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Chapter 1 

The Hi-Lo Paradox 

1. The Game of Hi-Lo 

You and another person have to choose whether to click on A or B. If 
you both click on A you will both receive £100, if you both click on 
B you will both receive £1, and if you click on different letters you will 
receive nothing. What should you do? 

It is obvious that the only rational choice is to click on A. Yet oddly, 
game theory has no explanation of what makes A-choices rational. 

This is an example of the game of Hi-Lo. In the general case of Hi-Lo, 
each of n players chooses one item from the same finite set of alterna
tives without consultation. With each alternative goes a prize, and one 
alternative’s prize is greater than all the others. If all choose the same 
alternative all get the prize that goes with it, and if not everyone 
chooses the same alternative none gets anything. Figure 1.1 shows the 
payoff matrix of a Hi-Lo in which there are two players, 1 and 2, and 
two alternatives, A and B, with associated prizes of 5 and 1. 

You are to play Hi-Lo, and it is common knowledge that you and 
your coplayer are intelligent people. It seems quite obvious that you 
should choose A. However, the question why it seems obvious, and the 
related question of why people almost always do choose A, have 
turned out to be anything but easy to answer. This chapter explores 
these questions. The answer I shall offer has far-reaching implications 
for game theory and, I shall argue, for our conception of ourselves as 
social beings. 

Player 2 

A B 

A 5, 5 0, 0 

B 0, 0 1, 1 
Player 1 

Figure 1.1. Hi-Lo 
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It may be thought that such situations are artificial and rare, that ‘we 
should be so lucky!’ But Hi-Los are very prevalent in our lives. It is just 
that the Hi-Lo structure of the payoffs is often not transparent. I first 
give examples of Hi-Los, of varying transparency, in varied human 
activities. Next I describe what is known about the choices people 
make. As we might expect, the evidence is that in cases in which the 
structure is transparent, people are overwhelmingly successful in coor
dinating on (A,A), and that we have great facility in Hi-Lo. It appears, 
too, that there is a strong intuition that choosing A is the only rational 
thing to do. 

Example 1. Running a single. In the game of cricket two batsmen— 
the striker and nonstriker—stand at two ‘wickets’, one at each end of 
a twenty-two-yard strip. The striker tries to hit a ball projected 
towards his end of the pitch far enough that each batsman can get to 
the wicket at the other end before the other side retrieves the ball 
and strikes one of the wickets with it, in which case one of the bats
men is said to be ‘run out’, a serious setback for his side. If the bats
men succeed their side’s score goes up by one ‘run’. If they don’t 
run, both sides’ scores are unaltered. If one runs and the other doesn’t, 
it’s likely that the runner will find himself run out. If the striker hits 
the ball only a short distance, then even if both run, one of them is 
likely to be run out, but if he makes a good hit and they both run, 
they are likely to add one run to their side’s score. Suppose the hit is 
good enough. Each batsman may either run or stay; so the payoff 
matrix has the form of figure 1.2. 

Example 2. Focal coordination. As we have seen, Schelling games in 
option form are typically Hi-Lo. [MB is referring to material that would 
have been in the unwritten chapter III. The material is discussed by the 
editors in section 4 of the introduction.] 

Example 3. Who fetches which? Lizzie and I fail to talk in the morning 
about who is going to fetch Julian from his school and who will fetch 
Emily from hers; and it’s now too late to get in touch. It is common 
knowledge between us that I have a meeting near Emily’s school, that 
she will be near Julian’s, and that we share the objectives of fetching 

Nonstriker 

run stay 

1, 1 −20, −20 

−20, −20 0, 0 

run 
Striker 

stay 

Figure 1.2. Running a single 
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Me 

fetch Emily fetch Julian 

fetch Julian −2, −2 
Lizzie 

fetch Emily 1, 1 

2, 2 

−2, −2 

Figure 1.3. Who fetches which? 

Player 2 

wide stay 

pass 
Player 1 

shoot 

5, 5 0, 0 

0, 0 1, 1 

Figure 1.4. Vision 

both children on time and minimizing total time spent fetching. So we 
face the problem in figure 1.3. 

Example 4. Vision. At a certain moment in a football match, Player 1 
has the ball, and the obvious move is to shoot, but defenders are 
blocking his path. The chances of finding the net are therefore only 
slight, but if Player 2 stays where he is he may well keep possession 
if the ball rebounds. There is also another option. If Player 2 runs 
wide, a pass from Player 1 to Player 2 would allow Player 1 to find 
space in front of goal, Player 2 to make a return pass and Player 1 to 
have a good sight of goal. Player 1 and Player 2 face the problem of 
figure 1.4. 

In Example 1 the options are obvious—run or stay. But here they are 
not. It takes what footballers call ‘vision’ for Player 1 to be aware of the 
pass-wide option for his side, and either ‘vision’ or ‘telepathy’ for 
Player 2 to see his part in the move, if there is no chance for Player 1 to 
attract his attention. Decision problems are often, as here, not given 
exogenously in their entirety but are in part made—by the creative per
ception of possible options by the decision-maker. 

Example 5. Telling the truth. An act utilitarian is someone who in each 
choice situation in which she finds herself chooses with the aim of maxi
mizing U, the sum of the utilities of all individuals in some reference 
group. If the outcome of her choice depends on the choices of certain 
others, the decision situation is a game, and if she and these others 
are all act utilitarians, and there is complete information, it is a pure 
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Player 2 

B D 

T 2, 2 −2, −2 

F −2, −2 2, 2 
Player 1 

Figure 1.5a. Truth telling: With strong disbelief 

Player 2 

B D 

T 2, 2 0, 0 

F −2, −2 0, 0 
Player 1 

Figure 1.5b. Truth telling: With weak disbelief 

coordination game. Hodgson (1967) argues that in deciding whether to 
tell the truth, act utilitarians confront a coordination game of the form of 
a simple Schelling game. The speaker Player 1 can tell the truth (T) or a 
falsehood (F); the hearer Player 2 can believe (B) or disbelieve (D). It is 
assumed that U is high (2, say) if the truth is believed and low (�2, say) 
if a falsehood is believed. In some cases believing the truth and disbe
lieving the falsehood have exactly the same effects (they do if the truth is 
a proposition P, the falsehood is ¬P, and disbelieving means believing 
the negation), and so do believing the falsehood and disbelieving the 
truth, so the payoffs are those of figure 1.5a. Hodgson argues that act 
utilitarians are left not knowing whether or not to tell the truth, and 
rejects this form of utilitarianism because of this indeterminacy. Gauthier 
(1975) notes, however, that if a disbeliever merely fails to form a belief at 
all, rather than believing the opposite of what is asserted, then the out
come of (F,D) is worse than that of (T,B). In this case the matrix is that of 
figure 1.5b, a (weak) Hi-Lo. On Gauthier’s interpretation of disbelief, if 
A is the unique rational solution of Hi-Lo then act utilitarianism gives 
clear advice about truth telling. As to whether A is the unique rational 
solution, that is the topic of this chapter. 

Example 6. Calling a catch. A second Hi-Lo drawn from cricket illus
trates a fundamental form of organization. One basic function of 
organization is to amplify the information on which individual 
actions are based. This allows a profile of actions that is better geared 
to the state of the world than any of those attainable by the players 
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without organization. If the procedural cost of the organization is not 
too great, the enlarged game in which players have the option of con
forming to this profile is a Hi-Lo in which conforming to it is A. 

When a batsman hits the ball in the air, if a fielder catches it before it 
touches the ground the batsman is ‘caught out’, which gives a signifi
cant boost to the fielding side (a payoff of 20). If the ball is ‘skied’, 
catching it means tracking its flight while running towards it. This is a 
difficult task which absorbs all the fielder’s attention. If two fielders 
(F1 and F2) are near and both go for the catch there may be a collision, 
and the likely upshot of this is that the batsmen score two runs or so, 
and a fielder may be injured (a payoff of �5). If neither goes for the ball 
the likely upshot is two runs or so (a payoff of �2). 

�

Typically each of the fielders will have some idea of whether he or the 
other is better placed to make the catch, but can be wrong. We model 
this by supposing that there are two equiprobable states of the world, 

1 and �2. In �1, F1 is better placed and will make the catch with high 
probability (1.0) if he is unhindered, and F2 would make it with a lower 
probability (0.75). In �2 the players’ positions are reversed. Whatever 
the state, each player gets right which state it is with probability 2/3 
and gets it wrong with probability 1/3. 

To begin with, I suppose that each fielder has two options: catch if 
you think yourself better-placed (B), and catch if you think yourself 
worse-placed (W). This is a simple Hi-Lo, in which each of these is in 
Nash equilibrium with itself (figure 1.6a). (The mathematical deriva
tion of the payoffs is given in the appendix to this chapter.) 

Some cricketing teams use the following calling routine. The cap
tain calls the name of the fielder he thinks has the better chance, and 
the captain is always right about this. A fielder therefore has a third 
option: obey the call (C). But C carries a procedural cost: attending to 
the call takes precious seconds and reduces the chance of success if 
you do end up going for the catch—if unhindered the better-placed 
has probability of 0.5 and the worse-placed 0.375. The upshot is 

F2 

B W 

B 9, 9 5.8, 5.8 
F1 

W 5.8, 5.8 7.3, 7.3 

Figure 1.6a. Calling a catch: Without organization 
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C 

Player 2 

B W 

C 

Player 1 B 

W 

10, 10 8.8, 8.8 2.7, 2.7 

8.8, 8.8 9, 9 5.8, 5.8 

2.7, 2.7 5.8, 5.8 7.3, 7.3 

Figure 1.6b. Calling a catch: With organization 

shown in figure 1.6b. (Again, the mathematical derivation of the 
payoffs is given in the appendix to this chapter.) 

The situation is a Hi-Lo in which (B,B) and (W,W) are still equilibria, 
but better even than (B,B) is (C,C): the extra information more than 
compensates for the procedural cost of (C,C). 

Example 7. Deciding together. Suppose that two people have exactly 
the same aims, and have the opportunity to decide together what to 
do. Suppose these common aims are all the aims either has that could 
be affected by their decision. Suppose the problem they jointly face is 
a matching game with options A, B and C. For example, a colleague 
and I might have the opportunity to decide together whether to take a 
visiting speaker to lunch at restaurant A, B or C, and are concerned 
only to eat well, within budget and in time for the seminar. Deciding 
together is exchanging information, weighing considerations, agree
ing on the judgement that a certain alternative is best and deciding to 
adopt that alternative. If the two people decide together, then at the 
stage of this process at which they reach agreement on a judgement 
they face a Hi-Lo. 

Example 8. Calling a run. Example 1 was about the situation in cricket 
in which it is clear to both batsmen that a single run is ‘on’. But in other 
cases this may require judgement, and the two batsmen may not be 
equally well placed to make it. Some cricketers use the following prac
tice for deciding whether to run. If the striker hits the ball ‘forward of 
square’, so that it subtends an angle less than 90 degrees with the line of 
the pitch, he calls Yes or No; if he hits the ball backward of square, the 
nonstriker calls. Both run if and only if the call is Yes. Call this the 
Variable Caller practice. It puts the decision in the hands of the batsman 
better placed to make a good judgement quickly. To conform with 
the Variable Caller practice, a batsman implements the following 
strategy (V): if you hit the ball forward of square, or your partner hits it 
backward of square, call Yes if you think a run is on, otherwise No; if 
you hit it backward, or your partner hits it forward, do not call; obey 
your partner’s call; if he fails to call, stay. Suppose, simplifying, that 
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to their common knowledge the two options each batsman considers are 
Run if you think there’s time, and Variable Caller (V). Then the 
situation is a Hi-Lo in which (V,V) is the efficient pair. This example 
resembles Example 6 except that the judgement controlling the basic 
action each player should take—taking a catch or staying in Example 6, 
here running or staying—was there made by a third party and here 
made by one of the players themselves. It is an example of a self-
organizing team, and an archetype of a very large class of organizations. 

Example 9. Unlocking. Figure 1.7 shows a situation of a type that was 
common in the town in which I live during the ‘manhole years’ that 
followed the privatization of public utilities and the laying of cable. I 
myself was in car 3. In the figure the diagonal arrows represent the 
direction signals cars 1, 2 and 4 were making; the horizontal arrows 
mean that cars 3 and 5 were making no direction signals. The five cars 
all came to a halt, everyone in view of everyone. A few seconds later 
we started to move: first, car 2 turned right into Abingdon Road, car 1 
remaining stationary; next, car 4 turned right into Whitehouse Road 

1 

2 

34 

5 

Abingdon Road 

W
hi

te
ho

us
e 

R
oa

d 

sk
ip

 

manhole 

Figure 1.7. Unlocking 
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and threaded between the skip (dumpster) and car 1; next, car 3, my 
own, went straight on down Abingdon Road; next, car 5 went straight 
on up it; finally, car 1 passed the skip and turned left. Assuming that 
everyone wanted to be on his or her way in as little time as possible, 
this traffic unlocking problem is a Hi-Lo. The unlocking process that 
took place took perhaps 45 seconds. There were other possible combi
nations of movements, one involving car 4 forcing cars 1 and 2 to 
reverse. All were likely to take longer for each of the drivers. The five 
of us solved the Hi-Lo in a matter of seconds. 

These examples begin to show the importance of situations of Hi-Lo 
form in our lives. They arise whenever there is a common purpose and 
a best method of furthering it, and mixing methods is worst of all. 
Game theory has made us subtly sensitive to conflicts of private 
motive, not least when people subscribe publicly to a common aim; 
but this should not blind us to the huge domain of decisions we make 
in which aims are exactly or approximately the same. This does not 
require that they be stably so, only that there are occurrent frames in 
which they are. And this is normally the case when we carry out the 
normal activities of members of teams and other organizations to 
which we belong. Within the big game in which we may contemplate 
our department or firm or family as an entity outside ourselves, with 
whose goals our own purposes may conflict, we daily play subgames 
in which we frame ourselves as functioning members of some such 
system. When we do we are usually playing Hi-Lo. 

2. The Data 

There are these two broad empirical facts about Hi-Lo games: people 
almost always choose A, and people with common knowledge of each 
other’s rationality think it obviously rational to play A. Call these the 
behavioural fact and the judgemental fact about Hi-Lo. 

In cricket, when it is clear that there is a safe run to be taken, and the 
payoffs are therefore as in figure 1.2,1 it is unheard of not to take 
the run. In Schelling games, the only formal explanation we have of 
the coordination success we observe—variable frame theory—depends 
on the assumption that people play A in the induced Hi-Lo. In these 
examples, people appear to be disposed to make A-choices even 
though the Hi-Lo element in their problem may not be transparent. 
Their problem is not displayed to them as a Hi-Lo, but we can still 
explain their behaviour as resulting from A-choices in an implicit 
Hi-Lo; moreover, if they do implicitly confront Hi-Los, their behaviour 
entails that they make A-choices in them. In the Hi-Los which emerge 
when we decide together which alternative is best, as in Example 7, to 
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agree, genuinely, that restaurant A is best and yet not to decide to go 
there seems cockeyed. It seems as absurd as concluding by yourself 
that a certain alternative would be best for all the aims that weigh with 
you, and then not choosing that alternative. 

When it comes to laboratory tasks or text-book examples in which the 
form is transparent, the evidence that people are inclined to choose A is 
extremely commanding. Consider a Hi-Lo game 1, presented to two 
players for money prizes of £10 and £1. It seems so obvious that every
one will choose A that there were apparently no experimental tests 
before 2001 of the hypothesis that people choose A in overt Hi-Lo 
games. Then, in the course of an experimental programme to which I 
shall return, Gerardo Guerra and I asked each subject in a pair to choose 
one of the cards in a display (figure 1.8), in which the prize for matching 
on each of the items is shown below it. Although the differences among 
prizes were here quite small, fifty-eight subjects out of sixty-four, or 
91 per cent, chose the £6 card.2 

Most of us appear to have an overwhelming intuition that it is rational 
to play A, and moreover that this is obvious. The conviction seems to 
be independent of how rational we think our coplayer: in particular, it 

£5 

£6 £4 
Figure 1.8. Choose a card 
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applies just as much when we think our coplayer highly rational as 
when we think he is simple-minded. Moreover, it applies just as much 
when there is common knowledge of the rationality of us both. This 
is what I have dubbed the judgemental fact about Hi-Lo. The judgemen
tal fact is illustrated by the widespread endorsement of the intuition by 
theorists considering play between symmetrically rational players. 
Several assert or imply that A is obviously rational (Lewis 1969; Gauthier 
1975; Farrell 1988; Harsanyi and Selten 1988; Anderlini 1999; Crawford 
and Haller 1990; Bacharach 1991; Sugden 1995; Janssen 2001a).3 

One might expect the explanation of these two facts about Hi-Lo, the 
behavioural and the judgemental fact, to be straightforward. But these 
facts prove to be mysterious, and their explanation anything but that. 

3. The Hi-Lo Paradox 

3.1 What Game Theory Predicts 

The basic solution concept of standard game theory, Nash equilibrium, 
delivers two solutions to Hi-Lo: (A,A) and (B,B). (B,B) is just as good a 
solution as (A,A), for it satisfies just as well the logic of Nash equilib
rium, namely that beliefs plus instrumental rationality yield facts 
which match the beliefs. If I think you will choose B then the act it’s 
best for me to choose is B, and if you think I will choose B then it’s best 
for you to choose B, so both our hypothesized expectations are correct. 
(B,B) expectations get confirmed by best-replying agents. 

Because (A,A) and (B,B) are both Nash equilibria, the Nash equilib
rium solution concept predicts little or nothing. Whether little or 
nothing depends on how we interpret the claim that these equilibria 
are solutions. The strong form of the claim is that there is some equi
librium that all rational players (who are commonly known to be 
rational) will play. The weak form is that every such player will play 
her component in some equilibrium. The strong form predicts little, 
and the weak form nothing. In either form, game theory fails to 
explain why everyone chooses A. 

3.2 The Paradox 

The predictive failure is bad news for game theory in two different 
ways. First, because game theory aspires to explain actual behaviour, 
and here fails to explain a particularly strong regularity of behaviour. 
But second, because game theory is a theory of rational choice and so 
should deliver solutions which accord with, not actual behaviour, but 
another sort of empirical data, namely our intuitions about what is 
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rational. To be sure, our intuitions are both partial and unreliable 
evidence about the rationality of an action. We should not expect peo
ple to be able to identify the reasoning principles that govern their con
clusions, even when these principles are sound: for example, most 
people easily and reliably reason in accordance with modus ponens, but 
almost no-one can tell you that it is modus ponens that sanctions their 
conclusions. We know something makes sense (playing A, par excel
lence); but we do not know what sense it makes. And our intuitions 
may not be reliable: we may be deceived in finding some theoretical or 
practical proposition persuasive; one sort of evidence for this is that on 
reflection it loses its initial aura of obvious rightness. But the more sta
ble under reflection our intuitions are, the stronger they are, and the 
more they are shared by serious thinkers about the subject matter, the 
greater is the challenge to theory to encompass them. 

A paradox is a mismatch between such high-quality intuitions and 
the deliverances of an accepted theory. The clash between the obvious 
rationality of the choice A and the inability of game theory to single out 
A is a paradox. It is a weak paradox, because game theory does not 
predict that A will not be chosen. It is a paradox nonetheless, a failure 
of theory to agree with intuition. 

3.3 Refining Equilibrium 

Such paradoxes are not uncommon in game theory. Some have been 
dealt with in the past by ‘refinement’ of the Nash equilibrium solution 
concept. The broad object of the equilibrium refinement programme of 
the 1970s and 1980s was to eliminate equilibria which were intuitively 
suspect, by adding to the Nash solution principle further rationality con
ditions on players’ choices of a decision-theoretic character. To eliminate 
in this way a suspect Nash equilibrium (A,X), we seek a decision-
theoretic argument that A is not, on closer examination, or on a more 
careful specification of the game, a rational choice against the choice X. 

A simple example is the elimination of Nash equilibria in which 
one act is weakly dominated. Suppose the payoffs are as in figure 1.9. 

Player 2 

X Y 

A 1, 6 1, 3 

B 1, 4 2, 5 
Player 1 

Figure 1.9. A game with a weakly dominated Nash equilibrium 
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(A,X) is a Nash equilibrium (A is a best reply to X), but A is weakly 
dominated by B since B is at least as good as A against all feasible 
acts of Player 2, and better against one, Y. Now it is argued (Selten 
1975) that even rational players, having made a choice, may with 
nonzero probability do something else by accident. In the present 
case, consider a state in which Player 1 is certain that Player 2 will 
choose X and Player 2 is certain that Player 1 will choose A. Then 
Player 2 will indeed choose X, but there is some probability ε that 
her ‘hand will tremble’ and she will play Y. This means that the 
expected utility of A for Player 1 is lower than that of B, so it is not 
rational for Player 1 to choose A. The weak-dominance pattern in A’s 
payoffs means that this is true even for infinitesimal ε. Selten con
cludes that to be a rational solution, a Nash equilibrium must not 
include a weakly-dominated act. 

Neither this requirement nor any other refinement which has 
commanded general acceptance has the effect of eliminating (B,B) in 
Hi-Lo. Two refinements proposed by Harsanyi and Selten (1988), 
called risk dominance and payoff dominance, do eliminate (B,B). As we 
shall see in a minute, however, risk dominance is suited to describe 
the choices of players whose rationality is bounded in a certain way, 
but not to players with common knowledge of full rationality. Payoff 
dominance is another matter. Its logic is closely related to the main 
thesis of this book. I shall argue that in some circumstances the out
comes it selects will tend to be generated by the deliberations of fully 
rational agents. But the rational considerations that generate it are 
quite different from the decision-theoretic ones that the equilibrium 
refinement school was searching for. The conclusion: the Nash solu
tion principle implemented using the most stringent version of stand
ard rationality fails to deliver A. (B,B) is not only an equilibrium; it is a 
perfectly good equilibrium. But A is obviously the unique rational 
choice: this is the paradox. 

It may be protested that there is no real paradox here because the 
game-theoretic argument for B is flawed. It first supposes that each 
player expects B, then proceeds to show that these expectations are 
part of a consistent constellation of beliefs and acts. But it does nothing 
to show where the expectation might come from in the first place. 
Indeed, such an expectation is intrinsically implausible, so it postulates 
the intrinsically implausible. How could anyone expect a rational player 
to play B? 

Indeed it seems that no-one could. But the problem is to show 
why—why rationality excludes B. 

It must be understood that game theory does not predict B; it merely 
fails to exclude B. There is nothing fallacious about that, only 
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something incomplete. The programme game theory sets itself is to 
plot all outcomes consistent with all its postulates about the players’ 
reasoning and knowledge. Ultimately, the reason why (B,B) is a solu
tion is that it is consistent with all the facts about rationality that game 
theory can muster. (B,B) is a solution because game theory has mus
tered no fact about rationality that excludes B. Given this absence, the 
rigorous project of game theory obliges it to allow belief in B, and then 
B as a response to this belief. Given the absence, so far from criticizing 
game theory for allowing B and the equilibrium (B,B), we should 
praise it for its clear-headed acknowledgement of the consequences of 
its own limits. We should only regret that our current formal theory of 
interactive behaviour has a serious gap, no response to the question 
‘What’s wrong with B?’ or, equivalently, ‘What’s right with A?’ 

4. The Response 

Since game theory fails to explain why people would choose A in 
Hi-Lo, any explanation of A-choices must say they are not the result of 
game-theoretic reasoning in Hi-Lo, or at least not of this alone. Game 
theorists, philosophers, psychologists and others have sought to 
explain A-choices. The theories advanced have fallen into the same 
two broad categories as theories that have tried to explain C-choices in 
the Prisoner’s Dilemma: respecification theories and bounded rational
ity theories. [Throughout the text MB uses the standard notation of ‘C’ 
and ‘D’ for the strategies “Cooperate” and “Defect” in the Prisoner’s 
Dilemma.] Respecification theories explain behaviour usually thought 
of as an A-choice in a Hi-Lo by saying that the chooser is not in fact 
playing Hi-Lo but some related game G in which game theory does 
predict A. Bounded rationality theories explain A-choices in terms of 
limits on or lapses in rationality. In the Prisoner’s Dilemma literature 
we find respecification theories in which G is, for example, an indefi
nite repetition of the Prisoner’s Dilemma, or a Prisoner’s Dilemma 
with transformed payoffs, and bounded rationality theories in which 
players have limited depth or use magical reasoning. 

There is a third sort of theory, which may be called revisionary; revi
sionary theories aspire to explain the target behaviour (here, A) as 
rational, but rewrite accepted doctrines of what is rational. Revisionary 
theories may add new principles of rational choice, like equilibrium 
selection theories, or extend the framework by adding new prim
itives, like variable frame theory, or challenge previously accepted 
canons, as some evidentialists deny the instrumentalist canons. The 
boundary between revisionary theories and bounded theories may be 
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contentious even in the first two cases, for the extension championed 
by the revisionist may be seen by others as involving invalid reason
ing. The theory advanced in this book is a revisionary theory which is 
not immune from the possibility of such a reaction. 

5. Respecification Theories 

Farrell (1988) and Anderlini (1999) remodel the game in which A is 
chosen as a game in which players can communicate with each other 
before choosing between A and B. Anderlini suggests that our intuition 
that it’s rational to play A is due to an implicit assumption that players 
will manage to communicate their intentions. Farrell introduces a new 
rationality postulate (a refinement, called ‘neologism-proofness’) which 
applies in such games. The key idea is that some claims are ‘self-
signalling’—the speaker would like them to be believed if and only 
if they’re true; Farrell postulates that it’s rational to believe a self-
signalling claim. Clearly both ‘I’ll play A’ and ‘I’ll play B’ are self-
signalling. Intuitively, in Hi-Lo this makes it rational for the sender to 
send the message ‘A’. 

Aumann and Sorin’s (1989) respecification theory is actually not 
for Hi-Lo but for a broader class of games, common-interest games, 
which includes Hi-Lo games as a subclass. A common-interest game 
is any in which there is a profile that is Pareto-superior to all others. 
A common-interest game need not be a coordination game. An exam
ple is Rousseau’s Stag Hunt, shown in figure 1.10. [The story behind 
the game is that the two players are individuals living in a presocial 
‘state of nature’. Each chooses independently whether to hunt for 
rabbits (R) or deer (S, for ‘stag’). Deer hunting requires concerted 
action by both individuals, while either can hunt rabbits on his own. 
Both individuals do better by hunting deer together than by hunting 
rabbits separately, but hunting deer alone is the least productive 
activity of all.] 

Player 2 

S R 

S 2, 2 −1, 1 

R 1, −1 1, 1 
Player 1 

Figure 1.10. The Stag Hunt 
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If a common-interest game is a coordination game and symmetric, 
it is a Hi-Lo, and (A,A) is the unique Pareto-optimal profile of the 
definition. If it can be shown that in common-interest games in 
general the Pareto-optimal profile is played, it is shown a fortiori that 
(A,A) is played in Hi-Lo. Aumann and Sorin consider an arbitrary 
common-interest game and suppose that it is repeated indefinitely, 
and that with some chance each player has ‘bounded recall’—she 
remembers past play only n rounds back. They show conditions 
under which, in this setting, the probability that a player plays A 
tends to 1 over time. 

Both these models explain A-choices in a Hi-Lo game by interpreting 
this game as the kernel of a larger game. The phenomena they study 
are of intrinsic interest, but they only help explain the A-choices we are 
interested in (and the feelings people have about them) if the situations 
in which these A-choices are made really do feature communication or 
repetition. Looking again at the examples of section 1 it is clear that 
most of them do not actually have these features. In particular, one-
shot laboratory experiments with subjects behind screens certainly do 
not. Is it not possible, though, that even if they do not, nonetheless the 
players treat them as if they did in the sense that they use heuristics 
appropriate to cases in which they do, perhaps because they are used 
to such cases? But this ‘assimilation’ hypothesis is of no help in the rep
etition case, because (A,A) is predicted only in the nonexistent long 
run; the model does not predict that the prospect of this long run 
encourages the use of A now. 

In the communication case assimilation cannot be excluded out of 
hand. It is not inconceivable that, in deliberating in some Hi-Los, a 
player asks herself what message her coplayer would send if she were 
able, and best-replies to this counterfactual, imagined message. This 
hypothesis, however, is not advanced by Farrell and Anderlini them
selves. It is also empirically implausible in some paradigm cases, and 
fails to satisfy the generality aim. In some Hi-Los, such as those that 
arise in fast-moving games, quick decisions are needed, and the round
aboutness of the reasoning on this imagined-message hypothesis 
makes it implausible. It doesn’t ring true that a footballer wonders, 
even implicitly, what his teammate would signal in order to further his 
interest in winning the game if he had the chance to signal. And in 
cases in which one of the actions in the efficient profile is itself a mes
sage, as in Calling a Run, and in the vast array of organizational Hi-Los 
of which this is the archetype, the hypothesis means that players have 
thoughts about quite bizarre matters: the receiver deliberates that the 
sender would, if she had the chance, send a message saying that she 
was going to send a message, an amusing but improbable possibility. 
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6. Bounded Rationality Theories

In the literature that seeks to explain the behavioural fact—A-choices— 
we find two kinds of cognitive shortcomings: magical thinking and depth 
limits. I first describe what these are, then how they might explain A. 

6.1 Magical Thinking

An agent’s reasoning is called magical (Elster 1989, pp. 195–202) if it falla
ciously attributes causal powers to her own decisions. Decision theory 
and common sense both hold that one sort of reason that can rationalize 
an action x is a causal reason, namely that doing x would bring about a 
better end-state than its alternatives would.4 Someone who thinks magi
cally claims to have reasons of this kind, and this much of her thinking is 
sound; her mistake is in her view of what causes what. 

The specific mistake she makes in so-called evidential or diagnostic 
reasoning comes from the fact that what she decides is good evidence for 
something else. The decision-maker now slides from the idea that her 
choice is a good sign of the other’s choice to the idea that it is a cause of 
it. Very often, perhaps typically, in our decision-making lives, what 
makes a choice x be evidence for an outcome o is precisely that x tends 
to cause o, and it seems likely that it is the normality of this case that 
lures us into the slide. But although it’s normal it’s far from guaran
teed, so sliding is unsafe. Consider the case of smoking and cancer. 
Suppose you hear on the news that the conditional probability of con
tracting cancer is higher given that you smoke than it is given that you 
give up smoking: P(cancer | smoker) > P(cancer | ¬smoker). It is nat
ural to conclude that giving up is a good idea, and what lies behind 
this is the presumption that the statistical relationship comes from a 
causal link from smoking to getting cancer. But this presumption 
might be false: it might be that the relationship comes from a common 
cause, for example, that the tendency to smoke and susceptibility to 
cancer are both expressions of a certain gene. 

In the game case a player’s choice of x can be evidence that another 
player will choose y. But games are by definition situations in which 
different players’ acts are causally independent. This part of the defini
tion of a game is due to the fact that game theorists want to model 
decisions made without physical communication, and assume that 
there is no such thing as telepathy. So if Player 1 believes, rightly or 
wrongly, that her choosing x is evidence that Player 2 will choose y, 
believing that this evidence is due to a causal link must be a mistake. 

There is more than one scenario in which Player 1’s choice can be 
evidence of Player 2’s. The simplest is the case of similar players. If 
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Player 1 knows that she and Player 2 are ‘like-reasoning’, she can argue: 
‘Whatever choice x I make, Player 2 will make the same one; so I should 
choose x so that (x,x) is as good as possible.’ This argument ‘masks off’ 
nonsymmetric pairs of choices and leaves Player 1 just scanning the 
main diagonal. In the Prisoner’s Dilemma it leads a player to choose C, 
and in Hi-Lo to choose A. It is fallacious, because choosing C will make 
no difference to whether Player 2 chooses C or D (Lewis 1979). What is 
true is that if at the end of deliberation Player 1 has chosen C, it is prob
able that Player 2 will have too. But this fact may not be legitimately 
used by Player 1 during a deliberation not yet completed. 

Bacharach and Colman (1997) propose a way in which Player 1 can see 
her choice as evidence of Player 2’s in which Player 1’s model of Player 2 
is slightly richer, containing a best-reply step. Player 1 argues: ‘Whatever 
I choose, Player 2 will “read my mind”, and then do the best thing for 
himself given my choice.’ This is a masking move which lets Player 1 
confine her attention not to diagonal points (x,x) but to the points 
(x, B(x)), where B(x) is Player 2’s best reply to x, which is assumed unique. 
Colman and Bacharach suggest that a player goes on with the piece of 
magical thinking: ‘So I should choose the x that makes the pair (x, B(x)) as 
good as possible’. The choice which it delivers is called the Stackelberg 
act. But this is not the end of the story. The Stackelberg act, say x*, need 
not be a best reply against the expected act of the opponent B(x*)—that is, 
(x*, B(x*)) need not be an equilibrium. It seems likely that in these cases 
the player may reject the Stackelberg act on reflection.5 Colman and 
Bacharach conjecture that a Stackelberg act will tend to be chosen when 
but only when it has the equilibrium property. Colman and Stirk (1998) 
found evidence of this in a set of twelve 2 � 2 games, nine having and 
three not having the Stackelberg equilibrium property. 

In Hi-Lo, A is the Stackelberg act and has the equilibrium property, 
so both these magical reasoning theories, the similar-player theory and 
the Stackelberg theory, explain the behavioural fact.6 Both are bounded 
rationality theories, because magical reasoning involves a mistake. 

Another explanation of A-choice, by Jacobsen (2001b), subtle and 
imaginative, claims to explain the choice as rational, but also seems to 
involve a hidden evidentialist element. In the Jacobsen theory each 
player selects a ‘plan’. Player 1 selects the pair (x,y); x is her choice in 
her actual role (as Player 1), y is her choice for the act she would per
form if she were to be Player 2. This seems to be another evidentialist 
theory. Think of me, choosing between plan (x,y) and (x’,y’). According 
to Jacobsen, by the axiom Janssen (2001a) calls Internal Consistency, if I 
choose (x’,y’) rather than (x,y) this implies that my expectation of your 
act is y’ rather than y. The reason given is that my expectation of what 
you will do depends on the corresponding part of my plan, that is, on 
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what I decide I would do if in the other role. It is indeed reasonable for 
me to take this as evidence about what you will do. But since I cannot 
causally affect what you will do, I cannot use this epistemic conse
quence of my deciding on y’ rather than y as a reason to change from x 
to x’. My changing from y to y’, though evidence that you will do y’ 
and evidence against the event that you will do y, does nothing to 
bring it about that you will do y’ and not do y. 

6.2 Depth Limits 

An old idea for explaining A-choices is ‘equiprobability’. The thought 
is that if Player 1 has no idea what Player 2 will do, then it’s better for 
Player 1 to do A. For if she has no idea, then her personal probabilities 
for Player 2’s doing A and B must be equal, and then A gives her a 
higher expected payoff (2.5 instead of 0.5 in the figure 1.1 example). 
This model is asymmetric: Player 1 treats Player 2 as unlike herself. For 
if Player 2 were like her in terms of his initial information and reason
ing powers, he would presumably go through the same reasoning and 
would also choose A. So Player 1 cannot halfway rationally both think 
Player 2 is just like her and have no idea what Player 2 will do. 

Harsanyi and Selten’s principle of risk dominance turns out to boil 
down to the equiprobability principle—and so in my view to be inappro
priate as an unbounded rationality solution concept. So I shall classify it 
as a bounded rationality explanation of A, even though that may not be 
how Harsanyi and Selten intended it. Harsanyi and Selten’s general the
ory of rational solutions of games adopts the postulate that solutions 
must be Nash equilibria, then seeks ‘refinements’ of Nash equilibrium to 
deal with cases when there is more than one unrefined Nash equilibrium. 
Whereas the equiprobability argument is essentially decision-theoretic 
and selects an act directly, the risk-dominance theory first selects an equi
librium and then predicts that each player will play her part in it. For the 
class of symmetric 2 � 2 games, which includes Hi-Lo, Stag Hunt and the 
Prisoner’s Dilemma, the risk-dominance principle is that an equilibrium 
is a solution only if it is not ‘risk-dominated’; where, if E and E’ are any 
two equilibria, E risk-dominates E’ just if adherents of E do better than 
adherents of E’ against coplayers equally likely to be adherents of either. 
If there are two equilibria with no acts in common, like (A,A) and (B,B) in 
Hi-Lo, or (S,S) and (R,R) in Stag Hunt, the risk-dominance principle gives 
the same act-choices as the equiprobability argument.7 In Hi-Lo, risk 
dominance yields A. 

Harsanyi and Selten themselves say little about why we should 
expect people to adhere to E only if doing so gives higher payoffs 



53 T H E  H I - L O  P A R A D O X  

against an equal-probability mix of E and E’ adherents. In evolutionary 
game theory, risk-dominance ideas arise naturally in studying the 
emergence of one equilibrium rather than another; the processes stud
ied involve a hard-wired E population invaded by random waves of 
hard-wired E’-adherents, and what counts is the relative objective suc
cess of E-adherence and E’-adherence against the resulting probability 
mix of E and E’. 

But here we are interested not in hard-wired but in deliberating 
agents. The probabilities in the mix are probabilities in the head of 
Player 1, specifically elements of Player 1’s model of Player 2. 

We can see better what is involved in the equiprobability theory by 
casting it in the framework of Stahl and Wilson’s ‘level n’ theory of 
games (1995). This is a bounded rationality theory of how real players 
play games quite generally. In it, players reason strategically at different 
‘levels’. A level 0 player has no model of her coplayer; level 1 players 
believe they are playing level 0 players, and maximize expected payoff 
on this belief; level 2 players think a coplayer is level 0 or level 1 with 
probabilities adding to 1, and maximize expected payoff; and so on. 
Further, level 0 players are assumed to pick an option at random. Thus 
level 1 players of Hi-Lo are led to play A by what is precisely the logic of 
the equiprobability model. The equiprobability theory interpreted thus 
as an application of level 0 theory is a bounded rationality theory par 
excellence. A player models her coplayer as bounded—ultra-bounded, 
because entirely devoid of strategic reasoning; and herself thinks that 
half the population plays B, a grotesque belief considering that virtually 
100 per cent play A. Other empirical evidence also goes strongly against 
this theory. Stahl and Wilson (1994) found experimentally that over a 
range of ten games the fraction of subjects who were level 0 was insignif
icant and the fraction who were level 1 was 24 per cent.8 

7. Salience Theories 

7.1 Applying Variable Frame Theory to Hi-Lo 

One idea for explaining why people play A—the behavioural fact—is 
that it is due to the salience of A.9 Schelling thought that, however it 
may be that a particular coordination equilibrium’s salience makes it 
get played, in Hi-Lo this mechanism gets (A,A) played because giving 
the highest prize makes (A,A) salient. Probably the commonest 
response of game theorists today to the question why people choose A 
is an equilibrium-selection version of this idea: the equilibrium (A,A) 
gets selected because it is the salient equilibrium. This was Harsanyi 
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and Selten’s opinion. They point out that each player prefers (A,A) to 
(B,B),10 and conclude that we should adopt (A,A) as the solution 
because the players ‘should not have any trouble in coordinating their 
expectations’ at (A,A). (Harsanyi and Selten 1988, p. 81). The sugges
tion of these theorists is, I think, that salience can explain A-choices by 
itself, that is, without our having to call in other theories of A-choice, 
such as bounded rationality, respecification, or payoff dominance. In 
this section I investigate this suggestion. 

The only nonhandwaving theory we have of how rational players 
solve coordination problems is variable frame theory [described in 
section 4 of the introduction]. Applied to Schelling games, it works 
by using salience characteristics to turn these into Hi-Lo games. 
Could variable frame theory perhaps be reapplied to Hi-Lo games to 
show that salience characteristics of A and B explain A-choices in 
them? This might give a nonhandwaving theory of A-choice as an 
effect of framing. 

F

[It turns out that, provided we allow there to be a family of predicates 
which includes giving the highest prize but not giving the lowest prize, we 
can model the asymmetric salience of A and B in variable frame theory, 
and that for interesting bands of parameter values we get unique 
variable frame equilibria. If giving the highest prize is highly salient, there 
is a unique equilibrium in which people almost always play A. To 
be specific, consider a Hi-Lo game with k basic acts, A, B, . . . . Let  
the payoffs be a in (A,A), b in (B,B), . . . ,  with a� b � . . . .  Let the 
universal frame be F = {F0,F1} where F0 is the generic family {thing} and 

1 = {highest prize}; for each player, the extension of highest prize in the set 
of act-descriptions is A. Assume that the availabilities of these families 
are such that v(F0) = 1 and v(F1) � 0. Then there is a unique variable 
frame equilibrium in which players for whom F1 comes to mind opt for 
choose the highest prize while other players opt for pick a thing. This 
implies that an arbitrary player plays A with probability v(F1) � 
(1 – v[F1])/k.] 

In this theory, the mechanism through which being highest-prized 
has an effect on choice is that it makes A salient—A is chosen in virtue 
of this salience. (Coordination on it has to be reasonably well paying, 
but only above average, not necessarily highest.) I shall call this mech
anism for generating A-choices the pure salience mechanism. The theory 
has a perhaps surprising implication: if an act giving a lower prize 
were for some reason or other highly salient, the low-prize act would 
be chosen rather than A. 

[This can be shown in a simple extension of the previous model. 
Suppose that each player makes his choice between the options A, B, . . .  
by pressing one of k buttons. The A button is salient through its 
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association with the highest prize, but another button, R, is salient 
because it is the only red one. Let z be the average of the prizes a, b, . . .  
and assume that r, the prize associated with R, is greater than z (which 
is possible only if k � 2). The reason for this assumption will become 
clear shortly. Let the universal frame be F = {F0,F1,F2}, where F0 = 
{thing}, F1 = {highest prize} and F2 = {red}. Assume v(F0) = 1, v(F1) � 0 and 
v(F2) � 0. 

First, consider a player whose frame is {F0}. For her, the only act-
description is pick a thing; thus she picks among the k buttons at ran
dom. Next, consider a player whose frame is {F0,F1}, and thus whose 
decision problem is {pick a thing, choose the highest prize}. In the game as 
he perceives it, choose the highest prize is the unique best reply to both of 
these act-descriptions. Now, consider a player whose frame is {F0,F2}, 
and thus whose decision problem is {pick a thing, choose the red}. In the 
game as this player perceives it, choose the red is the unique best reply to 
both of the act-descriptions he can recognise. (To reach this conclusion, 
we need the assumption that r � z.) 

Finally, consider a player whose frame is {F0,F1,F2}, and thus whose 
decision problem is {pick a thing, choose the highest prize, choose the red}. 
As in the case of the frame {F0,F1}, pick a thing is strictly dominated 
by choose the highest prize. (Similarly, as in the case of the frame {F0,F2}, 
pick a thing is strictly dominated by choose the red.) So the only act-
descriptions that can be optimal for this player are choose the highest 
prize and choose the red. Recall that players whose frame is{F0,F2} opt for 
choose the red. Since the unique best reply to choose the red is choose the 
red, if the probability that an opponent has the frame {F0,F2} is suffi
ciently high, choose the red is optimal for the player with the frame 
{F0,F1,F2}. More specifically, let vT (‘T’ for ‘thing’) be the probability that 
a player has the frame {F0}; let vH (for ‘highest’) be the probability that a 
player has the frame {F0,F1}; let vR (for ‘red’) be the probability that a 
player has the frame {F0,F2}; and let vU (for ‘universal’) be the probabil
ity that a player has the frame {F0,F1,F2}. That is, vT = (1 – v[F1]) 
(1 – v[F2]), vH = v(F1)(1 – v[F2]), vR = v(F2)(1 – v[F1]), and vU = v(F1)v(F2). 
Then it is straightforward to calculate that choose the red is unambigu
ously optimal for a player with the universal frame if11 

(vT/k � vR)/(vT/k � vH � vU) > a/r. (1) 

That is, if (1) holds, a player with the universal frame maximises her 
expected payoff by opting for choose the red, irrespective of her beliefs 
about the behaviour of other players with the same frame as herself. If 
this is the case, the probability that an arbitrary player presses the red 
button is vT/k � vR � vU, while the corresponding probability for the A 
button is vT/k � vH � vU. 
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This result is only illustrative: it shows sufficient conditions for there 
to be a unique variable frame equilibrium with a clear prediction of R, 
assuming a very stripped-down set of possible frames.12 In order for 
(1) to hold, the availability of the ‘red’ family F2 must be sufficiently 
greater than that of the ‘best payoff’ family F1 to offset the relatively 
smaller payoff to be had from coordinating on redness rather than on 
bestness. For example, suppose that v(F1) = 1/3, v(F2) = 2/3, and k = 3. 
Then (1) tells us that, in variable frame equilibrium, if r is greater than 
11a/14, players who recognise both redness and bestness will press the 
red button. The probability that an arbitrary player presses the red but
ton is then 20/27.] 

There is empirical support for a pure salience mechanism: Guerra 
and I gave subjects Hi-Los with k = 4, prizes of £6, £5, £4 and £3, and 
the £5 choice made salient [by the presence of the spade at the top right 
of the display]. Figure 1.11 shows such a task. [Of thirty-two subjects, 

£6 £3 

£4 £5 
Figure 1.11. Hi-Lo with an inefficient saliency 
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twenty-three chose the £6 card and eight chose the £5 one.] Making a 
lower-paying choice more salient significantly dented the hegemony of 
A, as it should do if all there is going for bestness is its salience.13 

If the pure salience mechanism were the whole story, then in a con
text such as the figure 1.11 task, in which another button happens to be 
sufficiently more salient than the best-paying one, we should feel no 
qualms about going for it. But this reaction does not match up to our 
intuitive apperceptions—these seem to be that our attention should be 
directed towards the best-paying object, even if it’s far from the most 
salient, because it is the best-paying one. 

Any mechanism in which the best-paying properties have a positive 
effect on A-choices independently of the salience of A I shall call a pure 
bestness mechanism. 

The pure salience mechanism and the pure bestness mechanism are 
quite different. They are different even if, as usually happens, the best-
paying choice and the most salient choice are one and the same. They 
differ in that they specify different reasons for pressing A. The distinc
tion exemplifies a general feature of the intensionality of reasons. An 
action may have properties � and �’, but if I choose it because it is the 
� act, then even if I know that the � act is the �’ act, it may be false that 
I choose it because it is the �’ act. Indeed I may choose it in spite of its 
being the �’ act. 

The fact that the acts supported by pure bestness reasons and 
salience reasons are highly correlated makes it harder to tell which is 
operative in naturally-occurring empirical contexts. But because this 
correlation is contingent and not necessary, it affects not one whit the 
conceptual distinction. 

My own account contains both a pure salience mechanism and a 
pure bestness mechanism—it says that bestness promotes A-choices 
both through making A salient and because bestness properties some
times influence people to choose A independently of salience. Which 
mechanisms are at work on a given person on a given occasion 
depends, I shall say, on certain basic features of how she frames the 
problem. There are two frames. In one salience as such is operative; the 
judgemental fact is explained by reasons which operate in the other 
frame. 

7.2 Explaining the Judgemental Fact 

The bounded rationality theories I have described seem to fail to explain 
the judgemental fact. But the salience theory, though it does not provide 
an explanation of this fact, points us in the right direction. For it prompts 
the question: what property of A makes it salient? Suppose we found that 
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the salient-making property was a reason-giving property. Two things 
might follow: (i) we might have an explanation of the judgemental fact, 
as being due to the salience of a reason-giving property; (ii) salience 
itself might drop out as an explanation of the behavioural fact, as an 
inessential by-product of the reason-giving property. 

8. A Germinal Theory 

8.1 Demands on a Theory of A 

There are three requirements for a good theory of why people play A in 
Hi-Lo: (i) that it imply observed behaviour, that is, the almost universal 
choice of A in normal circumstances; (ii) that it do so intelligibly to us, 
which (to the extent that A intuitively and stably seems to us the only 
rational thing to do) involves displaying A as uniquely rational—that 
is, giving principles of rationality which are themselves persuasive, 
and showing they dictate doing A; and (iii) that it be part of a unified 
theory of a wide range of problems, not just Hi-Lo—for example, all 
problems of cooperation. 

Of the theories of play in Hi-Lo I have been describing, some 
address only ‘What draws people to A?’ and so try to satisfy (i) but 
don’t try to satisfy (ii); others concern the question ‘What seems right 
about A?’ but in the form ‘What seems right about A to players who 
may be less than fully rational or think their coplayers are?’ The judge
mental fact to be explained under (ii), however, is not this but that A 
stably seems right when there is common knowledge of rationality. 

Since we have seen that the principles of standard decision theory 
and game theory fail to predict A, we are driven to conclude either that 
the apparent rationality of A is an illusion, or else that the rationality of 
A derives from principles of rationality that are not included in decision 
theory. This conclusion means that, to meet (ii), a revisionary theory is 
required. The new principles in such a theory might conflict with estab
lished ones, but they need not—they might constitute a revision only in 
the sense of an extension. Should we aim at this, or should we judge 
rather that we are under an illusion? Consider for a moment the illusion 
theory; it proposes that thinking that one ought to play A is a mistake: 
that all one is entitled to think is that A is rationally permitted—not for
bidden, but not positively indicated either. I stick my neck out and posit 
that A-choosing is rational. Since I reject the illusion theory, this means I 
must look for a revisionary one. Playing A is rational, I claim, in virtue 
of considerations and principles not yet identified (the Revisionary 
Conjecture). 
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8.2 A Conjecture 

My own proposed solution of the Hi-Lo paradox is an application of a 
revisionary theory of how people play games (the ‘variable agency’ 
theory) which I will describe in chapter 4. At this point I will describe 
some broad features of my explanatory strategy, and some reasons 
why I think we are pushed towards them by various pieces of evi
dence, including the failures of the previous assaults on the Hi-Lo 
problem I’ve been recounting. I will then point out some challenges a 
theory of the kind I propose will have to meet. 

I suggest that (Conjecture 1) a typical person facing any game may 
have an inclination to reason about what to do in it in a certain way, 
which for the moment I will label reasoning in mode-P. I suggest also 
that (Conjecture 2) in the game of Hi-Lo this inclination is very strong. 
Mode-P reasoning has two features: 

F1. The player ranks all act-profiles, using a Paretian criterion.

F2. She takes herself to have a reason to enact her component in

the highest-ranked act-profile.


Feature 1 makes mode-P reasoning have something in common with 
a familiar sort of reasoning about games, the reasoning we engage in 
when we discuss the ‘collectively rational’ outcome. A theorist doing 
this also ranks all act-profiles by assessing the payoff profiles they gen
erate, and on most accounts she does this in accordance with some 
form of the Pareto principle. We’ll see in due course the reason for this 
similarity.14 I shall label F1 collective profile ranking. 

Feature 2 says that if Player 1, say, ranks (x,y) top, she thinks she 
should do x. I label this feature of mode-P reasoning projection, because 
in mathematical parlance the player’s choice is the projection of the 
whole n-tuple onto the dimension of her act. 

In ordinary, best-reply reasoning, a player ranks outcomes according 
to her own component of the payoff-profile of each outcome. In F1, 
saying that a player uses a Paretian criterion means that if profile p is 
Pareto-superior to profile p’ then she ranks p higher than p’. Because 
Hi-Lo is a coordination game, in Hi-Lo this results in exactly the same 
ranking of profiles as ranking them by her own component. But this is 
not true in some other games, and in these F1 implies a change in the 
player’s ranking; that is, in these cases mode-P reasoning implies a 
payoff transformation. For example, the utilitarian function, [which 
sums the players’ payoffs], is one way of meeting the Paretian crite
rion, and in the Prisoner’s Dilemma it gives the ranking (C,C) f (C,D) ∼ 
(D,C) f (D,D), while the own-component ranking is (D,C) f (C,C) f 
(D,D) f (C,D). 
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In the case of Hi-Lo, mode-P deliberation yields A as its unique con
clusion. The effect of the Paretian ranking requirement in F1 is that (A,A) 
is the top element in the player’s profile ranking, and F2 then implies 
that she chooses A. So the first piece of evidence that is explained by this 
theory is the behavioural fact about Hi-Lo, the fact that there is a very 
strong tendency to play A. In games in general, the requirement means 
that an agent in mode-P always selects the unique Pareto-optimal profile 
when there is one, as there is in all common-interest games. In other 
cooperation games, such as Prisoner’s Dilemma, it restricts but does not 
fully determine the profile choice; more needs to be said about the 
player’s profile ranking before we know which profile out of (C,C), 
(C,D) and (D,C) is chosen. 

In mode-P a player, Player 1, undergoes not only, in general, a payoff 
transformation but also a ‘reasoning transformation’. F2 implies that 
she abandons the usual way of reasoning to a best act, best-reply rea
soning. Instead, she first selects an act-profile, then selects as her act her 
component in it. This procedure has a quite distinct logical form. 
Suppose for simplicity that Player 1 has a definite belief about Player 
2’s act (as distinct from a probabilistic one)—say, that Player 2 will do 
y’. Let U1 be a payoff function representing Player 1’s ranking in mode-P. 
Best-reply reasoning has the form: choose the act x that maximizes 
u1(x,y’). [MB uses Ui to denote player i’s ranking of act-profiles and ui to 
denote player i’s individual payoff.] Mode-P reasoning has the form: 
choose the act x such that (x,y) maximizes U1(x,y). In Hi-Lo, best-
reply reasoning produces A if y’ = A and B if y’ = B; mode-P reasoning 
produces A. 

8.3 Motivation: Game-Theoretic Indeterminacy 

The basic problem we confront is how to explain the apparent determi
nacy of rational choice in Hi-Lo. A theory should reflect intuitions of 
rationality by revealing a rational basis for it. If these intuitions are deter
minate then so should the theory be. Note that this meta-theoretical 
principle is not the same as the one proposed by Harsanyi and Selten, 
namely, that game theory should be determinate, full stop: ‘Clearly a 
theory telling us no more than that the outcome can be any one of these 
equilibrium points will not give us much useful information. We need a 
theory selecting one equilibrium point as the solution of the game’ 
(Harsanyi and Selten 1988, p. 13). 

Contemporary game theory apparently fails because there are two 
equilibria rather than one. And in versions of it that don’t contain the 
Nash equilibrium principle the failure is worse—all choices are, for 
example, rationalizable.15 This is a simply a case of a general property 
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of standard game theory: it is generally underdetermined. That may be 
fine—we should not prejudge the determinacy of reason. For example, 
if there are Buridanic cases, [where the agent is unable to identify a 
strictly best option], then in them our basic rational theory should be 
indeterminate.16 But in Hi-Lo it’s not fine, but monstrous, since the 
choice of A is so obviously right. 

The ultimate source of indeterminacy is, it seems clear, the rational 
agent’s attempt to achieve a best act-profile by choosing only one com
ponent of the profile. The agent is modeled as deliberating over— 
seeking the optimum value of—what she herself controls—her own 
act. So she must take what she does not control, but is controlled by the 
other, as parametric, and make a hypothesis about the value of this 
parameter. But there is nothing that ties down her hypothesis except 
what she can learn from thinking about the other doing just the same 
sort of thing. This leads to a notorious circle. 

Standard game theory gets rid of much of this indeterminacy by 
adding the assumption of Nash equilibrium. This is essentially the 
assumption that each player guesses right. I am not in favour of this 
assumption for the purposes of rational game theory, but we needn’t 
argue about this here; Nash equilibrium fails to confer determinacy 
anyway, so there is no need to dispute the principle in order to show 
that standard theory fails for Hi-Lo. 

There are two possible ways out. One, pursued above, is to link the 
player’s own act, in the player’s mind, to the whole profile in such a 
way as to give her reason to think she has indirect control over the 
whole profile. The classic expression of this is evidentialism, which, 
however, involves fallacy and so provides at best a boundedly rational 
explanation of A-choices. 

The other, which I pursue, is to consider the deliberator as directly 
choosing a whole profile. This does not mean that she can implement 
her choice! That would be at least as magical as evidentialism. But on 
the other hand she is free to ask herself what would be the best profile— 
just as the social choice or collective rationality theorist does. And 
what is also true is that the agents can, between them, implement their 
profile choices—they can if all make the same one and if all implement 
their components. This process may remind the reader of processes 
that groups of individuals sometimes pursue in in real time. I shall 
return to this empirical observation. 

This is the broad motivation for mode-P reasoning—for the choice of 
an act by profile evaluation, selection and projection. I note that for the 
theory to yield profile choices that can all be implemented does not 
require that players use Paretian rankings, but only that all players’ 
rankings should have a common top element. But the Paretian feature 
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is one way of yielding such agreement in a very broad class of games 
(including all common-interest games), and there are other motiva
tions for it to which I shall come in a moment. 

We can see in another way why F2—profile selection and projection— 
is needed, that is, why F1—Paretian profile evaluation—would not be 
enough by itself. In the case of Hi-Lo, F1 makes no difference to the 
agent’s ranking of profiles; so if a player reasons in the usual, best-reply 
way, we have got nowhere. Putting it otherwise: to explain the facts 
about Hi-Lo, a traditional payoff-transformation theory which turns 
(A,A) into the best profile for an individual player is useless, because 
(A,A) is the best profile for her anyway. 

By the same token, in such cases as Hi-Lo one could for certain 
purposes do without F1—Paretian profile evaluation—and stay with 
the agents’ original evaluations of profiles. One could do without it 
inasmuch as F2 would still give the same answer, A. However, we are 
looking for a plausible theory, not an arbitrary device for predicting A. 
And it turns out that the theory which makes sense of F2 also makes 
sense of evaluating profiles in a way that reflects their social virtues, 
such as Pareto optimality, that is, also makes sense of F1. An additional 
reason for F1 is that, as we have seen above, in other games F2 by itself 
would not give the same answer. (For example, in the Prisoner’s 
Dilemma each would choose D.) 

8.4 The Paretian Ranking Requirement 

Why should it be assumed that, even if agents do rank profiles, their 
ranking is Paretian? Suppose we ask, ‘What is it about A that seems to 
make it the obviously rational choice?’ When we consult our intu
itions, or examine the responses of subjects to this question, the 
answers seem to revolve round the property of A that the outcome 
(A,A) is best for both players. Another way of saying this is that (A,A) is 
the unique Pareto-optimal profile.17 

The idea that the unique Pareto-optimality, or best-for-bothness, of 
(A,A) enters into the player’s choice of A is also found among the 
obiter dicta of game theorists. Two of the most explicit (as on much 
else) are Harsanyi and Selten. After they have filtered out nonequi
libria, they are still left with two profiles, and ask what reason we 
could have for predicting (A,A) rather than (B,B). Their answer is 
that (A,A) is salient in virtue of its Pareto-superiority or ‘payoff 
dominance’. They do not address the question of why payoff domi
nance should be a salient property. One possible answer is that it is a 
salient reason-giving property of profiles. F2 is an expression of this 
interpretation. 
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To the extent that payoff dominance is reason-giving, the fact of its 
salience drops out of the theory. It need not do so completely, however, 
for reasons may be more or less powerful. If the reason payoff domi
nance gives for choosing A is weak, it may be that the tendency to 
choose A is boosted by a salience mechanism in which payoff domi
nance operates as a cause of A-choices by a quite different route. This is 
just what happens in the theory of this book. 

In this theory, certain factors in a situation of interaction make it 
more likely that an agent will reason in a profile-based way and that, if 
she does, she will order profiles in a Pareto-respecting way. These 
features include payoff features. Among these payoff features are a 
common interest, but also harmony of preferences. Hence when prefer
ences are completely shared, as in Hi-Lo, the payoff factors have maxi
mal strength. This part of the theory also has some initial support both 
from behavioural evidence and from intuitions about rationality. 
Observed rates of A play are higher than rates of S play in typical Stag 
Hunts, which in turn are higher than rates of C play in typical 
Prisoner’s Dilemmas.18 And it seems to be part of our intuition about 
Hi-Lo that A is all the more compelling because not only is (A,A) best 
for both of us, but we share exactly the same ordering of all outcomes. 
Our pro-A intuitions are stronger than our pro-S intuition in Stag Hunt 
or our pro-C intuitions in Prisoner’s Dilemma. Unlike in games like 
Stag Hunt, where there is conflict of interest over paired comparisons 
other than those involving the best point, in Hi-Lo there is unopposed 
potential for mutual gain. The only thing that stands in the way of our 
realizing it by playing in (A,A) is lack of means of overt communica
tion of the contents of our deliberations; there are no ‘real forces’. 

All the past theories that attempt to rationalize A-choices treat them, 
in the mind of the agent, as a way of bringing about (A,A) rather than 
some other profile. But the effect of the Paretian requirement in F1 is 
just this—it makes the target profile be (A,A) rather than some other. 
So, it may be asked, is there any point in bringing in the Paretian 
requirement? The answer is yes, because of the nonextensionality of 
reasons and the need to model agents’ operative reasons. In these theo
ries, the reason why the pair (A,A) is an aim for Player 1 is the property 
of (A,A) that it maximizes; it isn’t its Paretian property (that it is 
uniquely Pareto-optimal). It might be that a player chooses A for the 
reason that (A,A) has one of these properties without choosing it for 
the reason that it has the other. This is true even when, as here, she 
knows that whatever has one has the other.19 

What sort of a reason for choosing the profile (A,A) does its Pareto-
optimality give? Why should an agent who ranks profiles rank them in 
a Pareto-respecting way? The very name suggests that such an agent is 
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swayed by considerations of collective or systemic rationality with 
respect to the collectivity consisting of both (in other cases, all of the) 
players. It will be part of my thesis that she is. 

8.5 Challenges the Theory Faces 

A theory which contains ‘mode-P reasoning’ faces many serious chal
lenges. First, closure: as it stands it appeals exogenously to an inclina
tion to enter mode-P; we need a proper theory of the factors that 
determine the inclination to reason in this way. Second, collective pro
file ranking: it remains to be explained why, if and when people start to 
reason in mode-P, they should be swayed by considerations typical of 
collective rationality. Third, projection: even granted that an agent 
should decide that a certain profile p should be realized, why does this 
give her a reason to do her part in p; given that she favours (A,A), why 
does this mean she should do A? The question immediately raises a 
doubt about the whole idea of mode-P reasoning. It’s no good, usually, 
playing your part unless others will too; it will not by itself achieve the 
desired profile, and it may well be counterproductive in terms of your 
ranking of profiles. For example, if P2 will in fact choose B, choosing A 
produces a worse profile than choosing B does if your ranking is the 
shared ranking given by both u1 and u2. Deliberating in mode-P can be 
futile or worse than standard-mode deliberation if other players are 
not deliberating likewise. Thus any inclination to do so needs to be 
tempered by suitable caution. How to include such tempering with 
caution is a fourth challenge for the theory. 

*APPENDIX 
Payoffs in Calling a Catch 

In the Calling a Catch game, a state of the world can be defined by 
three components: whether F1 really is better-placed (denoted by 1) 
or F2 is better-placed (2), whether F1 thinks he is better-placed (b) or 
worse-placed (w), and whether F2 thinks he is better-placed (b) 
or worse-placed (w). This gives eight states, for each of which the 
prior probability can be calculated straightforwardly. For example, 
(1,b,b) is the state of the world in which F1 really is better-placed, but 
each player thinks that he himself is better-placed; the probability of 
this state is (1/2) � (2/3) � (1/3) = 2/18. Each player chooses one of 
the strategies B (go for the catch if and only if you think you are 
better-placed), W (go for the catch if and only if you think you are 
worse-placed), or—an option that is allowed only in the second 
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TABLE 1.1 
Payoffs for calling a catch 

Payoff if strategy profile is 

State of the world Probability BB BW WW BC WC CC 

(1,b,b) 2/18 �5  20  �2  20  �2  10  

(1,b,w) 4/18 20 �5  15  20  �2  10  

(1,w,b) 1/18 15 �2  20  �2  20  10  

(1,w,w) 2/18 �2  15  �5 �2  20  10  

(2,b,b) 2/18 �5  15  �2 �5  10  10  

(2,b,w) 1/18 15 �5  20  �5  10  10  

(2,w,b) 4/18 20 �2  15  10  �5  10  

(2,w,w) 2/18 �2  20  �5  10  �5  10  

Expected payoff 9 5.8 7.3 8.8 2.7 10 

version of the game—C (obey the captain’s call). Since the positions 
of the players are symmetrical, it is sufficient to consider only six 
strategy profiles: BB (both players choose B), BW (F1 chooses B, F2 
chooses W), WW, BC, WC and CC. Given the state of the world and 
the strategy profile, each player’s behaviour is determined. If one 
and only one player goes for the catch, the payoff for the team is 20 if 
this player really is better-placed and is acting on B or W; it is 15 if 
this player really is worse-placed and is acting on B or W; and it is 10 
if this player really is better-placed and is acting on C. (A player who 
really is worse-placed is never called by the captain.) If neither player 
goes for the catch, the payoff is �2. If both go for the catch, the payoff 
is �5. Table 1.1 shows, for each state of the world, its probability and 
the payoff, given each strategy profile. The expected payoff for each 
profile is shown in the final row. 

Notes 

1. Sometimes a safe single is not taken because this makes the other batsman
the striker, and he may be weaker than the current striker. But this means the 
payoffs are not as shown. 

2. We will come back to possible explanations of why it was 91 per cent 
rather than 100 per cent. Earlier tasks were matching games in which all prizes 
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were equal, but one was made salient. In the figure 1.8 task, the £5 card is 
salient in the spatial configuration. As we shall see in chapter 4, Bacharach and 
Guerra found that salience can override prize size. 

3*. MB was planning to add here some direct evidence that people think A 
obviously rational. 

4. The main tradition in game theory also holds that this is the only kind of
reason that can rationalize an action, but agreeing that it is one sort that can 
does not commit one to this view. 

5. Figure 1.a illustrates this case: T is Player 1’s Stackelberg act, L is Player 
2’s, but (B, L) and (T,R) are the only equilibria. 

Player 2 

L R 

T 1, 1 3, 2 
Player 1 

B 2, 3 1, 1 

Figure 1.a. A Stackelberg-nonsoluble game 

6. In fact in every common interest game the Stackelberg acts are in equilib
rium, and this is the common-interest equilibrium, so the conjecture predicts S 
in Stag Hunt, however risky S may be. The conjecture is therefore too strong as 
it stands; however, it remains possible that Stackelberg reasoning occurs, but 
can be overridden by other considerations. 

7. For example, in the Stag Hunt of figure 1.10, (R,R) is risk dominant, 
because adhering to (S,S) against a coplayer equally likely to be an adherent of 
(S,S) or (R,R) implies playing S against equally probable S and R, and similarly 
for adhering to (R,R). 

8. It might be possible to exploit the equiprobability idea in a way that does 
not run into these difficulties by thinking of equiprobability as the initial belief 
state of a player in an iterative process. Harsanyi (1975) suggests that players 
generally come to their final beliefs about what each other will do through 
such a process, called the tracing process. Each begins with a prior distribution 
over the other’s acts, then computes her best reply, then her coplayer’s best 
reply y to this; she then bends her prior somewhat towards y, and repeats the 
whole process. At each stage the reasoning of a player is level 2, which is a 
modest but decent level, modal in the distribution found by Stahl and Wilson 
(1994); but the players also have some inconsistent beliefs: when Player 1’s 
probabilities for Player 2’s act are �t, she also thinks Player 2 has beliefs on 
which �t is not optimal, and that Player 2 is a rational optimizer (Bjerring 
1977). In other respects the process is too demanding. 

9*. In this subsection, the material enclosed by square brackets revises MB’s 
exposition so as to maintain consistency with the treatment of variable frame 
theory in the introduction. These changes are matters of notation and theoreti
cal detail, not of substance. 

10. Mutatis mutandi—their example is not Hi-Lo but a Stag Hunt.
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11*. Consider a player who has the universal frame. With probability vT, her 
opponent has the frame {F0} and opts for pick a thing. With probability vH, her 
opponent has the frame {F0,F1} and opts for choose the highest. With probability 
vR, her opponent has the frame {F0,F2} and opts for choose the red. To make it as 
difficult as possible to show that choose the red is optimal, assume that if 
the opponent has the universal frame he opts for choose the highest. Then the 
expected payoff from choose the red is vT r/k � vR r, while that from choose the 
highest is vT a/k � (vH � vU)a. The former is higher if (1) holds. 

12*. Because this result is concerned only with sufficient conditions for the 
optimality of choose the red, it does not require the principle of payoff domi
nance to be used. By presenting his analysis in this form, Bacharach avoids 
having to resolve the issue of how payoff dominance should be understood 
when the availability of a family of predicates is less than 1. This issue is dis
cussed in section 4 of the introduction, in relation to the game of Large and 
Small Cubes. 

13*. This experiment is described more fully in section 8 of chapter 4. 
14. We also find a hint of feature 1 in the equilibrium selection literature, in 

which it sometimes seems that it is the players, rather than the theorist, who 
are supposed to select among equilibria—in which case they are also selecting 
among profiles. But this is nowhere spelled out, and is not the standard inter
pretation of ‘equilibrium selection’. Harsanyi and Selten themselves occasion
ally veer towards the players-as-selectors interpretation. In discussing payoff 
dominance they write: ‘Clearly, among the three equilibrium points of the 
game, U1U2 is the most attractive one for both players. This suggests that they 
should not have any trouble coordinating their expectations at the commonly 
preferred equilibrium point U1U2’ (Harsanyi and Selten 1988, pp. 80–81). Here 
Harsanyi and Selten seem to come near to proposing a profile-selection theory, 
that is, a theory in which players vet and evaluate alternative profiles, and this 
evaluation governs their decisions. 

15*. The concept of rationalizability was introduced to game theory by 
Bernheim (1984) and Pearce (1984). In a game for two players P1 and P2, a 
strategy r is rationalizable for P1 if all of the following conditions are satisfied: 
(i) r maximises P1’s expected payoff, given some probability distribution over 
P2’s strategies; (ii) every strategy of P2’s that is assigned a strictly positive 
probability in (i) maximises P2’s expected payoff, given some probability distri
bution over P1’s strategies; (iii) every strategy of P1’s that is assigned a strictly 
positive probability in (ii) maximises P2’s expected payoff, given some proba
bility distribution over P1’s strategies; and so on. Rationalizability differs from 
Nash equilibrium in not requiring the two players’ beliefs to be consistent with 
each other. In Hi-Lo, for example, it is rationalizable for P1 to choose A (in the 
belief that P2 will very probably choose A) while P2 chooses B (in the belief 
that P1 will very probably choose B). 

16. True, even for Buridan cases we need, as agents, higher-order reasons, 
which tell us what to do when lower-order reasons fail to pinpoint. But this 
does not mean that theory should at all costs introduce further, tie-breaking 
reasons into the basic theory. If we should, then they are not Buridan cases, 
contra hypotesi—and there are never any Buridan cases. 
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17. The profile (x*,y*) is uniquely Pareto-optimal if and only if for all (x,y) � 
(x*,y*), x* > x and y* � y. 

18*. MB planned to insert a footnote documenting this claim. 
19. Indeed, this is what classical decision theory obliges us to say. Imagine a 

situation in which I know that by choosing x I bring it about that my coplayer 
does (for instance, I know he copies me out of sycophancy), and suppose that 
(A,A) maximizes both my and my mimic’s payoff, both u1 and u2. According to 
decision theory the only reason I can have for action is to bring about conse
quences I prefer, and u1 fully represents my preferences about consequences. If 
I happen to be a Player 2-sympathizer and prefer that she gets what she wants 
(or a Player 2-antipathizer and prefer that she doesn’t), these preferences are 
already ‘in’ u1. 




