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Abstract

A bivariate competing risks problem is considered for a rather gen-
eral class of survival models. The lifetime distribution of each com-
ponent is indexed by a frailty parameter. Under the assumption of
conditional independence of components the correlated frailty model
is considered. The explicit asymptotic formula for the mixture failure
rate of a system is derived. It is proved that asymptotically, as t →∞,
the remaining lifetimes of components tend to be independent in the
defined sense. Some simple examples are discussed.

Keywords: correlated frailty, mixture failure rate, competing risks, bivari-
ate distributions

1 Introduction

It is well known that mixtures of distributions is a convenient tool for ana-
lyzing univariate frailty models. As monotonicity properties of the mixture
failure rate can differ dramatically from those of the baseline failure rate,
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this topic was thoroughly investigated in the literature (see Block et al, 1993,
Lynch, 1999, Finkelstein and Esaulova, 2001, Badia et al, 2001 to name a
few). Special attention was also paid to asymptotic behavior of mixture fail-
ure rates (Block et al, 2003, Finkelstein and Esaulova, 2006, Shaked and
Spizzichino, 2001).

In our paper (Finkelstein and Esaulova, 2006) a general class of lifetime
models with frailties was considered. The basic model for F (t, z) - the abso-
lutely continuous cumulative distribution function (Cdf) of a lifetime random
variable T , was defined as

Λ(t, z) = A(zφ(t)) + ψ(t), (1)

where Λ(t, z) =
∫ t

0
λ(u, z)du is the corresponding cumulative failure rate and

z is a realization of fraily Z. The general assumptions on the functions
involved were rather natural: A(s), φ(t) and ψ(t) are differentiable, the right
hand side of (1) is non-decreasing in t and increases to infinity as t → ∞,
and that A(zφ(0)) + ψ(0) = 0.

The widely used in reliability, survival analysis and risk analysis pro-
portional hazards (PH), additive hazards (AH) and accelerated life (ALM)
models, are the obvious specific cases of (1):

PH (multiplicative) Model:

Let
A(u) ≡ u, φ(t) = Λ(t), ψ(t) = 0.

Then
λ(t, z) = zλ(t), Λ(t, z) = zΛ(t). (2)

Accelerated Life Model:

Let
A(u) ≡ Λ(u), φ(t) = t, ψ(t) = 0.

Then

Λ(t, z) =

∫ tz

0

λ(u)du = Λ(tz), λ(t, z) = zλ(tz). (3)

AH Model:

Let
A(u) ≡ u, φ(t) = t, ψ(t) is increasing, ψ(0) = 0.
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Then
λ(t, z) = z + ψ′(t), Λ(t, z) = zt + ψ(t). (4)

Under the stated assumptions and using some additional technical con-
ditions for the pdf of the frailty Z, we derived exact asymptotic relations
for the corresponding mixture failure rate λm(t) as t → ∞ (Finkelstein and
Esaulova, 2006).

In the current study we use and develop asymptotic methodology em-
ployed for the univariate case for analyzing the behavior of failure rates in
the competing risk setting with a bivariate frailty.

Section 2 is devoted to basic definitions and some supplementary simple
nonasymptotic properties of mixture failure rates with independent frailties.

In Section 3 we obtain explicit asymptotic results, which above, all show,
that even in the case of correlated frailty the components remaining lifetimes
can be considered as ‘asymptotically independent’ in the defined sense. In
Section 4 we provide some relevant examples and discuss restrictions of our
assumptions. It is worth noting that the generalization of our results to the
multivariate case when n > 2 is rather straightforward.

2 Bivariate frailty and competing risks

Assume that risks are dependent only via the bivariate frailty (Z1, Z2). To
construct the corresponding competing risks model consider firstly a system
of two statistically independent components in series with lifetimes T1 ≥ 0
and T2 ≥ 0. The Cdf function of this system is

Fs(t) = 1− F̄1(t)F̄2(t),

where F1(t) and F2(t) are the Cdfs of the lifetime random variables T1 and
T2 respectively, and the survival functions F̄i(t) ≡ 1− Fi(t).

Assume now that Fi(t), i = 1, 2 are indexed by random variables Zi in
the following conventional sense:

P (Ti ≤ t |Zi = z) ≡ P (Ti ≤ t | z) = Fi(t, z), i = 1, 2

and that the pdfs fi(t, z) exist. Then the corresponding failure rates λi(t, z)
are fi(t, z)/F̄i(t, z).

Let Zi, i = 1, 2 be interpreted as non-negative random variables with
supports in [ai, bi], a1 ≥ 0, bi ≤ ∞ and the pdf πi(z).
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A mixture Cdf for the ith component is defined by

Fm,i(t) =

∫ bi

ai

Fi(t, z)πi(z)dz, i = 1, 2. (5)

The corresponding mixture failure rate is:

λm,i(t) =

∫ bi

ai
fi(t, z)πi(z)dz

∫ bi

ai
F̄i(t, z)πi(z)dz

=

∫ bi

ai

λi(t, z)π(z | t)dz, (6)

where the conditional pdf (on condition that Ti > t):

πi(z | t) = πi(z)
F̄i(t, z)∫ bi

ai
F̄i(t, z)πi(z)dz

. (7)

Assume that the components of our system are conditionally independent
given Z1 = z1, Z2 = z2. Then the Cdf of the system is:

Fs(t, z1, z2) = 1− F̄1(t, z1)F̄2(t, z2) (8)

and the corresponding probability density function is

fs(t, z1, z2) = f1(t, z1)F̄2(t, z2) + f2(t, z2)F̄1(t, z1). (9)

The mixture failure rate of the system in this case is defined as

λm,s(t) =

∫ b2
a2

∫ b1
a1

fs(t, z1, z2)π(z1, z2)dz1dz2∫ b2
a2

∫ b1
a1

F̄s(t, z1, z2)π(z1, z2)dz1dz2

=

∫ b2

a2

∫ b1

a1

λs(t, z1, z2)π(z1, z2 | t)dz1dz2,

(10)

where

π(z1, z2 | t) = π(z1, z2)
F̄s(t, z1, z2)∫ b2

a2

∫ b1
a1

F̄s(t, z1, z2)π(z1, z2)dz1dz2

, (11)

and π(z1, z2) is the bivariate joint probability density function of Z1 and Z2.
It is clear that for our series system, defined by (8):

λs(t, z1, z2) = λ1(t, z1) + λ2(t, z2). (12)
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It is clear also that if Z1 and Z2 are independent, which means

π(z1, z2) = π1(z1)π2(z2)

for some densities π1(z1) and π2(z2); then

π(z1, z2|t) = π1(z1|t)π2(z2|t),
which can be easily seen using definitions (7) and (11):

π(z1, z2|t) = π1(z1)π2(z2)
F̄1(t, z1)F̄2(t, z2)∫ b2

a2

∫ b1
a1

F̄1(t, z1)F̄2(t, z2)π1(z1)π2(z2)dz1dz2

=
π1(z1)F̄1(t, z1) · π2(z2)F̄2(t, z2)∫ b1

a1
F̄1(t, z1)π1(z1)dz1 ·

∫ b2
a2

F̄2(t, z2)π2(z2)dz2

= π1(z1|t)π2(z2|t).
Using equations (10) and (12)

λm,s =

∫ b2

a2

∫ b1

a1

λs(t, z1, z2)π(z1, z2 | t)dz1dz2

=

∫ b2

a2

∫ b1

a1

[λ1(t, z1) + λ2(t, z2)] π1(z1|t)π2(z2|t)dz1dz2

=

∫ b1

a1

λ1(t, z1)π1(z1|t)dz1 +

∫ b2

a2

λ2(t, z2)π2(z2|t)dz2

= λm,1(t) + λm,2(t).

(13)

Hence, when components of the system are conditionally independent and
Z1 and Z2 are independent, the mixture failure rate of the system is the sum
of mixture failure rates of individual components.

It is worth noting that equation (13) does not hold for the case of shared
frailty, when Z1 ≡ Z2 ≡ Z, as

λms =

∫ b

a
fs(t, z)π(z)dz∫ b

a
F̄s(t, z)π(z)dz

=

∫ b

a
f1(t, z)F̄2(t, z)π(z)dz∫ b

a
F̄s(t, z)π(z)dz

+

∫ b

a
f2(t, z)F̄1(t, z)π(z)dz∫ b

a
F̄s(t, z)π(z)dz

=

∫ b

a
λ1(t, z)F̄s(t, z)π(z)dz∫ b

a
F̄s(t, z)π(z)dz

+

∫ b

a
λ2(t, z)F̄s(t, z)π(z)dz∫ b

a
F̄s(t, z)π(z)dz
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is not equal to λ1m(t) + λ2m(t).
In the next section we shall study the asymptotic behavior of mixture

failure rates for the most interesting case of correlated frailty.

3 The main result

Assume that lifetimes of both components belong to the class defined by
relation (1). Let for simplicity the non-important additive term be equal to
zero. The corresponding survival functions for the components are

F̄i(t, zi) = e−Ai(ziφi(t)), i = 1, 2. (14)

The following result takes place:

Theorem. Consider the competitive risks model (8). Let the corresponding
survival functions be defined by equation (14).

Suppose that the mixing variables Z1 and Z2 have a joint probability den-
sity function π(z1, z2), which is defined in [0, b1]× [0, b2], 0 < b1, b2 ≤ ∞.

Let the following properties hold:

(a) π(z1, z2) = zα1
1 zα2

2 π0(z1, z2), where α1, α2 > −1.

(b) π0(z1, z2) is continuous at (0, 0), π0(0, 0) 6= 0.

(c) Ai(s), i = 1, 2 are positive ultimately increasing differentiable func-
tions, ∫ ∞

0

e−Ai(s)sαids < ∞.

Assume finally that φ1(t), φ2(t) →∞ as t →∞.

Then

λm,s(t) ∼ (α1 + 1)
φ′1(t)
φ1(t)

+ (α2 + 1)
φ′2(t)
φ2(t)

. (15)

By the sign ∼ we, as usually, denote the asymptotic equivalence: g1(t) ∼
g2(t) as t →∞ means g1(t)/g2(t) → 1 as t →∞.

Remark. It follows from relation (13) and the corresponding result in the
univariate case (Finkelstein and Esaulova, 2006) that for the univariate mix-
ing densities

π̃i(z) = zαiπ̃i,0(z), αi > −1 (16)
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where π̃i,0(z) are bounded in [0,∞), continuous and positive at z = 0, the
mixture failure rate of our system with independent frailties is given by the
following asymptotic formula:

λm,s(t) = λm,1(t) + λm,2(t) ∼ λ̃m,1(t) + λ̃m,2(t),

where λ̃m,i(t) is a mixture failure rate of a family with survival functions
given by (14) with the mixing density π̃i(z), i = 1, 2.

Comparing this relation with the result of the Theorem, it is easy to
arrive at the following important interpretation:

Under certain assumptions the asymptotic mixture failure rate in the cor-
related frailty model with conditionally independent components is equivalent
to the asymptotic mixture failure rate in the independent frailty model.

This can be also viewed as some asymptotic independence of remaining
lifetimes of our components in the correlated frailty model.

Proof. We start our proof with the following supplementary lemma:

Lemma. Let g(z1, z2) be a nonnegative integrable function in [0,∞)2. Let
h(z1, z2) be a nonnegative locally integrable function defined in [0,∞)2, such
that it is bounded everywhere and continuous at the origin.

Then, as t1 →∞, t2 →∞:

t1t2

∫ ∞

0

∫ ∞

0

g(t1z1, t2z2)h(z1, z2)dz1dz2 → h(0, 0)

∫ ∞

0

∫ ∞

0

g(z1, z2)dz1dz2.

Proof. The proof is rather straightforward:

t1t2

∫ ∞

0

∫ ∞

0

g(t1z1 , t2z2)h(z1, z2)dz1dz2

=

∫ ∞

0

∫ ∞

0

g(z1, z2)h

(
z1

t1
,
z2

t2

)
dz1dz2.

Indeed, h(z1, z2) is bounded; assume that it is bounded by some M . The
function g(z1, z2) is integrable, then for any ε > 0 there is a finite b > 0,
such that ∫∫

[0,∞)2−[0,b]2
g(z1, z2)dz1dz2 < ε.
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Then
∣∣∣∣
∫ ∞

0

∫ ∞

0

g(z1, z2)

[
h

(
z1

t1
,
z2

t2

)
− h(0, 0)

]
dz1dz2

∣∣∣∣

≤
∫ b

0

∫ b

0

g(z1, z2)

∣∣∣∣h
(

z1

t1
,
z2

t2

)
− h(0, 0)

∣∣∣∣ dz1dz2

+ 2M

∫∫

[0,∞)2−[0,b]2
g(z1, z2)dz1dz2.

The first double integral tends to zero since h(z1, z2) is continuous at (0, 0),
and the second can be made arbitrarily small.

Now we can proceed with the proof itself. Substituting (8) and (9) into
(10) we get

λm,s(t) =

∫ b1
0

∫ b2
0

f1(t, z1)F̄2(t, z2)π(z1, z2)dz2dz1∫ b1
0

∫ b2
0

F̄1(t, z1)F̄2(t, z2)π(z1, z2)dz2dz1

+

∫ b2
0

∫ b1
0

f2(t, z2)F̄1(t, z1)π(z1, z2)dz1dz2∫ b2
0

∫ b1
0

F̄2(t, z1)F̄1(t, z1)π(z1, z2)
.

(17)

Denote the first term on the right-hand side by λ1
m,s(t) and the second one

by λ2
m,s(t). Then

λm,s(t) = λ1
m,s(t) + λ2

m,s(t).

Consider λ1
m,s(t) and λ2

m,s(t) separately. The probability density function of
T1 is

f1(t, z1) = A′
1(z1φ1(t))z1φ

′
1(t)e

−A1(z1φ1(t)) (18)

and

λ1
m,s(t) =

∫ b1
0

∫ b2
0

A′
1(z1φ1(t))z1φ

′
1(t)e

−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1∫ b1
0

∫ b2
0

e−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1

,

Applying the Lemma to the numerator, we see that it is asymptotically
equivalent to

φ′1(t)π0(0, 0)

φ1(t)α1+2φ2(t)α2+1

∫ ∞

0

A′
1(u)uα1+1e−A1(u)du

∫ ∞

0

sα2e−A2(s)ds
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and the denominator is equivalent to

π0(0, 0)

φ1(t)α1+1φ2(t)α2+1

∫ ∞

0

uα1e−A1(u)du

∫ ∞

0

sα2e−A2(s)ds.

Hence,

λ1
m,s(t) ∼

φ′1(t)
φ1(t)

·
∫∞
0

A′
1(u)uα1+1e−A1(u)du∫∞
0

uα1e−A1(u)du
(19)

Due to condition (c) of the Theorem

e−A(s)sα+1 → 0 as s →∞. (20)

Indeed, by the mean value theorem:

∫ 2s

s

e−A(u)uαdu = se−A(s1)sα
1

for some s ≤ s1 ≤ 2s. The right-hand side tends to 0. For s larger than
some s0 we have A(s1) > A(s); thus, the left-hand side is smaller than
2αsα+1e−A(s), which leads to (20). Using it while integrating by parts, we get

∫ ∞

0

A′(s)e−A(s)sα+1ds = (α + 1)

∫ ∞

0

e−A(s)sαds. (21)

Thus, from (19)

λ1
m,s(t) ∼ (α1 + 1)

φ′1(t)
φ1(t)

.

Similarly,

λ2
m,s(t) ∼ (α2 + 1)

φ′2(t)
φ2(t)

.

4 Some examples

Assumptions (a) and (b) of the Theorem impose certain restrictions on the
mixing distribution. In the univariate case the corresponding conditions (16)
are satisfied for a wide class of distributions, such as Gamma, Weibull, etc.
(Finkelstein and Esaulova, 2006). In the bivariate case they obviously hold
for all densities that are positive and continuous at the origin.
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We will present now a couple of simple examples. But first, we will
interpret our results in terms of copulas, which can be helpful in analyzing
the competing risks problems.

The following result is obvious and therefore its proof is omitted:

Proposition. Assume that the bivariate mixing Cdf is given by the copula
C(u, v):

Π(z1, z2) = C(Π1(z1), Π2(z2)),

where Π1(z1), Π2(z2) are univariate Cdfs, satisfying similar univariate con-
ditions (see (16)) with nonnegative power indices α1, α2 ≥ 0. Then the bi-
variate conditions are satisfied, if c(u, v) = ∂2C

∂u∂v
(u, v) can be represented

as
c(u, v) = uγ1vγ2c0(u, v), (22)

where c0(u, v) is continuous and positive at (0, 0), γ1, γ2 ≥ 0.

Example 1. Farlie-Gumbel-Morgenstern copula.
The distribution is defined via the copula

C(u, v) = uv(1 + θ(1− u)(1− v)),

where |θ| ≤ 1, u, v ∈ [0, 1]. Since

∂2C

∂u∂v
(u, v) = 1 + θ(1− 2u)(1− 2v)

is continuous at the origin and positive there if θ > −1, the bivariate condi-
tions hold when −1 < θ ≤ 1. Therefore, the results of the Theorem hold if
the univariate Cdfs belong to the admissible class.

The next example considers a bivariate distribution defined directly.

Example 2. Gumbel’s bivariate exponential distribution.
The joint cumulative distribution function is defined by

Π(z1, z2) = 1− e−z1 − e−z2 + e−z1+z2+θz1z2

and the joint density function by

π(z1, z2) = e−z1+z2+θz1z2 {(1 + θz1)(1 + θz2)− θ} ,

where 0 ≤ θ ≤ 1, z1, z2 > 0.
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The pdf is obviously bounded in [0,∞)2 and continuous everywhere,
π(0, 0) = 1 − θ. Thus for θ < 1 the mixing pdf satisfies the considered
conditions and asymptotic relation (15) holds.

Other distributions that meet the conditions are Dirichlet distribution
(Kotz et al, p. 485) and inverted Dirichlet distribution (Kotz et al, p. 491),
some types of multivariate logistic distributions (Kotz et al, p. 551), some
types of special bivariate extreme value distributions (Kotz et al, p. 625).

There are also examples, in which the conditions of the Theorem do not
hold. This happens, e.g., when the joint Cdf depends on max(z1, z2) and is
not absolutely continuous. The widely used Marshall and Olkin’s bivariate
exponential with the survival function

Π̄(z1, z2) = e−γ1z1−γ2z2−γ12max(z1,z2)

is a relevant example. Some multivariate Weibull distributions also employ
max functions and are not absolutely continuous at (0, 0). The corresponding
examples can be found in Kotz, Balakrishnan, and Johnson (2000) (p. 431).

Finally, in order to illustrate explicitly the main result of this paper given
by by the Theorem, assume that the lifetimes of both components can be
described by the PH model (2) and α1 = α2 = 0. Then, as t → ∞, in
accordance with (15)

λm,s(t) ∼ λ1(t)∫ t

0
λ1(u)du

+
λ2(t)∫ t

0
λ2(u)du

,

which is speaking for itself simple asymptotic formula.
If the lifetimes of both components are described by the ALM model (3),

then the asymptotics is surprisingly simple:

λm,s(t) ∼ 2

t
.

Both of these formulas show that in this case (α1 = α2 = 0) asymptotic
behavior does not depend on the mixing distribution at all.
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