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2
DSGE Models, Solutions,

and Approximations

This chapter describes some standard dynamic stochastic general equilibrium
(DSGE) models and some issues concerning their specification and solution. Such
models will be used in examples and exercises throughout the book. It aims to
familiarize the reader with such objects rather than providing a fully fledged intro-
duction to DSGE modeling. Since the models we consider do not have a closed-form
solution, except in very special circumstances, we also present several methods for
obtaining approximate solutions to the optimization problems.

There is a variety of models currently used in macroeconomics. The majority
is based on two simple setups: a competitive structure, where allocations are, in
general, Pareto optimal; and a monopolistic competitive structure, where one type
of agent can set the price of the goods she supplies and allocations are suboptimal.
Typically, an expression for the variables of interest in terms of the exogenous
forces and the states is found in two ways. When competitive allocations are Pareto
optimal, the principle of dynamic programming is typically used and iterations on the
Bellman equation are employed to compute the value function and the policy rules,
whenever they are known to exist and to be unique. As we will see, calculating the
value function is a complicated enterprise except with simple but often economically
unpalatable specifications. For general preference and technological specifications,
quadratic approximations of the utility function, and discretizations of the dynamic
programming problem, are generally employed.

When the equilibrium allocations are distorted, one must alter the dynamic pro-
gramming formulation and in that case the Bellman equation does not have a hedge
over a more standard stochastic Lagrangian multipliers methodology, where one uses
the first-order conditions, the constraints, and the transversality condition to obtain
a solution. Solutions are also hard to find with the Lagrangian approach since the
problem is nonlinear and involves expectations of future variables. Euler equation
methods, which approximate the first-order conditions, the expectational equations,
or the policy function can be used in these frameworks. Many methods exist in the
literature. Here we restrict attention to the three widely used approaches: discretiza-
tion of the state and shock space; log-linear and second-order approximations; and
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parametrizing expectations. For a thorough discussion of the various methodologies,
see Cooley (1995, chapters 2 and 3) or Marimon and Scott (1999).

The next two sections illustrate features of various models and the mechanics of
different solution methods with the aid of examples and exercises. A comparison
between various approaches concludes the chapter.

2.1 A Few Useful Models

It is impossible to provide a thorough description of the models currently used in
macroeconomics. We therefore focus attention on two prototype structures: one
involving only real variables and one also considering nominal ones. In each case,
we analyze models with both representative and heterogeneous agents and consider
both optimal and distorted setups.

2.1.1 A Basic Real Business Cycle (RBC) Model

Much of the current macroeconomic literature uses versions of the one-sector growth
model to jointly explain the cyclical and the long-run properties of the data. In the
basic setup we consider there is a large number of identical households that live
forever and are endowed with one unit of time, which they can allocate to leisure or
to work, andK0 units of productive capital, which depreciates at the rate 0 < ı < 1
every period. The social planner chooses fct ; Nt ; KtC1g1tD0 to maximize

E0
X
t

ˇtu.ct ; ct�1; Nt /; (2.1)

where ct is consumption, Nt is total hours, Kt is capital, and E0 � EŒ � j F0� is
the expectation operator, conditional on the information set F0, 0 < ˇ < 1. The
instantaneous utility function is bounded, twice continuously differentiable, strictly
increasing, and strictly concave in all arguments. It depends on ct and ct�1 to account
for possible habit formation in consumption. The maximization of (2.1) is subject
to the sequence of constraints

ct CKtC1 6 .1 � T y/f .Kt ; Nt ; �t /C Tt C .1 � ı/Kt ; 0 6 Nt 6 1; (2.2)

where f .�/ is a production technology, twice continuously differentiable, strictly
increasing, and strictly concave inKt andNt ; �t is a technological disturbance; T y

is a (constant) income tax rate; and Tt are lump sum transfers.
There is a government which finances a stochastic flow of current expenditure

with income taxes and lump sum transfers: expenditure is unproductive and does
not yield utility for the agents. We assume a period-by-period balanced budget of
the form

Gt D T
yf .Kt ; Nt ; �t / � Tt : (2.3)

The economy is closed by the resource constraint, which provides a national account
identity:

ct CKtC1 � .1 � ı/Kt CGt D f .Kt ; Nt ; �t /: (2.4)
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Note that in (2.3) we have assumed that the government balances the budget at
each t . This is not restrictive since households in this economy are Ricardian; that
is, the addition of government debt does not change optimal allocations. This is
because, if debt is held in equilibrium, it must bear the same rate of return as capital,
so that .1C rB

t / D Et Œfk.1 � T
y/C .1 � ı/�, where fk D @f=@K. In other words,

debt is a redundant asset and can be priced by arbitrage, once .ı; T y ; fk/ are known.
An example where debt matters is considered later on.

Exercise 2.1. Decentralize the RBC model so that there is a representative household
and a representative firm. Assume that the household makes the investment decision
while the firm hires capital and labor from the household. Is it true that decentralized
allocations are the same as those obtained in the social planner’s problem? What
conditions need to be satisfied? Repeat the exercise assuming that the firm makes
the investment decision.

Exercise 2.2. Set ct�1 D 0 in (2.1) and assume T y D 0;8t .
(i) Define the variables characterizing the state of the economy (the states) and

the choice variables (the controls) at each t .
(ii) Verify that the problem in (2.1)–(2.4) can be equivalently written as

V.K; �;G/ D max
fKC;N g

ufŒf .K;N; �/C .1 � ı/K �G �KC�; N g

C ˇEŒV.KC; �C; GC/ j K; �;G�; (2.5)

where the value function V is the utility value of the optimal plan, given .Kt ; �t ; Gt /,
E.V j � / is the expectation of V conditional on the available information, the
superscript “C” indicates future values, and 0 < Nt < 1.

(iii) Assume that u.ct ; ct�1; Nt / D ln ct C ln.1 � Nt / and that GDPt �
f .Kt ; Nt ; �t / D �tK

1��
t N

�
t . Find values for (Kt=GDPt ; ct=GDPt ; Nt ) when

�t ; Gt are set to their unconditional values (we call this the steady state of the
economy).

Note that (2.5) defines the so-called Bellman equation, a recursive functional
equation giving the maximum value of the problem for each value of the states and
the shocks, given that the next period value of the function is optimally chosen.

There are a few conditions that need to be satisfied for a model to be fitted into a
Bellman equation format. First, preferences and technologies must define a convex
optimization problem. Second, the utility function must be time separable in the
contemporaneous control and state variables. Third, the objective function and the
constraints have to be such that current decisions affect current and future utilities
but not past ones. While these conditions are typically satisfied, there are situations
where the Bellman equation (and its associated optimality principle) may fail to
characterize particular economic problems. One is the time inconsistency problem
analyzed by Kydland and Prescott (1977), a version of which is described in the
next example.
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Example 2.1. Suppose a representative household maximizes E0
P
t ˇ

t .ln ct C
� lnBtC1=pt / subject to ct C BtC1=pt 6 wt C Bt=pt C Tt �Wet , by choosing
sequences for ct andBtC1, given Tt , pt , whereBtC1 are government backed nomi-
nal assets,pt the price level,wt labor income,Tt lump sum taxes (transfers), andWet
the wealth at t . The government budget constraint is gt D BtC1=pt �Bt=pt CTt ,
where gt is random. We assume that the government choosesBtC1 to maximize the
household’s welfare. The household problem is recursive. In fact, the Bellman equa-
tion is V.We/ D maxfc;BCg.ln cC � lnBC=p/CˇEV.WeC/ and the constraint is
We D c C B=p. The first-order conditions for the problem can be summarized via
1=.ctpt / D Et Œˇ=.ctC1ptC1/ C �=BtC1�. Therefore, solving forward and using
the resource constraint, we have

1

pt
D .wt � gt /Et

1X
jD0

ˇj
�

BtCjC1
: (2.6)

The government takes (2.6) as given and maximizes utility subject to the resource
constraint. Substituting (2.6) into the utility function we have

max
Bt

E0
X
t

ˇt
�

ln ct C � ln

�
Bt

�
�.wt � gt /

1X
jD0

ˇj

BtCjC1

���
: (2.7)

Clearly, in (2.7) future values ofBt affect current utility. Therefore, the government
problem cannot be cast into a Bellman equation.

A solution to (2.5) is typically hard to find since V is unknown and there is no
analytic expression for it. Had the solution been known, we could have used (2.5) to
define a function hmapping every .K;G; �/ into .KC; N / that gives the maximum.

Since V is unknown, methods to prove its existence and uniqueness and to describe
its properties have been developed (see, for example, Stokey and Lucas 1989).
These methods implicitly provide a way of computing a solution to (2.5), which we
summarize next.

Algorithm 2.1.

(1) Choose a differentiable and concave function V0.K; �;G/.

(2) Compute V1.K; �;G/ D maxfKC;N g ufŒf .K; �;N / C .1 � ı/K � G �

KC�; N g C ˇEŒV0.KC; �C; GC/ j K; �;G�.

(3) Set V0 D V1 and iterate on (2) until jVlC1 � Vl j < �, � small.

(4) When jVlC1 �Vl j < �, compute KC D h1.K; �;G/ and N D h2.K; �;G/.

Hence, V can be obtained as the limit of Vl for l ! 1. Under regularity con-
ditions, this limit exists, it is unique, and the sequence of iterations defined by
algorithm 2.1 achieves it.
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For simple problems algorithm 2.1 is fast and accurate. For more complicated
ones, where the combined number of states and shocks is large, it may be com-
putationally demanding. Moreover, unless V0 is appropriately chosen, the iteration
process may be time-consuming. In a few simple cases, the solution to the Bellman
equation has a known form and the simpler method of undetermined coefficients
can be used. We analyze one of these cases in the next example.

Example 2.2. Assume, in the basic RBC model, that u.ct ; ct�1; Nt / D ln ct C
#n ln.1 � Nt /, ı D 1, the production function is GDPtC1 D �tC1K

1��
t N

�
t , the

resource constraint is GDPt D Kt C ct , ln �t is an AR(1) process with persistence

, and setGt D T y D Tt D 0. The states of the problem are GDPt and �t while the
controls are ct , Kt , Nt . We guess that the value function has the form V.K; �/ D

V0CV1 ln GDPtCV2 ln �t . Since the Bellman equation maps logarithmic functions
into logarithmic ones, the limit, if it exists, will also have a logarithmic form. To
find V0, V1, V2, we proceed as follows. First, we substitute the constraint into the
utility function and use the guess to eliminate future GDP. That is,

V0 C V1 ln GDPt C V2 ln �t D ln.GDPt �Kt /C #N ln.1 �Nt /C ˇV0

C ˇV1.1 � / lnKt C ˇV1 lnNt

C ˇ.V2 C V1/Et ln �tC1: (2.8)

Maximizing (2.8) with respect to .Kt ; Nt /we haveNt D ˇV1=.#N CˇV1/ and
Kt D Œˇ.1� /V1=.1C ˇ.1� /V1/�GDPt . Substituting into (2.8) and using the
fact that Et ln �tC1 D 
 ln �t , we obtain

V0 C V1 ln GDPt C V2 ln �t

D const:C .1C .1 � /ˇV1/ ln GDPt C ˇ
.V2 C V1/ ln �t : (2.9)

Matching coefficients on the two sides of the equation we have 1C.1�/ˇV1 D V1

or V1 D 1=.1�.1�/ˇ/ andˇ
.V2CV1/ D V2 or V2 D 
ˇ=.1�.1�/ˇ/
2. Using

the solution for V1 into the expressions forKt ; Nt we have thatKt D .1�/ˇGDPt
and Nt D ˇ=Œ#N .1� ˇ.1� //C ˇ�. From the resource constraint one has that
ct D .1 � .1 � /ˇ/GDPt . Hence, with this preference specification, the optimal
labor supply decision is very simple: keep hours constant, no matter what the state
and the shocks are.

Exercise 2.3. Assume, in the basic RBC model, that u.ct ; ct�1; Nt / D ln ct , ı D 1,
the production function has the form GDPt D �tK

1��
t N

�
t , the resource constraint

is ctCKtC1CGt D GDPt ,Gt D Tt , and that both .�t ; Gt / are i.i.d. Guess that the
value function is V.K; �;G/ D V0 C V1 lnKt C V2 ln �t C V3 lnGt . Determine
V1, V2, V3. Show the optimal policy for KC.
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Two other cases where a solution to the Bellman equation can be found analytically
are analyzed in the next exercise.

Exercise 2.4. (i) Suppose that, in the basic RBC model, u.ct ; ct�1; Nt / D a0 C

a1ct � a2c
2
t and that Gt D Tt D T y D 0;8t . Show that the value function is of

the form V.K; �/ D ŒK; ��0V2ŒK; ��CV0. Find the values of V0 and V2. (Hint: use
the fact that E.e0tV2et / D tr.V2/E.e0tet / D tr.V2/�2e , where �2e is the covariance
matrix of et and tr.V2/ is the trace of V2.) Show that the decision rule for c andKC

is linear in K and �.
(ii) Suppose u.ct ; ct�1; Nt / D c

1�'
t =.1 � '/, Kt D 1;8t , and assume that �t

can take three values. Let �t evolve according toP.�t D i j �t�1 D i 0/ D pi i 0 > 0.
Assume that there are claims to the output in the form of stocks St , with price
ps
t and dividend sdt . Write down the Bellman equation. Let ˇ D 0:9, pi i D 0:8,
i D 1; : : : ; 3, pi;iC1 D 0:2, and pi i 0 D 0, i 0 ¤ i; i C 1. Calculate the first two
iterations of the value function. Can you guess what the limit is?

We can relax some of the assumptions we have made (e.g., we can use a more
general law of motion for the shocks), but, except for these simple cases, even the
most basic stochastic RBC model does not have a closed-form solution. As we
will see later, existence of a closed-form solution is not necessary to estimate the
structural parameters of the model (here ˇ, ı, ), and the parameters of the process
for �t and Gt and to examine its fit to the data. However, a solution is needed when
one wishes to simulate the model, compare its dynamics with those of the data,
and/or perform policy analyses.

There is an alternative to the Bellman equation approach to solve simple opti-
mization problems. It involves substituting all the constraints in the utility function
and maximizing the resulting expression unconstrained or, if this is not possible,
using a stochastic Lagrange multiplier approach. We illustrate the former approach
next with an example.

Example 2.3. Suppose a representative household obtains utility from the services
of durable and nondurable goods according toE0

P
t ˇ

t .cst��t /0.cst��t /;where
0 < ˇ < 1, �t is a preference shock and consumption services cst satisfy cst D
b1cdt�1C b2ct , where cdt�1 is the stock of durable goods, accumulated according
to cdt D b3cdt�1Cb4ct , where 0 < b1, b3 < 1, and 0 < b2, b4 6 1 are parameters.
Output is produced with the technology f .Kt�1; �t / D .1�/Kt�1C�t , where 0 <
 6 1 and �t is a productivity disturbance, and divided between consumption and
investment goods according to b5ctCb6invt D GDPt . Physical capital accumulates
according to Kt D b7Kt�1 C b8invt , where 0 < b7 < 1, 0 < b8 6 1.

Using the definition of .cst ; cdt ; Kt / and the resource constraint we have

cst C cdt D .b1 C b3/cdt�1

C
b2 C b4

b5

�
.1 � /Kt�1 C �t �

b6

b8
.Kt � b7Kt�1/

�
: (2.10)
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Letting b9 D b1 C b3, b10 D .b2 C b4/=b5, b11 D b10b6=b8, b12 D b11b7, and
using (2.10) in the utility function, the problem can be reformulated as

max
fcdt ;Kt g

E0
X
t

ˇtfC1Œcdt ; Kt �
0 C C2Œcdt�1; kt�1; �t ; �t �

0g0

� fC1Œcdt ; Kt �
0 C C2Œcdt�1; kt�1; �t ; �t �

0g;

where C1 D Œ�1;�b11�, C2 D Œb9; b12Cb10.1�/; b10;�1�. If C01C1 is invertible,
and the shocks .�t ; �t / are known at each t , the first-order condition of the model
imply Œcdt ; Kt �0 D .C01C1/

�1.C01C2/Œcdt�1; Kt�1; �t ; �t �0. Given .cdt ; Kt ; �t ; �t /,
values for cst and ct can be found from (2.10) and from the consumption services
constraint.

Economic models with quadratic objective functions and linear constraints can
also be cast into a standard optimal control problem format. Such a format allows
one to compute the solution with simple and fast algorithms.

Exercise 2.5. Take the model of example 2.3 but let �t D 0. Cast it into an optimal
linear regulator problem of the form maxfy1t gE0

P
t ˇ

t .y2tQ2y
0
2t C y1tQ1y

0
1t C

2y2tQ3y
0
1t / subject to y2tC1 D Q4y2t CQ5y1t CQ6y3tC1, where y3t is a vector

of (serially correlated) shocks, y2t a vector of states, and y1t a vector of controls.
Show the form of Qi , i D 1; : : : ; 6.

A stochastic Lagrange multiplier approach works even when the Bellman equation
cannot be used but requires a somewhat stronger set of assumptions to be applicable.
Basically, we need the objective function to be strictly concave, differentiable, and
its derivatives to have finite expectations; the constraints to be convex, differentiable,
and their derivatives to have finite expectations; the choice variables to be observable
at time t ; the utility function to be bounded in expectations and to converge to a
limit as T !1; and the sequence of multipliers �t to be such that at the optimum
the Kuhn–Tucker conditions hold with probability 1 (see Sims (2002) for a formal
statement of these requirements).

It is straightforward to check that these conditions are satisfied for the sim-
ple RBC model we have considered so far. Then, letting fN D @f=@N , Uc;t D
@u.ct ; ct�1; Nt /=@ct , UN;t D @u.ct ; ct�1; Nt /=@Nt , the Euler equation for capital
accumulation is

Etˇ
Uc;tC1

Uc;t
Œ.1 � T y/fk C .1 � ı/� � 1 D 0; (2.11)

while the intratemporal marginal condition between consumption and labor is

Uc;t

UN;t
D �

1

.1 � T y/fN
: (2.12)

Equations (2.11) and (2.12), the budget constraint, and the transversality conditions,
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limt!1 supˇt .Uc;t � �tgc;t /.ct � Oct / 6 0, limt!1 supˇt .UN;t � �tgN;t / �
.Nt � ON t / 6 0, where gj;t is the derivative of the constraints with respect to j D
c;N , O|t is the optimal choice, and jt any other choice, then need to be solved for
.KtC1; Nt ; ct /, given .Gt ; �t ; Kt /. This is not easy. Since the system of equations is
nonlinear and involves expectations of future variables, no analytical solution exists
in general.

Exercise 2.6. Solve the problem of example 2.3 by using a Lagrange multiplier
approach. Show that the conditions you need for the solution are the same as in
example 2.3.

Versions of the basic RBC model with additional shocks, alternative inputs in the
production function, or different market structures have been extensively examined
in the macroeconomic literature. We consider some of these extensions in the next
four exercises.

Exercise 2.7 (utility producing government expenditure). Consider a basic RBC
model and suppose that government expenditure provides utility to the represen-
tative household, that private and public consumption are substitutes in the utility
function, and that there is no habit in consumption, e.g., U.ct ; ct�1; Gt ; Nt / D
.ct C #GGt /

#.1 �Nt /
1�# .

(i) Using steady-state relationships describe how private and public consumption
are related. Is there some form of crowding out?

(ii) In a cross section of steady states, is it true that countries which have a higher
level of government expenditure will also have lower levels of leisure, i.e., is it true
that the income effect of distortionary taxation is higher when G is higher?

Exercise 2.8 (noncompetitive labor markets). Assume that, in a basic RBC model,
there are one-period labor contracts. The contracts set the real wage on the basis
of the expected marginal product of labor. Once shocks are realized, and given the
contractual real wage, the firm chooses hours worked to maximize its profits. Write
down the contractual wage equation and the optimal decision rule by firms. Compare
it with a traditional Phillips curve relationship where lnNt �Et�1.lnNt / / lnpt �
Et�1.lnpt /.

Exercise 2.9 (capacity utilization). Assume that Gt D Tt D T y D 0, that the
production function depends on capital (Kt ) and its utilization (kut ), and that it is of
the form f .Kt ; kut ; Nt ; �t / D �t .Ktkut /1��N

�
t . This production function allows

firms to respond to shocks by varying utilization even when the stock of capital is
fixed. Assume that capital depreciates in proportion to its use. In particular, assume
that ı.kut / D ı0 C ı1kuı2t , where ı0, ı1, and ı2 are parameters.

(i) Write down the optimality conditions of the firm’s problem and the Bellman
equation.

(ii) Show that, if capital depreciates instantaneously, the solution of this problem
is identical to the one of the standard RBC model examined in exercise 2.2.
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Exercise 2.10 (production externalities). In a basic RBC model assume that
output is produced with firm-specific inputs and the aggregate capital stock, i.e.,
f .Kit ; Nit ; �t ; Kt / D K

@
t K

1��
it N

�
it�t , @ > 0, and Kt D

R
Kit di .

(i) Derive the first-order conditions and discuss how to find optimal allocations.
(ii) Can the Bellman equation be used for this problem? What assumptions are

violated?

Although it is common to proxy for technological disturbances with Solow resid-
uals, such an approach is often criticized in the literature. The main reason is that
such a proxy tends to overstate the variability of these shocks and may capture not
only technology but also other sources of disturbances. The example below provides
a case where this can occur.

Example 2.4. Suppose that output is produced with part-time hours (N PT) and
full-time hours (N FT) according to the technology GDPt D �tK

1��
t .N FT

t /
� C

�tK
1��
t .N PT

t /
� . Typically, Solow accounting proceeds by assuming that part-time

and full-time hours are perfect substitutes and by using total hours in the production
function, i.e., GDPt D �tK

1��
t .N FT

t C N
PT/� . An estimate of �t is obtained via

bln �t D ln GDPt � .1 � / lnKt �  ln.N FT
t CN

PT
t /, where  is the share of labor

income. It is easy to see that bln �t D ln �tClnŒ.N FT
t /

�C.N PT/��� ln.N FT
t CN

PT/,
so that the variance of bln �t overestimates the variance of ln �t . This is a gen-
eral problem: whenever a variable is omitted from an estimated equation, the
variance of the estimated residuals is at least as large as the variance of the
true one. Note also that, if N FT

t > N PT
t and if N FT

t is less elastic than N PT
t to

shocks (e.g., if there are differential costs in adjusting full- and part-time hours),
lnŒ.N FT

t /
� C .N PT/�� �  ln.N FT

t CN
PT/ > 0. In this situation any (preference)

shock which alters the relative composition ofN FT andN PT could induce procycli-
cal labor productivity movements, even if �t D 0;8t .

Several examples in this book are concerned with the apparently puzzling corre-
lation between hours (employment) and labor productivity. Since with competitive
markets labor productivity is equal to the real wage, we will interchangeably use
the two, unless otherwise stated. What is puzzling is that the contemporaneous cor-
relation between hours and labor productivity is roughly zero in the data while it
is high and positive in an RBC model. We will study later how demand shocks can
affect the magnitude of this correlation. In the next example we examine how the
presence of government capital alters this correlation when an alternative source of
technological disturbances is considered.

Example 2.5 (Finn). Suppose u.ct ; ct�1; Nt / D Œc#t .1�Nt /
1�# �1�'=.1�'/, the

budget constraint is .1� T y/wtNt C Œrt � TK.rt � ı/�KP
t C Tt C .1C r

B
t /Bt D

ctCinvP
tCBtC1, and private capital evolves according toKP

tC1 D .1�ı/K
P
t CinvP

t ,
where TK .T y/ are capital (income) taxes, rB is the net rate on real bonds, and rt
the net return on private capital. Suppose also that the government budget constraint
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is T ywtNt C TK.rt � ı/KP
t CBtC1 D invG

t C Tt C .1C r
B
t /Bt , and government

investments increase government capital according to invG
t D KG

tC1 � .1 � ı/K
G
t .

The production function is GDPt D �tN
�.KP/1��.KG/@ and @ > 0. Output is

used for private consumption and investment.
This model does not have an analytic solution but some intuition on how hours

and labor productivity move can be obtained by analyzing the effects of random
variations in government investment. Suppose that invG

t is higher than expected.
Then, less income is available for private use and, at the same time, more public
capital is available in the economy. Which will be the dominant factor depends on
the size of the investment increase relative to @. If it is small, there will be a positive
instantaneous wealth effect so that hours, investment, and output decline while
consumption and labor productivity increases. If it is large, a negative wealth effect
will result, so hours and output will increase and consumption and labor productivity
decrease. In both cases, despite the RBC structure, the contemporaneous correlation
between hours and labor productivity will be negative.

2.1.2 Heterogeneous Agent Models

Although representative agent models constitute the backbone of current dynamic
macroeconomics, the literature has started examining setups where some hetero-
geneities in either preferences, the income process, or the type of constraints that
agent face are allowed for. The presence of heterogeneities does not change the
structure of the problem: it is only required that the sum of individual variables
match aggregate ones and that the planner problem is appropriately defined. The
solution still requires casting the problem into a Bellman equation or setting up a
stochastic Lagrange multiplier structure.

We consider a few of these models here. Since the scope is purely illustrative
we restrict attention to situations where there are only two types of agent. The
generalization to a larger but finite number of types of agent is straightforward.

Example 2.6 (a two-country model with full capital mobility). Consider two
countries and one representative household in each country. The household in coun-
try i chooses sequences for consumption, hours, capital, and contingent claim hold-
ings to maximize E0

P1
tD0 ˇ

t Œc#it .1 �Nit /
1�# �1�'=.1 � '/ subject to the follow-

ing constraint,

cit C
X
j

BjtC1p
B
jt 6 Bjt C witNit C ritKit

�

�
KitC1 � .1 � ı/Kit �

b

2

�
KitC1

Kit
� 1

�2
Kit

�
; (2.13)

wherewitNit is labor income, ritKit is capital income,Bjt is a set ofArrow–Debreu
one-period contingent claims and pB

jt is its price, b is an adjustment cost parameter,
and ı is the depreciation rate of capital. Since financial markets are complete, the
household can insure itself against all forms of idiosyncratic risk.
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We assume that factors of production are immobile. The domestic household rents
capital and labor to domestic firms which produce a homogeneous intermediate
good by using a constant returns-to-scale technology. Domestic markets for factors
of production are competitive and intermediate firms maximize profits. Intermediate
goods are sold to domestic and foreign final-good-producing firms. The resource
constraints are

inty11t C inty12t D �1tK
1��
1t N

�
1t ; (2.14)

inty21t C inty22t D �2tK
1��
2t N

�
2t ; (2.15)

where inty12t are exports of goods from country 1 and inty21t imports from country 2.
Final goods are an aggregate of the goods produced by intermediate firms of

the two countries. They are assembled with a constant returns-to-scale technology
GDPit D Œai .inty1it /

1�a3 C .1 � ai /.inty2it /
1�a3 �1=.1�a3/, where a3 > �1 while

a1 and .1 � a2/ measure the domestic content of domestic spending. The resource
constraint in the final goods market is GDPit D cit C invit . The two countries
differ in the realizations of technology shocks. We assume ln.�it / is an AR(1) with
persistence j
	 j < 1 and variance �2

	
.

To map this setup into a Bellman equation assume that there is a social plan-
ner who attributes the weights W1 and W2 to the utilities of the households of
the two countries. Let the planner’s objective function be uSP.c1t ; c2t ; N1t ; N2t / DP2
iD1 WiE0

P1
tD0 ˇ

t Œc#it .1 � Nit /
1�# �1�'=.1 � '/; let y2t D ŒK1t ; K2t ; B1t �,

y3t D Œ�1t ; �2t �, and y1t D Œinty1it ; inty2it ; cit ; Nit ; KitC1; B1tC1; i D 1; 2�. Then
the Bellman equation is given by V.y2; y3/ D maxfy1g u

SP.c1; c2; N1; N2/ C

EˇV.yC2 ; y
C
3 j y2; y3/ and the constraints are given by (2.14) and (2.15), the law

of motion of the shocks and the resource constraint c1t C c2t CK1tC1CK2tC1 D
GDP1t C GDP2t � 1

2
b.K1tC1=K1t � 1/

2K1t �
1
2
b.K2tC1=K2t � 1/

2K2t .
Clearly, the value function has the same format as in (2.5). Since the functional

form for utility is the same in both countries, the utility function of the social planner
will also have the same functional form. Some information about the properties of
the model can be obtained by examining the first-order conditions and the properties
of the final good production function. In fact, we have

cit C invit D p1t inty1it C p2t inty2it ; (2.16)

ToTt D
p2t

p1t
; (2.17)

nxt D inty12t � ToTt inty21t : (2.18)

Equation (2.16) implies that output of the final good is allocated to the inputs accord-
ing to their prices, p2t D @GDP1t=@ inty21t , p1t D @GDP1t=@ inty11t ; (2.17) gives
an expression for the terms of trade and (2.18) defines the trade balance.
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Exercise 2.11. (i) Show that the demand functions for the two goods in country 1
are

inty11t D a
1=a3
1 Œa

1=a3
1 C .1 � a1/

1=a3 ToT�.1�a3/=a3t ��a3=.1�a3/ GDP1t ;

inty21t D .1 � a1/
1=a3 ToT�1=a3t

� Œa
1=a3
1 C .1 � a1/

1=a3 ToT�.1�a3/=a3t ��a3=.1�a3/ GDP1t :

(ii) Describe how the terms of trade relate to the variability of final goods demands.
(iii) Noting that ToTt D .1 � a1/.inty21t /

�a3=.a1.inty11t /
�a3/, show that when

the elasticity of substitution between domestic and foreign good 1=a3 is high, any
excess of demand in either of the two goods induces small changes in the terms of
trade and large changes in the quantities used.

Exercise 2.12. Consider the same two-country model of example 2.6 but now
assume that financial markets are incomplete. That is, households are forced to
trade only a one-period bond which is assumed to be in zero net supply (i.e.,
B1t C B2t D 0). How would you solve this problem? What does the assumption
of incompleteness imply? Would it make a difference if the household of country 1
has limited borrowing capabilities, e.g., B1t 6 K1t?

Interesting insights can be added to a basic RBC model when some agents are
not optimizers.

Example 2.7. Suppose that the economy is populated by standard RBC households
(their fraction in the total population is� ) which maximizeE0

P
t ˇ

tu.ct ; ct�1; Nt /

subject to the constraint ctC invtCBtC1 D wtNtCrtKtC.1CrB
t /BtCprftCTt ,

where prft are the firm’s profits, Tt are government transfers, andBt are real bonds.
Suppose that capital accumulates according to KtC1 D .1 � ı/Kt C invt . The
remaining 1�� households are myopic and consume all their income every period,
that is, cRT

t D wtNt C T
RT
t and supply all their work time inelastically at each t .

Rule-of-thumb households play the role of an insensitive buffer in this economy.
Therefore, total hours, aggregate output, and aggregate consumption will be much
less sensitive to shocks than in an economy where all households are optimizers.
For example, government expenditure shocks crowd out consumption less and under
some efficiency wage specification, they can even make it increase.

Exercise 2.13 (Kiyotaki and Moore). Consider a model with two goods, land La,
which is in fixed supply, and fruit which is not storable, and a continuum of two
types of agent: farmers of measure 1 and gatherers of measure � . Utilities are of the
form Et

P
t ˇ

t
j cj;t , where cj;t is the consumption of fruit of type j , j D farmers,

gatherers, and where ˇfarmers < ˇgatherers. Let pL
t be the price of land in terms of

fruit and rt the rate of exchange of a unit of fruit today for tomorrow. There are
technologies to produce fruit from land. Farmers usef .Lat /farmer D .b1Cb2/Lat�1,
where b1 is the tradable part and b2 the bruised one (nontradable); gatherers use
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f .Lat /gatherer, where fgatherer displays decreasing returns-to-scale and all output is
tradable. The budget constraint for the two agents is pL

t .Lajt �Lajt�1/CrtBjt�1C
c

†
jt D f .Lat /j C Bjt , where c†

jt D cjt C b2Lat�1 for farmers and c†
jt D cjt for

gatherers,Bjt are loans, andpL
t .Lajt � Lajt�1/ is the value of new land acquisitions.

The farmers’technology is idiosyncratic so that only farmer i has the skill to produce
fruit from it. The gatherers’ technology does not require specific skills. Note that, if
no labor is used, fruit output is zero.

(i) Show that in equilibrium rt D r D 1=ˇgatherers and that for farmers to be able
to borrow a collateral is required. Show that the maximum amount of borrowing is
Bt 6 pL

tC1Lat=r .
(ii) Show that, if there is no aggregate uncertainty, farmers borrow from gatherers

up to their maximum, invest in land, and consume b2Lat�1. That is, for farmers
Lat D .1=.pL

t � r
�1pL

tC1//.b1 C p
L
t /Lat�1 � rBt�1, where pL

t � r
�1pL

tC1 is the
user cost of land (the down payment needed to purchase land) and Bt D r�1 �

pL
tC1Lat . Argue that, if pL

t increases, Lat and Bt will increase provided b1CpL
t >

rBt�1=Lat�1. Hence, the higher the land price, the higher the net worth of farmers
and the more they will borrow.

2.1.3 Monetary Models

The next set of models explicitly includes monetary factors. Finding a role for
money in a general equilibrium model is difficult: with a full set of Arrow–Debreu
claims, money is a redundant asset. Therefore, frictions of some sort need to be
introduced for money to play some role. This means that the allocations produced
by the competitive equilibrium are no longer optimal and that the Bellman equation
formulation needs to be modified to take this into account (see, for example, Cooley
1995, pp. 50–60). We focus attention on two popular specifications — a competi-
tive model with transactional frictions and a monopolistic competitive framework
where either sticky prices or sticky wages or both are exogenously imposed — and
examine what they have to say about two questions of interest to macroeconomists:
do monetary shocks generate liquidity effects? That is, do monetary shocks imply
negative comovements between short-term interest rates and (a narrow measure
of) money? Do expansionary monetary shocks imply expansionary and persistent
output effects?

Example 2.8 (Cooley and Hansen). The representative household maximizesE0�P
t ˇ

tu.c1t ; c2t ; Nt /, where c1t is consumption of a cash good, c2t is consumption
of a credit good, and Nt is the number of hours worked. The budget constraint is
c1t C c2t C invt CMtC1=pt 6 wtNt C rtkt CMt=pt C Tt=pt , where Tt D
MtC1 � Mt and pt is the price level. There is a cash-in-advance constraint that
forces households to buy c1t with cash. We requireptc1t 6MtCTt and assume that
the monetary authority sets lnM s

tC1 D lnM s
t C lnM g

t , where lnM g
t is an AR(1)

process with mean NM , persistence 
M , and variance �2M . The household chooses
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sequences for the two consumption goods, for hours, for investment, and for real
balances to satisfy the budget constraint. We assume that shocks are realized at the
beginning of each t so that the household knows the value of the shocks when taking
decisions. The resource constraint is c1t C c2t C invt D f .Kt ; Nt ; �t /, where ln �t
is an AR(1) process with persistence 
	 and variance �2

	
. Since the expected rate of

return on money is lower than the expected return on capital, the cash-in-advance
constraint will be binding and agents hold just the exact amount of money needed
to purchase c1t .

When NM > 0, money (and prices) grow over time. To map this setup into a
stationary problem defineM �t DMt=M

s
t and p�t D pt=M

s
tC1. The value function

is

V.K; k;M �; �;M g/

D max

�
U

�
M � CM g � 1

p�M g
IwN C Œr C .1 � ı/�k � kC �

.M �/C

p�
IN

��
C ˇEV ŒKC; kC; .M �/C; �C; .M g/C�; (2.19)

where KC D .1 � ı/K C INV, kC D .1 � ı/k C inv, c1 D .M � CM g � 1/=

.M gp�/, and K represents the aggregate capital stock. The problem is completed
by the consistency conditions kC D h1.K; �;M

g/, N D h2.K; �;M
g/, p� D

h3.K; �;M
g/, where hj are functions mapping aggregate shocks and states into

optimal per capita decision variables and the aggregate price level.
Not much can be done with this model without taking some approximation. How-

ever, we can show that monetary disturbances have perverse output effects and
produce expected inflation but not liquidity effects. Suppose c2t D 0;8t . Then
an unexpected increase in M g

t makes agents substitute away from c1t (which is
now more expensive) toward credit goods — leisure and investment — which are
cheaper. Hence, consumption and hours fall while investment increases. With a
standard Cobb–Douglas production function output then declines. Also, since pos-
itive monetary shocks increase inflation, the nominal interest rate will increase,
because both the real rate and expected inflation have temporarily increased. Hence,
a surprise increase in M g

t does not produce a liquidity effect or output expansions.

There are several ways to correct for the lack of positive correlation between
money and output. For example, introducing one-period labor contracts (as we have
done in exercise 2.8) does change the response of output to monetary shocks. The
next exercise provides a way to generate the right output and interest rate effects by
introducing a loan market, forcing the household to take decisions before shocks
are realized and the firm to borrow to finance its wage bill.

Exercise 2.14 (working capital). Consider the same economy of example 2.8 with
c2t D 0;8t , but assume that the household deposits part of its money balances at
the beginning of each t in banks. Assume that deposit decisions are taken before
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shocks occur and that the representative firm faces a working capital constraint,
i.e., it has to pay for the factors of production before the receipts from the sale of
the goods are received. The representative household maximizes utility by choice
of consumption, labor, capital, and deposits, i.e., maxfct ;Nt ;KtC1;dept gE0

P
tˇ
t �

Œc#t .1 � Nt /
1�# �1�'=.1 � '/. There are three constraints. First, goods must be

purchased with money, i.e., ctpt 6 Mt � dept C wtNt . Second, there is a budget
constraintMtC1 D prf1t C prf2t C rtptKt CMt � dept CwtNt � ctpt � invtpt ,
where prf1t .prf2t / represent the share of firm’s (bank’s) profits and rt is the real
return to capital. Third, capital accumulation is subject to an adjustment cost b > 0,
i.e., invt D KtC1�.1�ı/Kt� 12b.KtC1=Kt�1/

2Kt . The representative firm rents
capital and labor and borrows cash from the representative banks to pay for the wage
bill. The problem is maxfKt ;Nt g prf1t D pt�tK

1��
t N

�
t � ptrtKt � .1C it /wtNt ,

where it is the nominal interest rate. The representative bank takes deposits and
lends them together with new money to firms. Profits, prf2t , are distributed pro rata
to the household. The monetary authority sets its instrument according to

M
a0
t D i

a1
t GDPa2t �

a3
t M

g
t ; (2.20)

where ai are parameters and GDPt D �tK
1��
t N

�
t . For example, if a0 D 0, a1 D

1, the monetary authority sets the nominal interest rate as a function of output
and inflation and stands ready to provide money when the economy needs it. Let
.ln �t ; lnM

g
t / be AR(1) processes with persistence 
	 , 
M and variances �2

	
, �2M .

(i) Set b D 0. Show that the labor demand and the labor supply are �UN;t D
.wt=pt /EtˇUc;tC1pt=ptC1 andwt it=pt D fN;t . Argue that labor supply changes
in anticipation of inflation while labor demand is directly affected by interest rate
changes so that output will be positively related to money shocks.

(ii) Show that the optimal saving decision satisfies Et�1Uc;t=pt D Et�1itˇ �

Uc;tC1=ptC1. How does this compare with the saving decisions of the basic cash-
in-advance (CIA) model of example 2.8?

(iii) Show that the money demand can be written asptGDPt=Mt D 1=.1C=it /.
Conclude that velocity ptGDPt=Mt and the nominal rate are positively related and
that a liquidity effect is generated in response to monetary disturbances.

Exercise 2.15 (Dunlop–Tarshis puzzle). Suppose the representative household
maximizes E0

P1
tD0ˇ

t Œln ct C #m lnMtC1=pt C #N ln.1 � Nt /� subject to ct C
MtC1=pt CKtC1 D wtNt C rtKt C .Mt C Tt /=pt . Let �tC1 D ptC1=pt be the
inflation rate. The representative firm rents capital from the household and produces
using GDPt D �tK

1��
t N

�
t , where ln �t is a technological disturbance and capital

depreciates in one period. Let the quantity of money evolve according to lnM s
tC1 D

lnM s
t C lnM g

t and assume that at each t the government takes away Gt units of
output.

(i)AssumeGt D G;8t .Write down the first-order conditions for the optimization
problem of the household and the firm and find the competitive equilibrium for
.ct ; KtC1; Nt ; wt ; rt ;MtC1=pt /.
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(ii) Show that, in equilibrium, hours worked are independent of the shocks, that
output and hours are uncorrelated, and that real wages are perfectly correlated with
output.

(iii) Show that monetary disturbances are neutral. Are they also superneutral, i.e.,
do changes in the growth rate of money have real effects?

(iv) Suppose there are labor contracts where the nominal wage rate is fixed one
period in advance according to wt D Et�1Mt C ln./ � ln.#m.ˇ/=.1 � ˇ// �

Et�1 lnNt . Show that monetary disturbances produce a contemporaneous negative
correlation between real wages and output.

(v) Now assume thatGt is stochastic and set lnM g
t D 0;8t . What is the effect of

government expenditure shocks on the correlation between real wages and output?
Give some intuition for why adding labor contracts or government expenditure could
reduce the correlation between real wages and output found in (ii).

The final type of model we consider adds nominal rigidities to a structure where
monopolistic competitive firms produce intermediate goods which they sell to com-
petitive final goods producers.

Example 2.9 (sticky prices). Suppose the representative household maximizes
E0
P
t ˇ

t Œc#t .1 �Nt /
1�# �1�'=.1 � '/C.1=.1 � 'm//.MtC1=pt /

1�'m by choices
of ct , Nt , KtC1, MtC1 subject to the budget constraint pt .ct C invt / C BtC1 C
MtC1 6 rtptKtCMtC.1Cit /BtCwtNtCprft and the capital accumulation equa-
tion invt D KtC1 � .1 � ı/Kt � 1

2
b.KtC1=Kt � 1/

2Kt , where b is an adjustment
cost parameter. Here prft D

R
prfit di are profits obtained from owning intermediate

firms. There are two types of firm: monopolistic competitive, intermediate-good-
producing firms and perfectly competitive, final-good-producing firms. Final goods
firms take the continuum of intermediate goods and bundle it up for final consump-
tion. The production function for final goods is GDPt D .

R 1
0

inty1=.1C&p/it di/1C&p ,
where &p > 0. Profit maximization implies that the demand for each input i is
intyit=GDPt D .pit=pt /�.1C&p/=&p , where pit is the price of intermediate good i
and pt the price of the final good, pt D .

R 1
0
p
�1=&p
it di/�&p .

Intermediate firms minimize costs and choose prices to maximize profits. Price
decisions cannot be taken every period: only .1 � �p/ of the firms are allowed
to change prices at t . Their costs-minimization problem is minfKit ;Nit g.rtKit C
wtNit / subject to intyit D �tK

1��
it N

�
it and their profit-maximization problem is

maxfpitCj gEt
P
j ˇ

j .Uc;tCj =ptCj /�
j
p prfitCj , where ˇjUc;tC1=ptC1 is the value

of a unit of profit, prfit , to shareholders next period, subject to the demand function
from final goods firms. Here prftCj D .pitCj � mcitCj /intyitCj and mcit are
nominal marginal costs.

We assume that the monetary authority uses a rule of the form (2.20). Since only
a fraction of the firms can change prices at each t , aggregate prices evolve according
to pt D .�pp

�1=&p
t�1 C .1 � �p/ Qp

�1=&p
t /�&p , where Qpt is the common solution (all

firms allowed to change prices are identical) to the following optimality condition
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(dropping the subscript i ):

0 D Et
X
j

ˇj �jp
Uc;tCj

ptCj

�
�jpt

1C &p
�mctCj

�
intytCj ; (2.21)

where � is the steady-state inflation rate. Hence, intermediate firms choose prices
so that the discounted marginal revenues equals the discounted marginal costs in
expected terms. Note that, if �p ! 0 and no capital is present, (2.21) reduces
to the standard condition that the real wage equals the marginal product of labor.
Expression (2.21) is the basis for the so-called New Keynesian Phillips curve (see,
for example, Woodford 2003, chapter 3), an expression relating current inflation to
expected future inflation and to current marginal costs. To explicitly obtain such a
relationship, (2.21) needs to be log-linearized around the steady state.

To see what expression (2.21) involves, consider the case in which utility is
logarithmic in consumption, linear in leisure, and the marginal utility of real balances
is negligible, i.e., U.ct ; Nt ;MtC1=pt / D ln ct C .1�Nt /, output is produced with
labor, prices are set every two periods, and, in each period, half of the firms change
their price. Optimal price setting is

Qpt

pt
D .1C &p/Et

�
Uc;tctwt C ˇUc;tC1ctC1wtC1�

.1C&p/=&p
tC1

Uc;tct C ˇUc;tC1ctC1�
1=&p
tC1

�
; (2.22)

where Qpt is the optimal price, pt the aggregate price level, wt the wage rate, and
�t D ptC1=pt the inflation rate. Ideally, firms would like to charge a price which is
a constant markup .1C&p/ over marginal (labor) costs. However, because individual
prices are set for two periods, firms cannot do this and when prices are allowed to be
changed, they are set as a constant markup over current and expected future marginal
costs. Note that, if there are no shocks, �tC1 D 1, wtC1 D wt , ctC1 D ct , and
Qpt=pt D .1C &p/wt .

Exercise 2.16. (i) Cast the household problem of example 2.9 into a Bellman equa-
tion format. Define states, controls, and the value function.

(ii) Show that, if prices are set one period in advance, the solution to (2.21) is

pit D .1C &p/Et�1
Et .Uc;tCj =ptCj /p

.1C&p/=&p
t intyit

Et�1.Uc;tCj =ptCj /p
.1C&p/=&p
t intyit

mcit :

Give conditions that ensure that intermediate firms set prices as a constant markup
over marginal costs.

(iii) Intuitively explain why monetary expansions are likely to produce positive
output effects. What conditions need to be satisfied for monetary expansions to
produce a liquidity effect?

Extensions of the model that also allow for sticky wages are straightforward. We
ask the reader to study a model with both sticky prices and sticky wages in the next
exercise.



2.1. A Few Useful Models 43

Exercise 2.17 (sticky wages). Assume that households are monopolistic competi-
tive in the labor market so that they can choose the wage at which to work. Suppose
capital is in fixed supply and that the period utility function is u1.ct /Cu2.1�Nt /C
.MtC1=pt /

1�'m=.1 � 'm/. Suppose that households set nominal wages in a stag-
gered way and that a fraction 1 � �w can do this every period. When the household
is allowed to reset the wage, she maximizes the discounted sum of utilities subject
to the budget constraint.

(i) Show that utility maximization leads to

Et

1X
jD0

ˇj �jw

�
�jwt

.1C &w/ptCj
U1;tCj C U2;tCj

�
NtCj D 0; (2.23)

where ˇ is the discount factor and &w > 0 is a parameter in the labor aggregator
Nt D Œ

R
Nt .i/

1=.1C&w/ di �1C&w , i 2 Œ0; 1�. (Note: whenever the wage rate cannot
be changed wtCj D �jwt , where � is the steady-state inflation.)

(ii) Show that, if �w D 0, (2.23) reduces to wt=pt D �U2;t=U1;t .
(iii) Calculate the equilibrium output, the real rate, and the real wage when prices

and wages are flexible.

Exercise 2.18 (Taylor contracts). Consider a sticky wage model with no capital.
Here labor demand is Nt D GDPt , real marginal costs are mct D wt D 1, where
wt is the real wage and GDPt D ct . Suppose consumption and real balances are
not substitutable in utility so that the money demand function is MtC1=pt D ct .
Suppose lnM s

tC1 D lnM s
t C lnM g

t , where lnM g is i.i.d. with mean NM > 0 and
assume two-period staggered labor contracts.

(i) Show that wt D Œ0:5. Qwt=pt /
�1=&w C .wt�1=pt /

�1=&w ��&w , where Qwt is the
nominal wage reset at t .

(ii) Show that �t � pt=pt�1 D Œ. Qwt�1=pt�1/
�1=&w=.2 � Qwt=p

�1=&w
t /��&w

and that Nit D Nt Œ. Qwt=pt /=wt �
�.1C&w/=&w if the wage was set at t and Nit D

Nt Œ. Qwt�1=pt�1/=.wt�t /�
�.1C&w/=&w if the wage was set at t � 1.

(iii) Show that if utility is linear in Nt , monetary shocks have no persistence.

While expansionary monetary shocks in models with nominal rigidities produce
expansionary output effects, their size is typically small and their persistence mini-
mal, unless nominal rigidities are extreme. The next example shows a way to make
output effects of monetary shocks sizeable.

Example 2.10 (Benhabib and Farmer). Consider an economy where utility is
E0
P
tˇ
t Œc1�'c=.1�'c/� .1=.1 � 'n//.n

1�'n
t =N

'N�'n
t /�, where nt is individual

employment, Nt is aggregate employment, and 	c , 	n, 	N are parameters. Sup-
pose output is produced with labor and real balances, i.e., GDPt D .a1N

�
t C

a2.Mt=pt /
�/1=� , where  is a parameter. The consumers’ budget constraint is

Mt=pt DMt�1=ptCf ŒNt ; .Mt�1CM
g
t /=pt ��ct and assume thatM g

t is i.i.d. with
mean NM > 0. Equilibrium in the labor market implies�UN =Uc D fN .Nt ;Mt=pt /
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and the demand for money is Et .fM;tC1Uc;tC1=�tC1/ D Et .itC1Uc;tC1=�tC1/,
where 1C it is the gross nominal rate on a one-period bond, �t the inflation rate,
and fM D @f=@.M=p/. These two standard conditions are somewhat special in
this model. Decentralizing in a competitive equilibrium and log-linearizing the labor
market condition, we have 'c ln ctC'nnt �.'N C'n/ lnNt D lnwt � lnpt . Since
agents are all identical, the aggregate labor supply will be a downward-sloping func-
tion of the real wage and given by 'c ln ct � 'N lnNt D lnwt � lnpt . Hence, a
small shift in labor demand increases consumption (which is equal to output in equi-
librium) and makes real wages fall and employment increase. As a consequence, a
demand shock can generate procyclical consumption and employment paths. Note
also that, since money enters the production function, an increase in money could
shift labor demand as in the working-capital model. However, contrary to that case,
labor market effects can be large because of the slope of the aggregate labor supply
curve, and this occurs even when money is relatively unimportant as a productive
factor.

We will see in exercise 2.34 that there are other more conventional ways to increase
output persistence following monetary shocks while maintaining low price sticki-
ness.

Sticky price models applied to an international context produce two interesting
implications for exchange rate determination and for international risk sharing.

Example 2.11 (Obstfeld and Rogoff). Consider a structure like the one of exam-
ple 2.9 where prices are chosen one period in advance, there are two countries,
purchasing power parity holds, and international financial markets are incomplete,
in the sense that only a real bond, denominated in the composite consumption
good, is traded. In this economy the domestic nominal interest rate is priced by
arbitrage and satisfies 1C i1t D Et .p1tC1=p1t /.1C rB

t /, where rB
t is the real rate

on internationally traded bonds and uncovered interest parity holds, i.e., 1C i1t D
Et .nertC1=nert /.1C i2t /, where nert D p1t=p2t and pjt is the consumption-based
money price index in country j , j D 1; 2. Furthermore, the Euler equations imply
the international risk-sharing condition Et Œ.c1tC1=c1t /�' � .c2tC1=c2t /�' � D 0.
Hence, while consumption growth need not be a random walk, the difference in
scaled consumption growth is a martingale difference.

The money demand in country j is MjtC1=pjt D #mcjt Œ.1 C ijt /=ijt �
1='m ,

j D 1; 2. Using uncovered interest parity and log-linearizing, OM1t � OM2t /

.1='m/. Oc2t � Oc1t /C Œˇ=.1 � ˇ/'m�cnert , where the hat indicates deviations from
the steady state. Hence, whenever OM1t � OM2t ¤ 0 or Oc2t � Oc1t ¤ 0, the nominal
exchange rate jumps to a new equilibrium.

Variations or refinements of the price (wage) technology exist in the literature
(see Rotemberg 1984; Dotsey et al. 1999). Since these refinements are tangential
to the scope of this chapter, we invite the interested reader to consult the original
sources for details and extensions.
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2.2 Approximation Methods

As mentioned, finding a solution to the Bellman equation is, in general, complicated.
The Bellman equation is a functional relationship and a fixed point needs to be
found in the space of functions. When the regularity conditions for existence and
uniqueness are satisfied, calculation of this fixed point requires iterations which
involve the computation of expectations and the maximization of the value function.

We have also seen in example 2.2 and exercise 2.3 that, when the utility function
is quadratic (logarithmic) and time separable and the constraints are linear, the form
of the value function and of the decision rules is known. In these two situations,
if the solution is known to be unique, the method of undetermined coefficients can
be used to find the unknown parameters. Quadratic utility functions are not very
appealing, however, as they imply implausible behavior for consumption and asset
returns. Log-utility functions are easy to manipulate but they are also restrictive
regarding the attitude of agents toward risk. Based on a large body of empirical
research, the macroeconomic literature typically uses a general power specification
for preferences. With this choice one has either to iterate on the Bellman equation
or resort to approximations to find a solution.

We have also mentioned that solving general nonlinear expectational equations,
such as those emerging from the first-order conditions of a stochastic Lagrangian
multiplier problem, is complicated. Therefore, approximations also need to be
employed in this case.

This section considers a few approximation methods currently used in the litera-
ture. The first approximates the objective function quadratically around the steady
state. In the second, the approximation is calculated forcing the states and the exoge-
nous variables to take only a finite number of possible values. This method can be
applied to both the value function and to the first-order conditions. The other two
approaches directly approximate the optimal conditions of the problem. In one case
a log-linear (or a second-order) approximation around the steady state is calculated.
In the other, the expectational equations are approximated by nonlinear functions
and a solution is obtained by finding the parameters of these functions.

2.2.1 Quadratic Approximations

Quadratic approximations are easy to compute but work under two restrictive con-
ditions. The first is that there exists a point — typically, the steady state — around
which the approximation can be taken. Although this requirement may appear
innocuous, it should be noted that some models do not possess a steady or a sta-
tionary state and in others the steady state may be multiple. The second is that local
dynamics are well-approximated by linear difference equations. Consequently, such
approximations are inappropriate when problems involve large perturbations away
from the approximation point (e.g., policy shifts), dynamic paths are nonlinear, or
transitional issues are considered. Moreover, they are likely to give incorrect answers
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for problems with inequality (e.g., borrowing or irreversibility) constraints, since
the nonstochastic steady state ignores them.

Quadratic approximations of the objective function are used in situations where
the social planner decisions generate competitive equilibrium allocations. When this
is not the case the method requires some adaptation to take into account the fact that
aggregate variables are distinct from individual ones (see, for example, Hansen and
Sargent 2005; Cooley 1995, chapter 2), but the same principle works in both cases.

Quadratic approximations can be applied to both value function and Lagrangian
multiplier problems. We will discuss applications to the first type of problem only
since the extension to the second type of problem is straightforward. Let the Bellman
equation be

V.y2; y3/ D max
fy1g
Qu.y1; y2; y3/C ˇEV.yC2 ; y

C
3 j y2; y3/; (2.24)

where y2 is an m2 � 1 vector of the states, y3 is an m3 � 1 vector of exoge-
nous variables, and y1 is an m1 � 1 vector of the controls. Suppose that the con-
strains are yC2 D h.y3; y1; y2/ and the law of motion of the exogenous variables is
yC3 D 
3y3 C �

C, where h is continuous and � a vector of martingale difference
disturbances. Using the constraints into (2.24) we have

V.y2; y3/ D max
fy
C

2
g

u.y2; y3; y
C
2 /C ˇEV.yC2 ; y

C
3 j y2; y3/: (2.25)

Let Nu.y2; y3; y
C
2 / be the quadratic approximation of u.y2; y3; y

C
2 / around

. Ny2; Ny3; Ny2/. If V0 is quadratic, then (2.25) maps quadratic functions into quadratic
functions and the limit value of V.y2; y3/ will also be quadratic. Hence, under
some regularity conditions, the solution to the functional equation is quadratic and
the decision rule for yC2 linear. When the solution to (2.25) is known to be unique, an
approximation to it can be found either by iterating on (2.25) starting from a quadratic
V0 or by guessing that V.y2; y3/ D V0 C V1Œy2; y3� C Œy2; y3�V2Œy2; y3�

0, and
finding V0, V1, V2.

It is important to stress that certainty equivalence is required when computing
the solution to a quadratic approximation. This principle allows us to eliminate
the expectation operator from (2.25) and reinsert it in front of all future unknown
variables once a solution is found. This operation is possible because the covariance
matrix of the shocks does not enter the decision rule. That is, certainty equivalence
implies that we can set the covariance matrix of the shocks to zero and replace
random variables with their unconditional mean.

Exercise 2.19. Consider the basic RBC model with no habit persistence in consump-
tion and utility given byu.ct ; ct�1; Nt / D c

1�'
t =.1 � '/, no government sector, and

no taxes and consider the recursive formulation provided by the Bellman equation.
(i) Compute the steady states and a quadratic approximation to the utility function.
(ii) Compute the value function assuming that the initial V 0 is quadratic and

calculate the optimal decision rule for capital, labor, and consumption.
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While exercise 2.19 takes a brute force approach to iterations, one should
remember that approximate quadratic value function problems fit into the class
of optimal linear regulator problems. Therefore, an approximate solution to the
functional equation (2.25) can also be found by using methods developed in
the control literature. One example of an optimal linear regulator problem was
encountered in exercise 2.5. Recall that, in that case, we want to maximize
Et
P
t ˇ

t .Œy2t ; y3t �
0Q2Œy2t ; y3t �C y

0
1tQ1y1t C 2Œy2t ; y3t �

0Q03y1/ with respect to
y1t , y20 given, subject to y2tC1 D Q04y2t C Q05y1t C Q06y3tC1. The Bellman
equation is

V.y2; y3/ D max
fy1g

Œy2; y3�
0Q2Œy2; y3�C y

0
1Q1y1 C 2Œy2; y3�

0Q03y1

C ˇEV.yC2 ; y
C
3 j y2; y3/: (2.26)

Hansen and Sargent (2005) show that, starting from arbitrary initial conditions,
iterations on (2.26) yield at the j th step the quadratic value function Vj D y02V

j
2y2C

V
j
0 , where

V
jC1
2 D Q2 C ˇQ4V

j
2Q
0
4

� .ˇQ4V
j
2Q
0
5 CQ03/.Q1 C ˇQ5V

j
2Q
0
5/
�1.ˇQ5V

j
2Q
0
4 CQ3/ (2.27)

and V
jC1
0 D ˇV

j
0 C ˇ tr.Vj2Q

0
6Q6/. Equation (2.27) is the so-called matrix Riccati

equation which depends on the parameters of the model (i.e., the matrices Qi ), but
it does not involve V

j
0 . Equation (2.27) can be used to find the limit value V2 which,

in turn, allows us to compute the limit of V0 and of the value function. The decision
rule which attains the maximum at iteration j is yj1t D �.Q1 C ˇQ5V

j
2Q
0
5/
�1 �

.ˇQ5V
j
2Q
0
4 CQ3/y2t and can be calculated given V

j
2 , y2t , and the parameters of

the model.
While it is common to iterate on (2.27) to find the limits of V

j
0 ;V

j
2 , the reader

should be aware that algorithms which produce this limit in one step are available
(see, for example, Hansen et al. 1996).

Exercise 2.20. Consider the two-country model analyzed in example 2.6.
(i) Take a quadratic approximation to the objective function of the social planner

around the steady state and map the problem into a linear regulator framework.
(ii) Use the matrix Riccati equation to find a solution to the maximization problem.

Example 2.12. Consider the setup of exercise 2.7, where the utility function is
u.ct ; Gt ; Nt / D ln.ct C #GGt /C #N .1 �Nt / and where Gt is an AR(1) process
with persistence 
G and variance �2G and is financed with lump sum taxes. The
resource constraint is ct CKtC1 CGt D K

1��
t N

�
t �t C .1 � ı/Kt , where ln �t is

an AR(1) disturbance with persistence 
	 and variance �2
	

. Setting #G D 0:7,
 D 0:64, ı D 0:025, ˇ D 0:99, #N D 2:8, we have that .K=GDP/ss D 10:25,
.c=GDP/ss D 0:745, .inv=GDP/ss D 0:225, .G=GDP/ss D 0:03, andN ss D 0:235.
Approximating the utility function quadratically and the constraint linearly, we
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can use the matrix Riccati equation to find a solution. Convergence was achieved
at iteration 243 and the increment in the value function at the last iteration was
9:41 � 10�6. The value function is proportional to Œy2; y3�V2Œy2; y3�

0, where
y2 D K, y3 D .G; �/, and

V2 D

264 1:76 � 10�9 3:08 � 10�7 7:38 � 10�9

�1:54 � 10�8 �0:081 �9:38 � 10�8

�2:14 � 10�6 �3:75 � 10�4 �8:98 � 10�6

375 :
The decision rule for y1 D .c; N /0 is

y1t D

"
�9:06 � 10�10 �0:70 �2:87 � 10�9

�9:32 � 10�10 �1:56 � 10�7 �2:95 � 10�9

#
y2t :

The alternative to brute force or Riccati iterations is the method of undetermined
coefficients. Although the approach is easy conceptually, it may be mechanically
cumbersome, even for small problems. If we knew the functional form of the value
function (and/or of the decision rule), we could posit a specific parametric repre-
sentation and use the first-order conditions to solve for the unknown parameters, as
we did in exercise 2.3. We highlight a few steps of the approach in the next example
and let the reader fill in the details.

Example 2.13. Suppose that the representative household chooses sequences for
.ct ;MtC1=pt / to maximize E0

P
t ˇ

t Œc#t C .MtC1=pt /
1�# �, where ct is con-

sumption and M
†
tC1 D MtC1=pt are real balances. The budget constraint is

ct CMtC1=pt D .1 � T y/wt CMt=pt , where T y is an income tax. We assume
that wt and Mt are exogenous and stochastic. The government budget constraint
is Gt D T ywt C .MtC1 � Mt /=pt , which, together with the consumer budget
constraint, implies ct CGt D wt . Substituting the constraints in the utility function
we have E0

P
tˇ
tfŒ.1 � T y/wt C M

†
t =�t C M

†
tC1�

# C .M
†
tC1/

1�#g, where �t
is the inflation rate. The states of the problem are y2t D .M

†
t ; �t / and the shocks

are y3t D .wt ;M
g
t /. The Bellman equation is V.y2; y3/ D maxfc;M †gŒu.c;M

†/C

ˇEV.yC2 ; y
C
3 j y2; y3/�. Let .css;M †ss; wss; � ss/ be the steady-state value of con-

sumption, real balances, income, and inflation. For � ss D 1;wss D 1, consump-
tion and real balances in the steady state are css D .1 � T y/ and .M †/ss D

fŒ.1 � ˇ/#.1 � T y/#�1�=.1 � #/g�1=# . A quadratic approximation to the utility
function is B0 CB1xt C x

0
tB2xt , where xt D .wt ;M

†
t ; �t ;M

†
tC1/,

B0 D .c
ss/# C Œ.M †/ss�1�# ;

B1 D

�
#.css/#�1.1 � T y/I

#.css/#�1

� ss
I#.css/#�1

�
�
.M †/ss

.� ss/2

�
I

� #.css/#�1 C .1C #/..M †/ss/�#
�
;
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and the matrix B2 is266664
�.1 � T y/2 �.1 � T y/=� ss

�.1 � T y/=� ss �=.� ss/2

�.1 � T y/Œ�.M †/ss=.� ss/2� Œ�.M †/ss=.� ss/2�Œ�=� ss C #.css/#�1�

��.1 � T y/ ��=� ss

�.1 � T y/Œ�.M †/ss=.� ss/2� ��.1 � T y/

Œ�.M †/ss=.� ss/2�Œ�=� ss C #.css/#�1� ��=� ss

�

�
�
.M †/ss

.� ss/2

��
�

2css

.# � 1/� ss
�

�
�
.M †/ss

.� ss/2

��
��

�
�
.M †/ss

.� ss/2

�
��Œ�.M †/ss=.� ss/2� � C #.1C #/Œ.M †/ss��#�1

377777775
;

where � D #.# � 1/.css/#�2. One could then guess a quadratic form for the value
function and solve for the unknown coefficients. Alternatively, if only the decision
rule is needed, one could directly guess a linear policy function (in deviation from
steady states) of the form M

†
tC1 D Q0 CQ1M

†
t CQ2�t CQ3wt CQ4M

g
t and

solve for Qi by using the linear version of the first-order conditions.

Exercise 2.21. Find the approximate first-order conditions of the problem of exam-
ple 2.13. Show the form of Qj , j D 0; 1; 2; 3. (Hint: use the certainty equivalence
principle.)

When the number of states is large, analytic calculation of first- and second-order
derivatives of the utility function may take quite some time.As an alternative, numer-
ical derivatives, which are much faster to calculate and only require the solution of
the model at a pivotal point, could be used. Hence, in example 2.13, to approximate
@u=@c, one could use fŒ.1 � T y/wss C ��# � Œ.1 � T y/wss � ��#g=2�, for � small.

Exercise 2.22 (Ramsey). Suppose that the representative household maximizes
E0
P
tˇ
t Œ�tc

1�'c
t =.1 � 'c/ � N

1�'n
t =.1 � 'n/�, where �t is a preference shock

and 'c , 'n are parameters. The consumer budget constraint is E0
P
t ˇ

tp0t �

Œ.1 � T
y
t /GDPt C s0b

t � ct � D 0, where s0b
t is a stream of coupon payments

promised by the government at time 0 and p0t is the Arrow–Debreu price. The
resource constraint is ctCGt D GDPt D �tN

�
t . The government budget constraint

isE0
P
t ˇ

tp0t Œ.Gt C s
0b
t /�T

y
t GDPt � D 0. Given a process forGt and the present

value of coupon payments E0
P
t ˇ

tp0t s
0b
t , a feasible tax process must satisfy the

government budget constraint. Assume that .�t ; �t ; s0b
t ; Gt / are random variables

with AR(1) representation. The representative household chooses sequences for
consumption and hours and the government selects the tax process preferred by the
household. The government commits at time 0 to follow the optimal tax system,
once and for all.
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(i) Take a quadratic approximation to the problem, calculate the first-order con-
ditions of the household problem, and show how to calculate p0t .

(ii) Show the allocations for ct ; Nt and the optimal tax policy T yt . Is it true that
the optimal tax rate implies tax smoothing (random walk taxes), regardless of the
process for Gt?

2.2.2 Discretization

As an alternative to quadratic approximations, one could solve the value func-
tion problem by discretizing the state space and the space over which the exoge-
nous processes take values. This is the method popularized, for example, by
Merha and Prescott (1985). The idea is that the states are forced to lie in the set
Y2 D fy21; : : : ; y2n1g and the exogenous processes in the setY3 D fy31; : : : ; y3n2g.
Then the space of possible .y2t ; y3t / combination has n1 � n2 points. For sim-
plicity, assume that the process for the exogenous variables is first-order Markov
with transition P.y3tC1 D y3j 0 j y3t D y3j / D pj 0j . The value function asso-
ciated with each pair of states and exogenous processes is V.y2i ; y3j /, which is
of dimension n1 � n2. Because of the Markov structure of the shocks, and the
assumptions made, we have transformed an infinite-dimensional problem into the
problem of mapping n1 � n2 matrices into n1 � n2 matrices. Therefore, iterations
on the Bellman equation are easier to compute. The value function can be written
as .T Vij /.y2; y3/ D maxn u.y1; y2i ; y3j /C ˇ

Pn2
lD1

Vn;lpl;j , where y1n is such
that h.y1n; y2i ; y3j / D y2n, n D 1; : : : ; n1. An illustration of the approach is given
in the next example.

Example 2.14. Consider an RBC model where a random stream of government
expenditure is financed by distorting income taxes, labor supply is inelastic, and
production uses only capital. The social planner chooses fct ; KtC1g to maximize
E0
P
t ˇ

tc
1�'
t =.1 � '/, given Gt and Kt , subject to ct C KtC1 � .1 � ı/Kt C

Gt D .1 � T
y/K

1��
t , where Gt is an AR(1) with persistence 
G, variance �2G, and

.'; ˇ; T y ; ; ı/ are parameters. Given K0, the Bellman equation is

V.K;G/ D max
fKCg

Œ.1 � T y/K1�� C .1 � ı/K �G �KC�1�'=.1 � '/

C ˇEŒV.KC; GC j K;G/�:

Suppose that the capital stock and government expenditure can take only two values,
and let the transition for Gt be pj 0;j . Then the discretization algorithm works as
follows.

Algorithm 2.2.

(1) Choose values for .ı; ; '; T y ; ˇ/ and specify the elements of pj 0;j .

(2) Choose an initial 2 � 2 matrix V.K;G/, e.g., V0 D 0.
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(3) For each i; j D 1; 2, calculate

.T Vi;j /.K;G/ D max�
Œ.1 � T y/K

1��
i C .1 � ı/Ki �Ki �Gj �

1�'

1 � '
C ˇŒVi;jpj;j C Vi;j 0pj;j 0 �;

Œ.1 � T y/K
1��
i C .1 � ı/Ki �Ki 0 �Gj �

1�'

1 � '
C ˇŒVi 0;jpj;j C Vi 0;j 0pj;j 0 �

�
:

(4) Iterate on (3) until, for example, maxi;i 0 jT lVi;j � T l�1Vi;j j 6 �, � small,
l D 2; 3; : : : .

Suppose T y D 0:1, ı D 0:1, ˇ D 0:9, ' D 2,  D 0:66; choose G1 D 1:1,
G2 D 0:9, K1 D 5:3, K2 D 6:4, p11 D 0:8, p22 D 0:7, V0 D 0. Then

.T V11/ D max
1;2

�
Œ.1 � T y/K

1��
1 C .1 � ı/K1 �K1 �G1�

1�'

1 � '
;

Œ.1 � T y/K
1��
1 C .1 � ı/K1 �K2 �G1�

1�'

1 � '

�
D max

1;2
f14:38; 0:85g D 14:38:

Repeating for the other entries,

T V D

"
14:38 1:03

12:60 �0:81

#
; T 2V D

"
24:92 3:91

21:53 1:10

#
; lim
l!1

T lV D

"
71:63 31:54
56:27 1:10

#
:

Implicitly the solution defines the decision rule; for example, from .T V11/we have
that Kt D K1.

Clearly, the quality of the approximation depends on the fineness of the grid. It
is therefore a good idea to start from coarse grids and after convergence is achieved
check whether finer grids produce different results.

The discretization approach is well-suited for problems of modest dimension (i.e.,
when the size of the state variables and of the exogenous processes is small) since
constructing a grid which systematically and effectively covers high-dimensional
spaces is difficult. For example, when we have one state, two shocks, and 100 grid
points, 1 000 000 evaluations are required in each step. Nevertheless, even with this
large number of evaluations, it is easy to leave large portions of the space unexplored.
Therefore, one has to be careful when using such an approach.

Exercise 2.23 (search). Suppose a worker has the choice of accepting or rejecting
a wage offer. If she has worked at t � 1, the offer is wt D b0C b1wt�1C et , where
et is an i.i.d. shock; if she was not working at t � 1, the offer w�t is drawn from
some stationary distribution. Having observed wt , the worker decides whether to
work or not (i.e., whether Nt D 0 or Nt D 1). The worker cannot save so ct D wt
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if Nt D 1 and ct D Nc if Nt D 0, where Nc measures unemployment compensations.
The worker maximizes discounted utility, where u.c/ D c

1�'
t =.1 � '/ and ' is a

parameter.
(i) Write down the maximization problem and the first-order conditions.
(ii) Define states and controls and the Bellman equation. Suppose et D 0, b0 D 0,

b1 D 1, ˇ D 0:96, and w�t � U.0; 1/. Calculate the optimal value function and the
decision rules.

(iii) Assume that the worker now also has the option of retiring so that xt D 0

or xt D 1. Suppose xt D xt�1 if xt�1 D 0 and that ct D wt if Nt D 1, xt D 1;
ct D Nc if Nt D 0, xt D 1 and ct D NNc if Nt D 0, xt D 0, where NNc is the retirement
pay. Write down the Bellman equation and calculate the optimal decision rules.

(iv) Suppose that the worker now has the option to migrate. For each location
i D 1; 2 the wage is wit D b0 C b1w

l
t�1 C e

i
t if she has worked at t � 1 in location

i , andwit � U.0; i/ otherwise. Consumption is ct D wt if it D it�1 and ct D Nc�%
if it ¤ it�1, where % D 0:1 is a migration cost. Write down the Bellman equation
and calculate the optimal decision rules.

Exercise 2.24 (Lucas tree model). Consider an economy where an infinitely lived
representative household has a random stream of perishable endowments sdt and
decides how much to consume and save, where savings can take the form of either
stocks or bonds, and let u.ct ; ct�1; Nt / D ln ct .

(i) Write down the maximization problem and the first-order conditions. Write
down the Bellman equation specifying the states and the controls.

(ii) Assume that the endowment process can take only two values sd1 D 6,
sd2 D 1 with transition

�
0:7 0:3
0:2 0:8

�
. Find the 2 � 1 vector of value functions.

(iii) Find the policy function for consumption, stock, and bond holdings and the
pricing functions for stocks and bonds.

One can also employ a discretization approach to directly solve the optimality
conditions of the problem. Hence, the methodology is applicable to problems where
the value function may not exist.

Example 2.15. For general preferences, the Euler equation of exercise 2.24 is

ps
t .sdt /Uc;t D ˇEŒUc;tC1.p

s
tC1.sdtC1/C sdtC1/�; (2.28)

where we have made explicit the dependence of ps
t on sdt . If we assume that sdt D

Œsdh; sdL�, use the equilibrium condition ct D sdt , and let U 1i � p
s.sdi /Usdi and

U 2i D ˇ
P2
i 0D1 pi i 0Usdi sdi , (2.28) can be written as U 1i D U

2
i C ˇ

P
i 0 pi i 0U

1
i 0 or

U 1 D .1�ˇP /�1U 2, whereP is the matrix with typical element fpi i 0g. Therefore,
share prices satisfy ps.sdi / D

P
i 0.I C ˇP C ˇ

2P 2 C � � � /i i 0U
2
i 0=Usdi , where the

sum is over the .i; i 0/ elements of the matrix.

Exercise 2.25. Consider the intertemporal condition (2.11), the intratemporal con-
dition (2.12) of a standard RBC economy. Assume T y D 0 and that .Kt ; �t / can
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take two values. Describe how to find the optimal consumption/leisure choice when
U.ct ; ct�1; Nt / D ln ct C #N .1 �Nt /.

2.2.3 Loglinear Approximations

Log-linearizations have been extensively used in recent years following the work
of Blanchard and Kahn (1980), King et al. (1988a,b), and Campbell (1994). Uhlig
(1999) has systematized the methodology and provided software useful for solving a
variety of problems. King and Watson (1998) and Klein (2000) provided algorithms
for singular systems and Sims (2001) a method for solving linear systems where the
distinction between states and controls is unclear.

Loglinear approximations are similar, in spirit, to quadratic approximations and
the solutions are computed by using similar methodologies. The former may work
better when the problem displays some mild nonlinearities. The major difference
between the two approaches is that quadratic approximations are typically performed
on the objective function while log-linear approximations are calculated by using the
optimality conditions of the problem. Therefore, the latter can be used in situations
where, because of distortions, the competitive equilibrium is suboptimal.

The basic principles of log-linearization are simple. We need a point around which
the log-linearization takes place. This could be the steady state or, in models with
friction, the frictionless solution. Let y D .y1; y2; y3/. The optimality conditions
of the problem can be divided into two blocks, the first containing expectational
equations and the second nonexpectational equations:

1 D Et Œh.ytC1; yt /�; (2.29)

1 D f .yt ; yt�1/; (2.30)

where f .0; 0/ D 1 and h.0; 0/ D 1. Taking a first-order Taylor expansion around
. Ny; Ny/ D .0; 0/, we have

0 	 Et ŒhtC1ytC1 C htyt �; (2.31)

0 	 ftyt C ft�1yt�1; (2.32)

where fj D @ ln f=@y0j and hj D @ ln h=@y0j . Equations (2.31) and (2.32) form a
system of linear expectational equations.

Although log-linearization only requires the first derivatives of f and h, Uhlig
(1999) suggests a set of approximations to calculate (2.31), (2.32) directly without
differentiation. The tricks involve replacing Yt with NY e Oyt , where Oyt is small, and
using the following three rules (here a0 is a constant and b1t ; b2t small numbers).

(i) eb1tCa0b2t 	 1C b1t C a0b2t .

(ii) b1tb2t 	 0.

(iii) Et Œa0eb1tC1 � / Et Œa0b1tC1�.
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Example 2.16. To illustrate these rules, consider the resource constraint Ct C
Gt C Invt D GDPt . Set NC e Oct C NGe Ogt C Inv ebinvt D GDP ebgdpt and use rule
(i) to get NC.1C Oct /C NG.1C Ogt /C Inv .1Ccinvt / � GDP .1Cbgdpt / D 0. Then,
using NC C NG C Inv D GDP, we get NC Oct C NG Ogt C Inv cinvt � GDPbgdpt D 0 or
. NC=GDP / Oct C . NG=GDP / Ogt C . Inv=GDP /cinvt �bgdpt D 0.

Exercise 2.26. Suppose yt and ytC1 are conditionally jointly lognormal and homo-
skedastic. Replace (2.29) with 0 D lnfEt Œe

Nh.ytC1;yt /�g, where Nh D ln.h/. Using
ln h.0; 0/ 	 0:5 vart Œ NhtC1ytC1 C Nhtyt �, show that the log-linear approximation is
0 	 Et Œ NhtC1ytC1 C Nhtyt �. What is the difference between this approximation and
the one in (2.31)?

Exercise 2.27. Suppose that the private production is GDPt D .Kt=Popt /
@1=.1��/�

.Nt=Popt /
@2=�K

1��
t N

�
t �t , where .K=Popt / and .Nt=Popt / are the average endow-

ment of capital and hours in the economy. Suppose the utility function is Et �P
tˇ
t Œln.ct=Popt / � .1=.1 � 'N //.Nt=Popt /

1�'N �. Assume that .ln �t ; ln Popt /
are AR(1) processes with persistence equal to 
	 and 1.

(i) Show that the optimality conditions of the problem are

ct

Popt

�
Nt

Popt

��'N
D 

GDPt
Popt

; (2.33)

Popt
ct
D Etˇ

PoptC1
ctC1

�
.1 � ı/C .1 � /

GDPtC1
KtC1

�
: (2.34)

(ii) Find expressions for the log-linearized production function, the labor market
equilibrium, the Euler equation, and the budget constraint.

(iii) Write the log-linearized expectational equation in terms of an Euler equation
error. Find conditions under which there are more stable roots than state variables
(in which case sunspot equilibria may be obtained).

There are several economic models which do not fit the setup of (2.29), (2.30). For
example, Rotemberg and Woodford (1997) describe a model where consumption at
time t depends on the expectation of variables dated at t C 2 and on. This model
can be accommodated in the setup of (2.29), (2.30) by using dummy variables, as
the next example shows. In general, restructuring of the timing convention of the
variables, or enlarging the vector of states, suffices to fit these problems into (2.29),
(2.30).

Example 2.17. Suppose that (2.29) is 1 D Et Œh.y2tC2; y2t /�. We can transform this
second-order expectational equation into a 2 � 1 vector of first-order expectational
equations by using a dummy variable y�2t . In fact, the above is equivalent to 1 D
Et Œh.y

�
2tC1; y2t /� and y2tC1 D y�2t as long as Œy2t ; y�2t � are used as state variables

for the problem.

Exercise 2.28. Consider a model with optimizers and rule-of-thumb households
like the one of example 2.7 and assume that optimizing households display habit
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in consumption. In particular, assume that their utility function is .ct � �ct�1/# �
.1 �Nt /

1�# . Derive the first-order conditions of the model and map them into
(2.29), (2.30).

Example 2.18. Log-linearizing around the steady state the equilibrium conditions of
the model of exercise 2.13, and assuming an unexpected change in the productivity of
farmers’technology (represented by�) lasting one period, we have .1C 1=%/bLat D
�C.r=.r � 1// OpL

t for � D 0 and .1C 1=%/bLatC� D bLatC��1 for � > 1, where % is
the elasticity of the supply of land with respect to the user costs in the steady state and
OpL
t D ..r � 1/=.r%//f1=Œ1�%=.r.1C%//�g

bLat , where the hat indicates percentage
deviations from the steady state. Solving these two expressions we have OpL

t D �=%

and bLat D Œ1=.1C1=%/�Œ1C r=..r �1/%/��. Three interesting conclusions follow.
First, if % D 0, temporary shocks have permanent effects on farmers’ land and
on its price. Second, since Œ1=.1C 1=%/�Œ1C r=..r � 1/%/� > 1, the effect on land
ownership is larger than the shock. Finally, in the static case .bLat /� D � < bLat and
. OpL
t /
� D Œ.r � 1/=.r%/�� < OpL

t . This is because� affects the net worth of farmers:
a positive � reduces the value of the obligations and implies a larger use of capital
by the farmers, therefore magnifying the effect of the shock on land ownership.

Exercise 2.29. Show that the log-linearized first-order conditions of the sticky
price model of example 2.9 when Kt D 1;8t , and when monopolistic firms use
ˇuc;tC1=uc;t as discount factor are

0 D Owt C
N ss

1 �N ss
ONt � Oct ;�

1

1C i ss

�
O{tC1 D Œ1 � #.1 � '/�. OctC1 � Oct /

� .1 � #/.1 � '/. ONtC1 � ONt /
N ss

1 �N ss
� O�tC1;�

1MtC1

pt

�
D
#.1 � '/ � 1

'm
Oct C

N ss

1 �N ss

.1 � #/.1 � '/

'm

ONt

�
1

'm.1C i ss/
O{t ;

ˇEt O�tC1 D O�t �
.1 � �p/.1 � �pˇ/

�p
cmct ;

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

(2.35)

where mct are the real marginal costs, �p is the probability of not changing prices,
wt is the real wage, ' is the risk-aversion parameter, # is the share of consumption
in utility, 'm is the exponent on real balances in utility, the superscript “ss” refers to
the steady state, and a hat denotes percentage deviation from the steady state.

As with quadratic approximations, the solution of the system of equations (2.31),
(2.32) can be obtained in two ways when the solution is known to exist and to be
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unique: using the method of the undetermined coefficients or finding the saddle-
point solution (Vaughan’s method). The method of undetermined coefficients is
analogous to the one described in exercise 2.19. Vaughan’s method works with the
state-space representation of the system. Both methods require the computation of
eigenvalues and eigenvectors. For a thorough discussion of the methods, the reader
should consult, for example, the chapter of Uhlig in Marimon and Scott (1999) or
Klein (2000). Here we briefly describe the building blocks of the procedure and
highlight the important steps with some examples.

Rather than using (2.31) and (2.32), we employ a slightly more general setup
which directly allows for structures like those considered in example 2.17 and exer-
cise 2.28, without any need to enlarge the state space.

Let y1t be of dimensionm1 � 1, y2t of dimensionm2 � 1, and y3t of dimension
m3 � 1, and suppose the log-linearized optimality conditions and the law of motion
of the exogenous variables can be written as

0 D Q1y2t CQ2y2t�1 CQ3y1t CQ4y3t ; (2.36)

0 D Et .Q5y2tC1 CQ6y2t CQ7y2t�1 CQ8y1tC1

CQ9y1t CQ10y3tC1 CQ11y3t /; (2.37)

0 D y3tC1 � 
y3t � �t ; (2.38)

where Q3 is anm4�m1 matrix of rankm1 6 m4, and 
 has only stable eigenvalues.
Assume that a solution is given by

y2t D A22y2t�1 CA23y3t ; (2.39)

y1t D A12y2t�1 CA13y3t : (2.40)

Letting Z1 D Q8Q
C
3 Q2 �Q6 CQ9Q

C
3 Q1; Uhlig (1999) shows the following.

(a) A22 satisfies the (matrix) quadratic equations:

0 D Q0
3Q1A22 CQ0

3Q2;

0 D .Q5 �Q8Q
C
3 Q1/A

2
22 �Z1A22 �Q9Q

C
3 Q2 CQ7:

)
(2.41)

The equilibrium is stable if all eigenvalues of A22 are less than 1 in absolute value.

(b) A12 is given by A12 D �QC3 .Q1A22 CQ2/.

(c) Given Z2 D .Q5A22 CQ8A12/ and Z3 D Q10
CQ11, A13 and A23 satisfy"
Im3 ˝Q1 Im3 ˝Q3


0 ˝Q5 C Im3 ˝ .Z2 CQ6/ 
0 ˝Q8 C Im3 ˝Q9

#"
vec.A23/

vec.A13/

#

D �

"
vec.Q4/

vec.Z3/

#
;

where vec.�/ is columnwise vectorization, QG
3 is a pseudo-inverse of Q3 and satisfies

QG
3Q3Q

G
3 D QG

3 and Q3Q
G
3Q3 D Q3. Q0

3 is an .m4 � m1/ � m4 matrix whose
rows are a basis for the space of Q03 and Im3 is the identity matrix of dimensionm3.
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Example 2.19. Consider an RBC model with an intermediate monopolistic com-
petitive sector. Let the profits in firm i be prfit D .pit � mcit /intyt and let
mkit D .pit � mcit / be the markup. If the utility function is of the form
u.ct ; ct�1; Nt / D c

1�'
t =.1�'/C#N .1�Nt /, the dynamics depend on the markup

only via the steady states. For this model the log-linearized conditions are

0 D �Invss cinvt � C
ss Oct C GDPss

bgdpt ; (2.42)

0 D �Invss cinvt �K
ss OktC1 C .1 � ı/K

ss Okt ; (2.43)

0 D .1 � / Okt �bgdpt C  ONt C �t ; (2.44)

0 D �' Oct Cbgdpt � ONt ; (2.45)

0 D mkss.1 � /.GDPss=Kss/Œ Okt Cbgdpt � � r
ss Ort ; (2.46)

0 D Et Œ�' OctC1 C OrtC1 C ' Oct �; (2.47)

0 D O�tC1 � 
	 O�t � O�1tC1; (2.48)

where .Invss=GDPss/ and .C ss=GDPss/ are the steady-state investment and con-
sumption to output ratios, r ss is the steady-state real rate, and mkss the steady-
state markup. Letting y1t D . Oct ;bgdpt ; ONt ; Ort ;cinvt /, y2t D Okt , y3t D O�t , we have
Q5 D Q6 D Q7 D Q10 D Q11 D Œ0�,

Q2 D

2666664
0

.1 � ı/Kss

1 � 

0

�Dss

3777775 ; Q3 D

2666664
�C ss GDPss 0 0 �Invss

0 0 0 0 Invss

0 �1  0 0

�' 1 �1 0 0

0 Dss 0 �r ss 0

3777775 ;

Q1 D

2666664
0

�Kss

0

0

0

3777775 ; Q4 D

2666664
0

0

1

0

0

3777775 ;
Q8 D Œ�'; 0; 0; 1; 0�; Q9 D Œ'; 0; 0; 0; 0�; 
 D Œ
	 �;

where Dss D mkss.1 � /.GDPss=Kss/.

It is important to stress that the method of undetermined coefficients properly
works only when the state space is chosen to be of minimal size; that is, no redundant
state variables are included. If this is not the case, A22 may have zero eigenvalues
and this will produce “bubble” solutions.

Computationally, the major difficulty is to find a solution to the matrix equation
(2.41). The toolkit of Uhlig (1999) recasts the problem into a generalized eigenvalue–
eigenvector problem. Klein (2000) and Sims (2001) calculate a solution by using
the generalized Shur decomposition. When applied to some of the problems of
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this chapter, the two approaches yield similar solutions. In general, the Shur (QZ)
decomposition is useful when generalized eigenvalues may not be distinct. However,
the QZ decomposition is not necessarily unique.

Exercise 2.30. Suppose that the representative household maximizes E0
P
tˇ
t �

.c
1�'c
t =.1 � 'c/C .MtC1=pt /

1�'m=.1 � 'm//, where 'c and 'm are parameters,
subject to the resource constraint ct CKtC1CMtC1=pt D �tK

1��
t N

�
t C .1� ı/�

KtCMt=pt , where ln �t is an AR(1) process with persistence 
	 and standard error
�	 . Let M †

tC1 DMtC1=pt be real balances, �t the inflation rate, rt the rental rate
of capital, and assume lnM s

tC1 D lnM s
t C lnM g

t , where lnM g
t has mean NM > 0

and standard error �M .
(i) Verify that the first-order conditions of the problem are

rt D .1 � /�tK
��
t N

�
t C .1 � ı/;

1 D Et Œˇ.ctC1=ct /
�'c rtC1�;

.M
†
tC1/

�#mc
�'c
t D 1CEt Œˇ.ctC1=ct /

�'c�tC1�:

9>=>; (2.49)

(ii) Log-linearize (2.49), the resource constraint, and the law of motion of the
shocks and cast these equations into the form of equations (2.36)–(2.38).

(iii) Guess that a solution for ŒKtC1; ct ; rt ;M
†
tC1� is linear in .Kt ;M

†
t ; �t ;M

g
t /.

Determine the coefficients of the relationship. Is the selected state space minimal?

Exercise 2.31. Suppose that the representative household maximizesE0
P1
tD0ˇ

t �

u.ct ; 1 � Nt / subject to ct CMtC1=pt C KtC1 6 .1 � ı/Kt C .GDPt � Gt /C
Mt=ptCTt ,Mt=pt > ct , where GDPt D �tK

1��
t N

�
t and assume that the monetary

authority sets� lnM s
tC1 D lnM g

t Cait , where a is a parameter and it the nominal
interest rate. The government budget constraint is Gt C .MtC1 �Mt /=pt D Tt .
Let ŒlnGt ; ln �t ; lnM

g
t � be a vector of random disturbances.

(i) Assume a binding CIA constraint, ct D MtC1=pt . Derive the optimality
conditions and the equation determining the nominal interest rate.

(ii) Compute a log-linear approximation of the first-order conditions and of the
budget constraint, of the production function, of the CIA constraint, of the equilib-
rium pricing equation for nominal bonds, and of the government budget constraint
around the steady states.

(iii) Show that the system is recursive and can be solved for .Nt ; Kt ;MtC1=pt ; it /

first, while .GDPt ; ct ; �t ; Tt / can be solved in a second stage as a function of
.Nt ; Kt ;MtC1=pt ; it /, where �t is the Lagrangian multiplier on the private budget
constraint.

(iv) Write down the system of difference equations for .Nt ; Kt ;Mt=pt ; it /. Guess
a linear solution (in deviation from steady states) inKt and ŒlnGt ; ln �t ; lnM

g
t � and

find the coefficients of the solution.
(v) Assume prices are set one period in advance as a function of the states and

of past shocks, i.e., pt D a0 C a1Kt C a21 lnGt�1 C a22 ln �t�1 C a23 lnM g
t�1.
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What is the state vector in this case? Use the method of undetermined coefficients
to find a solution.

The next example shows the log-linearized decision rules of a version of the sticky
price, sticky wage model described in exercise 2.17.

Example 2.20. Assume that capital is in fixed supply and the utility function is
E0
P
t ˇ

t Œ.c#t .1 � Nt /
1�#/1�'=.1 � '/ C .#m=.1 � 'm//.MtC1=pt /

1�'m �. Set
N ss D 0:33,  D 0:66, � ss D 1:005, ˇ D 0:99, css=GDPss D 0:8, where css=GDPss

is the share of consumption in GDP, N ss is the number of hours worked, and � ss

is the gross inflation in the steady states,  is exponent of labor in the production
function, ˇ is the discount factor. These choices imply, for example, that in the
steady state the gross real interest rate is 1.01, output is 0.46, real balances 0.37, and
the real (fully flexible) wage 0.88. We select the degree of price and wage rigidity
to be the same and set �p D �w D 0:75. Given the quarterly frequency of the model,
this choice implies that on average firms (households) change their price (wage)
every three quarters. Also, we choose the elasticity of money demand #m D 7. In
the monetary policy rule we set a2 D �1:0, a1 D 0:5, a3 D 0:1, a0 D 0. Finally,
�t and M g

t are AR(1) processes with persistence 0.95. The log-linearized decision
rules for the real wage, output, nominal interest rate, real balances, and inflation, in
terms of lagged real wages and the two shocks, are2666664

Owt

Oyt

O{t
OM

†
t

Ŏ
t

3777775 D
2666664
0:0012

0:5571

0:0416

0:1386

0:1050

3777775
h
Owt�1

i
C

2666664
0:5823 �0:0005

0:2756 0:0008

0:0128 0:9595

0:0427 �0:1351

�0:7812 0:0025

3777775
"
O�t
OM

g
t

#
:

Two features of this approximate solution are worth commenting upon. First,
there is little feedback from the state to the endogenous variables, except for out-
put. This implies that the propagation properties of the model are limited. Second,
monetary disturbances have little contemporaneous impact on all variables, except
interest rates and real balances. These two observations imply that monetary dis-
turbances have negligible real effects. This is confirmed by standard statistics. For
example, technology shocks explain about 99% of the variance of output at the four
years’ horizon and monetary shocks the rest. This model also misses the sign of a
few important contemporaneous correlations. For example, using linearly detrended
U.S. data, the correlation between output and inflation is 0.35. For the model, the
correlation is �0:89.

Exercise 2.32 (delivery lag). Suppose that the representative household maximizes
E0
P
t ˇ

t Œln ct �#NNt � subject to ct C invt 6 �tK1��t N
�
t and assume one-period

delivery lag, i.e., KtC1 D .1 � ı/Kt C invt�1. Show that the Euler equation is
ˇEt Œc

�1
tC1.1 � /GDPtC1K�1tC1� C .1 � ı/c�1t � ˇ

�1c�1t�1 D 0. Log-linearize the
system and find a solution by using Kt and c�t D ct�1 as states.
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Vaughan’s method, popularized by Blanchard and Kahn (1980) and King et al.
(1988a,b), takes a slightly different approach. First, using the state-space represen-
tation for the (log-)linearized version of the model, it eliminates the expectation
operator either assuming certainty equivalence or substituting expectations with
actual values of the variables plus an expectational error. Second, it uses the law of
motion of the exogenous variables, the linearized solution for the state variables, and
the costate (the Lagrangian multiplier) to create a system of first-order difference
equations (if the model delivers higher-order dynamics, the dummy variable trick
described in example 2.17 can be used to get the system in the required form). Third,
it computes an eigenvalue–eigenvector decomposition on the matrix governing the
dynamics of the system and divides the roots into explosive and stable ones. Then,
the restrictions implied by the stability condition are used to derive the law of motion
for the control (and the expectational error, if needed).

Suppose that the log-linearized system is�t D AEt�tC1, where�t D Œy1t ; y2t ;
y3t ; y4t �, y2t and y1t are, as usual, the states and the controls, y4t are the costates,
and y3t are the shocks and partition �t D Œ�1t ; �2t �. Let A D PVP�1 be the
eigenvalue–eigenvector decomposition of A. Since the matrix A is symplectic, the
eigenvalues come in reciprocal pairs when distinct. Let V D diag.V1;V�11 /, where
V1 is a matrix with eigenvalues greater than 1 in modulus and

P�1 D

"
P�111 P�112
P�121 P�122

#
:

Multiplying both sides by A�1, using certainty equivalence, and iterating forward,
we have "

�1tCj

�2tCj

#
D P�1

"
V�j1 0

0 Vj
1

#"
P11�1t CP12�2t

P21�1t CP22�2t

#
: (2.50)

We want to solve (2.50) under the condition that �2tCj goes to zero as j !1,
starting from some �20. Since the components of V1 exceed unity, this is possible
only if the terms multiplying V1 are zero. This implies �2t D �P�122 P21�1t �

Q�1t so that (2.50) is"
Q�1tCj
�2tCj

#
D

"
QP�111 V�j1 .P11�1t CP12�2t /

P�121 V�j1 .P11�1t CP12�2t /

#
; (2.51)

which also implies Q D P�121 P11. Note that, for quadratic problems, the limit value
of Q is the same as the limit of the Riccati equation (2.27).

Example 2.21. The basic RBC model with labor–leisure choice, no habit, Gt D
Tt D T y D 0, production function f .Kt ; Nt ; �t / D �tK

1��
t N

�
t , and utility func-

tion u.ct ; ct�1; Nt / D ln ct C #N .1 � Nt / when log-linearized, delivers the rep-
resentation �t D A�10 A1Et�tC1, where �t D Œ Oct ; OKt ; ONt ; O�t � (since there is a
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one-to-one relationship between ct ,Nt , and �t , we can solve �t out of the system),
where the hat indicates percentage deviations from steady states and

A0 D

26666664
1  � 1 1 �  �1

�1 0 0 0

�

�
c

K

�ss

.1 � /

�
N ss

Kss

��
C .1 � ı/ 

�
N ss

Kss

�� �
N ss

Kss

��
0 0 0 


37777775 ;

A1 D

26666664
0 0 0 0

�1 �ˇ.1 � /

�
N ss

Kss

��
ˇ.1 � /

�
N ss

Kss

��
ˇ.1 � /

�
N ss

Kss

��
0 1 0 0

0 0 0 1

37777775 :

Let A�10 A1 D PVP�1, where P is a matrix whose columns are the eigenvectors
of A�10 A1 and V contains, on the diagonal, the eigenvalues. Then

P�1�t � �
†
t D VEt�

†
tC1 � VEtP

�1�tC1: (2.52)

Since V is diagonal, there are four independent equations which can be solved
forward, i.e.,

�
†
it D viEt�

†
i;tC� ; i D 1; : : : ; 4: (2.53)

Since one of the conditions describes the law of motion of the technology shocks,
one of the eigenvalues is 
�1

	
(the inverse of the persistence of technology shocks).

One other condition describes the intratemporal efficiency condition (see equation
(2.12)): since this is a static relationship, the eigenvalue corresponding to this equa-
tion is zero. The other two conditions, the Euler equation for capital accumulation
(equation (2.11)) and the resource constraint (equation (2.4)), produce two eigen-
values: one above and one below 1. The stable solution is associated with the vi > 1
since � †

it !1 for vi < 1. Hence, for (2.53) to hold for each t in the stable case, it
must be that � †

it D 0 for all vi < 1.
Assuming ˇ D 0:99,  D 0:64, ı D 0:025, #N D 3, the resulting steady states

are css D 0:79, Kss D 10:9, N ss D 0:29, GDPss D 1:06, and

�
†
t D

26664
1:062 0 0 0

0 1:05 0 0

0 0 0:93 0

0 0 0 0

37775Et
26664
�2:18 �0:048 0:048 24:26

0 0 0 23:01

�2:50 1:36 0:056 1:10

�2:62 0:94 �0:94 2:62

37775� †
tC1:

The second row has v2 D 
�1	 , the last row the intertemporal condition. The
remaining two rows generate a saddle path. Setting the third and fourth rows
to zero (v3; v4 < 1), we have Oct D 0:54 ONt C 0:02 OKt C 0:44 O�t and ONt D
�2:78 Oct C OKt C 2:78 O�t . The third rows of A0 and A1 provide the law of motion
for capital: OKtC1 D �0:07 Oct C 1:01 OKt C 0:06 ONt C 0:10 O�t .
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Exercise 2.33. Suppose the representative household chooses consumption, hours,
and nominal money balances to maximize E0

P1
tD0 u.ct ; 1 �Nt / subject to the

following three constraints:

GDPt D �tN
�
t D Gt C ct ;

ct DMt=pt ;

MtC1 D .Mt � ptct /C pt .yt �Gt /CMt . NM CM
g
t /;

9>=>; (2.54)

where �t is a technology shock, Gt government expenditure, ct consumption, Mt

nominal balances, and pt prices. HereGt , �t , andM g
t are exogenous. Note that the

third constraint describes the accumulation of money: NM is a constant and M g
t is a

mean zero random variable.
(i) Derive and log-linearize the first-order conditions of the problem. What are

the states?
(ii) Solve the linear system assuming that the growth rate of the exogenous vari-

ables .�t ; Gt ;M
g
t / is an AR(1) process with common parameter 
. Calculate the

equilibrium expressions for inflation, output growth, and real balances.
(iii) Suppose you want to price the term structure of nominal bonds. Such bonds

cost 1 unit of money at time t and give 1 C itC� units of money at time t C � ,
� D 1; 2; : : : . Write the equilibrium conditions to price these bonds. Calculate the
log-linear expression of the slope for the term structure between a bond with maturity
� !1 and a one-period bond.

(iv) Calculate the equilibrium pricing formula and the rate of return for stocks
which cost ps

t units of consumption at t , and pay dividends ps
t sdt which can be used

for consumption only at tC1. (Hint: the value of dividends at tC1 is ps
t sdt=ptC1.)

Calculate a log-linear expression for the equity premium (the difference between
the nominal return on stocks and the nominal return on a one-period bond).

(v) Simulate the responses of the slope of term structure and of the equity premium
to a unitary shock in the technology (�t ), in government expenditure (Gt ), and in
money growth (M g

t ). Is the pattern of responses economically sensible?

Exercise 2.34 (Pappa). Consider the sticky price model analyzed in exercise 2.9
with the capital utilization setup but without adjustment costs to capital. Log-
linearize the model and compute output responses to monetary shocks (still assume
the monetary rule (2.20)). How does the specification compare in terms of persistence
and amplitude of real responses to the standard one, without capacity utilization,
but with capital adjustment costs?

2.2.4 Second-Order Approximations

First-order (linear) approximations are fairly easy to construct, useful for a variety
of purposes, and accurate enough for fitting DSGE models to the data. However,
first-order approximations are insufficient, when evaluating welfare across policies
that do not affect the deterministic steady state of the model, when analyzing asset



2.2. Approximation Methods 63

pricing problems, or when risk considerations become important. In some cases it
may be enough to assume that nonlinearities, although important, are small in some
sense (see, for example, Woodford 2003). In general, one may want to have methods
to solve a second-order system and produce locally accurate approximations to the
dynamics of the model, without having to explicitly consider global (nonlinear)
approximations.

Suppose the model has the form

Et ŒJ.ytC1; yt ; ��tC1/� D 0; (2.55)

where J is an n�1 vector of functions, yt is an n�1 vector of endogenous variables,
and �t is an n1 � 1 vector of shocks. Clearly, some components of (2.55) may be
deterministic and others may be static. So far we have been concerned with the
first-order expansions of (2.55), i.e., with the following system of equations:

Et ŒJ1 dytC1 C J2 dyt C J3� d�tC1� D 0; (2.56)

where dxt is the deviation of xt from some pivotal point, xt D .yt ; �t /. As
we have seen, solutions to (2.56) are found positing a functional relationship
ytC1 D J�.yt ; ��t ; �/, linearly expanding it around the steady state J�.yss; 0; 0/,
substituting the linear expression in (2.56), and matching coefficients.

Here we are concerned with approximations of the form

Et ŒJ1 dytC1 C J2 dyt C J3� d�tC1

C 0:5.J11 dytC1 dytC1 C J12 dytC1 dyt C J13 dytC1� d�tC1

C J22 dyt dyt C J23 dyt� d�t C J33�
2 d�tC1 d�tC1/� D 0; (2.57)

which are obtained from a second-order Taylor expansion of (2.55). These differ
from standard linearizations with lognormal errors since second-order terms in dyt ,
dytC1 appear in the expression.

Since the second-order terms enter linearly in the specification, solutions to (2.57)
can also be obtained with the method of undetermined coefficients, assuming there
exists a solution of the formytC1 D J�.yt ; ��t ; �/, taking a second-order expansion
of this guess around the steady states J�.yss; 0; 0/, substituting the second-order
expansion for ytC1 into .2:57/, and matching coefficients. As shown by Schmitt-
Grohe and Uribe (2004), the problem can be sequentially solved, finding first the
first-order terms and then the second-order ones.

Clearly, we need regularity conditions for the solution to exist and to have good
properties. Kim et al. (2004) provide a set of necessary conditions. We first need the
solution to imply that ytC1 remains in the stable manifold defined by H.ytC1; �/ D

0 and satisfies fH.yt ; �/ D 0, H.ytC1; �/ D 0 a.s., and J1.ytC1; yt ; ��tC1/ D 0

a.s. imply EtJ2.ytC1; yt ; ��tC1/ D 0g, where J D .J1; J2/. Second, we need
H.ytC1; �/ to be continuous and twice differentiable in both its arguments. Third,
we need the smallest unstable root of the first-order system to exceed the square of
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its largest stable root. This last condition is automatically satisfied if the dividing
line is represented by a root of 1.0.

Under these conditions, Kim et al. argue that the second-order approximate solu-
tion to the dynamics of the model is accurate, in the sense that the error in the
approximation converges in probability to zero at a more rapid rate than kdyt ; �k2,
when kdyt ; �k2 ! 0. This claim does not depend on the a.s. boundedness of the
process for �t , which is violated when its distribution has unbounded support, or on
the stationarity of the model. However, for nonstationary systems the n-step-ahead
accuracy deteriorates quicker than in the stationary case.

Example 2.22. We consider a version of the two-country model analyzed in exam-
ple 2.6, where the population is the same in the two countries, the social planner
equally weights the utility of the household of the two countries, there is no inter-
mediate good sector, capital adjustment costs are zero, and output is produced with
capital only. The planner’s objective function is E0

P
t ˇ

t .c
1�'
1t C c

1�'
2t /=.1 � '/,

the resource constraint is c1t C c2t C k1tC1 C k2tC1 � .1 � ı/.k1t C k2t / D

�1tk
1��
1t C �2tk

1��
2t , and ln �it , i D 1; 2, is assumed to be i.i.d. with mean zero and

variance �2
	

. Given the symmetry of the two countries, it must be the case that in
equilibrium c1t D c2t and that the Euler equations for capital accumulations in the
two countries are identical. Letting ' D 2, ı D 0:1, 1 �  D 0:3, ˇ D 0:95, the
steady state is .ki ; �i ; ci / D .2:62; 1:00; 1:07/, i D 1; 2, and a first-order expansion
of the policy function is

kitC1 D
h
0:444 0:444 0:216 0:216

i26664
k1t

k2t

�1t

�2t

37775 ; i D 1; 2: (2.58)

A second-order expansion of the policy function in country i D 1; 2 is

kitC1 D
h
0:444 0:444 0:216 0:216

i26664
k1t

k2t

�1t

�2t

37775 � 0:83�2

C 0:5
h
k1t k2t �1t �2t

i26664
0:22 �0:18 �0:02 �0:08

�0:18 0:22 �0:08 �0:02

�0:02 �0:08 0:17 �0:04

�0:08 �0:02 �0:04 0:17

37775
26664
k1t

k2t

�1t

�2t

37775:
(2.59)

Hence, apart from the quadratic terms in the states, (2.58) and (2.59) differ because
the variance of the technology shock enters (2.59). In particular, when technology
shocks are highly volatile, more consumption and less capital will be chosen with
the second-order approximation. Clearly, the variance of the shocks is irrelevant for
the decision rules obtained with the first-order approximation.
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Exercise 2.35. Consider the sticky price model whose log-linear approximation is
described in exercise 2.29. Assuming that # D 0:5, ' D 2, 'm D 0:5, �p D 0:75,
ˇ D 0:99, compare first- and second-order expansions of the solution for ct , Nt ,
it , �t , assuming that there are only monetary shocks, which are i.i.d. with variance
�2M , that monetary policy is conducted by using a rule of the form it D �

a3
t M

g
t , and

that wt is equal to the marginal product of labor.

2.2.5 Parametrizing Expectations

The method of parametrizing expectations was suggested by Marcet (1992) and
further developed by Marcet and Lorenzoni (1999). With this approach, the approx-
imation is globally valid as opposed to valid only around a particular point as it is
the case with quadratic, log-linear, or second-order approximations. Therefore, with
such a method we can undertake experiments which are, for example, far away from
the steady state, unusual from the historical point of view, or involve switches of
steady states. The approach has two advantages. First, it can be used when inequality
constraints are present. Second, it has a built-in mechanism that allows us to check
whether a candidate solution satisfies the optimality conditions of the problem.
Therefore, the accuracy of the approximation can be implicitly examined.

The essence of the method is simple. First, one approximates the expectational
equations of the problem with a vector of functions ¯, i.e., ¯.˛; y2t ; y3t / 	
Et Œh.y2tC1; y2t ; y3tC1; y3t /�, where y2t and y3t are known at t and ˛ is a vec-
tor of (nuisance) parameters. Polynomial, trigonometric, logistic, or other sim-
ple functions which are known to have good approximation properties can be
used. Second, one estimates ˛ by minimizing the distance betweenEt Œh.y2tC1.˛/;
y2t .˛/; y3tC1; y3t /� and ¯.˛; y2t .˛/; y3t /, where fy2t .˛/gTtD1 are simulated time
series for the states obtained with the approximate solution. Let Q.˛; ˛�/ D
jEt Œh.y2tC1.˛/; y2t .˛/; y3tC1; y3t /� � ¯.˛

�; y2t ; y3t /j
q some q > 1, where ˛�

is the distance minimizer. The method then looks for an Q̨ such that Q. Q̨ ; Q̨ / D 0.

Example 2.23. Consider a basic RBC model with inelastic labor supply, where
utility is given by u.ct / D c

1�'
t =.1�'/ and ' is a parameter, the budget constraint

is ct C KtC1 C Gt D .1 � T y/�tK
1��
t C .1 � ı/Kt C Tt , and .ln �t ; lnGt / are

AR processes with persistence (
	 , 
G) and unit variance. The expectational (Euler)
equation is

c
�'
t D ˇEtfc

�'
tC1Œ.1 � T

y/�tC1.1 � /K
��
tC1 C .1 � ı/�g; (2.60)

where ˇ is the rate of time preferences. We wish to approximate the expression on
the right-hand side of (2.60) with a function ¯.Kt ; �t ; Gt ; ˛/, where ˛ is a set of
parameters. Then the parametrizing expectation algorithm works as follows.

Algorithm 2.3.

(1) Select .'; T y ; ı; 
	 ; 
G; ; ˇ/. Generate .�t ; Gt /, t D 1; : : : ; T , choose an
initial ˛0.
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(2) Given a choice for ¯ calculate ct .˛0/ from (2.60) with ¯.˛0; kt ; �t ; Gt /, in
place of ˇEt Œc

�'
tC1..1�T

y/�tC1.1�/K
��
tC1C .1� ı//� andKtC1.˛0/ from

the resource constraint. Do this for every t . This produces a time series for
ct .˛

0/ and KtC1.˛0/.

(3) Run a nonlinear regression using simulated ct .˛0/;KtC1.˛0/of¯.˛;Kt .˛0/;
�t ; Gt / on ˇctC1.˛0/�' Œ.1�T y/�tC1.1�/KtC1.˛0/��C.1�ı/�. Call the
resulting nonlinear estimator ˛0� and with this ˛0� construct Q.˛0; ˛0;�/.

(4) Set ˛1 D .1 � %/˛0 C %Q.˛0; ˛0�/, where % 2 .0; 1�.

(5) Repeat steps (2)–(4) until Q.˛�L�1; ˛�L/ 6 � or j˛L � ˛L�1j 6 �, or both, �
small.

(6) Use another ¯ function and repeat steps (2)–(5).

When convergence is achieved, ¯.˛�; Kt ; �t ; Gt / is the required approximating
function. Since the method does not specify how to choose ¯, one typically starts
with a simple function (a first-order polynomial or a trigonometric function) and
then checks the robustness of the solution by using more complex functions (e.g., a
higher-order polynomial).

For the model of this example, setting ' D 2, T y D 0:15, ı D 0:1, 
G D


	 D 0:95,  D 0:66, ˇ D 0:99, q D 2, and choosing ¯ D exp.ln ˛1 C ˛2 lnKt C
˛3 ln �tC˛4 lnGt /, 100 iterations of the above algorithm led to the following optimal
approximating values, ˛1 D �0:0780, ˛2 D 0:0008, ˛3 D 0:0306, ˛4 D 0:007,
and with these values Q.˛�L�1; ˛�L/ D 0:000 008.

Next we show how to apply the method when inequality constraints are presented.

Example 2.24. Consider a small open economy which finances current account
deficits issuing one-period nominal bonds. Assume that there is a borrowing con-
straint NB so that Bt � NB < 0. The Euler equation for debt accumulation is

c
�'
t � ˇEt Œc

�'
tC1.1C rt / � �tC1� D 0; (2.61)

where rt is the exogenous world real rate, �t the Lagrangian multiplier on the
borrowing constraint, and the Kuhn–Tucker condition is �t .Bt � NB/ D 0. To find
a solution use 0 D c

�'
t � ˇ¯.˛; rt ; �t ; ct / and �t .Bt � NB/ D 0 and calculate ct

and Bt , assuming �t D 0, for some ˛ D ˛0. If Bt > NB , set Bt D NB , find � from
the first equation and ct from the budget constraint. Do this for every t ; find ˛0�;
generate ˛1 and repeat until convergence. In essence, �t is treated as an additional
variable, to be solved for in the model.

Exercise 2.36. Suppose in the model of example 2.23 that u.ct ; ct�1; Nt / D
.ct � �ct�1/

1�'=.1� '/, Tt D T y D 0. Provide a parametrized expectation algo-
rithm to solve this model. (Hint: there are two state variables in the Euler equation.)
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Exercise 2.37 (CIA with taxes). Consider a model where a representative house-
hold maximizes a separable utility function of the form E0

P1
tD0ˇ

t Œ#c ln.c1t / C
.1�#c/ ln.c2t /�#N .1�Nt /� by choices of consumption of cash and credit goods,
leisure, nominal money balances, and investments, 0 < ˇ < 1. Suppose that the
household is endowed with K0 units of capital and one unit of time. The house-
hold receives income from capital and labor which is used to finance consumption
purchases, investments, and holdings of money and government bonds. c1t is the
cash good and needs to be purchased with money; c2t is the credit good. Output is
produced with capital and labor by a single competitive firm with constant returns-
to-scale technology and 1 �  is the share of capital. In addition, the government
finances a stochastic flow of expenditure by issuing currency, taxing labor income
with a marginal tax rateT yt , and issuing nominal bonds, which pay an interest rate it .
Assume that money supply evolves according to lnM s

tC1 D lnM s
t C lnM g

t . Sup-
pose agents start at time t with holdings of money Mt and bonds Bt . Assume that
all the uncertainty is resolved at the beginning of each t .

(i) Write down the optimization problem mentioning the states and the constraints
and calculate the first-order conditions. (Hint: you will need to make the economy
stationary.)

(ii) Solve the model by parametrizing the expectations and using a first-order
polynomial.

(iii) Describe the effects of an i.i.d. shock in T yt on real variables, prices, and
interest rates, when Bt adjusts to satisfy the government budget constraint. Would
your answer change if you kept Bt fixed and instead let Gt change to satisfy the
government budget constraint?

As mentioned, the method of parametrizing expectations has a built-in mechanism
to check the accuracy of the approximation. In fact, whenever the approximation is
appropriate, the simulated time series must satisfy the Euler equation. As we will
describe in more detail in chapter 5, this implies that, if Q̨ solvesQ. Q̨ ; Q̨ / D 0, then
Q. Q̨ ; Q̨ /˝ h.zt / D 0, where zt is any variable in the information set at time t and
h is a q � 1 vector of continuous differential functions. Under regularity conditions,
when T is large, T � Œ.1=T /

P
t Qt˝h.zt /�

0Wt Œ.1=T /
P
t Qt˝h.zt /�, whereQt

is the sample counterpart of Q, � is equal to the dimension of the Euler conditions
times the dimension of h, and WT

p
�! W is a weighting matrix. For example 2.23,

the first-order approximation is accurate since S has a p-value of 0.36, when two
lags of consumption are used as zt .

While useful for a variety of problems, the parametrizing expectations approach
has two important drawbacks. First, the iterations defined by algorithm 2.3 may lead
nowhere since the fixed point problem does not define a contraction operator. In other
words, there is no guarantee that the distance between the actual and approximating
function will get smaller as the number of iterations grows. Second, the method
relies on the sufficiency of the Euler equation. Hence, if the utility function is not
strictly concave, the solution that the algorithm delivers may be inappropriate.
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2.2.6 A Comparison of Methods

There exists a literature comparing various approximation approaches. For exam-
ple, the special issue of the Journal of Business and Economic Statistics of July
1991 shows how various methods perform in approximating the decision rules of
a particular version of the one-sector growth model for which an analytic solution
is available. Some additional evidence is in Ruge-Murcia (2002) and Fernandez-
Villaverde and Rubio-Ramirez (2003a,b). In general, little is known about the prop-
erties of various methods in specific applications. Experience suggests that even for
models possessing simple structures (i.e., models without habit, adjustment costs
of investment, etc.), simulated series may display somewhat different dynamics
depending on the approximation used. For more complicated models no evidence is
available. Therefore, caution should be employed in interpreting the results obtained
by approximating models with any of the methods described in this chapter.

Exercise 2.38 (growth with corruption). Consider a representative household who
maximizesE0

P
t ˇ

tc
1�'
t =.1 � '/ by choices of consumption ct , capitalKtC1, and

bribes brt subject to

ct CKtC1 D .1 � T
y
t /Ntwt C rtKt � brt C .1 � ı/Kt ; (2.62)

T
y
t D T

e
t .1 � a ln brt /C T

y
0 ; (2.63)

where wt is the real wage, T yt is the income tax rate, T e
t is an exogenously

given tax rate, T y0 is a constant, and .'; a; ı/ are parameters. The technology is
owned by the firm and given by f .Kt ; Nt ; �t ; KG

t / D �tK
1��
t N

�
t .K

G
t /
@, where

@ > 0, Kt is the capital stock, and Nt hours worked. Government capital KG
t

evolves according to KG
tC1 D .1 � ı/K

G
t CNtwtT

y
t . The resource constraint is

ct CKtC1 CK
G
tC1 C brt D f .Kt ; Nt ; �t /C .1 � ı/.Kt CKG

t / and .�t ; T e
t / are

independent AR(1) processes, with persistence (
	 ; 
e) and variances (�2
	
; �2e ).

(i) Define a competitive equilibrium and compute the first-order conditions.
(ii) Assume ' D 2, a D 0:03, ˇ D 0:96, ı D 0:10, 
e D 
	 D 0:95, and set

�2
	
D �2e D 1. Take a quadratic approximation of the utility and find the decision

rules for the variables of interest.
(iii) Assume that .�t ; T e

t / and the capital stock can take only two values (say, high
and low). Solve the model by discretizing the state and shock spaces. (Hint: use the
fact that shocks are independent and the values of the AR parameter to construct the
transition matrix for the shocks.)

(iv) Solve the model by using a first-order log-linear approximation method.
(v) Use the parametrized expectations method with a first-order power function

to find a global solution.
(vi) Compare the time series properties of consumption, investment and bribes in

(ii)–(v).

Exercise 2.39 (transmission with borrowing constraints). Consider an economy
where preferences are described byu.ct ; ct�1; Nt / D .c#t .1 �Nt /

1�#/1�'=.1�'/,



2.2. Approximation Methods 69

which accumulates capital according to KtC1 D .1 � ı/Kt C invt , where ı is the
depreciation rate. Assume that the production function is of the form GDPt D
�tK

�k
t N

�N
t La�Lt , where Lat is land. Suppose individual agents have the ability

to borrow and trade land and that their budget constraint is ct C KtC1 C BtC1 C
pL
t LatC1 6 GDPtC.1 � ı/KtC.1CrB

t /BtCp
L
t Lat , whereBt are bond holdings,

and suppose that there is a borrowing constraint of the form pL
t Lat � BtC1 > 0,

where pL
t is the price of land in terms of consumption goods.

(i) Show that, in the steady state, the borrowing constraint is binding if .1C rB/ <

GDPss=Kss C .1 � ı/. Give conditions which ensure that the constraint is always
binding.

(ii) Describe the dynamics of output following a technology shock when the
borrowing constraint (a) never binds, (b) always binds, (c) binds at some t . (Hint:
use an approximation method which allows the comparison across cases.)

(iii) Is it true that the presence of (collateralized) borrowing constraints amplifies
and stretches over time the real effects of technology shocks?




