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Chapter 1 
Introduction 

Knowledge would be fatal, it is the uncertainty that charms one. A mist 
makes things beautiful. 
— Oscar Wilde, The Picture of Dorian Gray, 1891 

1.1. Generations of control theory 

Figure 1.1.1 reproduces John Doyle’s cartoon about developments in optimal 
control theory since World War II.1 Two scientists in the upper panels use 

different mathematical methods to devise control laws and estimators. The 

person on the left uses classical methods (Euler equations, z -transforms, lag 

operators) and the one on the right uses modern recursive methods (Bellman 

equations, Kalman filters). The scientists in the top panels completely trust 
their models of the transition dynamics. The, shall we say, gentleman in the 

lower panel shares the objectives of his predecessors from the 50s, 60s, and 

70s, but regards his model as an approximation to an unknown and unspec­
ified model that he thinks actually generates the data. He seeks decision 

rules and estimators that work over a nondenumerable set of models near his 
approximating model. The H∞ in his postmodern tattoo and the θ on his 

staff are alternative ways to express doubts about his approximating model 
by measuring the discrepancy of the true data generating mechanism from his 
approximating model. As we shall learn in later chapters, the parameter θ is 
interpretable as a penalty on a measure of discrepancy (entropy) between his 
approximating model and the model that actually generates the data. The 

H∞ refers to the limit of his objective function as the penalty parameter θ 
approaches a “break down point” that bounds the set of alternative models 
against which the decision maker can attain a robust decision rule. 

1.2. Control theory and rational expectations 

Classical and modern control theory supplied perfect tools for applying Muth’s 
(1961) concept of rational expectations to a variety of problems in dynamic 

economics. A significant reason that rational expectations initially diffused 

slowly after Muth’s (1961) paper is that in 1961 few economists knew the 

tools lampooned in the top panel of figure 1.1.1. Rational expectations took 

1 John Doyle consented to let us reproduce this drawing, which appears in Zhou, Doyle, 
and Glover (1996). We changed Doyle’s notation by making θ (Doyle’s μ ) the  free  param­

eter carried by the post-modern control theorist. 
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4 Introduction 

Figure 1.1.1: A pictorial history of control theory (cour­
tesy of John Doyle). Beware of a theorist bearing a free 

parameter, θ . 

hold in the 1970s only after a new generation of macroeconomists had learned 

those tools. Ever since, macroeconomists and rational expectations econo­
metricians have gathered inspiration and ideas from classical and recursive 

control theory.2 

When macroeconomists were beginning to apply classical and modern 

control and estimation theory in the late 1970s, control theorists and applied 

mathematicians were seeking ways to relax the assumption that the decision 

maker trusts his model. They sought new control and estimation methods 
to improve adverse outcomes that came from applying classical and modern 

control theory to a variety of engineering and physical problems. They thought 
that model misspecification explained why actual outcomes were sometimes 
much worse than control theory had promised and therefore sought decision 

rules and estimators that acknowledged model misspecification. That is how 

robust control and estimation theory came to be. 

2 See Stokey and Lucas with Prescott (1989), Ljungqvist and Sargent (2004), and 
Hansen and Sargent (1991) for many examples. 
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1.3. Misspecification and rational expectations 

To say that model misspecification is as much of a problem in economics as 
it is in physics and engineering is an understatement. This book borrows, 
adapts, and extends tools from the literature on robust control and estima­
tion to model decision makers who regard their models as approximations. 
We assume that a decision maker has created an approximating model by a 

specification search that we do not model. The decision maker believes that 
data will come from3 an unknown member of a set of unspecified models near 
his approximating model.4 Concern about model misspecification induces a 

decision maker to want decision rules that work over that set of nearby models. 

If they lived inside rational expectations models, decision makers would 

not have to worry about model misspecification. They should trust their 
model because subjective and objective probability distributions (i.e., models) 
coincide. Rational expectations theorizing removes agents’ personal models 

as elements of the model.5 

Although the artificial agents within a rational expectations model trust 
the model, a model’s author often doubts it, especially when calibrating it 
or after performing specification tests. There are several good reasons for 

wanting to extend rational expectations models to acknowledge fear of model 
misspecification.6 First, doing so accepts Muth’s (1961) idea of putting econo­
metricians and the agents being modeled on the same footing: because econo­
metricians face specification doubts, the agents inside the model might too.7 

Second, in various contexts, rational expectations models underpredict prices 

3 Or, in the case of the robust filtering problems posed in chapter 17, have come from. 
4 We say “unspecified” because of how these models are formed as statistical perturba­

tions to the decision maker’s approximating model. 
5 In a rational expectations model, each agent’s model (i.e., his subjective joint probabil­

ity distribution over exogenous and endogenous variables) is determined by the equilibrium. 
It is not something to be specified by the model builder. Its early advocates in econometrics 
emphasized the empirical power that followed from the fact that the rational expectations 
hypothesis eliminates all free parameters associated with people’s beliefs. For example, see 
Hansen and Sargent (1980) and Sargent (1981). 

6 In chapter 16, we explore several mappings, the fixed points of which restrict a robust 
decision maker’s approximating model. As is usually the case with rational expectations 
models, we are silent about the process by which an agent arrives at an approximating 
model. A qualification to the claim that rational expectations models do not describe the 
process by which agents form their models comes from the literature on adaptive learning. 
There, agents who use recursive least squares learning schemes eventually come to know 
enough to behave as they should in a self-confirming equilibrium. Early examples of such 
work are Bray (1982), Marcet and Sargent (1989), and Woodford (1990). See Evans and 
Honkapohja (2001) for new results. 

7 This argument might offend someone with a preference against justifying modeling 
assumptions on behavioral grounds. 
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of risk from asset market data. For example, relative to standard rational 
expectations models, actual asset markets seem to assign prices to macroeco­
nomic risks that are too high. The equity premium puzzle is one manifestation 

of this mispricing.8 Agents’ caution in responding to concerns about model 
misspecification can raise prices assigned to macroeconomic risks  and  lead  to  

reinterpreting them as compensation for bearing model uncertainty instead of 
risks with known probability distributions. This reason for studying robust 
decisions is positive and is to be judged by how it helps explain market data. 
A third reason for studying the robustness of decision rules to model misspeci­
fication is normative. A long tradition dating back to Friedman (1953), Bailey 

(1971), Brainard (1967), and Sims (1971, 1972) advocates framing macroe­
conomic policy rules and interpreting econometric findings in light of doubts 
about model specification, though how those doubts have been formalized in 

practice has varied.9 

1.4. Our extensions of robust control theory 

Among ways we adapt and extend robust control theory so that it can be 

applied to economic problems, six important ones are discounting; a reinter­
pretation of the “worst-case shock process”; extensions to several multi-agent 
settings; stochastic interpretations of perturbations to models; a way of cali­
brating plausible fears of model misspecification as measured by the parameter 
θ in figure 1.1.1; and formulations of robust estimation and filtering problems. 

1.4.1. Discounting 

Most presentations of robustness in control theory treat undiscounted prob­
lems, and the few formulations of discounting that do appear differ from 

the way economists would set things up.10 In this book, we formulate dis­
counted problems that preserve the recursive structure of decision problems 
that macroeconomists and other applied economists use so widely. 

8 A related finding is that rational expectations models impute low costs to business 
cycles. See Hansen, Sargent, and Tallarini (1999), Tallarini (2000), and Alvarez and Jer­

mann (2004). Barillas, Hansen, and Sargent (2007) argue that Tallarini’s and Alvarez 
and Jermann’s measures of the costs of reducing aggregate fluctuations are flawed if what 
they measure as a market price of risk is instead interpreted as a market price of model 
uncertainty. 

9 We suspect that his doubts about having a properly specified macroeconomic model 
explains why, when he formulated comprehensive proposals for the conduct of monetary 
and fiscal policy, Friedman (1953, 1959) did not use a formal Bayesian expected utility 
framework, like the one he had used in Friedman and Savage (1948). 

10 Compare the formulations in Whittle (1990) and Hansen and Sargent (1995). 
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1.4.2. Representation of worst-case shock 

As we shall see, in existing formulations of robust control theory, shocks that 
represent misspecification are allowed to feed back on endogenous state vari­
ables that are influenced by the decision maker, an outcome that in some 

contexts appears to confront the decision maker with peculiar incentives to 

manipulate future values of some of those shocks by adjusting his current 
decisions. Some economists11 have questioned the plausibility of the notion 

that the decision maker is concerned about any misspecifications that can 

be represented in terms of shocks that feed back on state variables under his 
partial control. In chapter 7, we use the “Big K , little k trick” from the 

literature on recursive competitive equilibria to reformulate misspecification 

perturbations to an approximating model as exogenous processes that cannot 
be influenced by the decision maker. As we illustrate in the analysis of the 

permanent income model of chapter 10, this reinterpretation of the worst-case 

shock process is useful in a variety of economic models. 

1.4.3. Multiple agent settings 

In formulations from the control theory literature, the decision maker’s model 
of the state transition dynamics is a primitive part of (i.e., an exogenous input 
into) the statement of the problem. In multi-agent dynamic economic prob­
lems, it is not. Instead, parts of the decision maker’s transition law governing 

endogenous state variables, such as aggregate capital stocks, are affected by 

other agents’ choices and therefore are equilibrium outcomes. In this book, we 

describe ways of formulating the decision maker’s approximating model when 

he and possibly other decision makers are concerned about model misspecifica­
tion, perhaps to differing extents. We impose a common approximating model 
on all decision makers, but allow them to express different degrees of mistrust 
of that model and to have different objectives. As we explain in chapters 12, 
15, and 16, this is a methodologically conservative approach that adapts the 

concept of a Nash equilibrium to incorporate concerns about robustness. The 

hypothesis of a common approximating model preserves much of the disci­
pline of rational expectations, while the hypothesis that agents have different 
interests and different concerns about robustness implies a precise sense in 

which ex post they behave as if they had different models. We thereby attain 

a disciplined way of modeling apparent heterogeneity of beliefs.12 

11 For example, Christopher Sims expressed this view to us. 
12 Brock and deFontnouvelle (2000) describe a related approach to modeling heterogene­

ity of beliefs. 



8 Introduction 

1.4.4. Explicitly stochastic interpretations 

Much of this book is about linear-quadratic problems for which a convenient 
certainty equivalence result described in chapter 2 permits easy transitions be­
tween nonstochastic and stochastic versions of a problem. Chapter 3 describes 
the relationship between stochastic and nonstochastic setups. 

1.4.5. Calibrating fear of misspecification 

Rational expectations models presume that decision makers know the correct 
model, a probability distribution over sequences of outcomes. One way to jus­
tify this assumption is to appeal to adaptive theories of learning that endow 

agents with very long histories of data and allow a Law of Large Numbers to 

do its work.13 But after observing a short time series, a statistical learning 

process will typically leave agents undecided among members of a set of mod­
els, perhaps indexed by parameters that the data have not yet pinned down 

well. This observation is the starting point for the way that we use detec­
tion error probabilities to discipline the amount of model uncertainty that a 

decision maker fears after having studied a data set of length T . 

1.4.6. Robust filtering and estimation 

Chapter 17 describes a formulation of some robust filtering problems that 
closely resemble problems in the robust control literature. This formulation 

is interesting in its own right, both economically and mathematically. For 
one thing, it has the useful property of being the dual of a robust control 
problem. However, as we discuss in detail in chapter 17, this problem builds 
in a peculiar form of commitment to model distortions that had been chosen 

earlier but that one may not want to consider when making current decisions. 
For that reason, in chapter 18, we describe a class of robust filtering and 

estimation problems without commitment to those prior distortions. Here 

the decision maker carries along the density of the hidden states given the 

past signal history computed under the approximating model, then considers 
hypothetical changes in this density and in the state and signal dynamics 

looking forward. 

13 For example, see work summarized by Fudenberg and Levine (1998), Evans and 
Honkapohja (2001), and Sargent (1999a). The justification is incomplete because economies 
where agents use adaptive learning schemes typically converge to self-confirming equilibria, 
not necessarily to full rational expectations equilibria. They may fail to converge to rational 
expectations equilibria because histories can contain an insufficient number of observations 
about off-equilibrium-path events for a Law of Large Numbers to be capable of eradicating 
erroneous beliefs. See Cho and Sargent (2007) for a brief introduction to self-confirming 
equilibria and Sargent (1999a) for a macroeconomic application. 
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1.5.	 Robust control theory, shock serial correlations, 
and rational expectations 

Ordinary optimal control theory assumes that decision makers know a 

transition law linking the motion of state variables to controls. The opti­
mization problem associates a distinct decision rule with each specification 

of shock processes. Many aspects of rational expectations models stem from 

this association.14 For example, the Lucas critique (1976) is an application of 
the finding that, under rational expectations, decision rules are functionals of 
the serial correlations of shocks. Rational expectations econometrics achieves 
parameter identification by exploiting the structure of the function that maps 
shock serial correlation properties to decision rules.15 

Robust control theory alters the mapping from shock temporal properties 

to decision rules by treating the decision maker’s model as an approximation 

and seeking a single rule to use for a set of vaguely specified alternative models 
expressed in terms of distortions to the shock processes in the approximating 

model. Because they are allowed to feed back arbitrarily on the history of the 

states, such distortions can represent misspecified dynamics. 
As emphasized by Hansen and Sargent (1980, 1981, 1991), the economet­

ric content of the rational expectations hypothesis is a set of cross-equation 

restrictions that cause decision rules to be functions of parameters that char­
acterize the stochastic processes impinging on agents’ constraints. A concern 

for model misspecification alters these cross-equation restrictions by inspir­
ing the robust decision maker to act as if he had beliefs that seem to twist 
or slant probabilities in ways designed to make his decision rule less fragile 

to misspecification. Formulas presented in chapters 2 and 7 imply that the 

Hansen-Sargent (1980, 1981) formulas for those cross-equation restrictions 

also describe the behavior of the robust decision maker, provided that we use 

appropriately slanted laws of motion in the Hansen-Sargent (1980) forecasting 

formulas. This finding shows how robust control theory adds a concern about 
misspecification in a way that preserves the econometric discipline imposed 

by rational expectations econometrics. 

1.6.	 Entropy in specification analysis 

The statistical and econometric literatures on model misspecification supply 

tools for measuring discrepancies between models and for thinking about de­
cision making in the presence of model misspecification. 

14 Stokey and Lucas with Prescott (1989) is a standard reference on using control theory 
to construct dynamic models in macroeconomics. 

15 See Hansen and Sargent (1980, 1981, 1991). 
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10 Introduction 

Where y ∗ denotes next period’s state vector, let the data truly come 

from a Markov process with one step transition density f(y ∗|y) that  we  as­
sume has invariant distribution μ(y). Let the econometrician’s model be 

fα(y ∗|y) where  α ∈ A and A is a compact set of values for a parameter 

vector α . If there is no α ∈ A such that fα = f , we say that the econo­
metrician’s model is misspecified. Assume that the econometrician estimates 
α by maximum likelihood. Under some regularity conditions, the maximum 

likelihood estimator α̂o converges in large samples to16 

plim α̂o = argminα∈A I (fα, f) (y) dμ (y)  (1.6.1) 

where I(fα, f)(y) is the conditional relative entropy of model f with respect 
to model fα , defined as the expected value of the logarithm of the likelihood 

ratio evaluated with respect to the true conditional density f(y ∗|y) 

∗ I (fα, f) (y) =  log 
f

f 

α 

(
(
y

y 

∗
∗
|
|
y

y

)
) 

f (y ∗ |y) dy . (1.6.2) 

It can be shown that I(fα, f)(y) ≥ 0. Figure 1.6.1 depicts how the 

probability limit α̂o of the estimator of the parameters of a misspecified model 
makes I(fα, f) =  I(fα, f)(y)dμ(y) as small as possible. When the model is 
misspecified, the minimized value of I(fα, f) is positive. 

A 
I(fαo , f)� 

� 

fαo 

f 

Figure 1.6.1: Econometric specification analysis. Sup­
pose that the data generating mechanism is f and that the 

econometrician fits a parametric class of models fα ∈ A to 

the data and that f /∈ A . Maximum likelihood estimates 
of α eventually select the misspecified model fαo that is 
closest to f as measured by entropy I(fα, f).  

Sims (1993) and Hansen and Sargent (1993) have used this framework to 

deduce the consequences of various types of misspecification for estimates of 

16 Versions of this result occur in White (1982, 1994), Vuong (1989), Sims (1993), Hansen 
and Sargent (1993), and Gelman, Carlin, Stern, and Rubin (1995). 
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parameters of dynamic stochastic models.17 For example, they studied the 

consequences of using seasonally adjusted data to estimate models populated 

by decision makers who actually base their decisions on seasonally unadjusted 

data. 

1.7. Acknowledging misspecification 

To study decision making in the presence of model misspecification, we turn 

the analysis of section 1.6 on its head by taking fαo as a given approximat­
ing model and surrounding it with a set of unknown possible data generating 

processes, one unknown element of which is the true process f . See figure 

1.7.1. Because he doesn’t know f , a decision maker bases his decisions on 

the only explicitly specified model available, namely, the misspecified fαo . 
We are silent about the process through which the decision maker discovered 

his approximating model fαo (y ∗|y).18 We also take for granted the decision 

maker’s parameter estimates αo . 19 We impute some doubts about his model 
to the decision maker. In particular, the decision maker suspects that the 

data are actually generated by another model f(y ∗|y) with relative entropy 

I(fαo , f)(y). The decision maker thinks that his model is a good approxi­
mation in the sense that I(fαo , f)(y) is not too large, and wants to make 

decisions that will be good when f � fαo . We endow the decision maker = 

with a discount factor β and construct the following intertemporal measure 

of model misspecification:20 

∞
I (fαo , f) =  Ef βtI (fαo , f) (yt) 

t=0 

where Ef is the mathematical expectation evaluated with respect to the dis­
tribution f . Our decision maker confronts model misspecification by seek­
ing a decision rule that will work well across a set of models for which 

I(fαo , f) ≤ η0 , where  η0 measures the set of models F surrounding his 
approximating model fα . Figure 1.7.1 portrays the decision maker’s view of 
the world. The decision maker wants a single decision rule that is reliable for 

all models f in the set displayed in figure 1.7.1.21 This book describes how he 

17 Also see Vuong (1989). 
18 See Kreps (1988, chapter 11) for an interesting discussion of the problem of model 

discovery. 
19 In chapter 9, we entertain the hypothesis that the decision maker has estimated his 

model by maximum likelihood using a data set of length T and use Bayesian detection error 
probabilities to guide the choice of a set of models against which he wants to be robust. 

20 Hansen and Sargent (2005b, 2007a) provide an extensive discussion of reasons for 
adopting this measure of model misspecification. 

21 ‘Reliable’ means good enough, but not necessary optimal, for each member of a set of 
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can form such a robust decision rule by solving a Bellman equation that tells 
him how to maximize his intertemporal objective over decision rules when a 

hypothetical malevolent nature minimizes that same objective by choosing a 

model f . 22 That is, we use a max-min decision rule. Positing a malevolent 
nature is just a device that the decision maker uses to perform a systematic 

analysis of the fragility of alternative decision rules and to construct a lower 
bound on the performance that can be attained by using them. A decision 

maker who is concerned about robustness naturally seeks to construct bounds 
on the performance of potential decision rules, and the malevolent agent helps 

the decision maker do that. 

η 

� 

� 

fαo 

f 

I(fαo , f) ≤ η 

Figure 1.7.1: Robust decision making: A decision maker 
with model fαo suspects that the data are actually gener­
ated by a nearby model f , where  I(fαo , f) ≤ η . 

1.8. Why entropy? 

To assess the robustness of a decision rule to misspecification of an approx­
imating model requires a way to measure just how good an approximation 

that model is. In this book, we use the relative entropy to measure discrep­
ancies between models. Of course, relative entropy is not the only way we 

models. The Lucas critique, or dynamic programming, tells us that it is impossible to find 
a single decision rule that is optimal for all f in this set. Note how the one-to-one mapping 
from transition laws f to decision rules that is emphasized in the Lucas critique depends 
on the decision maker knowing the model f . We shall provide a Bayesian interpretation 
of a robust decision rule by noting that, ex post , the max-min decision rule is optimal for 
some model within the set of models. 

22 See Milnor (1951, 1954) for an early formal use of the fiction of a malevolent agent. 
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could measure discrepancies between alternative probability distributions.23 

But in using relative entropy, we follow a substantial body of work in applied 

mathematics that reaps benefits from entropy in terms of tractability and 

interpretability. In particular, using entropy to measure model discrepancies 
enables us to appeal to the following outcomes: 

1.	 In the general nonlinear case, using entropy to measure model discrepan­
cies means that concerns about model misspecification can be represented 

in terms of a continuation value function that emerges as the indirect util­
ity function after minimizing the decision maker’s continuation value with 

respect to the transition density, subject to a penalty on the size of con­
ditional entropy. That indirect utility function implies a tractable “risk-
sensitivity” adjustment to continuation values in Bellman equations. In 

particular, we can represent a concern about robustness by replacing 

EtV (xt+1) in a Bellman equation with −θ log Et exp −V (
θ
xt+1) , where  

θ > θ  > 0 is a parameter that measures the decision maker’s concern 

about robustness to misspecification. (We shall relate the lower bound 

θ to H∞ control theory in chapter 8.) The simple log Et exp form of 
this adjustment follows from the decision to measure model discrepancy 

in terms of entropy. 

2.	 In problems with quadratic objective functions and linear transition laws, 
using relative entropy to measure model misspecification leads to a sim­
ple adjustment to the ordinary linear-quadratic dynamic programming 

problem. Suppose that the transition law for the state vector in the 

approximating model is xt+1 = Axt + But + Cεt+1 , where  εt+1 is an 

i.i.d. Gaussian vector process with mean 0 and identity covariance. Us­
ing relative entropy to measure discrepancies in transition laws implies 
a worst-case model that perturbs the distribution of εt+1 by enhancing 

its covariance matrix and appending a mean vector wt+1 that depends 
on date t information. Value functions remain quadratic and the distri­
bution associated with the perturbed model remains normal. Because a 

form of certainty equivalence prevails,24 it is sufficient to keep track of 
the mean distortion when solving the control problem. This mean distor­
tion contributes .5wt+1 ·wt+1 to the relative entropy discrepancy between 

the approximating model and the alternative model. As a consequence, 
a term  θwt

′ 
+1wt+1 is appended to the one-period return function when 

computing the robust control and a worst-case conditional mean. 

23 Bergemann and Schlag (2005) use Prohorov distance rather than entropy to define the 
set of probability models against which decision makers seek robustness. 

24 See page 33. 
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3. As we shall see in chapter 9, entropy connects to a statistical theory for 

discriminating one model from another. The theory of large deviations 

mentioned in chapter 3 links statistical discrimination to a risk-sensitivity 

adjustment.25 

1.9. Why max-min? 

We answer this question by posing three other questions. 

1. What does it mean for a decision rule to be robust? A robust decision 

rule performs well under the variety of probability models depicted in 

figure 1.7.1. How might one go about investigating the implications of 
alternative models for payoffs under a given decision rule? A good way 

to do this is to compute a lower bound on value functions by assessing 

the worst performance of a given decision rule over a range of alternative 

models. This makes max-min a useful tool for searching for a robust 
decision rule. 

2. Instead of max-min, why not simply ask the decision maker to put a prior 

distribution over the set of alternative models depicted in figure 1.7.1? 

Such a prior would, in effect, have us form a new model – a so-called 

hypermodel – and thereby eliminate concerns about the misspecification 

of that model. Forming a hypermodel would allow the decision maker to 

proceed with business as usual, albeit with what may be a more complex 

model and a computationally more demanding control problem. We agree 

that this “model averaging” approach is a good way to address some well-
structured forms of model uncertainty. Indeed, in chapter 18 we shall use 

model averaging and Bayesian updating when we study problems that call 
for combined estimation and control. But the set of alternative models 
can be so vast that it is beyond the capacity of a decision maker to conjure 

up a unique well behaved prior. And even when he can, a decision maker 
might also want decisions to be robust to whatever prior he could imagine 

over this set of models. 

More is at issue than the choice of the prior distribution to assign to dis­
tinct well specified models. The specification errors that we fear might 
be more complex than can be represented with a simple model averag­
ing approach. It is reasonable to take the view that each of the distinct 
models being averaged is itself an approximation. The decision maker 
might lack precise ideas about how to describe the alternative specifi­
cations that worry him and about how to form prior distributions over 

25 Anderson, Hansen, and Sargent (2003) extensively exploit these connections. 
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them. Perhaps he can’t articulate the misspecifications that he fears, or 
perhaps the set of alternative models is too big to comprehend.26 

Our answer to this second question naturally leads to a reconsideration 

of the standard justification for being a Bayesian. 

3. “Why be a Bayesian?”	 Savage (1954) gave an authoritative answer by 

describing axioms that imply that a rational person can express all of his 

uncertainty in terms of a unique prior. However, Schmeidler (1989) and 

Gilboa and Schmeidler (1989) altered one of Savage’s axioms to produce 

a model of what it means to be a rational decision maker that differs 

from Savage’s Bayesian model. Gilboa and Schmeidler’s rational decision 

maker has multiple priors and behaves as a max-min expected utility 

decision maker: the decision maker maximizes and assumes that nature 

chooses a probability to minimize his expected utility. We are free to 

appeal to Gilboa and Schmeidler’s axioms to rationalize the form of max­
min expected utility decision making embedded in the robust control 
theories that we study in this book.27 

1.10. Is max-min too cautious? 

Our doubts are traitors, And make us lose the good we oft might win, By 

fearing to attempt. 
— William Shakespeare, Measure for Measure, act 1 scene 4 

Our use of the detection error probabilities of chapter 9 to restrict the penalty 

parameter θ in figure 1.1.1 protects us against the objection that the max­
min expected utility theory embedded in robust control theory is too cautious 
because, by acting as if he believed the worst-case model, the decision maker 
puts too much weight on a “very unlikely” scenario.28 We choose θ so that 
the entropy ball that surrounds the decision maker’s approximating model in 

26 See Sims (1971) and Diaconis and Freedman (1986) for arguments that forming an 
appropriate prior is difficult when the space of submodels and the dimensions of parameter 
spaces are very large. 

27 Hansen and Sargent (2001) and Hansen, Sargent, Turmuhambetova, and Williams 
(2006) describe how stochastic formulations of robust control “constraint problems” can 
be viewed in terms of Gilboa and Schmeidler’s max-min expected utility model. Interest­

ing theoretical work on model ambiguity not explicitly connected to robust control theory 
includes Dow and Werlang (1994), Ghirardato and Marinacci (2002), Ghirardato, Mac­

cheroni, and Marinacci (2004), Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003), 
and Rigotti and Shannon (2003, 2005), and Strzalecki (2007). 

28 Bewley (1986, 1987, 1988), Dubra, Maccheroni, and Ok (2004), Rigotti and Shannon 
(2005), and Lopomo, Rigotti, and Shannon (2004) use an alternative to the max-min ex­

pected utility model but still one in which the decision maker experiences ambiguity about 
models. In their settings, incomplete preferences are expressed in terms of model ambiguity 
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figure 1.7.1 has the property that the perturbed models on and inside the ball 
are difficult to distinguish statistically from the approximating model with 

the amount of data at hand. This way of calibrating θ makes the likelihood 

function for the decision maker’s worst-case model fit the available data almost 
as well as his approximating model. Moreover, by inspecting the implied 

worst-case model, we can evaluate whether the decision maker is focusing on 

scenarios that appear to be too extreme. 

1.11. Aren’t you just picking a plausible prior? 

By interchanging the order in which we maximize and minimize, chapter 7 de­
scribes an ex post Bayesian interpretation of a robust decision rule.29 Friendly 

critics have responded to this finding by recommending that we view robust 
control as simply a way to select a plausible prior in an otherwise standard 

Bayesian analysis.30 Furthermore, one can regard our chapter 9 detection 

error probability calculations as a way to guarantee that the prior is plausible 

in light of the historical data record at the disposal of the decision maker. 
We have no objection to this argument in principle, but warn the reader 

that issues closely related to the Lucas (1976) critique mean that it has to be 

handled with care, as in any subjectivist approach. Imagine a policy inter­
vention that alters a component of a decision maker’s approximating model 
for, e.g., a tax rate, while leaving other components unaltered. In general, 
all equations of the decision maker’s worst-case transition law that emerge 

from the max-min decision process will vary with such interventions. The de­
pendence of other parts of the decision maker’s worst-case model on subcom­
ponents of the transition law for the approximating model that embody the 

policy experiment reflects the context-specific nature of the decision maker’s 

worst-case model. Therefore, parts of the ex post worst-case “prior” that de­
scribe the evolution of variables not directly affected by the policy experiment 
will depend on the policy experiment. The sense in which robust control is 
just a way to pick a plausible prior is subtle. 

Another challenge related to the Lucas critique pertains when we apply 

robust control without availing ourselves of the ex post Bayesian interpreta­

and there is a status quo allocation that plays a special role in shaping how the decision 
maker ranks outcomes. Some advocates of this incomplete preferences approach say that 
they like it partly because it avoids what they say is an undue pessimism that characterizes 
the max-min expected utility model. See Fudenberg and Levine (1995) for how max-min 
can be used to attain an interesting convergence result for adaptive learning. 

29 We introduce this argument because it provides a sense in which our robust decision 
rules are admissible in the statistical decision theoretic sense of being undominated. 

30 Christopher A. Sims has made this argument on several occasions. 
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tion. Throughout this book, whenever we consider changes in the economic 

environment, we imitate rational expectations policy analysis by imputing 

common approximating models, one before the policy change, the other after, 
to all agents in the model and the econometrician (e.g., see chapter 14). It 
is natural to doubt whether decision makers would fully trust their statistical 
models after such policy changes. 

1.12. Why not learn the correct specification? 

For much of this book, but not all, we attribute an enduring fear of misspecifi­
cation to our decision maker. Wouldn’t it be more realistic to assume that the 

decision maker learns to detect and discard bad specifications as data accrue? 

One good answer to this question is related to some of the points made 

in section 1.9. In chapter 9, we suggest calibrating the free parameter θ 
borne by the “gentleman” in the bottom panel of figure 1.1.1 so that, even 

with nondogmatic priors, it would take long time series to distinguish among 

the alternative specifications about which the decision maker is concerned. 
Because our decision maker discounts the future, he cannot avoid facing up 

to his model specification doubts simply by waiting for enough data.31 Thus, 
one answer is that, relative to his discount factor, it would take a long time 

for him to learn not to fear model misspecification. 
However, we agree that it is wise to think hard about what types of 

misspecification fears you can expect learning to dispel in a timely way, and 

which types you cannot. But what are good ways to learn when you dis­
trust your model? Chapters 17 and 18 are devoted to these issues.32 We 
present alternative formulations of robust estimation and filtering problems 
and suggest ways to learn in the context of distrusted approximating models. 
Our approach allows us to distinguish types of model misspecification fears 
that a decision maker can eventually escape by learning from types that he 

cannot.33 

31 As we shall see, one reason that it takes a very long data set to discriminate between 
the models that concern the decision maker is that often they closely approximate each 
other at high frequencies and differ mostly at very low frequencies. Chapter 8 studies 
robustness from the viewpoint of the frequency domain. 

32 Also see Hansen and Sargent (2005b, 2007a, 2007b). 
33 Epstein and Schneider (2006) also make this distinction. In the empirical model of 

Hansen and Sargent (2007b), a representative consumer’s learning within the sample period 
reduces his doubts about the distribution of some unknown parameters, but does little to 
diminish his doubts about the distribution over difficult to distinguish submodels, one of 
which confronts him with long-run risk in the growth rate of consumption. 
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1.13. Is the set of perturbed models too limited? 

Parts of this book are devoted to analyzing situations in which the deci­
sion maker’s approximating model and the statistical perturbations to it that 
bother him all take the form of the stochastic linear evolution 

xt+1 = Axt + But + C (εt+1 + wt+1)  (1.13.1) 

where xt is a state vector, ut a control vector, εt+1 an i.i.d. Gaussian shock 

with mean 0 and covariance I , and  wt+1 is a vector of perturbations to the 

mean of εt+1 . Under the approximating model, wt+1 = 0, whereas under 
perturbed models, wt+1 is allowed to be nonzero and to feed back on the 

history of past xt ’s. 
Some critics have voiced the complaint that this class of perturbations ex­

cludes types of misspecified dynamics that ought to concern a decision maker, 
such as unknown parameter values, misspecfication of higher moments of the 

εt+1 distribution, and various kinds of “structured uncertainty.” We think 

that this complaint is misplaced for the following reasons: 

1.	 For the problems with quadratic objective functions and approximating 

models like (1.13.1)  with  wt+1 = 0, restricting ourselves to perturbations 
of the form (1.13.1) turns out not to be as restrictive as it might at first 
seem. In chapters 3 and 7, we permit a much wider class of alternative 

models that we formulate as absolutely continuous perturbations to the 

transition density of state variables. We show that when the decision 

maker’s objective function is quadratic and his approximating model is 
linear with Gaussian εt+1 , then he chooses a worst-case model that is of 
the form (1.13.1)  with  a  C that is usually only slightly larger and a wt+1 

that is a linear function of xt . We shall explain why he makes little or 
no error by ignoring possible misspecification of the volatility matrix C . 

2. In section 19.2 of chapter 19, we show how more structured kinds of 
uncertainty can be accommodated by slightly reinterpreting the decision 

maker’s objective function. 

3.	 When the approximating model is a linear state evolution equation with 

Gaussian disturbances and the objective function is quadratic, worst case 

distributions are also jointly Gaussian. However, making the approximat­
ing model be non-Gaussian and non-linear or making the objective func­
tion be not quadratic leads to non-Gaussian worst-case joint probability 

distributions, as chapter 3 indicates. Fortunately, by extending the meth­
ods of chapters 17 and 18, as Hansen and Sargent (2005, 2007a) do, we 

know how to model robust decision makers who learn about non-linear 
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models with non-Gaussian shock distributions while making decisions. 
The biggest hurdles in carrying out quantitative analyses like these are 

computational. Most of the problems studied in this book are designed 

to be easy computationally by staying within a linear-quadratic-Gaussian 

setting. But numerical methods allow us to tackle analogous problems 

outside the LQG setting.34 

1.14. Is robust control theory positive or normative? 

Robust control and estimation theory has both normative and positive eco­
nomic applications. In some contexts, we take our answer to question (2) in 

the preceding section to justify a positive statement about how people actually 

behave. For example, we use this interpretation when we apply robust control 
and estimation theory to study asset pricing puzzles by constructing a robust 
representative consumer whose marginal evaluations determine market prices 
of risk (see Hansen, Sargent, and Tallarini (1999), Hansen, Sargent, and Wang 

(2002), and chapter 13). 
Monetary policy authorities and other decision makers find themselves 

in situations where their desire to be cautious with respect to fears of model 
misspecification would inspire them to use robust control and estimation tech­
niques.35 Normative uses of robust control theory occur often in engineering. 

1.15. Other lessons 

Our research program of refining typical rational expectations models to at­
tribute specification doubts to the agents inside of them has broadened our 
own understanding of rational expectations models themselves. Struggling 

with the ideas in this book has taught us much about the structure of re­
cursive models of economic equilibria,36 the relationship between control and 

estimation problems, and Bayesian interpretations of decision rules in dy­
namic rational expectations models. We shall use the macroeconomist’s Big 

K , little k trick with a vengeance. 
The 1950s-1960s control and estimation theories lampooned in the top 

panel of figure 1.1.1 have contributed enormously to the task of constructing 

dynamic equilibrium models in macroeconomics and other areas of applied 

economic dynamics. We expect that the robust control theories represented 

34 See Cogley, Colacito, Hansen, and Sargent (2007) for an example. 
35 Blinder (1998) expresses doubts about model misspecification that he had when he 

was vice chairman of the Federal Reserve System and how he coped with them. 
36 For example, see chapter 12. 
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in the bottom panel of that figure will also bring many benefits that we cannot 
anticipate. 

1.16. Topics and organization 

This monograph displays alternative ways to express and respond to a deci­
sion maker’s doubts about model specification. We study both control and 

estimation (or filtering) problems, and both single- and multiple-agent set­
tings. As already mentioned, we adapt and extend results from the robust 
control literature in two important ways. First, unlike the control literature, 
which focuses on undiscounted problems, we formulate discounted problems. 
Incorporating discounting involves substantial work, especially in chapter 8, 
and requires paying special attention to initial conditions. Second, we analyze 

three types of economic environments with multiple decision makers who are 

concerned about model misspecification: (1) a competitive equilibrium with 

complete markets in history-date contingent claims and a representative agent 
who fears model misspecification (chapters 12 and 13); (2) a Markov perfect 
equilibrium of a dynamic game with multiple decision makers who fear model 
misspecification (chapter 15); and (3) a Stackelberg or Ramsey problem in 

which the leader fears model misspecification (chapter 16). Thinking about 
model misspecification in these environments requires that we introduce an 

equilibrium concept that extends rational expectations. We stay mostly, but 
not exclusively, within a linear-quadratic framework, in which a pervasive cer­
tainty equivalence principle allows a nonstochastic presentation of most of the 

control and filtering theory. 

This book is organized as follows. Chapter 2 summarizes a set of prac­
tical results at a relatively nontechnical level. A message of this chapter 

is that although sophisticated arguments from chapters 7 and 8 are needed 

fully to justify the techniques of robust control, the techniques themselves 
are as easy to apply as the ordinary dynamic programming techniques that 
are now widely used throughout macroeconomics and applied general equi­
librium theory. Chapter 2 uses linear-quadratic dynamic problems to convey 

this message, but the message applies more generally, as we shall illustrate in 

chapter 3. Chapter 3 tells how the key ideas about robustness generalize to 

models that are not linear quadratic. 

Chapters 4 and 5 are about optimal control and filtering when the deci­
sion maker trusts his model. These chapters contain a variety of useful results 
for characterizing the linear dynamic systems that are widely used in macroe­
conomics. Chapter 4 sets forth important principles by summarizing results 
about the classic optimal linear regulator problem. This chapter builds on 
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the survey by Anderson, Hansen, McGrattan, and Sargent (1996) and culmi­
nates in a description of invariant subspace methods for solving linear optimal 
control and filtering problems and also for solving dynamic linear equilibrium 

models. Later chapters apply these methods to various problems: to compute 

robust decision rules as solutions of two-player zero-sum games; to compute 

robust filters via another two-player zero-sum game; and to compute equilib­
ria of robust Stackelberg or Ramsey problems in macroeconomics. Chapter 5 

emphasizes that the Kalman filter is the dual (in a sense familiar to economists 
from their use of Lagrange multipliers) of the basic linear-quadratic dynamic 

programming problem of chapter 4 and sets the stage for a related duality 

result for a robust filtering problem to be presented in chapter 17. 

The remaining chapters are about making wise decisions when a decision 

maker distrusts his model. Within a one-period setting, chapter 6 introduces 
two-player zero-sum games as a way to induce robust decisions. Although 

the forms of model misspecifications considered in this chapter are very sim­
ple relative to those considered in subsequent chapters, the static setting of 
chapter 6 is a good one for addressing some important conceptual issues. In 

particular, in this chapter we state multiplier and constraint problems, two 

different two-player zero-sum games that induce robust decision rules. We use 

the Lagrange multiplier theorem to connect the problems. 

Chapters 7 and 8 extend and modify results in the control literature to for­
mulate robust control problems with discounted quadratic objective functions 

and linear transition laws. Chapter 7 represents things in the time domain, 
while chapter 8 works in the frequency domain. Incorporating discounting 

requires carefully restating the control problems used to induce robust deci­
sion rules. Chapters 7 and 8 describe two ways to alter the discounted linear 

quadratic optimal control problem in a way to induce robust decision rules: 
(1) to form one of several two-player zero-sum games in which nature chooses 

from a set of models in a way that makes the decision maker want robust de­
cision rules; and (2) to adjust the continuation value function in the dynamic 

program in a way that encodes the decision maker’s preference for a robust 
rule. The continuation value that works comes from the minimization piece 

of one of the two-player zero-sum games in (1). In category (1), we present 
a detailed account of several two-player zero-sum games with different timing 

protocols, each of which induces a robust decision rule. As an extension of cat­
egory (2), we present three specifications of preferences that express concerns 

about model misspecification. Two of them are expressed in the frequency 

domain: the H∞ and entropy criteria. The entropy objective function sum­
marizes model specification doubts with a single parameter. That parameter 
relates to a Lagrange multiplier in a two-player zero-sum constraint game, and 
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also to the risk-sensitivity parameter of Jacobson (1973) and Whittle (1990), 
as modified for discounting by Hansen and Sargent (1995). 

Chapters 7 and 8 show how robustness is induced by using max-min 

strategies: the decision maker maximizes while nature minimizes over a set 
of models that are close to the approximating model. There are alternative 

timing protocols in terms of which a two-player zero-sum game can be cast. 
A main finding of chapter 7 is that zero-sum games that make a variety of 
different timing protocols share outcomes and representations of equilibrium 

strategies. This important result lets us use recursive methods to compute 

our robust rules and also facilitates computing equilibria in multiple-agent 
economics. 

Arthur Goldberger and Robert E. Lucas, Jr., warned applied economists 
to beware of theorists bearing free parameters (see figure 1.1.1). Relative to 

settings in which decision makers completely trust their models, the multiplier 
and constraint problems of chapters 7 and 8 each bring one new free parameter 
that expresses a concern about model misspecification, θ for the multiplier 
problem and η for the constraint problem. Each of these parameters measures 

sets of models near the approximating model against which the decision maker 

seeks a robust rule. Chapter 9 proposes a way to calibrate these parameters 

by using the statistical theory for discriminating models.37 We apply this 
theory in chapters 10 and 14. 

Chapter 10 uses the permanent income model of consumption as a labo­
ratory for illustrating some of the concepts from chapters 7 and 8. Because he 

prefers smooth consumption paths, the permanent income consumer’s savings 
are designed to attenuate the effects of income fluctuations on his consump­
tion. A robust consumer engages in a kind of precautionary savings because 

he suspects error in the specification of the income process. We will also use 

the model of chapter 10 as a laboratory for asset pricing in chapter 13. But 
first, chapters 11 and 12 describe how to decentralize the solution of a plan­
ning problem with a competitive equilibrium. Chapter 11 sets out a class of 
dynamic economies and describes two decentralizations, one with trading of 
history-date contingent commodities once and for all at time zero, another 

with sequential trading of one-period Arrow securities. In that sequential 
setting, we give a recursive representation of equilibrium prices. Chapter 11 

describes a setting where the representative agent has no concern about model 
misspecification, while chapter 12 extends the characterizations of chapter 11 

to situations where the representative decision maker fears model misspecifi­
cation. 

Chapter 13 builds on the chapter 12 results to show how fear of model 

37 See Anderson, Hansen, and Sargent (2003). 
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misspecification affects asset pricing. We show how, from the vantage point 
of the approximating model, a concern for robustness induces a multiplicative 

adjustment to the stochastic discount factor. The adjustment measures the 

representative consumer’s fear that the approximating model is misspecified. 
The adjustment for robustness resembles ones that financial economists use 

to construct risk neutral probability measures for pricing assets. We describe 

the basic theory within a class of linear quadratic general equilibrium models 
and then a calibrated version of the permanent income model of chapter 10. 
A remarkable observational equivalence result identifies a locus of pairs of 
discount factors and robustness multipliers, all of which imply identical real 
allocations.38 Nevertheless, prices of risky assets vary substantially across 

these pairs. In chapter 14, we revisit some quantitative findings of Tallarini 
(2000) and reinterpret asset pricing patterns that he imputed to very high risk 

aversion in terms of a plausible fear of model misspecification. We measure 

a plausible fear of misspecification by using the detection error probabilities 
introduced in chapter 9. 

Chapters 15 and 16 describe two more settings with multiple decision 

makers and introduce an equilibrium concept that extends rational expecta­
tions in what we think is a natural way. In a rational expectations equilibrium, 
all decision makers completely trust a common model. Important aspects of 
that common model, those governing endogenous state variables, are equilib­
rium outcomes. The source of the powerful cross-equation restrictions that 
are the hallmark of rational expectations econometrics is that decision makers 
share a common model and that this model governs the data.39 To preserve 

that empirical power in an equilibrium with multiple decision makers who fear 
model misspecification, we impose that all decision makers share a common 

approximating model.40 The model components that describe endogenous 
state variables are equilibrium outcomes that depend on agents’ robust deci­
sion making processes, i.e., on the solutions to their max-min problems. 

Chapter 15 describes how to implement this equilibrium concept in the 

context of a two-player dynamic game in which the players share a common 

38 This result establishes a precise sense in which, so far as real quantities are concerned, 
increased fear of model misspecficiation acts just like reduced discounting of the future, so 
that its effects on real quantities can be offset by increasing the rate at  which  future  payoffs  
are discounted. 

39 The restriction that they share a common model is the feature that makes free pa­

rameters governing expectations disappear. This is what legitimizes a law of large numbers 
that underlies rational expectations econometrics. 

40 In the empirical applications of Hansen, Sargent, and Tallarini (1999) and Anderson, 
Hansen, and Sargent (2003), we also maintain the second aspect of rational expectations 
modeling, namely, that the decision makers’ approximating model actually does generate 
the data. 
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approximating model and each player makes robust decisions by solving a two-
player zero-sum game, taking the approximating model as given. We show 

how to compute the approximating model by solving pairs of robust versions of 
the Bellman equations and first-order conditions for the two decision makers. 
While the equilibrium imposes a common approximating model, the worst-
case models of the two decision makers differ because their objectives differ. 
In this sense, the model produces endogenous ex post heterogeneity of beliefs. 

In chapter 16, we alter the timing protocol to study a control problem, 
called a Ramsey problem, where a leader wants optimally to control followers 
who are forecasting the leader’s controls. We describe how to compute a 

robust Stackelberg policy when the Stackelberg leader can commit to a rule. 
We accomplish that by using a robust version of the optimal linear regulator 

or else one of the invariant subspace methods of chapter 4. 
Chapter 17 extends the analysis of filtering from chapter 5 by describing 

a robust filtering problem that is dual to the control problem of chapter 7.41 

This recursive filtering problem requires that a time t decision maker must 
respect distortions to the distribution of the hidden state that he inherits 
from past decision makers. As a consequence, in this problem, bygones are 

not bygones:42 the decision makers concerns about past returns affect his 

estimate of the current value of a hidden state vector. 
Chapter 18 uses a different criterion than chapter 17 and finds a different 

robust filter. We think that the chapter 18 filter is the appropriate one for 
many problems and give some examples. The different filters that emerge from 

chapters 17 and 18 illustrate how robust decision rules are ‘context specific’ 
in the sense that they depend on the common objective function in the two-
player zero-sum game that is used to induce a robust decision rule. This 
theme will run through this book. 

Chapter 19 concludes by confronting some of the confining aspects of 
our work, some criticisms that we have heard, and opportunities for further 
progress. 

41 We originally found this problem by stating and solving a conjugate problem of a kind 
familiar to economists through duality theory. By faithfully following where duality leads, 
we discovered a filtering problem that is peculiar (but not necessarily uninteresting) from 
an economic standpoint. A sketch of this argument is presented in appendix A of chapter 
17. 

42 But see the epigraph from William Stanley Jevons quoted at the start of chapter 18. 




