarchical models, with the frailty variables at an intermediate stage between the
observations and the so-called hyperparameters. In the Bayesian context the frailty distribution
represents a 'prior’ of the model and its parameters (hyperparameters) are also considered as
random variables following some non-informative distribution.

An MCMC method consists in generating a set of Markov chains whose joint stationary

distribution corresponds to the joint posterior of the model, this one being in the Bayesian



framework the distribution of random parameters given observed data. In a hierarchical model,
the posterior distribution is often very difficult to work with and almost always impossible to
integrate out in order to find the marginal posterior of each random parameter. The MCMC
methods enable us to circumvent this problem. The posterior of each parameter is approximated
by the empirical distribution of the values of the corresponding Markov chain and empirical
summary statistics calculated along each chain can be used to make inferences about the true
value of the corresponding parameter (see for a review Gilks et al. 1996). The Gibbs Sampling
(Geman and Geman 1984) is one of the algorithms that have been created in order to obtain
Markov chains with the desired stationary distribution. The basic idea behind the Gibbs Sam-
pling is to successively sample from the conditional distribution of each random node, whether
parameter or observable, given all the others in the model. These distributions are known
as 'full conditional distributions’. It can be shown that, under broad conditions, this process
eventually provides samples from the joint posterior distribution of the unknown quantities.

In this study, Bayesian MCMC methods have been adopted to estimate the correlated log-
normal frailty model described in Section 2. Calculations are performed within the software
WinBUGS 1.4 (Spiegelhalter et al. 1999). This is a package, which enables us to solve Bayesian
hierarchical models, essentially using the Gibbs Sampling algorithm.

The correlated log-normal frailty model applied here can be represented as a Bayesian

hierarchical (3 - levels) model in the following way:

1. Likelihood function:

n 2

L (2, 01Y,0,) = [T TT lexp (¥i) aexplbsy )] exp (= exp (V) § fexp(ass) = 1) (12)
i=1j=1
2. Priors:
G| o~ N “log( 1) | | loglef 1) doglet 1) )
Yio —3log (0% +1) log [po? +1] log (0% +1)

(i) a ~ T(0.01,0.01)
(iti) b ~ T1(0.01,0.01)



3. Hyperpriors:

(i) o*~T(0.01,0.01)
(it) p~U(=1,1)

where H (z) = (a/b) - [exp(bx) — 1] is the Gompertz cumulative hazard function; Y =
(Y1,....Yy), Y = (Yi1,Yi2); I and U denote the gamma and uniform distribution, respectively.
Non-informative priors are assigned to the parameters of the Gompertz curve and on the frailty
parameters (hyperparameters).

The full conditional distributions can be obtained considering that they are proportional
to the joint distribution of all the random quantities of the model. In our case, this joint

distribution takes the form:

7 (2,6,Y,0,b,0% p) = L (,6[Y,a,) ﬁ {ﬁw (ygjyg{p)] w(@)w O ()7 (o) (13)
i=1 |j=1
where 7 () indicates the density function of the correspondent argument.

Often, the full conditional distributions have a complicated form, which makes it impossible
to sample directly from them. In such cases, different modifications of the Gibbs Sampling
algorithm originally proposed by Geman and Geman (1984) are available in the version 1.4
of the software WinBUGS. In particular, a slice-sampler algorithm is used for non log-concave
densities defined on a restricted range (Neal 1997). This has an adaptive phase of 500 iterations,
which are discarded from all summary statistics. A Metropolis within Gibbs algorithm based
on a symmetric normal proposal distribution is applied in the case of non log-concave densities
defined on an unrestricted range (Metropolis et al. 1953, Hastings 1970, Besag and Green 1993).
In this case, the adaptive phase is of 5000 iterations. The Metropolis within Gibbs procedure

is applied in the log-normal case.
4. Genetic models

Typical models of quantitative genetics can easily be incorporated into the correlated frailty
model described in Section 2. Quantitative genetics models (Falconer 1990) are based on the

decomposition of a phenotypic trait in a sum of different components, which are supposed to



be independent. Using this approach, it is possible to estimate the proportion of the total
variability of the phenotype which is related to genetic factors. In particular, a heritability
estimate can be calculated for human longevity by identifying the phenotype with the life span
variable (McGue et al. 1993).

Yashin and Tachine (1995) suggested an approach based on the frailty variable Z instead of
the life span X. It is now of interest to find out the relative importance of genes and environment
in determining the individual susceptibility towards mortality (overall or cause specific). An
advantage of this approach is that, through the additive decomposition of frailty into a genetic
and an environmental component, one can obtain a competing risk structure for the respective
survival model. That is, observed mortality is represented as a sum of two terms: one depends
on genetic and another on environmental parameters, both estimated from bivariate data.

More in details, let the frailty be represented by:
Z=A+D+I+C+E (16)

where A represents additive genetic effects, D corresponds to dominance genetic effects, [
denotes epistatic genetic effects, C' and F stand for shared and nonshared environmental effects,
respectively. All factors are assumed to be independent. The following additive decomposition

of the frailty variance and of the correlation coefficient between co-twins’ frailty holds:
l=a®+d*+i*+c* + € (17)

p = p1a° + pod® + psi® + ps¢ + pse? (18)

2 2

where lowercase letters a?, d?, i2, ¢?, e? indicate the proportions of the total variance o2 associ-
ated with the correspondent components of frailty, and p; (¢ = 1, ...,5) are correlations between
respective components within a twin pair. Standard assumptions of quantitative genetics mod-
els specify different values of p; (i =1, ...,5) for monozygotic and dizygotic twins. In the case of
monozygotic twins p; =1, ¢ =1, ...,4 and ps = 0, while for dizygotic twins p; = 0.5, p; = 0.25,
p3=m, py =1, ps =0 and 0 <m < 0.25 is an unknown parameter. Not all parameters of the

genetic decomposition of frailty can be estimated simultaneously. The model in fact reduces to

10



three equations (two relationships (18) for monozygotic and dizygotic twins and one constraint
(17)) allowing us to estimate no more than three parameters at the same time. One possibility
is to consider an ACE (additive genetic - common environmental - uncommon environmental)

model. In this case, equations (17) and (18) lead to the following:

l=a?+c2+e?
prz =@ +¢ (19)

pDZ = 0.5(12 + 02

This system can be integrated into the correlated frailty model described in Section 2 (see
equation (11)) giving place to a reparameterisation of the original model. The only difference is
that, when we are interested in estimating parameters of a genetic model, data for monozygotic
and dizygotic twins have to be analysed simultaneously and a likelihood function for combined
data has to be drawn.

Equivalently, other genetic models can be obtained combining no more than three compo-
nents of frailty (Yashin and Tachine 1995). In this paper we compare three different genetic

models (ACE, AE and ADE). Results are shown in Section 6.

5. The data

In this analysis we use breast cancer data from the Swedish Twin Registry. First established
in the late 1950s to study the importance of smoking and alcohol consumption on cancer
and cardiovascular diseases whilst controlling for genetic propensity to disease, it has today
developed into a unique source. Since its establishment, the Registry has been expanded and
updated on several occasions, and the focus has similarly broadened to most common complex
diseases.

At present, the Swedish Twin Registry contains information about two cohorts of Swedish
twins referred to as the’old” and the 'middle’ cohort. The old cohort consists of all same-sexed
pairs born between 1886 and 1925 where both members in a pair were living in Sweden in 1959.
In 1970 a new cohort of twins born between 1926 and 1967, the middle cohort, was compiled.
We have included both cohorts in our analysis and looked at a total of 12568 pairs of female

twins. The data are described in Table 1, categorised according to the censoring status. The
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Both censored | One censored | None censored | Total
MZ 4304 335 33 4672
DZ 7236 625 35 7896
Total 11540 960 68 12568

Table 1: Composition of the dataset by zygosity and censoring status.

Swedish Twin Registry.

b

2

a o Prz PDz
Mean 2.504E-5 | 0.07155 | 45.19 | 0.3107 | 0.1044
Median 2.52E-5 | 0.07154 | 41.50 | 0.2991 | 0.0967
Standard dev. | 3.239E-6 | 0.00251 | 17.05 | 0.0456 | 0.1084
MC error 7.92E-8 | 8.94E-5 | 0.824 | 0.0051 | 0.0021
CSRF 1.002 1.006 | 1.055 [ 1.008 | 1.005

Table 2: Results of a correlated log-normal frailty model applied to Swedish breast cancer data.
Convergence achieved after 50000 iterations.

event under study is the onset of breast cancer. If a woman did not develop breast cancer or
she was died during the follow-up, the corresponding observation is censored.

For a comprehensive description of the Swedish Twin Registry database, with a focus on
the recent data collection efforts and a review of the principal findings that have come from the

Registry see Lichtenstein et al. (2002).

6. Results

The results of application of the correlated log-normal frailty model to the Swedish breast
cancer data are presented in Table 2. Estimated values include the Gompertz parameters a
and b, the variance of the frailty distribution o, which can be seen as the extent of population
heterogeneity with respect to breast cancer, and estimates of the correlation coefficient for
both monozygotic twins (p,;,) and dizygotic twins (pp,). Two estimates for each parameter
are given in terms of the mean and the median of the correspondent Markov chain. In all
cases, the two values are very close to each other. This means that empirical estimates of the
marginal posteriors densities (Kernel density estimates) are approximately symmetric. For each

parameter the sample standard deviation and an estimate of the standard error of the mean are
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also given. This one is obtained following the batch means method outlined by Roberts (1996).
In the last row, we reported the value of the Corrected Scale Reduction Factor (CSRF) for
each parameter. This value corresponds to the Gelman-Rubin convergence statistic (Gelman
and Rubin 1992), as modified by Brooks and Gelman (1998), and is based on a comparison of
the within and between chain variance for each variable. When values of this diagnostic are
approximately equal to one, the sample can be considered to have arisen from the stationary
distribution. In this case, descriptive statistics can be seen as valid estimates of unknown
parameters.

According to the model, the population under study would present a very large heterogeneity
(o) in terms of susceptibility towards breast cancer. The estimated correlation between frailties
is larger for monozygotic than for dizygotic twins. This means that individuals who are more
similar from a genetic point of view (MZ twins) also present a larger connection in terms of
frailty towards breast cancer. This finding suggests that there is a genetic influence on breast
cancer propensity. The extent of such an influence is estimated with the help of three different
genetic models.

In Table 3, we compare an ACE, AE and ADE model. Estimates of each parameter are
given in terms of the sample mean. Sample median values are omitted because they are very
close to the mean as in Table 2. We chose to give the posterior standard deviation of each
parameter in parenthesis. This quantity is a measure of the dispersion of the posterior density
estimate, giving an idea of a parameter’s significance.

A first observation can be made about the estimate of parameter ¢ in the ACE model. This
value cannot be considered as being significantly different from zero. For this reason the ACE
model, which is one the most wide spread in the literature, doesn’t seem to be appropriate,
and we therefore decided to compare it with two models which do not include the common
environmental effect ¢?, namely the AE and ADE model.

Moreover, the estimated value of the narrow sense heritability parameter resulting from the
ACE model (@2 ~ 0.18) does not correspond to the one that could be obtained applying a
‘two step procedure’. This procedure, which consists in substituting p,,;, and pp, estimates
(Table 2) in ACE equations (19) would lead to a bigger estimate of the heritability parameter

(ag g = 0.4). The same procedure would also give a negative estimate of parameter c?, which
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may indicate the presence of non-additive genetic effects (Yashin and Iachine 1997).

Analogous considerations about the heritability estimate can be made in the case of the AE
model.

The problem does not arise with the last estimated model, including dominance (non-
additive) genetic effects (ADE model). The ’one step procedure’ applied here, which consists in
a re-parameterisation of the correlated frailty model to incorporate the ADE structure (Section
5), provides results, which are similar to the ones obtained with the procedure in two steps
(@2 ~ 0.13 and d2 ~ 0.15 while a2, ~ 0.1 and d¢p ~ 0.2).

The last column of Table 3 shows values of the Deviance Information Criterion (DIC) for the
three models. This is a statistic introduced by Spiegelhalter et al. (2002) in order to compare

Bayesian models in terms of adequacy and complexity. The DIC statistic is defined as:

DIC =D ®) +pp

where D (0) represents an estimate (in terms of posterior mean) of the deviance of the model
and is suggested as a Bayesian measure of fit or adequacy; pp is the difference between the
posterior mean of the deviance and the deviance of the posterior mean of parameters of interest
and is proposed as a measure of the effective number of parameters (complexity) of the model.
The deviance D () is defined as equal to —2logp (y|6) where y comprises all stochastic nodes
giving values (i.e. data), and 6 comprises the stochastic nodes upon which the distribution
of y depends, when collapsing over all logical relationships. It can be shown (Spiegelhalter et
al. 2002) that DIC is related to other information criteria and in particular, in models with
negligible prior information, DIC is approximately equivalent to Akaike’s criterion. The model
with the smallest DIC is estimated to be the model that would best predict a replicate dataset
of the same structure as that currently observed. In Table 3, the model which presents the
lowest value of DIC is the ADE model.

Thus, from the comparison between the three models we can conclude that genetic effects
would explain globally almost 30% of the total variability of propensity to breast cancer. Envi-
ronmental effects would be predominant in determining breast cancer susceptibility and these

ones would be primarily individual-specific, that is non-shared effects. Finally, a model which
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a b o a? d? c? e? DIC
ACE | 2.546E-5 | 0.0715 | 45.21 | 0.1759 0.0529 | 0.7712 | 15138.6
(3.36E-6) | (0.003) | (17.7) | (0.094) (0.046) | (0.089)
AE 2.502E-5 | 0.0721 | 47.31 | 0.2304 0.7696 | 15102.3
(3.16E-6) | (0.003) | (18.3) | (0.091) (0.091)
ADE | 2.522E-5 | 0.07188 | 48.30 | 0.127 | 0.1491 0.7239 | 15091.80
(3.16E-6) | (0.002) | (16.7) | (0.086) | (0.100) (0.084)

Table 3: Results of three genetic models applied to Swedish breast cancer data. Convergence
achieved after 50000 iterations

includes dominance genetic effects should preferably be used for genetic and statistical reasons.

7. Discussion

In the present paper, a Bayesian correlated frailty model has been adopted to analyse the
onset of breast cancer in a population of female Swedish twins. A Gompertz assumption is
made in order to model the baseline hazard function. The vector of frailties is assumed to
follow a log-normal distribution, which is one of the most flexible in multivariate modelling and
especially when we are interested in introducing a correlation between frailties, as in the case of
the correlated frailty model. Estimates of the correlation coefficient between co-twins’ frailties
for the two groups of twins are given in Table 2, along with an estimate of the frailty variance.
The latter, which measures the degree of heterogeneity in susceptibility towards breast cancer,
is very large. Similar results in terms of the variance estimate have been obtained with a gamma
assumption on the frailty distribution and using a ML estimation method (results are not shown
here). It might be that these effects are partly due to the strong negative correlation between
the estimates of 02 and p, which is typical of the correlated frailty model. Such correlation
has been detected and discussed in a recent simulation study involving different assumptions
on the frailty distribution and different estimation strategies (Wienke et al. 2003a). On the
other hand, using a subset of the data analysed here (the old cohort of the Swedish Twin
Registry), Wienke et al. (2003b) have shown that the heterogeneity estimate decreases when
the possibility that a fraction of the study population is unsusceptible to experience the disease

is accounted for.
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Moreover, the bigger estimate of p for monozygotic twins (Table 2) provides an evidence of
a genetic influence on the propensity to develop breast cancer. To evaluate the amount of such
an influence, three genetic models (ACE, AE and ADE) have been applied. All models are
implemented in the software WinBUGS with the help of MCMC estimation procedures. We
made comparisons between competing models using genetic arguments and with the help of a
Bayesian criterion for model comparison (DIC) introduced by Spiegelhalter et al. (2002) and
available in the last version (version 1.4) of the software WinBUGS.

Results of this study show that more than 70% of the variability in frailty towards breast
cancer is due to environmental factors. These are essentially factors which are not shared by
the two women in a pair (Table 3). The heritability estimate is then around 30% and genetic
effects include both additive genetic and dominance genetic effects.

The WinBUGS package proved to be extremely useful and flexible enough to estimate
correlated frailty models and to add to them equations typical of genetic models. Within the
same software it is easy to modify the hypothesis on the frailty distribution, and it is also
possible to follow a semiparametric strategy by assuming a prior process on the cumulative
hazard function (the work on semiparametric methods is in progress). Different assumptions
about the frailty distribution and the shape of the baseline hazard function can be compared
within the same software (version 1.4) with the help of a Bayesian information criterion (DIC).

The disadvantage of using WinBUGS in the context described here is in the time required
for estimation. In fact, we are working with models which include a very large number of
parameters, especially when we deal with large data sets. This means that every MCMC
algorithm which updates parameters one by one (like the Gibbs Sampling used in WinBUGS)
will be very time consuming. To overcome this limitation, an algorithm which enables to update

parameters all together (or groups of parameters at the same time) should be adopted.
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