
Max-Planck-Institut für demografische Forschung
Max Planck Institute for Demographic Research
Doberaner Strasse 114 · D-18057 Rostock · GERMANY
Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202; 
http://www.demogr.mpg.de

MPIDR WORKING PAPER WP 2000-013
DECEMBER 2000

Estimating Causal Effects with Matching
Methods in the Presence and Absence of
Bias Cancellation

Thomas A. DiPrete (tdiprete@soc.duke.edu)
Henriette Engelhardt (engelhardt@demogr.mpg.de)

This working paper has been approved for release by: Jan M. Hoem (hoem@demogr.mpg.de)
Head of the Laboratory of Contemporary European Fertility and Family Dynamics.

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review. Views or
opinions expressed in working papers are attributable to the authors and do not necessarily reflect those of the
Institute.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7127423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Estimating Causal Effects with Matching Methods in the
Presence and Absence of Bias Cancellation

Thomas A. DiPrete
Duke University

Henriette Engelhardt
Max Planck Institute for Demographic Research,

Rostock, Germany

December 2000

An earlier version of this paper to be presented at the August, 2000 annual meetings of
the American Sociological Association. This research was supported in part by the Max
Planck Institute for Human Development, by the Max Planck Institute for Demographic
Research, and by Duke University.   We would like to thank Norman Braun and Patricia
A. McManus for helpful comments on an earlier version.



Abstract

This paper explores the implications of possible bias cancellation using Rubin-style

matching methods with complete and incomplete data.  After reviewing the naïve causal

estimator and the approaches of Heckman and Rubin to the causal estimation problem,

we show how missing data can complicate the estimation of average causal effects in

different ways, depending upon the nature of the missing mechanism.  While – contrary

to published assertions in the literature – bias cancellation does not generally occur when

the multivariate distribution of the errors is symmetric, bias cancellation has been

observed to occur for the case where selection into training is the treatment variable, and

earnings is the outcome variable.  A substantive rationale for bias cancellation is offered,

which conceptualizes bias cancellation as the result of a mixture process based on two

distinct individual-level decision-making models. While the general properties are

unknown, the existence of bias cancellation appears to reduce the average bias in both

OLS and matching methods relative to the symmetric distribution case.  Analysis of

simulated data under a set of difference scenarios suggests that matching methods do

better than OLS in reducing that portion of bias that comes purely from the error

distribution (i.e., from “selection on unobservables”).  This advantage is often found also

for the incomplete data case.  Matching appears to offer no advantage over OLS in

reducing the impact of bias due purely to selection on unobservable variables when the

error variables are generated by standard multivariate normal distributions, which lack

the bias-cancellation property.



Estimating Causal Effects with Matching Methods in the
Presence and Absence of Bias Cancellation

In recent years, sociology and the other social sciences have paid increased attention to

the problem of causality and the estimation of causal effects.  In the experimental setup,

the difference in the average outcome for otherwise statistically identical treatment and

control groups forms the basis for estimating the causal effect of the treatment in

question. Social scientists have long recognized the problems in constructing a similarly

valid estimator based on observational data.  However, a developing literature stimulated

largely by the research of James Heckman and Donald Rubin has produced both new

approaches to the problem and a deeper appreciation of the potential and the limitations

of standard regression analysis, matching methods, instrumental variable techniques,

econometric models of selection bias, or the method of “difference-in-differences” when

applied to observational data (e.g., Heckman 1979; Rosenbaum and Rubin 1984; Holland

1986; Sobel 1995; Rubin and Thomas 1996; Angrist, Imbens, and Rubin 1996; Smith

1997; Winship and Morgan 1999; Heckman et al. 1998).

This paper explores the implications for causal estimation that arise both when, in

the words of Heckman and Robb (1985), the selection is based on unobservable

variables, and when the structure of bias is such that pointwise biases are offsetting at the

individual level.   The matching methods developed by Rubin are designed to handle

situations where selection into treatment arises from an observable mechanism, but where

the analyst, who is generally ignorant about the true structural model, risks a specification



bias when attempting to estimate treatment effects using standard regression-based

techniques.  As Heckman has noted in several publications, Rubin’s method cannot

eliminate “point-by-point” bias (i.e., bias for the effect of treatment, conditional on the

observed covariates) when the selection process involves unobservable variables.  Note,

however, that scientists are typically concerned more with the average effect of

treatment, and with reducing the bias in estimates of this average, than they are with the

point-by-point treatment estimates, or the biases in these point-by-point treatment

estimates. Heckman et al. (1998) present new evidence that point-by-point biases are

sometimes offsetting (i.e., positive at some points, and negative at other points).  In such

situations, the average bias (or equivalently, the bias in the estimate of the average

treatment effect) might be relatively small because the point-by-point biases partially

cancel each other.

This paper investigates this possibility in greater depth, and explores its

implications for estimating treatment effects with complete data as well as with data

where the outcome variable is missing for a fraction of the cases.  Building on the

empirical results of Heckman et al. (1998) that report evidence of “bias cancellation” in

evaluation data for the effects of job training on earnings, we analyze the statistical basis

for this phenomenon, and offer a substantive rationale for bias cancellation as the

outgrowth of a mixture process, in which individuals make decisions based on one or

another of two distinct and partially offsetting decision models.  We then investigate the

empirical properties of matching estimators based on Rubin’s propensity score method in

the situation where bias cancellation does and does not occur.  We conduct these

empirical investigations using partially simulated data from the German Socioeconomic



Panel, in which further training as an adult worker (“Weiterbildung”) is the “treatment”

variable, and earnings is the outcome variable.

Bias in the Estimation of Causal Effects: General Considerations

As shown by Winship and Morgan (1999), the relationship between the observed

difference in the outcome and the average causal treatment effect δ  can be expressed as

follows:

( ) (1 )( )t c c c
i T i C i T i C i T i CY Y Y Yδ π δ δ∈ ∈ ∈ ∈ ∈ ∈− = + − + − − , (1)

where T indicates that an individual is assigned to (or has self-assigned to) the “treatment

group” (e.g., job training, summer school, the use of a particular form of birth control,

etc.), and C indicates that an individual is in the not-treated comparison group, which is

often called the “control” group in an experimental context.  The “t” superscript indicates

the outcome that would potentially occur if the individual is treated, while the “c”

superscript indicates the outcome that would potentially occur when the individual is not

treated (this notation distinguishes between real and counterfactual outcomes; all

individuals are considered to have both potential outcomes, only one of which is

realized).  Finally, π is the proportion of the population (sample) in the treatment group.

The term on the left hand side of equation (1), which represents the difference in

the mean outcome for individuals in the treatment group and individuals in the

comparison group might be thought of as the “naïve” estimator of the treatment effect,

δ .  The modifier “average” is important.  In the standard regression model (in contrast to

more sophisticated models such as random effects models), one typically assumes that

each effect is fixed.  But the standard experimental setup makes no such assumption.



Instead, the difference in the average outcome for the treatment group and the control

group is taken to be the effect of treatment, and this effect is an average effect for those

cases which are randomly assigned to the treatment group.   The possibility that the effect

varies across individuals is recognized explicitly in equation (1).

The left side of equation (1) is not in general equal to the average treatment effect

because of the presence of the 2nd and 3rd terms on the right hand side. The second term

on the right hand side equals the difference in the average outcome for members of the

treatment and the control groups if none of these individuals were treated.   These

differences, which have nothing to do with the treatment effect per se, will nonetheless

affect the naïve estimator and, when nonzero, will cause the naïve estimator to deviate

from the average treatment effect.  The third term on the right hand side of equation (1) is

non-zero to the extent that the average treatment effect in the treatment group differs

from what this average would be in the control group if all members of the control group

were treated.

This equation can be extended to reveal the additional biases in the estimation of

treatment effects that are potentially created by missing data on the outcome variable,

which make even the “naïve” estimator above impossible to calculate directly. Suppose

that a fraction of the control group is missing (we designate this fraction as MCπ ), and

also that a fraction of the treatment group is missing (we designate this fraction as MTπ ).

Using this terminology, we can re-express the expression on the left side of equation (1)

as follows:
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where
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and where

{1 if observed
0 if missing.iS =

O and M are defined similarly for other subscript/superscript combinations. The

denominators in equation (2) ( , , , andOT MT OC MCn n n n ) represent the number of cases that

are observed in the treatment group, missing in the treatment group, observed in the

control group, and missing in the control group, respectively. Equation (2) shows that

there are two additional potential sources of bias, having to do with the difference in the

means for observed and missing treated cases, and for observed and missing control

cases.

As Winship and Morgan point out, most research into the problem of causal

estimation either assumes that the average treatment effect is the same in the treatment

and the control group (i.e., i T i Cδ δ∈ ∈= ) or explicitly focuses attention on the average

effect of the treatment for those in the treatment group (e.g., Heckman et al. 1998).  In

our investigation into the problem of bias cancellation below, we will also focus attention

on this latter estimator.



Heckman et al. (1998) (see also Heckman, LaLonde and Smith [forthcoming] for

a parallel discussion) have proposed the following structure for understanding causal

effects and associated biases. Let

1 1 1( )i i iY g X U= + (3)

be the equation if one is treated, and

0 0 0( )i i iY g X U= + (4)

be the equation if one is not treated. Let 1D =  be the indicator of whether one is treated.

Assume the estimator of interest is the effect of treatment for the treatment group.  Then

(after suppressing the index “i” for simplicity), the expected treatment effect for those

who are treated, conditional on observed covariates, equals

1 0 1 0( | , 1) ( ) ( ) ( | , 1).E X D g X g X E U U X Dδ = = − + − = (5)

Note that this estimator is different from what is sometimes called the “treatment effect”

in an experimental context (see, e.g., the discussion in Smith [1997]).  The “treatment

effect” in an experimental context would be

1 0( | ) ( ) ( ).E X g X g Xδ = −

In contrast, the expectation, conditional on D, contains the additional third term involving

the disturbance variables 0U and 1U .  In general, the left side of equation (5) cannot be

directly estimated. Because one cannot observe ( ) ( )0 0 0( | , 1) | 1E Y X D g X E U D= = + = ,

one does not see the outcome for the treatment group in the case of no treatment.

Therefore, one must estimate the treatment effect by contrasting the outcomes for those in

the treatment group with the outcomes for the non-treated group.  The naïve estimator, in

other words, is



1 0 1 0( | , 1) ( ) ( ) ( | , 1) ( | , 0).E X D g X g X E U X D E U X Dδ = = − + = − =� (6)

The difference between the left side of equation (5) and equation (6) is

{ }
{ }

1 0

1 0

( | , 1) ( | , 1) ( | , 1) ( | , 0)
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The bias of the naïve treatment effect as an estimator for the effect of treatment for those

assigned or self-assigned to treatment1, conditional on observed covariates (this is also

referred to as the “point-by-point” bias), becomes

( ) ( )0 0( ) | , 1 | , 0 .B X E U X D E U X D= = − = (7)

When this quantity is equal to zero we can say that the assignment mechanism is

“ignorable” (cf. equation 3 in Heckman et al. 1998).  Furthermore, as Rosenbaum and

Rubin (1984) show, the bias under ignorable assignment is also zero if one conditions on

the propensity score, i.e.,

( ) ( )0 0( ( )) | ( ), 1 | ( ), 0 0,B P X E U P X D E U P X D= = − = = (8)

where ( )P X  is the probability that the case is assigned to (or selects) treatment, as a

function of the covariates X. The case of ignorable assignment is equivalent to what

Heckman and Robb (1985) refer to as “selection on observables.”

In the case of “selection on unobservables,” the bias is no longer zero at every

point.  One can still reduce the bias, however, if one has access to variables that predict

assignment but that have no structural effect on the outcome.  Again following Heckman

et al. [1998]), assume that an index function

                                                
1 See Heckman (1997) for further details, and for the corresponding bias when the naïve estimator is used
to estimate the average treatment effect for the entire population.
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otherwise, that 1Z  is observable (it may include X), and that ( )0 1,U U  is potentially

correlated with 1ν .  Under these assumptions,
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(9)

Heckman et al. (1998) note that this bias can be expressed under reasonable assumptions

as

1 1 0 1 1 0 1 1( ( )) ( | ( ), 1) ( | ( ), 0),B P Z E U P Z D E U P Z D= = − = (10)

where 1 1( )P Z  is the probability that 1D = , given 1Z .  As long as 1U  and 1ν  are

correlated, the bias in (10) is not pointwise equal to zero in general, and matching

methods will not generally provide unbiased estimates.

Theoretical and Empirical Foundations for the Presence of Bias
Cancellation

While pointwise bias in equation (10) is not equal to zero, our primary goal is to recover

accurate estimates of the average treatment effect, not the point-by-point treatment effect.

Estimates of the average effect will typically involve some possibly weighted sum of the

estimates of the point-by-point estimates (i.e., the treatment effect, conditional on

observed covariates).  If the bias itself varies point-by-point, then the extent of bias in the

estimate of the average effect will depend both on the way the average is computed, and

on the nature of the association between bias and covariates.



In particular, the average bias can be substantially reduced in situations where the

sign of the bias depends upon covariates.  In this situation, bias cancellation will occur

when an average effect is computed.  As an example, suppose that the true effect of

summer school was an increase of 10 points on some benchmark test, and that this effect

was constant in the population.  Suppose that the naïve estimate over-predicted the effect

by 5 points in any subgroup of students.  Therefore, the overall naïve prediction of the

treatment effect in the population as a whole would be too high by five points, i.e., it

would appear as if the average student gained 15 points, when in fact only a 10 point gain

could be attributed to summer school.   Suppose instead, however, that the size of the bias

varied by SES, perhaps being 8 points among low SES students and 2 points among high

SES students.  In this scenario, the overall average bias would lie somewhere between

these values.  But suppose further that the bias was not always the same sign, for

example, suppose that the bias was –5 points among low SES students (i.e., it appeared

that the low SES students gained only 5 points from summer school instead of the “true”

10 point average gain), while the bias was +5 points for the high SES students (it

appeared that the high SES students gained 15 points on average, when the true average

gain was 10 points).  In this example, bias cancellation occurs in the computation of an

overall average treatment effect.  The overall average estimated effect would be closer to

the true value of 10 points than would be the estimated effects for the two subgroups.

Table 1, which is described below, gives an empirically determined illustration of bias

cancellation in the context of job training.

  Heckman et al. (1998) and Heckman, LaLonde, and Smith (forthcoming) have

argued that bias reduction is especially large in the case of symmetric distributions, such



as the standard multivariate normal distribution.  They argued that the average bias equals

zero over intervals around ½P =  under the conditions that the latent variables 1ν  and 0U

are symmetrically distributed around zero.  Under these circumstances, they argued that

the absolute magnitude of ( ( ))B P Z  is symmetrically distributed around ½P = , while the

sign reverses around ½P = .  Consequently, if P itself is symmetrically distributed around

½, then the average bias would equal zero in these symmetric intervals.  They further

argued that even if P was not symmetrically distributed, the average bias would still be

zero within symmetric intervals under an appropriate matching process .

This claim turns out to be incorrect.  As we show in Appendix A, the sign of

( ( ))B P Z  always remains the same in a symmetric distribution.  Contrary to Heckman et

al.’s assertion, therefore, the bias does not cancel in symmetric intervals around ½P =  in

the model that is most commonly assumed by analysts attempting to correct for selection

bias, namely the bivariate normal case.2

Nonetheless, Heckman et al.’s paper is very revealing about the empirical

variation in bias as a function of observed covariates.  The Department of Labor had

previously collected experimental data in order to evaluate four training centers

participating in the Job Training Partnership Act.  In this experiment, a random group of

individuals who volunteered to undergo job training were refused participation, and data

on these individuals (including their subsequent earnings) were used to estimate the

average effect of training on wage change.  In addition, data was also collected on a non-

experimental comparison group of individuals who were not trained.  Heckman et al.

                                                
2 We discovered this error in the process of writing this paper.  Heckman has agreed in email
correspondence with us that his published claim is in error.



combined the data on the non-experimental comparison group with the data on trainees

so that they could estimate a training effect using various selection-bias correcting

methods with non-experimental data.  Their goal was to compare the performance of

these estimators against the presumably unbiased estimate of the average treatment effect

from the experimental data.  These data also allowed Heckman et al. to estimate the

relationship between the bias in the estimated training effect using non-experimental data

and covariates.  Table 1, which is reproduced from table 7 in Heckman et al. (1998),

shows that as an empirical matter, the bias in the estimated treatment effect varied with

the estimated probability that an individual would choose to be treated.  Table 1 also

shows that the bias changed sign in the training evaluation data, being positive at

relatively high probabilities of choosing treatment (i.e., the naïve predictor gave too large

an estimate of the treatment effect for those with high probabilities of being treated), and

being negative at low probabilities.  Interestingly, the sign reversal took place around the

median probability.3  This empirical evidence of bias cancellation recurs throughout the

Heckman et al. (1998) paper and is arguably one of the central empirical findings of their

paper.4

                                                
3 In Heckman et al.’s data, the overall proportion of sample members who chose to be trained was much
lower than 0.5, and the point at which the bias changed direction in Heckman’s data, at about P = 0.04, was
far below the 0.5 probability level that figured in Heckman et al’s theoretical justification for the bias-
cancellation phenomenon.
4 To quote from Heckman et al. (1998) “Our evidence of substantial pointwise bias that averages out to
small bias over certain intervals is reminiscent of what can occur in the classical section bias model, as
noted in the discussion surrounding Figure 1 [as we noted in the man text, Heckman et al.’s discussion
about the classical selection model is incorrect].  Moreover, it is inconsistent with the identifying
assumption used to justify matching.  This empirical regularity occurs in the other models estimated below
and is a central empirical finding of this paper.” (Heckman et al. 1998, p. 1044).  Heckman et al.’s assertion
that bias cancellation is inconsistent with the identifying assumptions underlying matching is certainly true
in that these assumptions assume that the pointwise bias would be zero.  The focus in our paper concerns
the average bias rather than the pointwise bias.



The empirical pattern found in the Heckman et al. data suggests that the

distribution of disturbance variables in the JTPA training data was far from the bivariate

normal distribution typically assumed in sample selection models. We speculate that this

observed pattern occurred because the choice to be trained may have been generated by a

mixture of  assignment mechanisms, rather than the single assignment mechanism that is

commonly assumed to operate in nonexperimental data.  If the mixture process had the

property that the correlation structure for those with low probabilities of receiving

training was different than from the correlation structure for those with high probabilities

of receiving training, the result would be similar to what Heckman et al. observed in their

data.

To motivate the theoretical plausibility of such a mixing distribution, it is useful

to consider the substantive meaning of the correlation between 0U (the disturbance in the

not-treated structural equation) and 1ν (the error in the assignment equation) that gives

rise to the bias (see equation (10)).  For simplicity, let us assume that individuals know

their 0U , in other words, that they can perfectly predict outcomes in the situation where

they chose not to be treated (the assumption of perfect knowledge is unnecessary – we

could instead assume that their estimate of 0U is highly correlated with the true 0U ).  We

make the further assumption that individuals make their decisions to participate (i.e., their

choice of 1ν ) in response to their knowledge of 0U .  We then consider the following two

decision-making scenarios as plausibly operating at the same time.  In statistical terms,

these scenarios differ in the assumed correlation between 0U  and 1ν .  In behavioral

terms, these scenarios differ in the nature of the decision-making process.



Scenario A: Consider the case where 0U  and 1ν  are positively correlated.  From the

definition of the selection function, the probability of selection into the treatment

increases as 1ν  decreases.  A positive correlation means that (after controlling for

measured variables) the higher the earnings would be in the absence of treatment, the

lower is the probability of treatment.  A negative correlation means that (after controlling

for measured variables) the higher the earnings would be in the absence of treatment, the

higher is the probability for selection into treatment.  Recalling that the gain from

treatment equals the structural effect of treatment plus the difference between the

disturbance in the treatment and the non-treatment equations (equation (5)), we also need

to acknowledge the possible impact of the correlation between 0U  and 1U  on our

interpretation.  Let us for simplicity assume that the structural effect of treatment is fixed

in the population.  If 0U  equals 1U , then everyone would get exactly the same benefit

from treatment.  In the more plausible scenario, however, 0U  and 1U  are positively

correlated, but not perfectly so.  In this latter scenario, individuals with high 0U  tend to

benefit less from the treatment than do individuals with low 0U .  Thus, a positive

correlation between 0U  and 1ν  means that (after controlling for measured variables)

individuals who would experience lower than average gains from treatment are less likely

to select themselves into treatment than are individuals who would experience higher

than average gains from treatment.

As equation (7) shows, a positive correlation between 0U  and 1ν  corresponds to a

negative bias in the naïve estimate of the treatment effect.  Those in the treatment group

would have an average value of 0U  that is less than zero, while those in the control group



would have an average value of 0U  that is greater than zero.  The naïve estimator of the

treatment effect, which essentially differences the observed outcomes for the group

selected into treatment from the observed outcomes for the group selected into not-

treatment, would not take into account the selection effect, and thus would arrive at a

downwardly biased estimate of the treatment effect.

Scenario B: Suppose, that the correlation between 0U  and 1ν  is negative.  In this scenario

(after controlling for measured variables), the higher the earnings would be in the absence

of treatment, the higher is the probability for selection into the treatment.  In this

situation, the group of individuals who select themselves into treatment actually would

experience a smaller average impact of the treatment than would the group of individuals

who do not select themselves into treatment.  This behavior might seem to be irrational,

but it could be interpreted as consistent with what Kahneman and Tversky (1979)

referred to as “prospect theory.” Prospect theory argues that the negative effects of loses

on a utility function are greater than the positive effects of equivalent-size gains, and that

most people therefore exhibit what they referred to as “loss aversion.”  If the correlation

between 0U  and 1U  is positive (and this seems very likely), then those individuals who

would have higher than predicted earnings if they were not treated would also have

higher than predicted earnings if they were treated.  If individuals with higher than

predicted earnings developed a strong interest in “preserving their gains,” then they

would be especially likely to choose to be treated.  For these individuals, a naïve

estimator would overstate the “true” effect of treatment.

These scenarios can be further motivated via the following real-world evidence

that one of us has observed in teaching a particular class.  The first quiz in this class was



relatively difficult, and the grading distribution included C’s and D’s as well as A’s and

B’s (standard statistical theory predicts that students with the low grades have an average

U  that is negative, while the students with A’s have an average U  that is positive).  To

offset the impact of this quiz, the instructor later (after the students knew their grades on

the first quiz) offered students an optional “extra credit” essay assignment that was worth

up to 10% of the total first quiz grade, and that also could be applied to a future quiz in

the course.  The “naïve” prediction was that students whose grades were C and lower

would be most likely to turn in the optional essay.  While many of these low-performing

students did in fact use this opportunity to improve their grade, the instructor found that

the students who received A’s on the first quiz were most likely to do the extra-credit

assignment, even though their predicted returns to this work were low.   One

interpretation of the student’s behavior is that the high-performing students had

anticipated the possibility of getting an A in the course on the basis of their performance

on the first quiz.  At the same time, they were aware of the fact that they couldn’t be

assured of A’s on future quizzes (in effect, the students who received A’s realized that

their U was on average positive).  These students were therefore especially interested in

“preserving” their anticipated outcome by taking advantage of the insurance offered by

the extra credit assignment.

The two forms of behavior described above in scenario A and scenario B produce

offsetting biases.  The pattern observed in Table 1 would result if the individuals who

behaved “rationally” tended to be clustered at the lower values of the linear predictor for

treatment, while those who behaved according to the “prospect theory” model were those

clustered at the higher values of the linear predictor for treatment.  If the distribution of



the disturbance variables was perfectly “mirror symmetrical” around some value of

1 1( )H Z  (in the sense that the correlations between 0U and 1ν were equal and of opposite

sign at values of 1 1( )H Z that were equidistant from some specific reference point), then

the complete bias cancellation written about by Heckman et al. (1998) would occur, and

the average bias would be zero if the data were perfectly balanced around this point.5  If

the offsetting biases did not perfectly balance, then the average bias would not be

eliminated, but it would be smaller than in the case where all point-by-point biases had

the same sign.  The extent of bias cancellation, or whether the bias even changes sign as a

function of 1 1( )H Z ,  are empirical questions just as is the question of whether an error

distribution is multivariate normal.  The data presented by Heckman et al. (1998)

however, suggests that in at least one important context bias cancellation does occur,

while our theoretical argument above suggests that this case might not be an isolated

instance.

Bias in the Estimation of Treatment Effects in the Presence of Missing Data

The above discussion assumes that that there is no missing data on the dependent variable

(i.e., the only “problem” is the selection mechanism in the assignment process).  In the

presence of missing data on the dependent variable, the above setup becomes more

complicated.  If we let 1S =  designate that Y is observed, and 0S =  designate that Y is

not observed because of missing data, then the fact of missing data changes the bias to

the extent that

( ) ( )0 0( | 1) | , 1, 1 | , 0, 1 ( | 0).B X S E U X D S E U X D S B X S= = = = − = = ≠ = (11)

                                                
5 Mathematical justification of this assertion is available upon request.



To understand the complications arising from bias of the form shown in equation

(11), we assume (in parallel with the above discussion) that there is a second index

function

2

*
2 2 2( )I H Z ν= − ,

which determines whether Y is observed or missing, in addition to the first index function

that determines whether a case is or is not assigned to the treatment.  With respect to this

second index function, 1S =  if Y is observed and 0S =  if Y is missing, where 2Z  is

observable (it may overlap with X, and it may overlap with or be identical with 1Z ), and

where ( )0 1,U U , 1ν  and 2ν are potentially correlated with each other.  Under these

assumptions, the bias is expressible by elaborating equation (7):

( ) ( )0 0( | 1) | , 1, 1 | , 0, 1 .B X S E U X D S E U X D S= = = = − = = (12)

This expression also gives the condition when missing data are “ignorable” for the causal

effects problem.  Missing data are ignorable when

( ) ( | 1)B X B X S= = , (13)

or, in other words, when

( ) ( ) ( ) ( )0 0 0 0| , 1, 1 | , 0, 1 | , 1 | , 0E U X D S E U X D S E U X D E U X D= = − = = = = − = .

Under this condition, the results obtained above under the assumption of complete data

are not altered when the expressions are conditioned upon observable data.  In particular,

the bias remains zero under ignorable assignment, or equivalently, selection on

observables (see equation (8)).

Alternatively, the missing data are not “ignorable” when



( ( )) ( ( ) | 1).B P X B P X S≠ =

To better understand this bias, we elaborate the conditions in (9) to obtain

0 0 1 1 1 2 2 2

0 0 1 1 1 2 2 2

0 0 1 1 1 2 2 2

0 0 1 1 1 2 2 2

( | , , 1, 1) ( | ( ), ( )),

( | , , 1, 0) ( | ( ), ( )),

( | , , 0, 1) ( | ( ), ( )),

( | , , 0, 0) ( | ( ), ( )).

E U Z X D S E U H Z H Z

E U Z X D S E U H Z H Z

E U Z X D S E U H Z H Z

E U Z X D S E U H Z H Z

ν ν
ν ν
ν ν
ν ν

= = = < <
= = = < ≥
= = = ≥ <
= = = ≥ ≥

If we set 
1

1
1 1 1( ) ( ( 1| ))H Z F P D Zν

−= = , and 
2

1
2 2 2( ) ( ( 1| ))H Z F P S Zν

−= = , where F is

assumed to be strictly monotonic almost everywhere, the bias becomes

1 1 2 2 0 1 1 2 2

0 1 1 2 2

( ( ), ( )) ( | ( ), ( ), 1, 1)

( | ( ), ( ), 0, 1)

B P Z P Z E U P Z P Z D S

E U P Z P Z D S

= = =
− = =

. (14)

The question of interest again concerns the extent to which controlling for 1Z (or the

propensity score for assignment to treatment) as well as 2Z  (or the propensity score for

missing) yields a condition under which the difference in the expectations becomes zero.

If 0U  is independent of 2v  after controlling for 1ν , then estimators which are consistent

under the assumptions of complete data remain consistent in the presence of missing data,

because (controlling for X) the probability of missing is unrelated to the value of Y.6

But if 0U  covaries with both 2v  and 1ν , then the situation with incomplete data differs

from that with complete data.  In particular, if the conditional bias reverses sign as a

function of the propensity score, the properties of bias cancellation will differ for the

complete and incomplete data case. However, it is nonetheless possible that substantial

                                                
6 In particular, if the probability of missing is a function of 2Z , and if 2Z  contains elements that are not in

X and also are not in 1Z , there is no practical use to be made of these elements in the estimator of the

treatment effect, because they provide no information about the values that Y take if it were not missing.



cancellation would occur in the missing data case just as in the complete data case, and

matching estimates might therefore reduce the average bias relative to OLS.

The Role of 1U  in the Estimation of Treatment Effects

The above discussion concerned the possibility of bias that arises out of possible

correlation between 0U and 1ν  in the case of complete data and from possible correlation

between 0U , 1ν , and 2ν  in the case of incomplete data.  It is also important to consider

the implications for bias that arise from possible correlation between 1U  and 0 1 2( , , )U ν ν .

For the complete data case, 1U  technically plays no role in the structure of the point-by-

point bias for the estimate of the treatment effect for those assigned or self-assigned to

treatment.  This can be seen in equation (7) or in equation (10).8  Nonetheless, 1U  can

play an important indirect role in the estimation process, because, as we suggested in our

proposed justification for bias cancellation, the extent and nature of bias cancellation can

depend upon the relationship between 0U  and 1U .   Consequently, even if ( )B X  is

unaffected by 1U , the average of ( )B X  across the range of X might be influenced by 1U

and by its correlation with the other disturbance variables.  Furthermore, missing data

bias is directly affected by the existence of correlation between 1U  and 2ν .    As for the

case of complete data, however, the dominant impact of 1U  may work indirectly through

its effect on bias cancellation rather than through its correlation with 2ν .

                                                
8 As Heckman (1997) shows, the bias does depends on 1U  as well as 0U when the quantity to be estimated

is the effect of treatment for a randomly selected sample from the population.  This dependency on 1U
disappears however when the quantity to be estimated is the effect of treatment on the sample selected into
treatment.



Data, and Methods

We illustrate the potential impact of matching estimates in the presence and absence of

bias cancellation using panel data on additional job training.  The use of real data for

studying the extent of bias in alternative estimators has disadvantages that arise from our

inability to test the underlying exclusion restrictions concerning 1Z  and 2Z , and from our

inability to directly observe the shape of the 0 1 1 2( , , , )U U ν ν  distribution.  To overcome

this limitation, we use simulated data in which the observed treatment variable, the

observed dependent variable, and the observed pattern of missing data on the dependent

variable are replaced by measures simulated from a predetermined model.  The advantage

of simulated data is that we know the model that generates the data, and we can use this

knowledge to evaluate our estimation methods.  We used actual survey data to the extent

possible in order to create realistic examples; the treatment, outcome, and disturbance

variables are simulated, but the control variables have the actual values found in the

survey.  We perform simulations with a model where the selection for the treatment

effect is moderately strong, and where the pattern of missing data produces moderate bias

in estimators that naively assume ignorable missing.

The starting point for our simulations was a subset of data drawn from the

German Socioeconomic Panel (GSOEP).  Starting in 1984, individuals aged 16 and

above in nearly 6000 households have been interviewed on a yearly basis. In addition to

the core questions on demographics and household composition, employment

information, education, various types of income etc., modules on special topics are often



incorporated into the yearly interview.9 In this paper we use the 1989 and 1993 special

modules on any continuous training undertaken by sample members in the previous three

years.  We combined demographic, employment, income, and wage information from the

1985 to 1995 waves for respondents between the ages of 18 and 60 who were living in

West Germany in 1989 or 1993 with the information on continuous training in order to

obtain the data that formed the basis for our simulations.   Our working dataset consisted

of 9259 observations that were nonmissing on our predictor and dependent variables.  In

the sample for whom we had complete information, 12.5% reported further training.

The first step in the simulation involved the stochastic disturbances.  We simulate

data for several important cases, and show the resulting correlation matrices in Table 2.

Recall from the above discussion that there four stochastic disturbances of interest in the

general problem.  The first two ( 0U and 1U ) are the errors in the structural model for

those who are not treated, and for those who are treated, respectively.  The third error,

1ν affects selection into the treatment group.  The fourth error, 2ν , affects whether the

outcome variable is missing or not.  Our goal was to generate data in which the

disturbance variables were correlated according to one of two distinct patterns.  The first

pattern is that produced by a standard symmetric distribution (we use the multivariate

normal distribution).  The second was to reproduce the pattern of bias cancellation that

Heckman et al. (1998) found to exist in the JTPA evaluation data.  While we believe that

the substantive force producing bias cancellation is a mixture process corresponding to

the two scenarios described above, we use the more expedient simulation strategy of

                                                
9 For a detailed description of the GSOEP see Haisken-DeNew and Frick (1998).



assuming that the correlations between 0U and  1ν , and between 0U and ν 2 , reversed

beyond a specific point in the distribution, as described below.

After generating four disturbance variables for each sample member, our second

step was to replace the observed treatment variable with a simulated treatment variable.

We estimated a probit equation for further training as a function of covariates (the results

of this probit estimation can be found in appendix Table A1).  We used this probit

equation to simulate a further training variable, where our simulated variable was

constructed by combining the prediction from the probit model with the simulated

stochastic disturbance 1ν .  This simulated treatment variable by construction has the

same binary distribution as the original variable.  We then produced a second simulated

further training variable by adding unity to all the linear predictors from the probit

equation in order to get a variable whose probability distribution was closer to being

symmetrical around 0.5.  With this modification, the proportion of the sample with

further training on this second simulated variable rose to 41.6%.  By combining our

simulated training and disturbance variables in different ways, we obtained the following

six cases:

Case 1: 0U , 1ν , and 2ν  follow a multivariate normal distribution, but we specify

independence between 1U  and the other three variables.10  Because this is a symmetric

distribution, there is no bias cancellation.  In this example, we specified 0U and 1ν to have

a positive correlation.  This corresponds to Scenario A above.  In addition, we specified

                                                
10 The observed correlation between 1U and the other variables is not zero in Table 3, but this occurs

because of sampling fluctuations.  In the model that generated these data, the correlation between 1U and

the other variables was set to zero.



1v  and 2ν  to be negatively correlated with each other.  (This latter specification has no

effect, of course, in our “complete data” examples below, because for these examples, the

value of 2ν  has no impact on the data structure).  Recall that in the index models

specified above, the binary outcome was more likely when the stochastic disturbance was

smaller. For the case of incomplete data, therefore, a negative correlation implies that

individuals who were more likely to choose training were more likely to have missing

data on the outcome variable.  The assumption that 0U and 1U  are uncorrelated would be

completely unreasonable if there was some unmeasured person-specific fixed effect on

the outcome variable.  In our examples, however, we use the change in the gross monthly

wage as the dependent variable, and therefore the effect of unmeasured permanent

individual characteristics on wage levels are differenced out (in this respect, our models

correspond to what are sometimes called conditional difference-in-difference estimators

in econometrics [Heckman et al. 1998]).  Any remaining correlation between 0U and 1U

would arise from unmeasured factors that vary over time.

Case 2a: 0U , 1ν , and 2ν  follow a multivariate normal distribution, where the correlation

structure is the same as in case 2 for the 75% of cases with the lowest propensity scores,

but then reverses, so that 0U and 1ν  have a negative correlation above the 75% point of

the propensity score distribution.  This corresponds to Scenario A above for the lower ¾

of the distribution, and to Scenario B for the upper ¼ of the distribution. The values

presented in the table were computed from simulated data where the proportion trained in

the simulated data equals the proportion trained in the actual GSOEP subsample.



Case 2b: 0U , 1ν , and 2ν  follow a “mirror symmetric” multivariate normal distribution,

where the correlation structure is the same as in case 2 for (train) ½P ≤ , but reverses for

higher probabilities.  Case 3b pertains to the simulated data where the proportion trained

is enhanced to about 40% of the sample (as opposed to the 12.5 % who were trained in

the actual subsample).

Case 3: 0U , 1U , 1ν , and 2ν  are symmetrically distributed.  There is no bias cancellation

in this case.

Case 4a: 0U , 1ν , and 2ν  follow a “mirror symmetric” multivariate normal distribution

around (train) ½P = , and in addition, 1ν  and 2ν  are correlated with 1U .  Proportion

trained equals the observed proportion.

Case 4b: 0U , 1ν , and 2ν  follow a “mirror symmetric” multivariate normal distribution

around (train) ½P = , and in addition, 1ν  and 2ν  are correlated with 1U .  Proportion

trained is enhanced as discussed in case 2b.

The third step was to simulate the outcome variable.   We estimated a wage

equation using OLS, where the two-year difference in the natural logarithm of the wage

was the dependent variable, and the right hand side included a set of standard covariates

(see appendix Table A1), specifically including further training as a predictor. We then

replaced the product of observed further training multiplied by its estimated effect with

our simulated training variable multiplied by an effect that we specified (we enhanced the

effect of training to equal to three times the estimated effect in the OLS equation).  We

added the simulated stochastic disturbance to the estimated log(wage) in order to obtain a

simulated outcome variable.



In the fourth step, we estimated a probit equation in which the outcome variables

was an indicator variable equal to one if that the wage was observed in our data, and

equal to zero otherwise.  We then used the results of this probit equation in combination

with our simulated value for 2ν  to select a subset of the complete observations where we

a priori set the outcome variable to missing in our simulated incomplete data.  Our

procedure generated missing outcome data for 37% of the cases.

In our examples, we assume that the “true” structural effect of training is fixed in

the population.  The “true” total effect of training varies across the sample, however,

because the total effect includes an error component in addition to the structural effect,

and this error component is not fixed in the population (see equation (5)).

Note that in Heckman et al.’s data, the probability value at which the sign of the

bias reverses is far lower than 0.5; indeed, it appears to be roughly in the center of the

data.  This is a highly fortuitous event, because it implies that substantial cancellation

would occur by averaging over the entire sample.  In our simulations, we instead

specified that the sign reversal occur at the point where the probability of receiving the

treatment is 0.5 for the enhanced data, where 41.5% of sample members were trained.

For the simulated data where the proportion trained equals the observed proportion, we

specified that the sign reversal occur at the 75th percentile of the propensity scores.

Because we know the underlying structure of the simulated data, we can compute

the average bias for the entire sample or for any subsample.  This allows us to compare

the pattern of bias in our data with the pattern that Heckman et al. observed in the training

data.  Table 3 shows the relationship between the bias and the propensity score in our

simulated data.  As can be seen, the simulated data based on symmetric error distributions



looks quite different from the empirical pattern observed in the Heckman et al. data.  In

contrast, the patterns in the data where the correlation reverses at a specific value of the

propensity score (i.e., a specific value of P(train)) are qualitatively similar to the

empirical pattern found in the Heckman et al. data.

We analyzed these simulated data using two methods.  The first was OLS.  The

second involved matching data between those in the treatment group with respondents

who were not treated.   Our matching procedure is a variant of the

propensity/Mahalanobis metric matching method proposed by Rosenbaum and Rubin

(1985) and Rubin (1991) and applied by Lechner (1999). The steps of the matching

procedure are described in appendix B.

For the training-enhanced data in which bias cancellation was (induced to be)

present, we also included estimates based on a two-step matching procedure.  In the first

step, we focused on the group of respondents who had been treated, and matched cases

whose probability of training was greater than 0.5 with cases whose propensity score was

as close in magnitude as possible but opposite in sign, in order to increase the extent of

bias cancellation.  The resulting matching yielded a distribution of treated cases that was

approximately symmetrically distributed around the probability 0.5.  We then matched

each of this subset of treated cases with its most closely matching counterpart in the

control sample.

For the incomplete data, we followed a slightly different procedure.  A matching

based solely on propensity scores would be unsatisfactory, because it would often be true

that one or the other cases in the match would have missing data on the outcome variable,

and thus many complete cases would be lost because they were matched to incomplete



cases.  In order to increase the usable sample size in our matching procedure, we first

dropped all cases that were missing on the dependent variable.  Then, we matched as

before.

Results

Tables 4 and 5 contain the results of our analyses of the simulated data described above.

Table 4 contains results for the situation where 1U  is presumed to be independent of the

other three error variables (cases 1, 2a, and 2b in Table 2).  Table 5 contains results for

the cases where all four error variables are correlated (cases 3, 4a, and 4b in Table 2).

The rows in these tables contain the following information:

Row 1: The “true” experimental effect of training.  This effect is equal to the average ß

for all members of the sample.  In our examples, here, we artificially set ß to be three

times as great as the OLS estimate for the training effect in the GSOEP subsample with

the simple specification that we report in Table A1.  We set ß to the same value for all

observations in the simulated data.

Row 2: The “true” average effect for the self-selected sample.  This value, which is

intrinsically unobservable in real data, equals the average of equation (5) for sample

members.

Row 3: The “naïve” estimate of the causal effect, which is shown in equation (6), where

we substitute sample averages for expectations.

Row 4: The OLS estimate of the treatment effect, using complete data.  Because the

primary focus of this paper concerns the character of the unobservable variables, we

avoid getting into the issue of specification bias, and instead use the same specification in



our OLS estimation that was used to generate the outcome variable.  The only remaining

source of bias possible in our calculations, therefore, comes from the failure of the OLS

assumptions about the error variable to be correct.

Row 5: The OLS estimate of the treatment effect, using incomplete data.

Row 6: The estimate from matching, using complete data.

Row 7: The estimate from matching using incomplete data, where the cases with missing

data on the outcome variable are first dropped before matching is done.

Row 8: The estimate for the complete data from the two-step matching procedure

described above.

Row 9: The estimate for incomplete data from the two-step matching procedure described

above.

 Row 10:  The fraction of the bias from OLS that is eliminated in the matching estimate

(based on row 8 if relevant, otherwise row 5).

Row 11:  The fraction of the bias from OLS that is eliminated in the matching estimate

(based on row 9 if relevant, otherwise row 6).

Tables 4 and 5 demonstrate an assertion made by Heckman and Robb (1985) that

is still often under-appreciated in the social sciences, namely that the “true” experimental

effect differs from the “true” treatment effect for individuals who are selected (or self-

selected) through a non-random assignment process.  The effect in row 2 is “true” in the

sense that it is the average difference between the outcome that was experienced by the

treated population, and the outcome they would have experienced if they had not been

treated (one can only have “access” to this information in a simulated world; in the “real”



world, such information is intrinsically missing).  This outcome is the sum of the “true”

experimental effect of the treatment, and the difference in the error in the “treated” and

the “not-treated” equation.

Table 4 also shows that – under the assumptions of cases 1, 2a, and 2b – the true

average effect for the self-selected sample is greater than the experimental effect.  This

relationship arises from the imposed positive correlation between 0U and 1ν (which

implies that individuals who anticipate negative shocks if they proceed along their current

path are more likely to choose the alternative path of treatment) coupled with the imposed

independence between 0U and 1U .   Furthermore, at least for our examples, the increment

in the total effect that comes from the difference between 1U and 0U is much greater in

the symmetric case than in the bias cancellation case.

In our examples, the OLS estimate (row 4) was (not surprisingly) quite close to

the “naïve” estimate that arises from substituting the control group’s outcome in the

absence of treatment for the outcome that the treatment group would have experienced if

they were not treated.   In our example, the OLS bias slightly increased in size when the

incomplete data were generated by a bias-canceling process, while the OLS bias was

more significantly enhanced for data generated from a symmetric distribution.   We note

again that the OLS specification was “perfect” in that it exactly matched the specification

that was used to generate the data

Rows 5 and 6 show the results we obtained using the matching procedure based

on the probit propensity score for selection into further training.  When the data were

generated by a symmetric distribution, the matching method slightly under-performed the



OLS estimates.  When the data were generated by a bias-canceling distribution, however,

matching outperformed OLS. The advantage for matching was greater for the analysis of

the incomplete data than for the analysis of the complete data.  Finally, the two-step

matching (rows 8 and 9) led to a still greater reduction in bias, relative to the OLS

estimator.

Table 5 shows results for cases 3, 4a, and 4b from Table 2, in which (unlike for

Table 4) we imposed a positive correlation between 0U and 1U .  This change has two

major consequences.  The first major consequence is to reduce the size of the “true”

average effect of selecting training for the sample that was non-randomly selected into

training (row 2).  The second major consequence is to increase the downward bias of the

OLS estimate and of the corresponding matching estimates in the symmetric distribution

cases (row 4, columns 1 and 3, and rows 6 and 7).    As in Table 4, the matching estimate

was inferior to the OLS estimate in the symmetric distribution case (again, however,

recall that the OLS equation has no misspecification bias – it exactly matches the

equation used to simulate the dependent variable).  Also, as in Table 4, the matching

estimators outperformed the OLS estimator in both of the complete data cases.  For the

enhanced training data, the matching estimator also outperformed the OLS estimator in

the incomplete data case.  However, in the simulated data where the proportion trained

equaled the observed fraction trained, the matching estimator was inferior to the OLS

estimator, which in this case was actually rather close to the “true” value.

Discussion and Conclusions



Taking as a starting point Heckman et al.’s (1998) discovery that bias cancellation

sometimes occurs in the data-generating process for treatment via non-random selection,

we have made three contributions to the literature on causal estimation.  First, we have

shown that Heckman et al.’s theoretical justification for bias cancellation (the assertion

that bias cancellation arises naturally from symmetrically distributed stochastic

disturbances in the structural and the assignment equations) is incorrect; in fact, bias

cancellation never occurs when the errors are symmetrically distributed.  Second, we

have suggested an alternative mechanism by which a bias-canceling data generating

process might occur.  Third, using the GSOEP as a starting point, we have generated and

analyzed simulated data on further training and wage changes, and we have shown how

bias emerges from the set of correlations between the errors in the structural equations,

the error in the assignment to treatment equation, and the error in the missing data

equation.  Using correlation structures that appear to correspond reasonably well with the

observed bias pattern that Heckman et al. found for evaluation data of the JTPA, we find

that bias cancellation in the error distribution reduces the bias even for the OLS

estimator.  Generally speaking (thought not in all instances), a simple matching estimator

does an even better job than OLS, even when the OLS estimate derives from an equation

that was perfectly specified.  We further found that a two-step balancing procedure (first

on the cases treated and then a matching between treated and control cases) produces

superior estimates when the axis for matching in the first step roughly matches the point

at which bias reversal occurs in the data.

Because bias cancellation is a property of the distribution of an unobservable

variable, it is difficult to know whether Heckman et al. discovered a common pattern or



an unusual one.  It is also difficult to know whether their finding that bias reversal took

place near the midpoint of distribution is common or unusual.  In our opinion, the

answers to these questions require first an understanding of why bias cancellation occurs.

We have provided an initial plausible answer in this paper.  It is our hope that further

theoretical refinement, and further empirical analysis of cases where experimental and

non-experimental data can be directly compared, are the best hope for greater

understanding of this phenomenon, and for the development of more accurate estimators

for causal effects in the social sciences.

One final observation should be made.  The standard Heckman two-step

correction for sample selection bias typically assumes that the structural and assignment

errors follow a bivariate normal distribution.  This distribution is very different from a

distribution that would produce bias cancellation.  If bias cancellation is common, then

the applicability of the Heckman two-step correction becomes more questionable.  Again,

further research is needed to establish the robustness of various estimators of causal

effects across the range of plausible distributions in order to better understand the

potential implications of bias cancellation for the estimation of causal effects using non-

experimental data.



Appendix A: Bias Cancellation and Symmetric Distributions

Assume that the distribution of 1ν  and 0U is symmetrical.  Assume further that for a

group of individuals indexed by “i,” 1 1( )iH Z a= , while for a second group of individuals

indexed by i′ , 1 1( )iH Z a′ = − .  Then for group i, equation (10) can be re-expressed as

1 1 1 1 0 1 0 1( ( ) | ( ) ) ( | ) ( | ),B P Z H Z a E U a E U aν ν= = < − ≥ (15)

while for group i′ ,

1 1 1 0 1 0 1( ( ) | ( ) ) ( | ) ( | ).B P Z H Z a E U a E U aν ν= − = < − − ≥ −

But in a bivariate symmetric distribution,

0 1 0 1( | ) ( | ).E U v a E U v a< = − ≥ −

Therefore,
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To see this another way, note (e.g., Heckman et al. 1998, footnote 25), that

0 0 0

0 0

( | ( )) ( | ( ), 1) ( 1) ( | ( ), 0) ( 0)

( | ( ), 1) ( ) ( | ( ), 0)(1 ( )),

E U P X E U P X D P D E U P X D P D

E U P X D P X E U P X D P X

= = = + = =
= = + = −

where 1D =  when an individual is treated, and 0D =  when an individual is not treated.

( )P X , the propensity score, gives the probability that an individual is treated.  If we

assume that 0( | ( )) 0E U P X = , then, by rearranging terms, we obtain



0 0

1 ( )
( | ( ), 1) ( | ( ), 0).

( )

P X
E U P X D E U P X D

P X

−= = − = (16)

Recalling that

( ) ( )0 0( ) | , 1 | , 0B X E U X D E U X D= = − = ,

it follows from (16) that

0

1
( ( )) ( | ( ),  0).  

( )
B P X E U P X D

P X

−= = (17)

This expression can only change sign if 0( | ( ),  0)E U P X D =  changes sign for some

value of ( )P X , but this never happens in a symmetric distribution.



Appendix B: Methodology for Matching

The steps of the matching procedure used in this paper, which are similar to the

procedure used by Lechner (1999) are as follows:

1. Split the observations into two pools, a treatment group T  (further training) and a
comparison group C  (no further training). Estimate a probit model for participation
in the treatment group.

2. Based on the estimated probit model compute the propensity score ˆ ’ Tb X  and the

variance ˆvar( ’ )Tb X  for all treated persons T . Construct for all treated persons the

interval ˆ ˆ' var( ' )T Tb X w b X± , and choose w  such that one obtains a confidence

interval of the desired size around ˆ ’ Tb X .11

3. Randomly select a treated person from the treatment group Tn .

4. Find observations in the control group that obey ˆ ˆ ˆ' ' var( ' )C T Tb X b X w b X∈ ± .

A) If there no observation of the control group lying between the given limits of the
confidence interval, the selected person will not be considered further and step 3
has to be repeated.

B) If there is only one observation between the given limits of the confidence
interval, go to step 6.

C) If there is more than one observation in the confidence interval proceed as
follows: Compute additional match variables in relation to the start date of
observation Tn  and a subset of variables already included in the estimation of the

propensity score. Denote these variables Ta  and Ca . Evaluate the distance

( , ) ( ’ , ) ’ ( ’ , ) ’T T C Cd T C b X a b X a= −� �  between each non-treated and treated. Choose

those non-trainee who is the ‘closest neighbor’ of the trainee T  in terms of the
Mahalanobis distance, defined as: 1( , ) ’cov ( , )md d T C d T C−= , where cov is the

estimated sample covariance matrix of ˆ( ’ , ) ’b X a  in the group of non-trainees.
5. Remove the treated and non-treated (now matched control) observations from their

respective groups.
6. If there are any observations left in the trainee group, begin again with step 3.

In the illustrative cases reported in this paper, we matched on the propensity score by

itself – no additional covariates were used.

                                                
11 Rubin (1991), for example defined w = 0.25, while Lechner (1999) defined w = 1.65. We, like Rubin, set
w = 0.25.
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Table 1: Estimated Selection Bias (in Dollars/Month) in Heckman et al.’s (1998)
Comparison of Experimental and Non-Experimental Evaluation Data for Four Training
Centers Participating in the Job Training Partnership Act

Decile of the Empirical Distribution for the Probability of Choosing to be Trained
1 2 3 4 5 6 7 8 9

[.0002,
.0023)

[.0023,
.0087)

[.0087,
.0152)

[.0152,
.0269)

[.0269,
.0410)

[.0410,
.0822)

[.0822,
.0983)

[.0983,
.1337)

[.1337,
.2534]

Average
Bias
across 6
quarters

-282
(116)

-188
(91)

-118
(81)

-63
(79)

3
(98)

168
(130)

169
(117)

81
(147)

488
(281)

Source:  Heckman et al. (1998: 1049),  Table 7.



 Table 2:  Correlation Structures used in Simulations

0U 1U 1ν 2ν
Case 1 Symmetric distribution, 1U independent of 0U , 1ν , and 2ν .

0U 1

1U -0.0079 1

1ν 0.5984 -0.0116 1

2ν -0.7989 0.0067 -0.7999 1

Case 2a Bias Cancellation, 1U independent of 0U , 1ν , and 2ν , proportion trained in

simulation equals proportion trained in observed data.

0U 1

1U 0.0063 1

1ν 0.2999 0.009 1

2ν -0.395 -0.0063 -0.7978 1

Case 3b Bias Cancellation, 1U independent of 0U , 1ν , and 2ν , proportion trained in

simulation is enhanced.

0U 1

1U 0.0012 1

1ν 0.2814 -0.0062 1

2ν -0.3768 0.0054 -0.7982 1

Case 3 Symmetric distribution, 1U is correlated with 0U , 1ν , and 2ν .

0U 1

1U 0.6949 1

1ν 0.5928 0.4905 1

2ν -0.793 -0.4863 -0.7977 1

Case 4a Bias Cancellation, 1U is correlated with 0U , 1ν , and 2ν , proportion trained in

simulation equals proportion trained in observed data.

0U 1

1U 0.695 1

1ν 0.3029 0.244 1

2ν -0.406 -0.2462 -0.7977 1

Case 4b Bias Cancellation, 1U is correlated with 0U , 1ν , and 2ν , proportion trained in

simulation is enhanced.

0U 1

1U 0.6949 1

1ν 0.2817 0.2275 1

2ν -0.3764 -0.2302 -0.7977 1



Note: Case 2a has the same correlation structure as Case 1 if P(train) < 0.5.  Correlations between 0U  and

the other variables reverse if P(train) >0.5. The simulation model assumes an enhanced proportion of the
sample are trained.  Case 2b is the same as Case 2a, except that the simulation model is based on a
proportion trained that matches the actual GSOEP data, and the point of sign reversal is the midpoint of the
propensity scores. Case 4a has the same correlation structure as Case 3 if P(train) < 0.5.  Correlations

between 0U , 1U  and the other variables reverse if P(train) >0.5 (correlations between 0U  and 1U  remain

the same regardless of P(train)). The simulation model assumes an enhanced proportion of the sample are
trained.



Table 3:  Average Bias (Percent Change in Wages) as a Function of the Probability of
Receiving Training and the Correlation Structure of the Error Distribution, Simulated
Data Derived from the German Socio-Economic Panel

Probability of Receiving Training
���� 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 Total

Independent
Errors

Observed Fraction
Trained

-.0009085
(7,739)

.0010467
(1,520)

-.00049803

Enhanced Fraction
Trained

.0032581
(424)

-.0001875
(4,104)

-.0009074
(3784)

.0012711
(947)

-.00044939

Symmetric
Error
Distribution

( 0U 1ν 2ν )

( 1U )

Observed Fraction
Trained

-.0424048
(7,739)

-.0378478
(1,520)

-.04031706

Enhanced Fraction
Trained

-.0422625
(424)

-.0371024
(4,104)

-.0369201
(3,784)

-.0356539
(947)

-.03489765

Enhanced Fraction
Trained + Missing
Data

.005406
(231)

-.0161984
(2251)

-.0162938
(2038)

-.0209719
(538)

-.01631066

Symmetric
Error
Distribution

( 0U 1ν 2ν  1U )

Observed Fraction
Trained

-.0424055
(7,739)

-.0371473
(1,520)

-.04018091

Enhanced Fraction
Trained

-.0440875
(424)

-.0372851
(4,104)

-.0361595
(3,784)

-.0380109
(947)

-.03489929

Enhanced Fraction
Trained + Missing
Data

.0056368
(225)

-.0170164
(2242)

-.0152895
(2,045)

-.0231464
(594)

-.01658261

Bias Canceling
Error
Distribution

( 0U 1ν 2ν )

( 1U )

Observed Fraction
Trained

-.029372
(7,739)

.0401667
(1,520)

-.00909556

Enhanced Fraction
Trained

-.0422625
(424)

-.0371024
(4,104)

-.0082022
(3,784)

.0356539
(947)

-.01576551

Enhanced Fraction
Trained + Missing
Data

.005406
(231)

-.0161984
(2,251)

-.007105
(2,038)

.0209719
(585)

-.01386696

Bias Canceling
Error
Distribution

( 0U 1ν 2ν  1U )

Observed Fraction
Trained

-.0275602
(7,739)

.0371473
(1,520)

-.00908321

Enhanced Fraction
Trained

-.0440875
(424)

-.0372851
(4,104)

-.0077371
(3,784)

.0380109
(947)

-.01545179

Enhanced Fraction
Trained + Missing
Data

.0056368
(225)

-.0170164
(2,242)

-.0067509
(2,045)

.0231464
(594)

-.01338929

Note: Sample size is in parentheses.  Sample size is zero for cells without entries.



Table 4: Results from Simulated “Complete” and “Incomplete” data; Standard Errors in
Parentheses. Imposed correlations between 0U , 1ν , and 2ν  as in Panels 1, 2a, and 2b of

Table 2

Fraction Trained is as Observed Fraction Trained is Enhanced
Symmetric
Distribution (No
Bias
Cancellation)

Distribution-
Produced Bias
Cancellationa

Symmetric
Distribution (No
Bias
Cancellation)

Distribution-
Produced Bias
Cancellationb

1. “True” Experimental
Effect

.0598882 .0598882 .0598882 .0598882

2. “True” Average Effect
for the Self-Selected
Sample

.0965456 .0666063 .080498 .0686005

3. “Naïve” Estimate .05622857 .05751075 .04560031 .05283497

4. OLS w/ Complete Data .0553208
(.0012067)

.0589223
(.0012051)

.0443285
(.0007998)

.0551916
(.0008216)

5. OLS w/ Incomplete Data .0398571
(.0024087)

.0583686
(.0023052)

.0361194
(.0009991)

.0541858
(.0010707)

6. Matching w/ Complete
Data

.0526012
(.0017689)

.05972
(.0017515)

.0438123
(.0009681)

.0560871
(.0010086)

7. Matching w/ Incomplete
Data

.0365883
(.0037172)

.0624105
(.0042309)

.0333029
(.0013417)

.0550488
(.0017387)

8. Matching w/ Complete
Data, Balance on P(train)

N/A N/A N/A .0580569
(.0011865)

9. Matching w/ Incomplete
Data, Balance on P(train)

N/A N/A N/A .0588391
(.001522)

10. Percent Bias Reduction
vs. OLS w/ Complete Data

Negative 10% Negative 21%c

11. Percent Bias Reduction
vs. OLS w/ Incomplete
Data

Negative 49% Negative 32%c

Notes: a Correlation reversed at the 75th percentile. b Correlation reversed at P(train) = 0.50.
c  Computations based on prior balancing on P(train).



Table 5: Results from Simulated “Complete” and “Incomplete” Data; Standard Errors in
Parentheses.  Imposed Correlations between 0U , 1U , 1ν , and 2ν  as in Panels 3, 4a, and

4b of Table 2

Fraction Trained is as Observed Fraction Trained is Enhanced
Symmetric
Distribution (No
Bias
Cancellation)

Distribution-
Produced Bias
Cancellationa

Symmetric
Distribution (No
Bias
Cancellation)

Distribution-
Produced Bias
Cancellationb

1. “True” Experimental
Effect

.0598882 .0598882 .0598882 .0598882

2. “True” Average Effect for
the Self-Selected Sample

.0650643 .0621441 .0633629 .0612021

3. “Naïve” Estimate .05306085 .05447632 .04415599 .0457503

4. OLS Estimated Effect w/
Complete Data

.0237555
(.0011862)

.0529266
(.0012418)

.0263096
(.0007654)

.0452318
(.0008271)

5. OLS Estimated Effect w/
Incomplete Data

.0194808
(.0020761)

.06458
(.002264)

.0275309
(.0009437)

.0496346
(.0010442)

6. Matching w/ Complete
Data

.0245459
(.0016305)

.0555769
(.0019284)

.0251452
(.0010919)

.0458716
(.0010732)

7. Matching w/ Incomplete
Data

.0204226
(.0032822)

.070556
(.0042763)

.0243591
(.0016763)

.0507479
(.0017142)

8. Matching w/ Complete
Data, Balance on P(train)

N/A N/A N/A .0524417
(.0012716)

9. Matching w/ Incomplete
Data, Balance on P(train)

N/A N/A N/A .0554937
(.0015522)

10. Percent Reduction vs.
OLS w/ Complete Data

2% 29% Negative 45%c

11. Percent Reduction vs.
OLS w/ Incomplete Data

2% Negative Negative 51%c

Notes: a Correlation reversed at the 75th percentile. b Correlation reversed at P(train) = 0.50.
c  Computations based on prior balancing on P(train).



Appendix Table A1: Probit equation that predicted further training, and that was used to
simulate the further training variable, and wage change equation in the actual GSOEP
data

Probit: further training
(N=9259)

OLS: wage change
(N=9288)

Variable Coeff. Std. Err. Coeff. Std. Err.

Age (years) -.0142518 .0021539 -.0021475 .0002207

Female (0/1) -.1845155 .0485277 .0107384 .0043469

German born (0/1) .3209961 .1077199

Partner employed (0/1) .0460505 .0446889

Number of kids .0266904 .0201011

Single (0/1) -.0996424 .0680448

Widowed (0/1) -.2127866 .285247

Divorced (0/1) -.0983756 .1007506

Separated (0/1) .1491953 .1522548

Highest degree: Hauptschule (0/1) -.2587919 .1971771 .0148508 .0247899

Highest degree: Realschule (0/1) .1936957 .1968371 .0169327 .0248534

Highest degree: Fachhochschule (0/1) .2403201 .2073403 .05421 .0263434

Highest degree: Abitur (0/1) -.0382701 .2186963 .0307022 .0273629

Highest degree: other (0/1) a .0361914 .0436854

Highest degree: University (0/1) .5229582 .2143258 .0548742 .0277211

Part time employed (0/1) -.309015 .0685107

Further training (0/1) b .0199627 .0062371

Federal land: Schleswig-Holstein (0/1) -.3694068 .117805

Federal land: Hamburg (0/1) -.1811827 .1434875

Federal land: Niedersachsen (0/1) -.1870488 .0944307

Federal land: Bremen (0/1) -.7159365 .2686803

Federal land: Nordrhein-Westfalen (0/1) -.3407164 .088223

Federal land: Hessen (0/1) -.2843468 .09855

Federal land: Rheinland-Pfalz  (0/1) -.3335949 .1074662

Federal land: Baden-Wuerttemberg (0/1) -.1990602 .0922416

Federal land: Bayern (0/1) -.2995077 .0917482

Constant -.3512989 .2640488 .1613154 .0255958

Notes: Reference categories: Male; not German born; partner not employed; married; highest degree: no
degree; full time employed; no further training; federal land: Berlin. a) category dropped because it predicts
failure perfectly; b) category dropped due to collinearity.


