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Abstract

We take a game-theoretic approach to the analysis of juries by
modelling voting as a game of incomplete information. Rather than
the usual assumption of two possible signals (one indicating guilt, the
other innocence), we allow jurors to perceive a full spectrum of signals.
Given any voting rule requiring a fixed fraction of votes to convict, we
characterize the unique symmetric equilibrium of the game, and we
consider the possibility of asymmetric equilibria: we give a condition
under which no asymmetric equilibria exist and show that, without
it, asymmetric equilibria may exist. We offer a condition under which
unanimity rule exhibits a bias toward convicting the innocent, regard-
less of the size of the jury, and we exhibit an example showing this
bias can be reversed. And we prove a “jury theorem” for our general
model: as the size of the jury increases, the probability of a mistaken
judgment goes to zero for every voting rule, except unanimity rule;
for unanimity rule, we give a condition under which the probability of
a mistake is bounded strictly above zero, and we show that, without
this condition, the probability of a mistake may go to zero.



1 Introduction

Consider a group of decision-makers who must choose one of two alterna-

tives. Voters agree on the overall objective, but, on the basis of differential

information, they may disagree on which alternative best achieves that goal.

Some examples are:

• A jury deciding whether to convict or acquit a defendant. Jurors agree

about the desirability of acquitting an innocent and convicting a guilty

defendant, but they have different opinions about whether the defen-

dant is innocent or guilty.

• The board of directors of a company deciding whether to approve a

new investment project. All members of the board agree on the desir-

ability of higher profits, but they disagree about whether the project

is profitable.

• A group of medical experts deciding on a treatment for a patient. The

common objective is the patient’s health, but there is disagreement

about the best procedure for the patient.

Though such examples are necessarily special, in that they presume a com-

mon objective shared among the decision-makers, they have provided a use-

ful benchmark for the investigation of information aggregation in collective

decision-making.

We follow an old literature on information aggregation in elections by fo-

cusing on the jury example. The literature traces back to Condorcet’s (1785)

jury theorem, which asserts that, under majority voting, large electorates

should reach correct decisions with very high probability (cf. Miller (1986),

Grofman and Feld (1988), Young (1988), Ladha (1992), Berg (1993)). It is

traditionally assumed that each voter simply behaves “naively,” as if deciding

the outcome alone, but Austen-Smith and Banks (1996) observed that, given

naive behavior on the part of jurors, some may have an incentive to vote

“strategically.” In other words, naive behavior does not generally constitute

an equilibrium. The issue of strategic voting under incomplete information

was also taken up by Feddersen and Pesendorfer (1996, 1997). We follow

subsequent papers in analyzing voting in juries as a Bayesian game in which
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the jurors’ opinions of guilt or innocence, i.e., their “signals,” are private

information.

Several versions of the jury theorem under strategic voting have been of-

fered. Myerson (1998) introduces uncertainty about the size of the electorate

and considers a countable set of players’ types (signals), where the number

of voters receiving any given signal is drawn from a Poisson distribution, the

mean of which depends on guilt or innocence. He proves the existence of a

sequence of equilibria that generate the results of Condorcet’s jury theorem

as the expected number of jurors goes to infinity. Wit (1998) shows that,

in the Austen-Smith and Banks model, the non-trivial equilibria of the vot-

ing game corroborate Condorcet’s jury theorem. More generally, McClennan

(1998) proves that, given any voting rule, there is at least one equilibrium

that maximizes the ex ante payoffs of jurors over the class of all symmetric

strategy profiles. Since naive voting is a symmetric strategy profile, each ju-

ror’s payoff from that optimal equilibrium strategy profile is at least equal to

the payoff from voting naively. As a consequence, if Condorcet’s jury theorem

holds under naive voting, then it will also hold in the optimal equilibrium. If

there are no other equilibria, then, of course, the jury theorem is completely

robust to the strategic incentives of the jurors.

Feddersen and Pesendorfer (1998) analyze a model in which there are

two possible signals, one indicating guilt and the other innocence. Given any

voting rule requiring a fixed fraction of votes to convict, they are able to

explicitly solve for the unique symmetric, responsive Bayesian equilibrium of

the voting game. They show that a jury theorem holds for all voting rules

other than unanimity: as the size of the jury increases, the probability of a

mistaken judgment goes to zero for all voting rules except unanimity; in that

case, the probability of a mistake is bounded strictly above zero. Fedder-

sen and Pesendorfer (1998) also give an example comparing different voting

rules for a fixed jury size: there, the probability of convicting an innocent

defendant under unanimity rule is greater than the probability under ma-

jority or any other supermajority rule. McKelvey and Palfrey (1998) offer

experimental results on the “binary signal” model roughly consistent with

the equilibrium predictions.

We depart from the previous literature on juries by assuming that the

signals representing the jurors’ opinions of guilt or innocence are drawn
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from continuous, rather than discrete (usually binary), distributions. This

is meant to capture the fact that a juror’s opinion of the evidence against

the defendant, the case made by the prosecutor, etc., may reflect a very

rich spectrum of possibilities — possibilities that cannot be summarized by

a dichotomous signal merely indicating guilt or innocence. We impose very

few restrictions on the distributions of signals, and we obtain a continuous

analogue of the binary signal model as a special case. Unlike Feddersen

and Pesendorfer (1997), we confine our attention to the case in which the

objectives of the jurors are perfectly aligned. Within this framework, we

investigate the issues of equilibrium existence and uniqueness, the general-

ization of Feddersen and Pesendorfer’s (1998) jury theorem, as well as the

extension of their results on the inferiority of unanimity rule.

We offer three sets of results. First, we establish the existence of a sym-

metric, responsive equilibrium characterized by a cutoff signal: jurors who

get signals indicating a higher likelihood of guilt vote for convicting the de-

fendant while those who get signals indicating a lower likelihood vote for

acquittal. The equilibrium is unique within that class. Moreover, under a

strict monotone likelihood ratio condition, all equilibria are cutoff equilibria;

as a consequence, our uniqueness result extends to the class of all symmet-

ric, responsive strategy profiles, even allowing for mixed strategies. With

McClennan’s (1998) result, this implies that the equilibrium is optimal: it

maximizes the jurors’ ex ante payoffs over the set of symmetric strategy pro-

files. An undesirable artifact of the binary signal model of Feddersen and

Pesendorfer (1998), and of the continuous version we consider, is that the

typical juror who votes to acquit must use mixed strategies and is, therefore,

indifferent between voting to acquit or convict. When continuous distribu-

tions are allowed for, that need no longer be the case. Indeed, under the strict

monotone likelihood ratio condition, all equilibria are essentially strict: only

a juror who receives the cutoff signal (a zero probability event) is indifferent

to which vote he casts.

Second, we turn our attention to unanimity rule and give a sufficient con-

dition for the symmetric, responsive cutoff equilibrium to be unique within

the class of all (possibly asymmetric) responsive strategy profiles. We then

give a sufficient condition for unanimity rule to exhibit a bias toward con-

victing the innocent, independently of the size of the jury. This condition
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is met in our continuous version of the binary signal model, with the fol-

lowing implication: unanimity rule leads to a higher probability a convicted

defendant is innocent than does majority or any other supermajority rule.

Thus, we find that Feddersen and Pesendorfer’s (1998) fixed jury size example

generalizes within the binary signal model. However, it does not generalize

completely: we provide an example of a continuous signal model in which

unanimity rule performs better than simple majority rule. We then we turn

to the asymptotic behavior of unanimity rule and find, in contrast to Fed-

dersen and Pesendorfer (1988), that our conclusions depend on the structure

of information in the model: the probability of making a mistake is bounded

strictly above zero if the likelihood of innocence is bounded over the interval

of possible signals; otherwise, as illustrated by an example, it is possible that

the probability of a mistaken judgment goes to zero as the size of the jury

increases.

Third, we obtain a jury theorem for the general continuous signal model:

for all voting rules other than unanimity, the probability of a mistaken judg-

ment goes to zero as the size of the jury increases. The asymptotic efficiency

of all non-unanimous voting rules is fully general, and not merely an artifact

of the binary signal model. Under stronger informational assumptions than

those of our model, but still assuming continuous signals, Meirowitz (1999)

establishes existence and uniqueness of symmetric equilibria and also proves

a jury theorem for non-unanimous voting rules. As he notes, an implication

is that large juries perform better than single jurors under strategic voting,

a result obtained by Condorcet (1985) under naive voting.

We leave many important issues untouched. One is the extension of

our results to situations in which the jurors’ preferences are not perfectly

aligned, a necessary step in order to use the continuous signal model in

other voting contexts. Under slightly stronger informational assumptions

than ours, Li, Rosen, and Suen (1999) take up this issue in a continuous

signal model with two jurors. Some other issues are: correlation among the

jurors’ signals, multiple “states,” and multiple alternatives. Furthermore, we

have not considered the optimality of different voting rules, an important but

apparently difficult mechanism design issue. Finally, there is the possibility

of limited communication among jurors. As stressed by Coughlan (1997), a

single nonbinding “straw vote” is enough to allow jurors to share all their

4



information in the binary signal model, thus eliminating the strategic aspects

of voting in a common preference environment. In general, a finite number

of “straw votes” is enough to allow jurors to share all their information if the

distribution of signals is discrete. But, when the opinions of jurors can reflect

subtle nuances of trials, a continuous distribution of signals seems better

suited to model the difficulties associated with limited communication.

2 Preliminaries

We consider n ≥ 2 jurors who must decide whether to convict or acquit a

defendant. The defendant is either innocent, I, or guilty, G, with probabili-

ties P (I) and P (G). Each juror i receives a real-valued signal si distributed

according to F (·|I) or F (·|G), depending on whether the defendant is inno-

cent or guilty. Conditional on the state, the signals of the jurors are drawn

independently. After receiving their signals, which are private information,

the jurors simultaneously vote to convict or acquit. Once the votes are tal-

lied, the defendant’s fate is determined by an anonymous, monotonic decision

rule, i.e., there is some integer, k, such that the defendant is convicted, C, if

k or more jurors vote to convict and acquitted, A, otherwise.

We assume the jurors have a common preference to convict the guilty and

acquit the innocent. We assume that these outcomes are equally desirable

and normalize the jurors’ payoffs in those cases to u(C|G) = u(A|I) = 0.

In the cases of convicting the innocent or acquitting the guilty, the jurors

receive negative payoffs u(C|I) and u(A|G). In effect, the ex ante cost of

conviction is u(C|I)P (I), and the cost of acquittal is u(A|G)P (G). We use

ρ =
u(A|G)

u(C|I)

P (G)

P (I)

to denote the relative ex ante cost of acquittal.

A strategy for juror i is a measurable mapping σi : < → [0, 1], where

σi(si) is the probability that the juror votes to convict after receiving signal

si. The probability that i votes to convict, conditional on the defendant

being innocent, is ∫
σi(s)µI(ds),
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where µI is the probability measure induced by F (·|I). The probability

that i votes to convict conditional on guilt is identical, except that µG, the

probability measure induced by F (·|G), is used. Probabilities of acquittal

are written similarly, but integrating 1− σi rather than σi.

A profile of strategies is denoted σ = (σ1, . . . , σn). Given σ, the proba-

bility that the defendant is convicted conditional on being innocent, denoted

Pσ(C|I), is∑
M⊆N
|M |≥k

[
Πj∈M

(∫
σj(s)µI(ds)

)
Πj /∈M

(∫
[1− σj(s)]µI(ds)

)]
.

The probability that the defendant is acquitted conditional on being guilty,

denoted Pσ(A|G), is∑
M⊆N
|M |<k

[
Πj∈M

(∫
σj(s)µG(ds)

)
Πj /∈M

(∫
[1− σj(s)]µG(ds)

)]
.

The ex ante payoff of a juror is

u(C|I)Pσ(C|I)P (I) + u(A|G)Pσ(A|G)P (G).

Let σ−i represent the strategies of jurors other than i. The probabilities that

i is pivotal conditional on innocence and guilt, Pσ−i(piv|I) and Pσ−i(piv|G),

are defined as∑
M⊆N
|M |=k−1
i/∈M

[
Πj∈M

(∫
σj(s)µI(ds)

)
· Πj /∈M

j 6=i

(∫
[1− σj(s)]µI(ds)

)]

and ∑
M⊆N
|M |=k−1
i/∈M

[
Πj∈M

(∫
σj(s)µG(ds)

)
· Πj /∈M

j 6=i

(∫
[1− σj(s)]µG(ds)

)]
,

respectively.
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Using the above definitions, we can obtain an expression for a juror’s

payoff in terms of his probability of being pivotal. It translates to our frame-

work the insight from the literature on strategic voting that a voter should

condition his vote on being pivotal, as this is the only event where his vote

might affect his payoff.

Proposition 1 Given σ−i, the ex ante payoff to juror i from σi is an affine

transformation of(∫
σi(s)µI(ds)

)
u(C|I)Pσ−i(piv|I)P (I)

−
(∫

σi(s)µG(ds)

)
u(A|G)Pσ−i(piv|G)P (G).

The proof of this (and other auxiliary results) is found in the appendix.

An equilibrium is a profile σ such that, for every juror i and every σ′i,

u(C|I)Pσ(C|I)P (I) + u(A|G)Pσ(A|G)P (G)

≥ u(C|I)Pσ′i,σ−i(C|I)P (I) + u(A|G)Pσ′i,σ−i(A|G)P (G).

A responsive equilibrium is an equilibrium σ such that each σi is responsive:

0 <

∫
σi(s)µG(ds) < 1 and 0 <

∫
σi(s)µI(ds) < 1.

There are always unresponsive equilibria: if k < n, it is an equilibrium for

the jurors to convict regardless of their signals; if k > 1, it is an equilibrium

acquit regardless of signal. A cutoff equilibrium is a pure strategy equilibrium

σ such that each σi is a cutoff strategy: there is some si ∈ [−∞,∞] such that

σi(s) =

{
1 if s > si
0 if s < si

for all s ∈ <. The cutoff strategy associated with a given cutoff is unique up

to the behavior of the juror upon receiving the cutoff signal. Given assump-

tion (A1), below, this is a zero-probability event, and we will not distinguish

between cutoff strategies that differ only at the cutoff.

In what follows we maintain several assumptions on F (·|I) and F (·|G)

that, as we will see, enable us to restrict our attention to cutoff equilibria.
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(A1) The distribution functions are absolutely continuous with respect to

Lebesgue measure and have piecewise continuous densities f(·|I) and

f(·|G).

This assumption implies that the distribution functions are differentiable at

all but a finite number of points. We will use Sd to denote the subset of

signals in S on which F (·|I) and F (·|G) are both differentiable.

(A2) The densities have common support, S = (S, S), where S, S ∈ [−∞,∞]:

in particular, f(s|I) > 0 and f(s|G) > 0 for all s ∈ S.

The latter implies that µI and µG have the same sets of measure zero. The

terms “µI-a.e.” and “µG-a.e.” are thus synonymous, so we can use “a.e.”

without ambiguity. Note that a cutoff strategy given by si is responsive if

and only if si ∈ S.

(A3) The likelihood ratio, f(s|I)/f(s|G), is weakly decreasing on S.

This assumption is standard and amounts to assuming that higher signals

are stronger (or at least not weaker) indications of guilt. Sometimes we will

want a stronger condition to hold locally: we will say that the likelihood

ratio is locally strictly decreasing at x ∈ S if there is an open set containing

x on which the likelihood ratio is strictly decreasing.

(A4) lims↓S
f(s|I)

f(s|G)
> ρ > lims↑S

f(s|I)

f(s|G)
.

As we will see, a juror who behaves “naively” (i.e., as if his vote alone de-

termines the outcome) after receiving signal s would prefer to convict if

f(s|I)/f(s|G) > ρ and would prefer to acquit if f(s|I)/f(s|G) < ρ. Thus,

(A4) implies that there must be a signal low enough to induce a naive juror

to acquit, and a signal high enough to induce him to convict.

Lemma 0, stated in the appendix, establishes some implications of (A1)–

(A4). Among those that are well-known, F (·|G) exhibits (strict) first order

stochastic dominance over F (·|I), and the ratios

1− F (s|I)

1− F (s|G)
and

F (s|I)

F (s|G)

are weakly decreasing.
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3 Symmetric Equilibria

Consider any profile σ of responsive strategies and any juror i. Since the

strategies are responsive, Pσ−i(piv|G) and Pσ−i(piv|I) are positive. Hence,

under our assumptions the expression

J(σ−i, s) =
Pσ−i(piv|I)

Pσ−i(piv|G)

f(s|I)

f(s|G)
− ρ

is well-defined on S. Moreover, for fixed σ−i, it is weakly decreasing in its

second argument by (A3). Note that J(σ−i, s) > 0 if and only if

u(C|I)Pσ−i(piv|I)f(s|I)P (I) < u(A|G)Pσ−i(piv|G)f(s|G)P (G).

That is, J(σ−i, s) > 0 if and only if a juror’s expected payoff from voting to

convict is less than the expected payoff from voting to acquit, conditional

on receiving signal s and on the strategies of others. Hence, as shown in the

following lemma, jurors will be inclined to acquit when J is positive and to

convict when it is negative. In contrast, a naive juror would behave as if the

terms Pσ−i(piv|I) and Pσ−i(piv|G) were equal to one, voting to acquit if

u(C|I)f(s|I)P (I) < u(A|G)f(s|G)P (G)

and to convict if the inequality is reversed.

Lemma 1 Given responsive strategies σ−i for jurors other than i, a strategy

σi is a best response for i if and only if it satisfies the following a.e.:

σi(s) =

{
1 if J(σ−i, s) < 0
0 if J(σ−i, s) > 0.

If the likelihood ratio is locally strictly decreasing at inf{s ∈ S | J(σ−i, s) ≤
0}, σi is a best response for i if and only if it is equivalent a.e. to the

following cutoff strategy σ̃i:

σ̃i(s) =

{
1 if J(σ−i, s) ≤ 0
0 else. 2
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Since J is weakly decreasing in its second argument, an implication of the

first part of the preceding lemma is that jurors always have best response

cutoff strategies. Hence, if a profile of strategies is an equilibrium when

jurors are restricted to cutoff strategies, it will be an equilibrium of the

unrestricted game. From the second part of the lemma, if the likelihood

ratio is strictly decreasing, then all best responses for a juror are equivalent

to cutoff strategies, regardless of the strategies of others, and all equilibria

are equivalent to cutoff equilibria.

When all jurors other than i use the same cutoff strategy, given by cutoff

s, we will write J(s, s) for J(σ−i, s). That is,

J(s, s) =

(
1− F (s|I)

1− F (s|G)

)k−1(
F (s|I)

F (s|G)

)n−k
f(s|I)

f(s|G)
− ρ.

We will often focus on symmetric profiles of cutoff strategies, in which case

we view J as a mapping defined on S × S. We have already noted that J

is weakly decreasing in its second argument. The following lemma further

characterizes J for the case in which the jurors use the same cutoff strategy.

Lemma 2 J is continuous and weakly decreasing in its first argument. In

addition,

lims↓S J(s, s) > 0 and lims↑S J(s, s) < 0,

and thus s∗ = inf{s ∈ S | J(s, s) ≤ 0} ∈ S. Finally, J(s, s) = 0 has at most

one solution. 2

The following theorem establishes existence of a symmetric, responsive

cutoff equilibrium and uniqueness within the class of symmetric, responsive

cutoff profiles. If the likelihood ratio is strictly decreasing, there are no non-

cutoff symmetric, responsive equilibria.

Theorem 1 There exists a symmetric, responsive cutoff equilibrium with

cutoff given by s∗ = inf{s ∈ S | J(s, s) ≤ 0}. It is unique within the class of

symmetric, responsive cutoff profiles. If the likelihood ratio is locally strictly

decreasing at s∗, then this equilibrium is unique a.e. within the class of all

symmetric, responsive profiles. 2
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Proof By Lemma 1, s∗ defines a symmetric, responsive cutoff equilibrium

if and only if s∗ ∈ S, J(s∗, s) ≥ 0 for all s < s∗, and J(s∗, s) ≤ 0 for

all s > s∗. The first condition, that s∗ ∈ S, follows directly from Lemma

2. Take any s < s∗ and suppose J(s∗, s) < 0. Since J is continuous in

its first argument, by Lemma 2, there is some ε > 0 such that s∗ − ε > s

and J(s∗ − ε, s) < 0. Since J is weakly decreasing in its second argument,

J(s∗ − ε, s∗ − ε) < 0, contradicting our definition of s∗. Therefore, s < s∗

implies J(s∗, s) ≥ 0. Now take any s > s∗ and suppose J(s∗, s) > 0. Since J

is continuous in its first argument, there is some ε > 0 such that s∗ + ε < s

and J(s∗ + ε, s) > 0. Since J is weakly decreasing in its second argument,

J(s∗ + ε, s∗ + ε) > 0. Since J is also weakly decreasing in its first argument,

by Lemma 2, J(ŝ, ŝ) > 0 for all ŝ < s∗+ ε, contradicting the definition of s∗.

Therefore, s > s∗ implies J(s∗, s) ≤ 0, giving us the first part of the theorem.

To prove the second part of the theorem, consider any s′ ∈ S such that

J(s′, s) ≥ 0 for all s < s′ and J(s′, s) ≤ 0 for all s > s′. If s′ < s∗, take ε > 0

such that s∗−ε > s′. Then J(s′, s∗−ε) ≤ 0. Since J is weakly decreasing in its

first argument, by Lemma 2, J(s∗−ε, s∗−ε) ≤ 0, contradicting our definition

of s∗. If s′ > s∗, take ε > 0 such that s∗ + ε < s′. Then J(s′, s∗ + ε) ≥ 0.

Since J is weakly decreasing in its first argument, J(s∗ + ε, s∗ + ε) ≥ 0.

Since J is weakly decreasing in its second argument as well, J(s, s) ≥ 0 for

all s < s∗ + ε. But J(s, s) = 0 has at most one solution, by Lemma 2, so

J(s, s) > 0 for all s < s∗ + ε, contradicting our definition of s∗.

To prove the third part of the theorem, assume that the likelihood ratio

is locally strictly decreasing at s∗. In any symmetric, responsive equilibrium,

the jurors use the same best response strategy. By Lemma 1, this strategy

is equivalent a.e. to a cutoff strategy, and we just proved uniqueness within

the class of symmetric, responsive cutoff profiles. �

A comparative statics result is immediate: since J(s, s) is weakly decreas-

ing in s, s∗ is weakly decreasing in ρ. Intuitively, if the relative probability

of guilt becomes higher, or if the relative cost of acquittal becomes higher, s∗

tends downward. Each juror’s probability of voting to convict tends upward

accordingly.

It is easily checked that, as long as S, S ∈ <, there is a symmetric strategy

profile that maximizes the ex ante payoff of the jurors among the class of

symmetric strategy profiles: we identify a symmetric strategy profile σ =
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(σ̂, . . . , σ̂) with a point σ̂ in the unit ball of L∞(S); endowing the unit ball

with the weak topology, the subset of strategies σ̂ : < → [0, 1] is compact,

and the jurors’ ex ante payoff is continuous in σ̂; therefore, an optimum

exists. Moreover, by (A4), the optimal symmetric strategy profile must be

responsive. Though McLennan (1998) considers a model with finite types,

the proof of his Theorem 2 uses only linearity of the jurors’ ex ante payoff

and translates directly to our model, with the conclusion that every optimal

symmetric strategy profile is an equilibrium. By Theorem 1, there is only one

such profile if the likelihood ratio is strictly decreasing, and it is the unique

symmetric, responsive cutoff equilibrium.

4 Examples

We give three examples to illustrate the general model developed above.

The first is a continuous analogue of the binary signal model of Feddersen

and Pesendorfer (1998), in which our pure strategy cutoff equilibria can be

interpreted as purifications of the mixed strategy equilibria of their model.

More generally, any discrete signal model could be matched with a continuous

analogue in a similar way. In the second example, the signals of the jurors are

exponentially distributed, a particularly tractable functional form: the ratio

of hazard rates is constant (a convenient property in later sections), and the

probabilities of convicting an innocent and of acquitting a guilty defendant

are positive and independent of the number of jurors under unanimity rule,

anticipating our result on the asymptotic inefficiency of unanimity rule under

certain conditions. In the third example, the signals of the jurors have a chi-

square distribution. Here, the probabilities of convicting an innocent and

of acquitting a guilty defendant converge to zero as the jury size increases,

anticipating a result on the asymptotic probability of convicting an innocent.

4.1 The Binary Signal Model

To define the binary signal model in our framework, let S = (0, 2),

f(s|I) =

{
p if 0 < s ≤ 1
1− p if 1 < s < 2,
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and

f(s|G) =

{
1− p if 0 < s ≤ 1
p if 1 < s < 2.

Obviously, the likelihood ratio is bounded over S. In order to satisfy (A3)

and (A4), we impose 1/2 < p < 1 and

p

1− p
> ρ >

1− p
p

.

It follows that

J(s, s) =



(
1− sp

1− s+ sp

)k−1(
p

1− p

)n−k+1

− ρ if 0 < s ≤ 1

(
1− p
p

)k (
s− 1− ps+ 2p

1 + ps− 2p

)n−k
− ρ if 1 < s < 2.

Note that J is weakly decreasing (strictly so if 1 < k < n), and that it is

discontinuous at s = 1. See Figure 1.

[Figure 1 about here.]

Recall that s∗ is defined in the previous section as inf{s ∈ S | J(s, s) ≤ 0}.
Since

J(1, 1) =

(
p

1− p

)n−2k+2

− ρ

lim
s↓1

J(s, s) =

(
p

1− p

)n−2k

− ρ,

we see that J(1, 1) ≥ 0 if and only if (1) k < n
2

+ 1 or (2) both k = n
2

+ 1

and ρ ≤ 1. And lims↓1 J(s, s) ≤ 0 if and only if (3) k > n
2

or (4) both k = n
2

and ρ ≥ 1. We conclude that s∗ < 1 if neither (1) nor (2) hold; s∗ > 1 if

neither (3) nor (4) hold; in those cases, s∗ is given by the unique solution to

J(s, s) = 0. In the remaining cases, s∗ = 1.

In particular, we note that if a supermajority is required to convict, then

s∗ < 1 necessarily; if a majority is required and ρ ≥ 1, again s∗ < 1. That

13



is, in equilibrium, jurors who receive some signals below one (indicating in-

nocence) will vote to acquit, while those who receive other signals above one

will vote to convict. Note also that s∗ = 1 holds if and only if either both

k = n
2

+1 and ρ < 1, or else both k = n
2

and ρ ≥ 1. Thus, it is an equilibrium

for jurors to “vote with their signals” only under majority rule (or close to

it) and then only for restricted ρ’s.

In the model of Feddersen and Pesendorfer (1998), jurors get one of only

two possible signals: a signal that innocence is likely, which occurs with

probability p if the defendant is innocent and with probability 1 − p if the

defendant is guilty, and a signal that guilt is likely, which occurs with the

same probabilities reversed. Our example replaces the innocence signal with

a continuum of signals from 0 to 1, and the guilt signal with a continuum of

signals from 1 to 2. Whereas jurors who receive the innocence signal in their

model vote to acquit with some probability, say a < 1/2, and to convict with

some probability 1− a, we partition (0, 1) into two intervals (0, a) and (a, 1);

jurors who receive signals in (0, a) vote to acquit, and those who receive

signals in (a, 1) vote to convict. Thus, the cutoff equilibrium in our version

of the binary signal model is a purification of the mixed strategy equilibrium

in their model.

Theorem 1 guarantees existence of a symmetric, responsive cutoff equilib-

rium and uniqueness within that class; but because the likelihood ratio is not

anywhere locally strictly decreasing in the continuous version of the binary

signal model, the theorem does not guarantee uniqueness within the larger

class of all symmetric, responsive profiles. Indeed, because jurors who receive

signals between 0 and 1 are indifferent between voting to convict and voting

to acquit, there is a continuum of symmetric, responsive non-cutoff equilib-

ria: we could specify any subset of (0, 1) with Lebesgue measure a and have

jurors receiving signals therein vote to acquit, jurors receiving other signals

vote to convict.

Before leaving the binary signal model, we calculate the hazard rates

f(s|I)

1− F (s|I)
=

{ p
1−sp if 0 < s ≤ 1
1

2−s if 1 < s < 2

and

f(s|G)

1− F (s|G)
=

{ 1−p
1−s+sp if 0 < s ≤ 1
1

2−s if 1 < s < 2.

14



Thus, the ratio of the hazard rate when innocent to the hazard rate when

guilty increases from p/(1 − p) at s = 0 to (p/(1 − p))2 at s = 1, and then

drops to one for 1 < s < 2.

4.2 The Exponential Model

To define the exponential model, let S = (0,∞), f(s|I) = λe−λs, and f(s|G) =

γe−γs. Again, the likelihood ratio is bounded. In order to satisfy (A3) and

(A4), we need λ > γ and λ/γ > ρ. It follows that

J(s, s) =

(
e−λs

e−γs

)k−1(
1− e−λs

1− e−γs

)n−k
λe−λs

γe−γs
− ρ,

which is strictly decreasing and continuous on S. See Figure 2.

[Figure 2 about here.]

The unique symmetric equilibrium is found by solving J(s∗, s∗) = 0; for

the special case of unanimity rule, we readily obtain

s∗ =
1

(λ− γ)n
ln

(
λ

γρ

)
.

The hazard rates when innocent and guilty are simply λ and γ, respectively,

so the ratio of hazard rates is constant. (Other examples with constant ratios

of hazard rates can be easily obtained from certain parameterizations of the

Pareto and Weibull distributions.) Note that, under unanimity rule, the

probability of convicting the defendant conditional on innocence is

(1− F (s∗|I))n =
(ργ
λ

) λ
λ−γ

,

and the probability of acquitting the defendant, conditional on guilt, is

1− (1− F (s∗|G))n = 1−
(ργ
λ

) γ
λ−γ

.

Both probabilities are strictly positive and independent of the size of the

jury. As a consequence, the probability of a mistake does not diminish as

the size of the jury increases.
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4.3 The Chi-Square Model

To define the chi-square model, let S = (0,∞) and define

f(s|I) =
(1/2)µ/2

Γ(µ/2)
s(µ/2)−1e−s/2

and

f(s|G) =
(1/2)ν/2

Γ(ν/2)
s(ν/2)−1e−s/2

where µ and ν are natural numbers and Γ(·) is the gamma function. In order

to satisfy (A3) and (A4), we need ν > µ. Note that the likelihood ratio is

unbounded and the ratio of hazard rates is strictly decreasing, two conditions

important in the following sections.

One numerical example is µ = 2 and ν = 4. In this case

J(s, s) =

(
1

(s/2) + 1

)k−1(
1− e−s/2

1− ((s/2) + 1)e−s/2

)n−k (
2

s

)
− ρ,

which is strictly decreasing and continuous on S. The unique symmetric

equilibrium is found by solving J(s∗, s∗) = 0; for the special case of unanimity

rule, we obtain s∗ implicitly as the solution of the equation

2n = (s∗ + 2)n−1s∗ρ.

The probability of convicting the defendant conditional on innocence is

(1− F (s∗|I))n = e−s
∗n/2,

and the probability of acquitting the defendant, conditional on guilt, is

1− (1− F (s∗|G))n = 1− ((s∗/2) + 1)nes
∗n/2.

Using these expressions, we can establish the following proposition.

Proposition 2 In the chi-square model with µ = 2 and ν = 4, the prob-

abilities of convicting an innocent and acquitting a guilty defendant under

unanimity rule converge to zero as the jury size increases. 2
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Thus, we have a conclusion in stark contrast to that derived for the expo-

nential model, where the probabilities of mistakes are invariant with respect

to the size of the jury. As we will see in the next section, Proposition 2

also contrasts with the asymptotic properties of unanimity rule in the binary

signal model. The key is that the likelihood ratio is bounded in the binary

signal and exponential models, but not in the chi-square.

5 Unanimity Rule

In this section we investigate jury decision-making under unanimity rule. We

provide three results. First, we give conditions under which the symmetric,

responsive cutoff equilibrium is unique among the class of all responsive pro-

files, dropping the qualification of symmetry. Second, we identify conditions

under which unanimity rule exhibits a bias in favor of convicting innocent

defendants, regardless of the size of the jury. Third, we investigate the asymp-

totic properties of unanimity rule: if the likelihood ratio is bounded, so that

the likelihood of innocence cannot be arbitrarily great, then the probability

of a mistaken judgment is bounded strictly above zero; if the likelihood ratio

is unbounded, then the probability of convicting an innocent goes to zero

as n grows large. From the previous section, the former applies to the bi-

nary signal and exponential models, while the latter applies to the chi-square

model. Define

H(s|I) =
f(s|I)

1− F (s|I)
and H(s|G) =

f(s|G)

1− F (s|G)
,

the hazard rates when the defendant is innocent and when guilty.

Theorem 2 If the ratio of hazard rates is strictly monotone and continu-

ous, then the symmetric, responsive cutoff equilibrium under unanimity rule

is unique within the class of all responsive cutoff profiles. If in addition

the likelihood ratio is strictly decreasing, then this equilibrium is unique a.e.

within the class of all responsive profiles. 2

Proof By Theorem 1, we know that there exists a unique symmetric, re-

sponsive cutoff equilibrium. Let s1, . . . , sn ∈ S be the cutoffs used by ju-

rors i = 1, . . . , n in any responsive cutoff equilibrium. We will show that
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s1 = · · · = sn. Define

J i(s1, . . . , sn) =

[
Πj 6=i

(
1− F (sj|I)

1− F (sj|G)

)]
f(si|I)

f(si|G)
− ρ.

By Lemma 1, J i(s1, . . . , si−1, s, si+1, . . . sn) is greater than or equal to zero

for all s < si and less than or equal to zero for all s > si. Because the

ratio of hazard rates is continuous, the likelihood ratio is as well, and so

J i(s1, . . . , sn) is continuous. Thus, J i(s1, . . . , sn) = 0 for all i. This implies

that, for any two distinct jurors, i and j,(
1− F (si|I)

1− F (si|G)

)
f(sj|I)

f(sj|G)
=

(
1− F (sj|I)

1− F (sj|G)

)
f(si|I)

f(si|G)

or, equivalently,

H(sj|I)

H(sj|G)
=

H(si|I)

H(si|G)
,

which, given strict monotonicity of the ratio of hazard rates, implies si = sj.

This establishes the uniqueness of the symmetric, responsive cutoff equilib-

rium within the class of all responsive cutoff profiles. If the likelihood ratio

is strictly decreasing, all responsive equilibria are cutoff by Lemma 1, and

uniqueness a.e. within the class of all responsive profiles follows. �

Because the ratio of hazard rates is strictly decreasing and continuous in

the chi-square model, Theorem 2 establishes that there are no asymmetric,

responsive equilibria in that model. For the binary signal model, Theorem 2

suggests that asymmetric, responsive equilibria are possible under unanimity

rule because the ratio of hazard rates is discontinuous at s = 1; moreover, it is

constant for 1 < s < 2. For the exponential model, the theorem suggests that

asymmetric, responsive equilibria are possible, because the ratio of hazard

rates is constant for every s ∈ S. In fact, it is easy to show that there is

a continuum of asymmetric, responsive cutoff equilibria in the exponential

model: any cutoffs s1, s2, . . . , sn > 0 for the jurors satisfying

s1 + · · ·+ sn =
1

(λ− γ)
ln

(
λ

γρ

)
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corresponds to a responsive cutoff equilibrium. (The symmetric equilibrium

identified in the previous section is obtained by setting all cutoffs equal.)

Note, however, that all these equilibria lead to the same probabilities of

convicting an innocent and acquitting a guilty defendant, and, hence, they

all lead to same expected payoff for jurors.

We turn now to a comparison between unanimity rule and other voting

rules for an arbitrarily fixed jury size: we give a sufficient condition for una-

nimity rule to exhibit a bias in favor of convicting innocent defendants. We

write sk for the cutoff corresponding to the symmetric, responsive cutoff equi-

librium when the number of votes needed to convict is k. Thus, the cutoff

corresponding to unanimity rule is given by sn, and the cutoff corresponding

to simple majority rule (with an odd number of voters) is given by s(n+1)/2.

We write Jk to make explicit the dependence of J on the decision rule. We

write Pk(C|I) for the probability of conviction conditional on innocence and

Pk(A|G) for the probability of acquittal conditional on guilt under the sym-

metric, responsive cutoff equilibrium, when the number of votes needed to

convict is k.

Theorem 3 For all k = 1, 2, . . . , n− 1, if

lim
s↑sn

H(s|I)

H(s|G)
≤ lim

s↓sk

H(s|I)

H(s|G)
,

then

Pn(C|I)

1− Pn(A|G)
>

Pk(C|I)

1− Pk(A|G)
. 2

Proof Note that

Pn(C|I)

1− Pn(A|G)
=

(1− F (sn|I))n

(1− F (sn|G))n

and, for k = 1, 2, . . . , n− 1,

Pk(C|I)

1− Pk(A|G)
=

∑n
m=k

(
n
m

)
(1− F (sk|I))m(F (sk|I))n−m∑n

m=k

(
n
m

)
(1− F (sk|G))m(F (sk|G))n−m

=

(1− F (sk|I))k(F (sk|I))n−k
[(

n
k

)
+
∑n

m=k+1

(
n
m

) (1−F (sk|I)
F (sk|I)

)m−k]
(1− F (sk|G))k(F (sk|G))n−k

[(
n
k

)
+
∑n

m=k+1

(
n
m

) (1−F (sk|G)
F (sk|G)

)m−k] .
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By (4) of Lemma 0, on strict first order stochastic dominance,

n∑
m=k+1

(
n

m

)(
1− F (sk|I)

F (sk|I)

)m−k
<

n∑
m=k+1

(
n

m

)(
1− F (sk|G)

F (sk|G)

)m−k
.

Hence, for k = 1, 2, . . . , n− 1,

Pk(C|I)

1− Pk(A|G)
<

(1− F (sk|I))k(F (sk|I))n−k

(1− F (sk|G))k(F (sk|G))n−k
,

so it remains only to be shown that(
1− F (sn|I)

1− F (sn|G)

)n
≥

(
1− F (sk|I)

1− F (sk|G)

)k (
F (sk|I)

F (sk|G)

)n−k
for k = 1, 2, . . . , n− 1.

Take any ε > 0 such that sn−ε ∈ S and sk+ε ∈ S. By definition of sn and

sk and because J is weakly decreasing in both arguments, Jn(sn−ε, sn−ε) >
0 ≥ Jk(sk + ε, sk + ε). Note that we can write

Jk(s, s) =

(
1− F (s|I)

1− F (s|G)

)k (
F (s|I)

F (s|G)

)n−k
H(s|I)

H(s|G)
− ρ

for all s ∈ S, giving us(
1− F (sn − ε|I)

1− F (sn − ε|G)

)n
H(sn − ε|I)

H(sn − ε|G)

>

(
1− F (sk + ε|I)

1− F (sk + ε|G)

)k (
F (sk + ε|I)

F (sk + ε|G)

)n−k
H(sk|I)

H(sk|G)
.

Taking limits and using continuity of F (·|I) and F (·|G), we have(
1− F (sn|I)

1− F (sn|G)

)n
lim
s↑sn

H(s|I)

H(s|G)

≥
(

1− F (sk|I)

1− F (sk|G)

)k (
F (sk|I)

F (sk|G)

)n−k
lim
s↓sk

H(s|I)

H(s|G)
,

and the assumption of the theorem delivers the desired inequality. �
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A direct implication of Theorem 3 is that, under the ratio of hazard

rates condition, unanimity rule does not dominate any other rule in terms

of mistake probabilities: Pn(C|I) < Pk(C|I) implies Pn(A|G) > Pk(A|G);

and Pn(A|G) < Pk(A|G) implies Pn(C|I) > Pk(C|I). The theorem has an

intuitive interpretation when P (G) = P (I), in which case it follows that

Pn(C|I)P (I)

Pn(C|G)P (G) + Pn(C|I)P (I)
>

Pk(C|I)P (I)

Pk(C|G)P (G) + Pk(C|I)P (I)
.

That is, the probability that the defendant is innocent, conditional on con-

viction, is higher under unanimity rule than when k votes are required to

convict.

To give a more transparent sufficient condition for the result of Theorem

3, we use the following lemma, which establishes that sk is weakly decreasing

in k. That is, as the number of votes required to convict the defendant

increases, jurors become more willing to vote for convicting.

Lemma 3 If n ≥ k′ > k ≥ 1, then sk′ ≤ sk. 2

We can now state a corollary of Theorem 3. The proof, given Theorem 3

and Lemma 3, is straightforward.

Corollary 1 If H(s|I)/H(s|G) is weakly increasing on an open interval in-

cluding [sn, sk], then

Pn(C|I)

1− Pn(A|G)
>

Pk(C|I)

1− Pk(A|G)
,

for all k = 1, 2, . . . , n− 1. 2

Applied to the binary signal model, because the ratio of hazard rates is

strictly increasing from 0 to 1, we know that the conclusion of the corollary

holds if sk < 1. In particular, it holds if k > n
2

+ 1 or if both k = n
2

+ 1

and ρ ≥ 1. (See Feddersen and Pesendorfer’s (1998) Table 1 for numerical

values when n = 12.) Applied to the exponential model, because the ratio of

hazard rates is constant, unanimity rule exhibits a bias toward convicting the

innocent compared to any other voting rule. Note, however, that the bias in

Theorem 3 is expressed in terms of the ratio of the probability of convicting an
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innocent to the probability of convicting a guilty defendant, and not simply in

terms of the probability of convicting an innocent. In the exponential model,

if n = 3, ρ = 1, λ = 1/2, and γ = 1/3, then the probability of convicting an

innocent under unanimity rule is (approximately) .2963 while under majority

rule it is .3061. In agreement with Theorem 3, the ratio of the probability of

convicting an innocent to the probability of convicting a guilty defendant is

2/3 under unanimity rule and .5889 under majority rule.

Theorem 3 cannot be applied to the chi-square model because the ratio

of hazard rates is decreasing. Indeed, if n = 3, ρ = 1, µ = 2, and ν = 4,

the probabilities of convicting an innocent and acquitting a guilty defendant

under unanimity rule are .2474 and .2212, while the same probabilities under

majority rule are .2674 and .2083. Hence, majority rule is biased towards

convicting an innocent with respect to unanimity rule in the sense of a higher

probability of convicting an innocent and in the sense of a higher ratio of that

probability to the probability of convicting a guilty defendant. Moreover, the

expected payoff for jurors is higher under unanimity rule than under majority

rule.

Finally, we turn to the asymptotic properties of unanimity rule. To antic-

ipate the notation of the asymptotic results on other voting rules in the next

section, we write sn1 for the cutoff corresponding to the symmetric, respon-

sive cutoff equilibrium under unanimity rule when the jury size is n. (The

subscript indicates the guilty vote, as a fraction of all jurors, needed to con-

vict.) Similarly, we write Jn1 for the function J and P n
1 (C|I) and P n

1 (A|G) for

the probabilities of convicting an innocent and acquitting a guilty defendant.

The following lemma establishes that, under unanimity rule, the cutoff cor-

responding to the symmetric, responsive cutoff equilibrium converges to the

lower bound of the support of the signals as the number of jurors increases.

Thus, the probability that a given juror votes to acquit goes to zero.

Lemma 4 limn→∞ s
n
1 = S. 2

An implication of Theorem 4, next, is that the probability of a mistaken

judgment under unanimity rule is bounded strictly above zero as the number

of jurors increases, if the likelihood ratio is bounded. Thus, we infer the

asymptotic inefficiency of unanimity rule in the binary signal and exponential

models. If the the likelihood ratio is unbounded, as in the chi-square model,
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we have seen in Proposition 2 that unanimity rule may be asymptotically

efficient. In fact, we prove that the probability of convicting an innocent

defendant must then go to zero as the number of jurors increases.

Theorem 4 If the likelihood ratio is bounded, then

0 < lim
n→∞

P n
1 (C|I)

1− P n
1 (A|G)

< ∞.

If the likelihood ratio is unbounded, then

lim
n→∞

P n
1 (C|I)

1− P n
1 (A|G)

= 0. 2

Proof By (A1), the likelihood ratio has at most a finite number of discon-

tinuity points, so by Lemma 4 there exists m such that, for all n > m, sn1 is

a continuity point of Jn1 . Hence, Jn1 (sn1 , s
n
1 ) = 0 for all such n. Thus,

P n
1 (C|I)

1− P n
1 (A|G)

=

(
1− F (sn1 |I)

1− F (sn1 |G)

)n
= ρ

H(sn1 |G)

H(sn1 |I)

for all n > m, where the second inequality is just rewriting Jn1 (sn1 , s
n
1 ) = 0.

If the likelihood ratio is bounded above by some κ, then

lim
s→S

H(s|I)

H(s|G)
≤ κ,

where we use lims→S(1−F (s|I))/(1−F (s|G)) = 1. Since sn1 → S by Lemma

4, we have

lim
n→∞

P n
1 (C|I)

1− P n
1 (A|G)

= ρ lim
sn1→S

H(sn1 |G)

H(sn1 |I)
≥ ρ

κ
.

The first limit above is clearly finite and positive. If the likelihood ratio

is unbounded above, then lims→S H(s|I)/H(s|G) = ∞. Since sn1 → S by

Lemma 4,

lim
n→∞

P n
1 (C|I)

1− P n
1 (A|G)

= ρ lim
sn1→S

H(sn1 |G)

H(sn1 |I)
= 0,

as desired. �
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6 A Jury Theorem

In this section, we investigate the asymptotic properties of jury decision

rules other than unanimity as the jury size increases: the probability of a

mistaken judgment goes to zero for every non-unanimous voting rule. Rather

than specify the number of votes needed to convict, we will here define a rule

by the fraction, say α, of votes needed. Given n, the decision rule requiring

k votes to convict would be represented by α = k/n. For ease of exposition,

we only consider combinations of α and n such that αn is an integer. We

write snα for the cutoff corresponding to the symmetric, responsive cutoff

equilibrium when the α rule is used and the number of jurors is n. Similarly,

we write Jnα for the function J and P n
α (C|I) and P n

α (A|G) for the probabilities

of convicting an innocent and acquitting a guilty defendant. We first verify

that the ratio of hazard rates is effectively bounded for all non-unanimous

rules.

Lemma 5 If 0 < α < 1 then

H = lim sup
n→∞

H(snα|I)

H(snα|G)
,

is finite. 2

We now state and prove the main result of this section.

Theorem 5 For all 0 < α < 1,

lim
n→∞

P n
α (C|I) = lim

n→∞
P n
α (A|G) = 0.

2

Proof Note that we can write

Jnα(s, s) =

(
1− F (s|I)

1− F (s|G)

)αn−1(
F (s|I)

F (s|G)

)n−αn
f(s|I)

f(s|G)
− ρ

= [Lα(s)]n
(
f(s|I)

f(s|G)

)(
1− F (s|G)

1− F (s|I)

)
− ρ

= [Lα(s)]n
H(s|I)

H(s|G)
− ρ,
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where we define

Lα(s) =

(
1− F (s|I)

1− F (s|G)

)α(
F (s|I)

F (s|G)

)1−α

for all s ∈ S. From Theorem 1, for each n there is a unique symmetric,

responsive cutoff equilibrium characterized by the cutoff snα = inf{s ∈ S |
Jnα(s, s) ≤ 0}.

We claim that Lα(snα) → 1. If not, we can extract a subsequence with

limsup greater than one or liminf less than one. Without loss of generality,

we suppose this is true of {snα} itself. In the first case, we can take m high

enough that [Lα(smα )]m > ρ. Using continuity of Lα, we can then take s > smα
close enough to smα that [Lα(s)]m > ρ. But then

Jmα (s, s) ≥ [Lα(s)]m − ρ > ρ− ρ = 0,

contradicting the definition of smα . In the second case, by Lemma 5

H = lim sup
n→∞

H(snα|I)

H(snα|G)

is finite. Take m high enough that [Lα(smα )]mH < ρ. Using continuity of Lα,

we can take s < smα close enough to smα so that [Lα(s)]mH < ρ. But then

Jmα (s, s) ≤ [Lα(s)]mH − ρ < ρ− ρ = 0,

contradicting the definition of smα .

We now claim that Lα(s) = 1 implies 1 − F (s|G) > α > 1 − F (s|I).

We use the facts that xα(1 − x)1−α is single-peaked at x = α and, by strict

first order stochastic dominance, 1 − F (s|I) < 1 − F (s|G) for all s ∈ S. If

α ≤ 1−F (s|I) then α ≤ 1−F (s|I) < 1−F (s|G) and, by single-peakedness,

(1− F (s|I))α(F (s|I))1−α > (1− F (s|G))α(F (s|G))1−α,

or equivalently Lα(s) > 1, a contradiction. Similarly, if 1 − F (s|G) ≤ α,

then 1 − F (s|I) < 1 − F (s|G) ≤ α and, by single-peakedness, Lα(s) < 1, a

contradiction establishing the claim. Since Lα is decreasing, continuous, and

lims→S Lα(s) = lims→S

(
f(s|I)
f(s|G)

)1−α
> 1

lims→S Lα(s) = lims→S

(
f(s|I)
f(s|G)

)α
< 1
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(using L’Hôpital’s rule and (3) of Lemma 0), the set L−1
α (1) is a non-empty

closed interval, [s′, s′′], with S < s′ ≤ s′′ < S. By continuity of the distribu-

tion functions, we can take δ > 0 such that 1 − F (s|G) > α > 1 − F (s|I)

for all s ∈ [s′ − δ, s′′ + δ]. Since Lα(snα) → 1, there exists l such that, for all

m > l, smα ∈ [s′ − δ, s′′ + δ].

The last part of the proof is a straightforward application of the law

of large numbers. To prove P n
α (A|G) → 0, define the probability space

S∞ = S×S×· · · with probability measure P , the product measure generated

by µG. Define the sequence X1, X2, . . . of i.i.d. random variables satisfying

Xi =

{
1 if si ≥ s′′ + δ
0 else,

where si is the ith component of (s1, s2, . . . ) ∈ S∞. By the strong law of

large numbers, 1
n

∑n
i=1Xi converges almost surely to 1 − F (s′′ + δ|G) as n

goes to infinity. In particular, it converges in probability:

P

(
1− F (s′′ + δ|G)− 1

n

n∑
i=1

Xi > ε

)
→ 0

for all ε > 0. Define the sequence Y1, Y2, . . . of random variables as

Yn =
1

n
#{i ≤ n | si ≥ snα},

and note that, for m > l, Yn ≥ 1
n

∑n
i=1Xi. Hence,

P (1− F (s′′ + δ|G)− Yn > ε) → 0,

or equivalently,

P (Yn < 1− F (s′′ + δ|G)− ε) → 0

for all ε > 0. Since 1−F (s′′+ δ|G) > α, we can set ε = 1−F (s′′+ δ|G)−α,

yielding P (Yn < α)→ 0. That is, the probability that the fraction of jurors

voting to convict a guilty defendant is smaller than α goes to zero as the

size of the jury goes to infinity. Therefore, P n
α (A|G) → 0. The proof that

P n
α (C|I)→ 0 is analogous. �
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Appendix

Proposition 1 Given σ−i, the ex ante payoff to juror i from σi is an affine

transformation of(∫
σi(s)µI(ds)

)
u(C|I)Pσ−i(piv|I)P (I)

−
(∫

σi(s)µG(ds)

)
u(A|G)Pσ−i(piv|G)P (G).

Proof Let N denote the set of jurors. Note that

Pσ(C|I) =

(∫
σi(s)µI(ds)

) ∑
M⊆N
|M |≥k−1
i/∈M

[
Πj∈M

(∫
σj(s)µI(ds)

)
·

Πj /∈M
j 6=i

(∫
[1− σj(s)]µI(ds)

)]
+

(∫
[1− σi(s)]µI(ds)

) ∑
M⊆N
|M |≥k
i/∈M

[
Πj∈M

(∫
σj(s)µI(ds)

)
·

Πj /∈M
j 6=i

(∫
[1− σj(s)]µI(ds)

)]
,

and

Pσ(A|G) =

(∫
σi(s)µG(ds)

) ∑
M⊆N
|M |<k−1
i/∈M

[
Πj∈M

(∫
σj(s)µG(ds)

)
·

Πj /∈M
j 6=i

(∫
[1− σj(s)]µG(ds)

)]
+

(∫
[1− σi(s)]µG(ds)

) ∑
M⊆N
|M |<k
i/∈M

[
Πj∈M

(∫
σj(s)µG(ds)

)
·

Πj /∈M
j 6=i

(∫
[1− σj(s)]µG(ds)

)]
.

27



Inserting these expressions into u(C|I)Pσ(C|I)P (I) + u(A|G)Pσ(A|G)P (G)

and simplifying, we get(∫
σi(s)µI(ds)

)
u(C|I)

∑
M⊆N
|M |=k−1
i/∈M

[
Πj∈M

(∫
σj(s)µI(ds)

)
·

Πj /∈M
j 6=i

(∫
[1− σj(s)]µI(ds)

)]
P (I)

−
(∫

σi(s)µG(ds)

)
u(A|G)

∑
M⊆N
|M |=k−1
i/∈M

[
Πj∈M

(∫
σj(s)µG(ds)

)
·

Πj /∈M
j 6=i

(∫
[1− σj(s)]µG(ds)

)]
P (G) + constant,

where the last term is independent of σi. �

Lemma 0

1− F (s|I)

1− F (s|G)
≤ f(s|I)

f(s|G)
≤ F (s|I)

F (s|G)
for all s ∈ S.(1)

1− F (s|I)

1− F (s|G)
and

F (s|I)

F (s|G)
are weakly decreasing.(2)

lim
s↓S

f(s|I)

f(s|G)
> 1 and lim

s↑S

f(s|I)

f(s|G)
< 1.(3)

F (s|I) > F (s|G) for all s ∈ S.(4)

If
f(s̃|I)

f(s̃|G)
> lim

s↑S

f(s|I)

f(s|G)
then

1− F (ŝ|I)

1− F (ŝ|G)
>

1− F (s̃|I)

1− F (s̃|G)
(5)

for all s̃ ∈ S and all ŝ < s̃.

If
f(s̃|I)

f(s̃|G)
< lim

s↓S

f(s|I)

f(s|G)
then

F (ŝ|I)

F (ŝ|G)
<
F (s̃|I)

F (s̃|G)
(6)

for all s̃ ∈ S and all ŝ > s̃.
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Proof Results (1) and (2) follow from (A1)–(A3) and are well-known. Re-

sult (3) follows easily from (A3) and (A4). Result (4), stated with weak

inequality (that is, first order stochastic dominance) is a well-known impli-

cation of (A3). Strict inequality follows from result (3) above. If (5) fails for

s̃, then, by (2) above,

1− F (s̃|I)

1− F (s̃|G)
=

1− F (s|I)

1− F (s|G)
for all s ∈ [ŝ, s̃]

for some ŝ < s. Consequently,

D

(
1− F (s|I)

1− F (s|G)

)
= 0,

or equivalently

1− F (s|I)

1− F (s|G)
=

f(s|I)

f(s|G)
,(7)

for all s ∈ [ŝ, s̃] ∩ Sd. Note that

f(s̃|I)

f(s̃|G)
> lim

s↑S

f(s|I)

f(s|G)

implies that there is a s′ > s̃ such that

f(s̃|I)

f(s̃|G)
>

f(x|I)

f(x|G)

for all x ≥ s′. Taking any s ∈ (ŝ, s̃) and using (7),

1− F (s|I) =

∫ S

s

f(s|I)

f(s|G)
f(x|G) dx

=

∫ s′

s

f(s|I)

f(s|G)
f(x|G) dx+

∫ S

s′

f(s|I)

f(s|G)
f(x|G) dx

>

∫ s′

s

f(x|I)

f(x|G)
f(x|G) dx+

∫ S

s′

f(x|I)

f(x|G)
f(x|G) dx

= 1− F (s|I),

where the inequality follows from (A3) and our choice of s′. But this is a

contradiction, establishing (5). The proof of (6) is analogous. �
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Lemma 1 Given responsive strategies σ−i for jurors other than i, a strategy

σi is a best response for i if and only if it satisfies the following a.e.:

σi(s) =

{
1 if J(σ−i, s) < 0
0 if J(σ−i, s) > 0.

(8)

If the likelihood ratio is locally strictly decreasing at inf{s ∈ S | J(σ−i, s) ≤
0}, σi is a best response for i if and only if it is equivalent a.e. to the

following cutoff strategy σ̃i:

σ̃i(s) =

{
1 if J(σ−i, s) ≤ 0
0 else. 2

Proof Suppose σi satisfies (8). Take any strategy σ′i, and define the sets

V = {s ∈ S | J(σ−i, s) < 0 and σ′i(s) < 1}
W = {s ∈ S | J(σ−i, s) > 0 and σ′i(s) > 0}.

Note that σi(s) = 1 for all s ∈ V and σi(s) = 0 for all s ∈ W . Thus, using

Proposition 1, the payoff from σi to juror i exceeds the payoff from σ′i by∫
V

(1− σ′i(s))
[
u(C|I)Pσ−i(piv|I)P (I)f(s|I)

−u(A|G)Pσ−i(piv|G)P (G)f(s|G)
]
ds

−
∫
W

σ′i(s)
[
u(C|I)P (I)Pσ−i(piv|I)f(s|I)

−u(A|G)P (G)Pσ−i(piv|G)f(s|G)
]
ds.

By construction, s ∈ V implies J(σ−i, s) < 0, which implies that the in-

tegrand of the first integral is positive; s ∈ W implies J(σ−i, s) > 0, which

implies that the integrand of the second integral is negative. Since σ′i violates

(8) if and only if V ∪W has positive measure, any strategy satisfying (8) is

a best response and any strategy violating (8) is not.

If the likelihood ratio is locally strictly decreasing at inf{s ∈ S | J(σ−i, s) ≤
0}, J(σ−i, s) = 0 has at most one solution, and hence (8) implies σi is equiv-

alent a.e. to σ̃i, a cutoff strategy. �
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Lemma 2 J is continuous and weakly decreasing in its first argument. In

addition,

lims↓S J(s, s) > 0 and lims↑S J(s, s) < 0,

and thus s∗ = inf{s ∈ S | J(s, s) ≤ 0} ∈ S. Finally, J(s, s) = 0 has at most

one solution. 2

Proof Continuity of J in its first argument is immediate, and weak mono-

tonicity follows from (A3) and (2) of Lemma 0. Note that

lim
s↓S

J(s, s) = lim
s↓S

(
F (s|I)

F (s|G)

)n−k
lim
s↓S

f(s|I)

f(s|G)
− ρ

=

(
lim
s↓S

f(s|I)

f(s|G)

)n−k+1

− ρ

> 0,

and

lim
s↑S

J(s, s) = lim
s↑S

(
1− F (s|I)

1− F (s|G)

)k−1

lim
s↑S

f(s|I)

f(s|G)
− ρ

=

(
lim
s↑S

f(s|I)

f(s|G)

)k
− ρ

< 0,

where we make use of L’Hôpital’s rule, (A4), and (3) of Lemma 0. This

proves the next part of the lemma. By (A1), J(s, s) has at most a finite

number of discontinuity points. Therefore, since lims↓S J(s, s) > 0, we can

find s > S close enough to S so that J(s, s) > 0. Thus, s∗ > S. A similar

argument shows that s∗ < S. Thus, s∗ ∈ S.

For the last part, take any signal s such that J(s, s) = 0. We claim that,

for all s′ > s, J(s′, s′) < J(s, s) = 0. By the definition of J and (2) of Lemma

0, if

f(s′|I)

f(s′|G)
<

f(s|I)

f(s|G)
,

31



we are done. Thus, by (A3), we suppose the two likelihood ratios are equal.

Note that, by (A4), either

f(s|I)

f(s|G)
< lim

s↓S

f(s|I)

f(s|G)

or

f(s′|I)

f(s′|G)
=
f(s|I)

f(s|G)
> lim

s↑S

f(s|I)

f(s|G)
.

If the first inequality holds, then

F (s′|I)

F (s′|G)
<

F (s|I)

F (s|G)

by (6) of Lemma 0. If the second holds, then

1− F (s′|I)

1− F (s′|G)
<

1− F (s|I)

1− F (s|G)
.

by (5) of Lemma 0.

We look at three cases. If 1 < k < n, then by the definition of J and the

preceding discussion, we are done. If k = n, then

J(s, s) =

(
1− F (s|I)

1− F (s|I)

)n−1
f(s|I)

f(s|G)
− ρ.

If

f(s|I)

f(s|G)
> lim

s↑S

f(s|I)

f(s|G)
,

then by (5) of Lemma 0 we are done. Otherwise, we have

f(s|I) = f(s|G) · lim
s↑S

f(s|I)

f(s|G)

for all s ≥ s. Then, after integrating and rearranging terms,

1− F (s|I)

1− F (s|G)
= lim

s↑S

f(s|I)

f(s|G)
.
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Using J(s, s) = 0, we get

ρ =

(
lim
s↑S

f(s|I)

f(s|G)

)n
.

But

lim
s↑S

f(s|I)

f(s|G)
< 1,

by (3) of Lemma 0, so

lim
s↑S

f(s|I)

f(s|G)
> ρ,

contradicting (A4). The case k = 1 is analogous. This establishes the claim

that s′ > s implies J(s′, s′) < 0. Therefore, J(s, s) = 0 has at most one

solution. �

Proposition 2 In the chi-square model with µ = 2 and ν = 4, the prob-

abilities of convicting an innocent and acquitting a guilty defendant under

unanimity rule converge to zero as the jury size increases. 2

Proof Let yn be the probability of convicting an innocent under unanimity

rule when the jury size is n. Using the equations given in the text for yn and

s∗ we obtain that yn must solve

nn = (n− log yn)n−1(− log yn)ρ.

After some manipulations we obtain(
1 +
− log yn

n

)n
=

1

ρ
− n

ρ log yn
.

Suppose some subsequence of yn converges to some number 1 ≥ κ > 0. Then,

because (1 + (t/n))n → et as n → ∞, the lefthand side converges to 1/κ.

Because − log yn/n→ 0, the righthand side converges to∞, a contradiction.

Hence, yn converges to zero.
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Now let xn be the probability of acquitting a guilty defendant under

unanimity rule when the jury size is n. Using the equations given in the text

for xn and yn we obtain

xn = 1−
(

1− log yn
n

)n
yn.

which converges to zero since, given a sequence {tn} that diverges to infinity,

(1 + tn/n)ne−tn converges to 1 if tn/n converges to zero. (The proof of this

fact is a slight variation of a standard exercise in mathematical analysis.

In particular, to prove that lim infn→∞(1 + tn/n)ne−tn = 1, we can use the

binomial theorem to show that the difference between etn and the first b3tnc−
1 terms in (1 + tn/n)n converges to a number smaller than 3t

b3tnc
n /2(b3tnc)!,

which converges to zero by an application of Stirling’s formula.) �

Lemma 3 If n ≥ k′ > k ≥ 1, then sk′ ≤ sk. 2

Proof Recall that

Jk(s, s) =

(
1− F (s | I)

1− F (s | G)

)k−1(
F (s | I)

F (s | G)

)n−k
f(s | I)

f(s | G)
− ρ.

By (2) of Lemma 0, given arbitrary s ∈ S,

1− F (s | I)

1− F (s | G)
≤ F (s | I)

F (s | G)
,

which implies Jk′(s, s) ≤ Jk(s, s) for k′ > k. This implies

{s ∈ S | Jk(s, s) ≤ 0} ⊆ {s ∈ S | Jk′(s, s) ≤ 0},

from which we conclude sk′ ≤ sk. �

Lemma 4 sn1 → S 2

Proof If not, we can extract a subsequence that converges to a limit larger

than S. Without loss of generality, suppose this is true of {sn1} itself, so that

sn1 → s̃ > S. Note that

lim
sn1→s̃

1− F (sn1 |I)

1− F (sn1 |G)
= γ < 1
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by (4) of Lemma 0, or by (3) of Lemma 0 if s̃ = S. By continuity, we can

pick ŝ ∈ (S, s̃) such that

1− F (ŝ|I)

1− F (ŝ|G)
≤ γ + 1

2
< 1.

Then

Jn1 (ŝ, ŝ) ≤
(
γ + 1

2

)n−1
f(ŝ|I)

f(ŝ|G)
− ρ,

which is less than zero for high enough n. Because sn1 → s̃ > ŝ, we can pick

n high enough that Jn1 (ŝ, ŝ) < 0 and sn1 > ŝ, a contradiction. �

Lemma 5 If 0 < α < 1, then

H = lim sup
n→∞

H(snα|I)

H(snα|G)
,

is finite. 2

Proof Suppose H = ∞, and take any subsequence along which the ratio

of hazard rates diverges to infinity. Without loss of generality, suppose this

is true of {snα} itself. Note that the likelihood ratio along this sequence also

diverges to infinity. We first claim that snα 6→ S. If the sequence does converge

to S, note that Jnα(snα, s
n
α) = 0 for high enough n, since the likelihood ratio

has at most a finite number of discontinuity points by (A1). Now take any

0 < b < 1, arbitrarily large c, and d satisfying d > α+c
1−α . Then there exists m

such that, for all n > m,

1− F (snα|I)

1− F (snα|G)
≥ b and

F (snα|I)

F (snα|G)
≥
(

1

b

)d
,

where the inequalities follow from

lim
n→∞

1− F (snα|I)

1− F (snα|G)
= 1 and lim

n→∞

F (snα|I)

F (snα|G)
= lim

n→∞

f(snα|I)

f(snα|G)
=∞,
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respectively. Then, for all n > m,(
1− F (snα|I)

1− F (snα|G)

)αn−1(
F (snα|I)

F (snα|G)

)n−αn
≥ bαn−1

(
1

b

)d(n−αn)

=

(
1

b

)(d−dα−α)n+1

>

(
1

b

)c
,

where the last inequality follows from d > α+c
1−α . Since b < 1 and c is arbitrarily

large, Jnα(snα, s
n
α) > 0 for high enough n, a contradiction.

The remaining possibility is snα 6→ S. Then there exists a subsequence

lying above some s′ > S. For all s′′ ∈ (s′, S), (A1) and (A3) imply

sup
s∈[s′,s′′]

H(s|I)

H(s|G)
< ∞.

Since the ratio of hazard rates goes to infinity along the subsequence, the

subsequence must converge to S. But, applying L’Hôpital’s rule, the ratio of

hazard rates then converges to one along the subsequence, a contradiction.

Therefore, α < 1 implies H is finite. �
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