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Toward a General Model for Populations with Changing Rates 1

Robert Schoen 2

Abstract

Formal demography has yet to move beyond assuming that demographic rates are
constant over time, an assumption that is both unrealistic and constraining. To
generalize the fixed rate stable model to the changing rate dynamic model, this paper
explores the mathematical regularities that underlie the behavior of all populations. At
any time, the composition of a population can be expressed in terms of current
circumstances, using the rates of a “latent” stable model. Closed form solutions for the
equations governing dynamic multistate models are not always possible, but are
presented for certain special cases. Those solutions provide opportunities for specifying
dynamic models of potentially great value, especially for analyses of cyclical and
hierarchical populations.
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1. Introduction

Following the work of Alfred Lotka, formal demography has focused on stable
populations, i.e. multi-age models with vital rates that are constant over time (cf.
Keyfitz, 1977). In cohort and stationary population analyses, multistate life table
models, which recognize living states other than age (e.g. marital or labor force
statuses), have proven to be useful (cf. Schoen, 1988a). Multistate stable populations,
recognizing both age and more than one living state but retaining the assumption of
constant rates, were pioneered by Rogers (1975), and a considerable body of interesting
work has been done along those lines (cf. Rogers and Willekens, 1986).
Methodologically, multistate models rest on a firm mathematical foundation (Land and
Rogers, 1982; Schoen, 1988b). However, there are limits to the usefulness of fixed rate
models, as they are often inadequate for modeling dynamic behavior. For example,
while migration rates generally change from year to year, it can take centuries for the
age-region composition of a multiregional population to stabilize. Rates of birth, death,
marriage, divorce, and labor force participation—among many other aspects of
demographic behavior—can vary dramatically, even over short periods of time. At
present, demography does not have a model that can accommodate changing behavior
or reflect the relationship between current rates and current population composition.

This paper builds on Schoen and Kim (2000), and seeks to advance the
development of general population models that capture the implications of realistically
varying rates. Schoen and Kim (2000) presented the “Proportional Eigenvector”
solution, and applied it to an illustrative model of robustness and frailty. Here a broader
view is taken. The Proportional Eigenvector solution is generalized and related to the
multi-age case; a new Additive Eigenvector solution is presented; the concept of “latent
rates” is introduced, used to relate population rates and state composition, and examined
as a new approach to specifying dynamic models; the “bridging” transformation is
defined and shown to be an analytical tool for linking stable populations; and
illustrative models of potential value are specified for two living state populations. In
turn, subsequent sections consider 1) conceptual issues in a general dynamic population
model; 2) solutions in terms of “latent rates”; 3) solutions in terms of observed rates
under two special conditions, and 4) examples of relationships in, and some illustrations
of, dynamic models.

2. Conceptual features of dynamic demographic models

The basic multistate model with n living states can be described by the matrix
differential equation
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x’(t) = µ(t)x(t) (1)

where the prime (’) indicates differentiation with respect to time, x(t) is an n-element
column vector whose jth element, xj(t), is the population in state j at time t, and µ(t) is
an n x n matrix of instantaneous rates at time t. With i j≠ , element µij(t) is the

instantaneous risk of transition from state j to state i at time t. The diagonal elements,
µi(t) are specified by

( ) ( ) ( )i i ji
j

µ t  = � �� � �∑ (2)

where the summation index j ranges over all living states other than i, and ( )i
�  is the

instantaneous growth rate (i.e. the birth rate minus the death rate) of state i at time t.
If rate matrix µ is constant over time, the solution of equation (1) yields a

multistate stable population. Given initial condition x(0) = x0, that stable solution is

x(t) = {exp[µt]}x0 (3)

However, when µ varies over time, a closed form solution is generally not possible. In
that case, the solution is written as a product integral, which must be evaluated
numerically (Gantmacher, 1959, Vol. II, Ch. XIV).

2.1 Identifying Latent Rates

In the changing rate (or dynamic) case, equation (1) can be approached in an alternative
manner. Any set of linearly independent solution vectors x(1) (t), ..., x(n) (t) of equation
(1) can be termed a fundamental set of solutions (cf. Boyce and DiPrima, 1977, Ch. 7).
Every solution of equation (1) can be expressed as a linear combination of the x(j).
Without losing generality, let us choose one fundamental set of n solution vectors and
combine them in the n x n fundamental or solution matrix X(t). Then we can write

X’(t) = µ(t)X(t) (4)

and every solution of equation (1) can be represented by a linear combination of the
columns of matrix X(t) (cf. Boyce and DiPrima, 1977, Ch. 7). Paralleling the solution in
the constant rate case, let us write the solution matrix in the form
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X(t) = W(t)L(t) (5)

with W(t) an n x n matrix whose first row elements are equal to one and whose ijth

element is wij(t), and L(t) an n x n diagonal matrix whose jth element is j (t)� .

Substituting equation (5) into equation (4), differentiating, and rearranging yields

µ(t) = W(t) R(t) W-1(t) + W’(t) W-1(t) (6)

where R(t) is defined by

R(t) = L’(t) L-1(t) (7)

To complete the specification of a general dynamic model, the population
projection matrix from time t to time t+1, At+1 , can be written as

Xt+1 = At+1 Xt (8)

where the ijth element of At+1, aij,t+1, is the contribution of a person in state j at time t to
the number of persons in state i at time t+1. (As is conventional, subscripts are used for
discrete functions of time. Thus X(t) denotes the continuous solution matrix at time t,
while Xt denotes the corresponding discrete solution.) The uniqueness of each
population projection matrix follows from the choice of a specific solution matrix in
equation (4).

Let each population projection matrix At+1 be primitive, i.e. be a nonnegative
matrix that has only positive elements when raised to a sufficiently high power. Since
population projection matrices with more than a single reproductive age class are
primitive, the primitivity requirement is quite weak (Caswell, 1989, pp. 58-59). In
addition, let there be a p>0 such that any product of length p of matrices drawn from the
set of population projection matrices (with repetitions allowed) be strictly positive.
Then that sequence of population projection matrices constitutes an ergodic set (cf.
Caswell, 1989, Ch. 8), and weak ergodicity applies. In other words, after a sufficiently
long period of time, the composition of the population depends only on the sequence of
population projection matrices, and is independent of the original composition of the
population. Weak ergodicity is an asymptotic concept, as is the strong ergodicity that
underlies stable population theory. Following the practice common to many
demographic analyses, this paper emphasizes those times when the structure and
behavior of the population can be considered independent of initial conditions.

The related product matrix Mt,s is given by
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Mt,s = At+s At+s-1 ... At+1   (9)

As a result, equations (5), (8), and (9) yield

M t,s = Xt+s Xt
-1

        = Wt+s ( Lt+s Lt
-1) Wt

-1 (10)

At large s, weak ergodicity comes into play, Mt,s asymptotically becomes a rank one
matrix, and the state composition of the model can be described by the first column of
Wt+s. For convenience, when M is rank one, or sufficiently close to rank one so that the
difference can be disregarded, the model will be described as being in a “long term
state”.

Equation (6) is not a new relationship (e.g. it appeared in Gantmacher, 1959,
Vol. II, Ch. XIV), but it has important implications that have not been fully appreciated
by demographers. To begin, it indicates that W(t) can be viewed as the composition
matrix for the “latent” stable population at time t. Specifically, consider the case where
W’(t) is a matrix of zeros. Then equation (6) indicates that W(t) is the eigenvector
matrix of µ(t) and L(t) is the eigenvalue matrix of µ(t). If the population is in a long
term state at time t (i.e. its relative state composition is described by the first column of
W(t) ), then it immediately behaves as if it were a stable population based on the rates
of time t. Now using ν  (the Greek letter nu), let us define matrix (t) by

( ) ( ) ( ) -1t t t= (t)W R W (11)

Matrices W(t) and L(t) represent the eigenstructure of (t) . At any time, (t) can be

deemed the matrix of latent rates, because if the population is in a long term state at
time t and its composition (i.e. W(t) ) and growth (i.e. L(t) ) do not change over any
arbitrarily short period of time, then the population’s composition and growth
immediately become identical to that of the stable population specified by (t) .

This discussion applies to the consequences of long term exposure to essentially
any arbitrary set of demographic population projection matrices, A, where the
underlying system is governed by the related time varying instantaneous rate matrices
µ. Equation (6) thus implies that W(t), which reflects the long term state composition of
any population at time t, is specified by the rates at that one instant and how the
composition is changing at that instant. There need be no explicit consideration of the
effects of previous rates on state composition. Analytically, it is generally not possible
to specify W(t) or (t) from µ(t) because it is generally not possible to solve
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differential equation (1). Conceptually, however, it is important to recognize that
equation (6) shows how a solution to equation (1) specifies how current composition
can be expressed solely in terms of current conditions, and how any population is only
an instant away from achieving stability based on its latent rates. In complex feedback
models, it may be impossible to accurately determine the state of the model at future
times, but it may still be possible to relate model structure to model behavior at any
specific time.

2.2 Telescoping Form

Equation (10) expresses product matrix Mt,s in terms of W and L at times t and t+s
only. In the multiplication of the At+j matrices, values at the intermediate times drop out,
and the expression “telescopes”. Accordingly, let us use the term “telescoping form” to
refer to that way of expressing A or M. Writing a given sequence of population
projection matrices in telescoping form requires the matrices W and L, and thus gives a
discrete approximation to the solution of differential equation (1). When the sequence
of W and L matrices is known, the product of any number of consecutive A matrices
can be found without having to resort to interval by interval multiplication.

Any given sequence of population projection matrices A1 to At can be written in
terms of W and L matrices, but the solution is not unique and the process can be
somewhat laborious. To write a sequence of A’s in telescoping form, start by
calculating M0,t from the At by direct multiplication. Stop when M becomes sufficiently
close to a rank one matrix, i.e. can be adequately expressed as

0,t t t =   T
0M w v�

where �t is a scalar, wt an (n x 1) column vector, and v0
T a constant (1 x n) row vector.

Now let the elements of v0
T be the elements of the first row of W0

-1. (If the sequence is
short and M0,t is not essentially a rank one matrix, let the first row of W0

-1 be the same
as the dominant left eigenvector of M0,t ). The remaining elements of W0

-1 can be
chosen arbitrarily, hence the lack of uniqueness. Using the matrix relationship

A1 W0 = W1 L1

that follows from equation (10), the elements of W1 and L1 can be found from A1 and
W0. With W1 known, that relationship can be used to find W2 and L2, and so on. The
procedure works because the correct v0

T emerges as M approaches rank one. The long
term values of wt reflect the elements of the first column of Wt, and are unique.
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3. Relating Observed and Latent Rates

In general, a closed form solution to differential equation (1) is not possible for any set
of time varying transfer rates µ(t). However, a closed form solution is possible when the
latent rates (t) are known in functional form. In that case, W(t) and L(t) can be found

by determining the eigenstructure of (t) , and the solutions X(t) follow from equation

(5). With W(t) a known, differentiable function, µ(t) follows from equation (6).
The relationship between (t) and µ(t) can readily be expressed explicitly when

there are only two living states. Let the matrix of latent rates be

a(t) b(t)
(t)

c(t) d(t)

 
=  

 
(12)

where differentiable functions a(t), b(t), c(t), and d(t) are known. Analogously, the rate
matrix is

a *(t) b*(t)
(t)

c*(t) d *(t)

 
=  

 
(13)

where we need to determine the asterisked functions. (In the rest of this section, the
time index is suppressed to simplify the notation.) Following the solution procedure
described above, we find

a* a

b* b

=
=

22

(a d) bc
c* c 1 D ln

(a d)(a d) 4bc

  − = +  − − +     
[ ] [ ]2

2

(a d) D1n (a d) / b 2bc D1n c / b
d* d

(a d) 4bc

− − +
= +

 − + 
(14)
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where “D ln” indicates the time derivative of the natural logarithm of the bracketed
function immediately following. The first row of  remains unchanged, while the

remaining elements are modified by the latent rate functions and their derivatives. 
The three functions differentiated in equation (14) are simple combinations of two

expressions, (a d)/b− and (a d)/c− . The key latent rate relationships that determine

changes in state composition are thus the sizes of the latent interstate transfer rates
relative to the difference between the two diagonal elements.

The relationship between  and µ can vary over time in complex ways, and those
patterns need to be explored in greater depth. To the extent that  can be a proxy for µ,
or that it is reasonable to express demographic changes in terms of , the differential
equation underlying the dynamic multistate model can be solved in closed form and the
related sequence of population projection matrices can be written in telescoping form.

4. Explicit Solutions for Special Cases of the Rate Matrix

Differential equation (1) is soluble in closed form when rate matrix µ can be written in
one of two special forms.

4.1 Proportional Eigenvector Form

This is the case discussed in some detail in Schoen and Kim (2000). The key
assumption is that matrix W can be written as

W(t) = H(t) C (15)

where H(t) is an n x n diagonal matrix with h1(t)=1 and with its jth diagonal element
denoted by hj(t), and C is a constant n x n matrix whose first row and first column
elements are equal to one and whose ijth element is cij. Using equation (15), equation
(6) can be written

µ(t) = H(t) C R(t) C-1 H-1 (t) + H’(t) H-1(t) (16)

Here, all the derivatives are confined to the diagonal elements of µ(t). Using the
scalar equations implied by the off-diagonal elements, the (n-1) unknown values of hj(t)
and the n unknown diagonal elements of R(t) can be expressed in terms of the constant
elements of C and the known elements of µ(t). The unknown elements of C can then be
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found from initial conditions and the previously determined hj(t). The scalar solutions in
the n=2 case, given in Schoen and Kim (2000), are consistent with equation (14) when
the expression [bc/(a-d)2] is constant. Specifically

( ) ( ) ( ) ( )[ ]{ } 1/2

2 12 22 21
h t  = m t / c m t−

( ) ( ) ( ) ( ) ( ) ( ){ } 1/2

1 1 12 12 21 22
r t  = � ���� � ��� � � � � � �  −

( ) ( ) ( ) ( ) ( ) ( ){ } 1/2

2 1 12 12 21 22
r t  = � ���� � ��� � � � � � �  −
and

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( )1/2

2 21 1 12 22 12 21 22 2
� ��� � 	� � ��� � 
��� � � � � � � ����
�� �+ +−

(17)

where the last equation uses ( )
2

0   to find c22 and then determines ( )
2

t ; ( )j t  is

the instantaneous growth (i.e. birth minus death) rate in state j at time t; and

( ) ( )ij ji
m t = �  is the instantaneous rate of transfer from state i to state j at time t.

A previously unappreciated feature of the Proportional Eigenvector form is that it
reduces to the “fixed f” dynamic multi-age approach of Schoen and Kim (1994) and
Kim and Schoen (1996). From equations (10) and (15), a Proportional Eigenvector
population projection matrix can be written

At+1 = Ht+1 C ( Lt+1 Lt
-1) C-1 Ht

-1

Under the “fixed f” approach, the population projection matrix of a multi-age
population can be written

At+1 = Gt+1 F Gt
-1

Diagonal population matrix H is analogous to diagonal birth matrix G. With a time-
invariant growth matrix L, fixed matrix F is analogous to the constant product C ( Lt+1

Lt
-1) C-1. Thus the “fixed f” approach is identical to the Proportional Eigenvector form

combined with proportional eigenvalues.
With proportional eigenvalues, Proportional Eigenvector models demonstrate the

fixed proportional distribution of persons by origin state property that is characteristic
of “fixed f” models. Thus for every state j, there is a time invariant proportional
distribution of persons in state j at time t by state at time (t-1). For example, in a multi-
age model, there is a fixed proportional distribution of births by age of mother. That is
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often quite realistic, as when a population experiences a decline in fertility at older ages,
it is apt to have an offsetting increase in the population at those ages. The fixed f
assumption is stronger in a multi-age, multistate model because it implies a fixed
proportional distribution of births by both the age and state of the mother. Moreover,
the fixed proportional distribution assumption applies to every category of the model. In
an urban/rural model, for example, the number of persons in the urban (or the rural)
region at any time is composed of a fixed fraction who were in the urban region at the
previous time and a fixed fraction who were in the rural region at that previous time.
Neither the rates nor the composition is specifically constrained, but the resulting
population in each category has to have a fixed proportion of persons by their category
at the previous time.

Changes in rates are thus constrained by “destination based” criteria, not the purely
“origin based”, population-at-risk principle that is typically assumed to underlie
demographic behavior. Essentially, the destination based criteria emphasize the
attractiveness of a state as a destination, which is often very plausible in demographic
analysis. Migration rates are often viewed as strongly influenced by “pull” factors and,
as noted above, a fixed proportion of births by age of mother generally yields a very
reasonable fertility pattern. Although developed from a distinct line of research, the
Proportional Eigenvalue multistate solution generalizes the “fixed f” multi-age solution,
and thus builds on a demographically defensible behavioral assumption.

4.2 Additive Eigenvector Form

The key assumption underlying this solution is that matrix W can be written in the form

W(t) = G(t) + K (18)

where G(t) is an n x n matrix with ones in the first row and gj(t)=wj1(t) as the value of
all terms in the jth row, and K is a constant n x n matrix whose first row and first
column elements are equal to zero and whose ijth element is kij. When equation (18)
describes W(t), W’(t) W-1(t) is a matrix with zeroes everywhere except in the second
through nth elements of the first column. To solve, use the scalar equations implied by
the elements not involving derivatives to express the (n-1) unknown values gj(t) and the
n unknown diagonal elements of R(t) in terms of the elements of K and the known
elements of µ(t). The unknown elements of K can then be found from initial conditions
and the previously determined gj(t).

This solution is new. To show the equations when n=2, let us write µ(t) as
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1 12 21

12 2 21

(t) m (t) m (t)
(t)

m (t) (t) m (t)

ρ − 
=  ρ − 

 (19)

where again �j(t) is the instantaneous growth (i.e. birth minus death) rate in state j at
time t, and mij(t) is the instantaneous rate of transfer from state i to state j at time t. It is
convenient to write

( ) ( ) ( )1 12
t = � ��� �α

and ( ) ( ) ( )2 21
t = � ��� �β (20)

With the functional form of �(t) known [but not that of �1(t) and m12(t)], the solution is

( ) ( ) ( ) ( ) ( )[ ] ( )[ ]
( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

2 21 22 21 21

1 22 21

2 22 21

g t = w t = t t k m t / 2 m t

r t = t t k m t /2

r t = t t k m t /2

β α

β α

β α

− −

−+

+ +

and ( ) ( ) ( ) ( ) ( )( ) ( )[ ]21

2’
21 12 21w t = 4m t m t / 4 m tt tα β + −  (21)

where the last equation uses time 0 values of 
1
and 

12
m  to find 

22
k , and at other times

yields ( )1
�  and ( )12

m t  given ( )22
k t .

When the Additive Eigenvector form applies, equations (21) show that

( ) ( ) ( ) ( )1 2
=t t t tr  + r α β+ , or that the sum of ( )1

tr  and ( )2
tr  equals the sum of the

eigenvalues of µ(t). The solution in equations (21) is consistent with equation (14)
when d*=d. To date, no simple or heuristic description for the behavioral assumptions
underlying the Additive Eigenvector solution has been found.
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5. Explicit Solutions in Models of Particular Interest

The practical value of the latent rate and the two explicit solutions to equation (1)
described above has yet to be demonstrated. In this section, we examine four models
which suggest that those solutions have considerable analytical value.

5.1 Bridge Matrices

There has been a good deal of interest in the transition from stability to stationarity (e.g.
Keyfitz, 1971; Schoen and Kim, 1998), especially with regard to “momentum” or the
accompanying change in population size. A related question is how a population can
shift from stability under one set of rates to stability under another set of rates. To
examine such a shift, let behavior in the initial stable population be described by
population projection matrix A1 and behavior in the subsequent stable population be
given by A2, where those matrices can be written in eigenstructure form as

-1

j j j j=  A U � , j=1,2. To “bridge” from the first stable population to the second,

consider matrix -1

b 2 2 1=A U U . By the nature of its telescoping form, Ab transforms

the composition of the population from the first stable form to the second, as

-1

b 1 2 2 1 1=A A U U  . At the end of the “bridging” interval, the composition of the

population is that of the second stable form, and during the bridging interval, the
population grows according to the dominant eigenvalue of A2. In effect, bridge matrix
Ab causes the initial stable population to immediately start behaving as if it were the
second stable population.

For example, staying with the momentum theme, let the first and second
population projection matrices be simple 2x2 Leslie matrices of the form

j j
j

a b

1 0

 
=  

 
A (22)

Then the bridging matrix is given by

b b
b

a b

1 0

 
=  

 
A (23)
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where the first row bridging elements are given by

   
( ) ( )

( ) ( )

1/ 2
2 2

b 2 1 2 2 1 1

1/ 2
2 2

b 1 2 2 1 1

a (1/ 2)a (1/ 2)a a 4b / a 4b

b b a 4b / a 4b

= + + +

= + +

  

  

(24)

Given nonnegative elements in the population projection matrices being bridged, the
elements of the bridging matrix are also nonnegative, though they are not necessarily
between the values of the corresponding elements in A1 and A2. Thus if

1

.8 .5

1 0

 
=  

 
A

and

2

.6 .4

1 0

 
=  

 
A

then

b

.6447 .4308

1 0

 
=  

 
A

Since A2 is row stochastic, and thus a zero growth population projection matrix, the
number of births stops growing at the beginning of the bridging interval, and the
population attains its stationary composition at the end of the bridging interval. The
initial stable ratio of persons in the second age group to persons in the first age group is
.8248 to 1, which becomes 1 to 1 at the end of the bridging interval. Although there is
no growth in the number in the first age group, the Net Reproduction Rate is above
replacement during the bridging interval, i.e. it is .6447+(1)(.4308) = 1.0755. Because
bridging preserves the size of the initial population in the first age group, it leads to a
larger ultimate population than would result from the usual assumption of an immediate
drop in fertility to replacement level.
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The bridging approach, that is using the eigenstructure of an initial and a
subsequent population projection matrix to specify a transformation matrix in
telescoping form, can be a useful analytical device. It also reinforces the idea that any
dynamic population is continually bridging from one latent stable population to another.

5.2 An Asymptotically Stable Additive Eigenvector Model

In a two living state Additive Eigenvector model, let ( ) ( )t tβ α γ− = , where � is

constant over time. That is a reasonable constraint that keeps the diagonal elements, and
thus the rates of natural increase and the outflows from the two states, in balance. Now
assume that the rate of natural increase in state 1 remains constant at γ− , while the

transfer rate from state 2 to state 1 increases exponentially as ( ) -(1/2) t

21 21m t = M e γ .

From equations (18) - (21), it follows that

( ) ( ) ( )21 2 12m t = � � �+

and ( ) ( ) ( )22 12 21

1/ 2
t = -2 m t m tk /  

Thus while 
1
 remains constant, ( )2 � and the transfer rates can vary in a similar

fashion.
To illustrate such a model, let the transition rate matrix be given by

.002t .002t

.002t .002t

.004 .008e .01e
(t)

.008e .008e

 −
=  − 

Equations (18) - (21) indicate that
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and ( ) 1/ 2 .002

2
w .8t .2 te−= − −

The model is asymptotically stable, as eventually w1(t) becomes constant at .8½ (about
.8944). The transition is quite lengthy, however, and is still not complete after 1000
years (see Figure 1). The length of the transition is not related to the conventional speed
of convergence to stability, but rather to the (arbitrary) rate of change in the transition
rates (here e-.002t). The model thus describes dynamic relationships not previously
known, and affords a heretofore unavailable analytical platform for examining
asymptotic convergence to a stable state composition.

Figure 1: Relative State Composition (w1), Population Growth (r1), and a State-

Specific Rate of Natural Increase (�2) in a Two Living State Additive

Eigenvector Dynamic Model
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5.3 Two Basic Hierarchical Proportional Eigenvector Models

Equations (14) simplify when c(t)=0. Then a*(t)=a(t), b*(t)=b(t), c*(t)=0, and

d*(t) = d(t) + D ln[ {a(t)-d(t)}/b(t) ] (25)

The result is a hierarchical model, in that persons can move from state 2 to state 1, but
not from state 1 to state 2. Because c*(t)=c(t), it is a Proportional Eigenvector model as
well.

Hierarchical models arise naturally in demography. They include models whose
living states are parity status, never married and ever married, health and permanent
disability, and all other instances of irreversible transitions (including multi-age
models).

5.3.1 A Simple Model With Cyclical Interstate Transfer

To illustrate a basic dynamic hierarchical population, let a(t) = a*(t) = a, d(t) = d, and
b(t) = b exp[f ��
 �����������
���
��������� �������


d*(t) = d - b’(t)/b(t) = d - � ���� �

and we have

[ ]a bexp f sin t
(t)

0 d

ω 
=  

 
(26)

and

[ ]a bexp f sin t
(t)

0 d f cos t

ω
ω ω

 
=  − 

(27)

where for a demographically realistic two living state model we must have (d-� �)>a.
From the equations for the eigenstructure of , we have the eigenvector matrix
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[ ]
1 1

(t)
(d a)exp f sin t / b 0ω

 
=  − − 

W (28)

The eigenvalue matrix R(t) is a diagonal matrix whose (1,1) element is d and whose
(2,2) element is a. Using equation (7), the long term state product matrix, M0,t, can be
written

[ ] [ ]dt
0,t

1
e 0 b /(d a)

(d a)exp f sin t / bω
 

= − − − 
M  (29)

Let x0 = w0, where w0 is the (n x 1) column vector whose elements are those of the first
column of W0. That is, let x0 be the column vector whose first element is 1 and whose
second element is (d-a)/b. Then the long term size and structure of the model are given
by

[ ]

d t
t

1

e
d a

b exp f sin tω

 
 
 =
 −
 
  

x (30)

Because the rates of natural increase in both states are constant while b(t) varies
sinusoidally, population size oscillates around an exponentially increasing trajectory,
��������������������������
���������� ����!������������"�� ��	� � �#����$�%&"�����
�'�
��%��� ���"�� �	���
(�� �	�
)��  	���(�� 	�
�� �
 � �	�
(*�� +�� ��&�� ��,�� �� ���������!
specified dynamic model with not quite stable growth and a state composition that
varies over time.
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Figure 2: Relative State Composition (w1) and Total Population Size (N) for a
Hierarchical Two Living State Proportional Eigenvector Model
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a b

(t)
d cos t

0 dsin t
d sin t a

ω ωω
ω ω

 
 
 =
 

+ − 

(32)

$�"���"��������������������� �����
 ��������
���
��� �� ����
 ��.�������&�����,��� ���
Taking x0 = w0, the long term size and structure of the model are given by

d (1 cos t ) /
t

1
e

(d sin t a ) / b
ω ω

ω
−  

=  − 
x  (33)

Thus when one rate of natural increase is cyclical, both the rate of growth and the state
composition vary sinusoidally over time. Figure 3 illustrates the size and composition
of the population when a=-��/�� �	���(��  	������ �
 � 	�
��0���� �!���� ����� ���� ����
periodicity, but they differ a bit in phase and a good deal in amplitude.

The relationships in this section are new, and support the belief that the ability to
express time varying population behavior in terms of closed form equations can lead to
informative models. Combining cycles can produce any pattern, and cyclical rates are
more realistic than fixed rates. Having a closed form dynamic model allows all of the
relationships in the model to be clearly specified, and facilitates sensitivity analyses.
Starting from any initial population, the size and structure of a multistate population at
any time can be determined analytically, without performing complex calculations or
multiplying a series of population projection matrices.
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Figure 3: Relative State Composition (w1) and Total Population Size (N) for a
Cyclical Hierarchical Two Living State Model

6. Summary and Conclusion
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demographic rates to vary over time. Because the dynamic multistate model is
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possible, but one can find the observed rates when the latent rates are known in
functional form.

A solution to differential equation (1) is possible in two special cases. Those
circumstances, one of which was not previously recognized, are discussed in some
detail. Examples utilizing those solutions suggest that they offer a promising basis for
empirical and analytical investigations.

In short, closed form dynamic multistate models are both possible and analytically
tractable. Dynamic models are the next logical step beyond fixed rate stable models,
and multi-age models can be seen as just a special case of multistate models. Rather
than the unchanging stationary population of the life table, cyclical populations can
emerge as a natural context for long term demographic analysis. Formal demography
needs to move beyond the fixed rate assumption to capture changing relationships in a
dynamic world.

Changes

On 07 January 2002, per request of the author, these three changes were made.

1) on page 171 this sentence was deleted following equation (17):  Although not
pointed out in Schoen and Kim (2000), the Proportional Eigenvector solution can be
generalized. It applies not only when matrix C is a constant, but when C is any known,
differentiable function of time.

2) on the same page the word “second” was deleted from the paragraph:  A (second)
previously unappreciated feature of the Proportional Eigenvector form is that it reduces
to the “fixed f” dynamic multi-age approach….

3) on page 173 the following paragraph was deleted from the bottom of the page:  The
Additive Eigenvector solution can also be used when K is a known function of time.

For example, when n=2, assuming that ( ) ( )[ ]1 2
t tr  + r =  is constant over time is

equivalent to assuming that ( ) ( ) ( )22 21 21���w t w t t= − . Differential equation (1)

can then be solved explicitly when the functional form of ( )21
m t is known (and

differentiable).
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