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Historical Calibration of a Water Account System 
Timothy Malcolm Baynes1, Graham Mark Turner2 and James West2 

 
 
 
ABSTRACT 

Models that are used for future based scenarios should be calibrated with historical 
water supply and use data.  Historical water records in Australia are discontinuous, 
incomplete and often incongruently disaggregated.  We present a systematic method 
to produce a coherent reconstruction of the historical provision and consumption of 
water in Victorian catchments.  This is demonstrated using WAS: an accounting and 
simulation tool that tracks the stocks and flows of physical quantities relating to the 
water system.  The WAS is also part of, and informed by, an integrated framework of 
stocks and flows calculators for simulating long-term interactions between other 
sectors of the physical economy.  Both the WAS and related frameworks consider a 
wide scope of inputs regarding population, land use, energy and water.  The physical 
history of the water sector is reconstructed by integrating water data with these 
information sources using a data modelling process that resolves conflicts and 
deduces missing information.  The WAS allows strategic exploration of water and 
energy implications of scenarios of water sourcing, treatment, delivery and end use 
cognisant of historical records. 
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T.M. Baynes, G.M. Turner and J. West 

INTRODUCTION 

Australia is urgently seeking solutions to problems of water security in the context of 

climate change and capacity constraints.  According to the Department of 

Sustainability and Environment, Melbourne (DSE, 2004b), “if Melburnians continue 

to use water at the same rate as in recent years, the city may approach its supply 

capacity within 15 years.” 

In attempting to construct and calculate scenarios of the future, it is important 

to have a historical perspective: to see the characteristics of past water supply and 

use in times of water stress; to see the bounds of past extremes in drought and flood 

and to capture some of the stock dynamics of the components of water systems. 

FIGURE 1 ABOUT HERE 

However, the historical record is discontinuous and sometimes fraught with 

inconsistent information.  The Australian Bureau of Statistics (ABS) Water Accounts 

are published occasionally (ABS, 2000; BS, 2004; ABS, 2006) but they give only a 

static report of water use and not much detail on the different ways water is sourced.  

Here we are particularly concerned with the major catchments or ‘surface water 

management areas’ (SWMA) of the State of Victoria (refer Figure 1).  To get a 

detailed historical picture at this level, it is the experience of the authors that you 

must derive it from numerous disparate data sources.  For example, by extracting 

information from Victorian State of the Environment reports such as Department of 

Water Resources (DWR, 1989), the Victorian Water Review (2004) or the Victorian 

State Water Report (DSE, 2005). 

The Water Account System (WAS) that we have constructed (Turner et al., 

2008) draws on these data but it is also part of, and informed by, an integrated 
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framework of other accounts and modules in The Victorian and Australian ‘Stocks 

and Flows Frameworks’ (SFF).  Each module is an account of some sector of the 

physical economy of Victoria eg. residential land use or energy supply. 

In producing the WAS and other SFFs that are its companions, a great deal of 

effort has gone into the construction of a complete and consistent historical 

database.  This paper describes the method by which that has been achieved. 

The emphasis on completeness stems from the integrated nature of our 

approach.  Water is an important part of many sectors of the physical economy.  

These sectors, in turn depend on others and it is difficult to reconstruct any coherent 

history (or produce scenarios of water supply and use) unless you begin with the 

intention of being complete. 

Nor is it sufficient to develop accounting models that simply include or 

represent the many sectors that involve water.  Where relevant, the calculations of 

these accounts should be connected and self-consistent.  Interconnection and 

consistency is important from a basic accounting perspective: totals and other 

macro-state variables should be consistent with the sums and combinations of 

outputs from connected sectoral modules.  The nature of the connections is also 

important for representing the basic mechanics of the (water) system as much as the 

flow of information. 

OUTLINE OF THE WATER ACCOUNTING SYSTEM 

This section summarises the calculations in the WAS framework; a detailed 

description is available in Turner (2008) and the essential mathematics of the WAS 

is presented in Table 1.  It is useful to refer to the diagram of information flow 

through the WAS shown in Figure 2. 
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FIGURE 2 ABOUT HERE 

TABLE 1 ABOUT HERE 

The gross demand for water is established in the ‘Water Required’ module 

from exogenous information and calculations about population and the economy in 

other SFFs.  There are four modules that use this gross demand information. 

The ‘Potable Water Treatment’ module specifies how much of the gross water 

demand will need to be potable and what infrastructure will be needed to provide 

that.  The ‘Water Re-use’ module determines how much will be re-used and 

decentralised or on-site re-use of water reduces the actual demand for water to be 

supplied from the centralised sources, or to be self-extracted from water bodies.  The 

‘Allocated Water Discharge’ module calculates how much of gross demand will be 

consumed and amount discharged.  The ‘Water Takes Disposition’ module 

determines from where water will be sourced: river, dam or ground, and how: 

through a centralised utility or by self-extraction.  Rainwater tanks reduce both 

stormwater flows and the net demand for water from dams, rivers and ground.  This 

reduction and also what flows of water will be supplied from desalination are 

calculated in the ‘Water Takes Disposition’ module. 

In parallel with the above, the calculation of gross water supply, in each 

SWMA, begins with the rainfall volume and its partition into surface, ground and 

evapo-transpired (ET) water in the ‘Water Available’ module.  The calculations here 

involve exogenous meteorological and geographical data to ascertain rainfall and ET 

rates for land use at particular locations.  Data about the area of built land is also 

needed to calculate stormwater flows and to anticipate the fraction of rainwater 

captured in rainwater tanks. 
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The water flows in the ‘Desalination’, ‘Potable Water Treatment’ and the 

‘Centralised Discharge Water Treatment’ modules all drive the requirements for 

infrastructure and energy for these types of water treatment.  Those energy needs 

and that for water re-use are accounted for in the ‘Water System Energy Use’ 

module. 

While the ‘Water Takes Disposition’ determines where water supply will come 

from, the ‘Water Puts Disposition’ determines where all forms of discharged water 

and stormwater will go to (river, dam or ground).  Also contributing to this calculation 

is the exogenously defined ‘Water Transfer Direct’ module which determines what 

flow occurs internally between SWMAs and what flows occur externally between 

SWMA and areas outside Victoria.  

It is important to note that the partitions of the total flows to and from the water 

supply system are made with exogenous shares specifying allocations so that there 

is no double counting.   

Following the puts and takes calculations, the balance of flows to and from 

ground water, rivers and dams are established in their respective account modules.  

At this stage of development of the WAS, only flows of ground water, and not stocks, 

are treated in the Ground Water Flow module since the complex dynamics are not 

sufficiently well understood to calculate ground water stock levels.   

The River Flow Account module is a partial balance since the interaction 

between river flow and storage must be calculated in the Dam Account module.  The 

latter also incorporates the river and dam network in terms of the hierarchy of river 

basins and tributaries. 
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In our work we have used the whatIf?® software platform to construct these 

stocks and flows frameworks which are constructed using the Design Approach 

(Gault et al., 1987). For more information on stocks and flows frameworks see Foran 

and Poldy (2002). 

METHODS 

In the stocks and flows approach, two frameworks of sectoral modules are used, 

namely the simulation and calibration frameworks.  A calibration framework 

integrates a wide variety of information to initialise the smaller number of variables in 

the simulator framework.  The simulation framework (summarised above for the 

WAS) then uses parameters and age profiles of stocks to explore possible future 

scenarios.  The simulation framework is also applied to the historical time period, 

which provides a quantitative historical context for simulated scenarios of the future. 

The result is a simulated history that is complete and consistent i.e. complete 

in the sense that all variables have actual historical data where it is available or else 

estimated historical data, and consistent in the sense that observed historical data is 

reproduced and all of the relationships in the simulation framework are observed 

simultaneously. 

The concept of calibration used in this stocks and flows approach is slightly 

different from that usually understood in computer modelling.  More often a complete 

historical record already exists for some variable and a model’s parameter values 

are modified at calibration so that the outputs of the model match the observed data.  

In the case described here, calibration is as much concerned (perhaps more so) with 

the generation of an historical record in the first place. 
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The calibration process used to achieve the principles of completeness and 

consistency involves several steps to overcome the problems of disparate and 

fragmented historical data.  This section describes these conceptual steps in 

something of a hierarchy, while the following section provides more detail in the 

context of specific historical data related to the WAS.  The calibration steps in 

approximate order are below. 

Collating (and Cleaning) Data 

All raw data are read into the calibration framework and reviewed separately.  The 

calibration framework identifies the location of the source data, and imports the data 

as a text file.  These files also contain a description of where the source data was 

obtained.  The source data is imported using the disaggregation or categories of the 

original data.  Data that are related to similar model concepts, such as volume of 

water used, are collated in separate modules of the calibration. 

The simplest level of inspection is to detect gross errors in the raw data using 

graphs and tables, such as negative entries in water volumes.  Where such errors 

exist the original source data are not edited rather a correction is coded within the 

calibration framework leaving a clearly documented “audit trail”. 

Comparing Similar Data  

Those circumstances where multiple data sets have been collated on similar 

concepts provide the opportunity to compare the data to identify duplication, conflicts 

or complementarities.  We may do this using the original disaggregation of the data, 

which allows us to identify any semantic or qualitative differences between similar 

fields used in the raw data, for example, between “urban water use” from one data 

set and “domestic water use” from another.  Any commonalities or differences help 

inform us how we might subsequently categorise the raw data.   
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It is also useful to aggregate over the detail and compare the result with state 

or national totals.  Such comparisons may highlight, for example, missing data in 

parts of the disaggregation which would otherwise not be obvious.  In cases where 

there is only a single data set, both this step and that of consolidation are skipped. 

Categorising 

Having established a better idea of the data veracity and overlap, if any, it is now 

appropriate to begin creating disaggregation or categorises of the data that are more 

general or common among the data sets.  We categorise the fields of different data 

into a common set of descriptors which are referred to in the whatIf?® software as 

“informant” sets.  This point in the calibration process is often an intermediate stage 

to aid the next step of identifying discontinuities or any conflicts between data 

defined by a common category.  Typically, we aggregate more detail into smaller 

categories.  Later, we may disaggregate (to the informant set of the simulator) when 

other information is available to help inform how the data should be divided.  

Ultimately we form categories that match the informants of the simulator variables.   

Consolidation 

When we are able to compare overlapping and contiguous datasets, such as water 

use data (see Water Requirements and Re-use), we can then choose the best 

combination to describe history.  (This step is irrelevant where only a single data set 

exists.)  Where datasets conflict, it may be necessary to use information from many 

sources or judgement to gauge the best way to assimilate information from either 

set.  For instance, data from surveys may be considered less complete than census-

based data or that associated with regulatory processes.  

Resolving conflicts or harmonising data may involve excluding information, 

averaging or finding the maximum or minimum values along a time series.  As a 
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general rule, harmonising is usually applied to more aggregated data (such as 

national and state totals) because there is less overlap of data at the disaggregated 

level.  In particular, national and state totals are more likely to be available over 

longer periods. 

Completeness 

Up to this point in the calibration, the process has involved working with observed 

data only.  Subsequent calibration actions establish data in all remaining data gaps 

of the exogenous variables.  At the most simple level, described in this section, 

completeness involves filling the data of a single variable without reference to other 

data or relationships in the simulator.  The more complex situation (described below 

in the Consistency section) involves imputing data for variables employing 

constraints or information embodied in the simulator.  In this sense, establishing 

completeness is an integral part of the Consistency step, in the sense that all 

exogenous parameters of the simulation framework are filled with data. 

The simplest application of completeness in the calibration involves filling in 

the data gaps of a single variable.  For example, data do not typically cover the 

entire historical period of the calibration, such as levels of major storage (see Dam 

Volume Account section).  When there is an absence of good data or other 

information, interpolation or extrapolation may be required.  If no additional data or 

information is available then trends in the existing data may be used.  Alternatively, 

other time-series data from more closely related variables may be used to infer the 

extrapolation.   

Consistency 

This final and complex stage of calibration makes use of data throughout the 

framework, and the relationships embodied in the simulator framework.  A simple 
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example of this involves the disaggregation of a total into the more detailed informant 

or category.  For example, in deriving values for water required by industry in 

Victorian catchments, we used (1) a state total industrial water use, (2) a normalised 

share (sums to 100%) of industrial land use in each local government area and (3) a 

mapping (i.e. conversion table) of local government areas to catchment area 

boundaries.  The spatial aspect of this example is described in more detail later in 

the section on the Energy Needs of the Water Sector. 

More complex applications of consistency take place to impute parameters 

whose values are largely unknown.  Several examples are described below in more 

detail, such as establishing the fraction of river flow that is abstracted to water 

storage, adjusting the energy intensity of various water treatment and transfer 

parameters, and estimating the parameter that shares rainfall between groundwater, 

surface water or atmospheric flows as final destinations of natural processes. 

In these processes, it is sometimes necessary or efficient to use an iterative 

procedure where the parameter values are adjusted by an appropriate factor based 

on the deviation of calculated output variables (eg. storage levels) from observed (or 

target) data for that output.  In other cases, a mathematical relationship can be 

inverted and the parameter directly estimated. 

A common example of iterative consistency procedures in SFFs occurs when 

establishing the age profile of a stock.  Typically such data is not recorded.  

However, if total stock at each time step through history is known and deletions are 

known (or assumed), then it is a simple but repetitive accounting process to establish 

the age profile by assigning each positive change in stock level (less deletions) to 

that “vintage” or time step.  Ideally, the time-series of this process would extend over 

about three times the characteristic lifetime of the stock. 
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Summary 

Depending on the data in question, not all the above steps are necessarily used, or 

used strictly in this sequence, but collectively they constitute calibration in their 

application to SFFs.  This process begins with an initial inspection of individual 

source data, and finishes with the population of all variables across the simulation 

framework. 

When all of the exogenous parameters of the simulation framework are filled 

with data (completeness), this framework should calculate all outputs to match 

historical data where it is available (consistency).  The calibration can be 

characterised as a mixed top-down, bottom-up process; the top-down nature derives 

from the system-wide coverage of the frameworks and the use and reproduction of 

reported aggregates, while the bottom-up nature is associated with the use of 

detailed parameters and the integration of technical data.  At the conclusion of 

calibration we have a complete representation of the physical history of the system 

(here that is the Victorian water sector) that is consistent across all the sectors 

involved.  A concomitant result is that we also will have developed values for a 

subset of variables (often these are intensive variables or the age structure of 

stocks) whose historical trajectories provide a sensible place from which to launch 

scenarios of the future. 

The following sections highlight several general and important aspects of the 

calibration steps, especially those associated with completeness and consistency of 

historical data. 
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CALIBRATION OF THE WATER ACCOUNT SYSTEM 

There were several key variables to calibrate: major dam levels, water use, river 

basin runoff, water system energy use, inter-basin water transfers, and rainfall.  The 

data used and the degree of calibration required is shown in Table 2.  In some 

cases, such as rainfall data, there was a simple correspondence between the raw 

data and the inputs to the WAS, or it may involve imputing unknown historical values 

such that the observed historical data (eg. dam levels) are reproduced by the 

simulation. 

TABLE 2 ABOUT HERE 

Spatial Calibration 

Often reporting about land use activity, and associated water use, does not use the 

same boundaries as reporting for water supply (i.e. catchments/SWMA).  Mining, 

industrial and other developed land use information was available by local 

government area (LGA) boundaries.  Agricultural water use data was available by 

‘statistical division’ (SD) boundaries used by the ABS. 

To transform information from one set of boundaries to another we initially 

used the spatial split of LGAs or SDs as they map to SWMAs (refer Figure 1). This 

mapping is represented as a matrix assigning water requirements associated with an 

activity eg. in each LGA, purely on the basis of the split of their land area across 

SWMAs. 

However, this matrix is only used as a seed for a more sophisticated algorithm 

that takes into account the total reported water required for a given activity.  The 

algorithm iterates through incremental changes in the matrix elements with the aim 
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of having the sum of all rows and the sum of all columns both equalling that reported 

total. 

This matrix is then normalized with respect to the calculated total for a given 

SWMA to obtain a matrix of shares (<1) that allocate water requirements for an 

activity to SWMA boundaries. 

Other information such as satellite imagery might be used in the future to 

better locate water use activity possibly as in Lenzen and Murray (2003). 

Links with Other Stocks and Flows Frameworks 

Water use information was sourced from a combination of historical data sets and 

the output of the calibration of the Victorian and Australian SFFs.  Water use 

associated with mining, industrial and developed land use activity by LGA 

boundaries came from the historical calibration of land use in the Victorian SFF.  

Water use in the agricultural sector for crops and animals by SD boundaries came 

from the Australian SFF. 

Sharing data achieves consistency across frameworks and provides a further 

crosscheck to the historical calibration of land use in the SFFs. 

Water Requirements and Re-use 

The ‘Water Requirements’ module brings together all the variables concerning the 

water needs of the different sectors of the Victorian economy.  These are essentially 

grouped into industrial, mining, building operations and agricultural water 

requirements. 

Industrial and Mining 

Industrial water requirements include those for the production of food, manufactured 

goods, materials (eg. plastics, metals, chemicals etc.), recycling and electricity.  The 
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assumptions behind the water intensities of these processes derive from modules 

concerned with materials and energy conversions in the Victorian SFF.  Water used 

in energy generation derives from the Victorian SFF, all other are sourced from 

information in the Australian SFF. 

The aggregate water use by 19 different mineral extraction processes in 

Victoria was taken from the Australian SFF and distributed according to the ‘land use 

state’ information which specifies in which Victorian LGAs mining activities are 

located. 

Residential 

The reconstruction of historical residential water use considered data from the ABS 

(2000; 2004; 2006), the Bureau of Rural Sciences (BRS, 1985) and the Victorian 

Department of Water Resources (DWR, 1989) and census data on population and 

dwellings from 1966 to 2001. 

The process by which these data were combined into a single time series 

demonstrates the categorisation of: ABS “household water use” data; BRS “total 

domestic”; and DWR’s information about “metered residential” for Melbourne 1972-

1984, into a single “residential” category used in the WAS (refer Figure 3). This 

mostly involved a one-to-one mapping. 

FIGURE 3 ABOUT HERE 

The BRS datum for 1985 appeared suspiciously low (refer Figure 3) and, 

while there was a drought in effect at that time, it was also at odds with other 

information on Melbourne’s historical residential water use in Victorian Government 

documents (DSE, 2004a).  In this case, the consolidation of the data proceeded 

through the exclusion of this apparent outlier. 
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The data we had from DWR (1989) referred only to Melbourne.  From this we 

needed to obtain an estimate of Victorian residential water use by first assuming that 

it is associated with residential dwellings.  In another module in the Victorian SFF 

concerning demography, ABS census information on population and housing had 

already been calibrated for 1966 - 2001.  This was used to derive a ratio of Victorian 

dwellings to those in Melbourne over history.  

The residential water consumption data for Melbourne was adjusted upwards 

by this ratio to get estimated values for all of Victoria.  Estimates for the intervening 

(unknown) years between 1984 and 1993 were deduced through linear interpolation.  

For years preceding 1972, a linear trend was extrapolated based on water use in the 

years immediately following 1972.  The final historical time series of residential water 

use in Victoria can be seen as the black line in Figure 3. 

Note that there is no attempt to represent the variability of water use between 

1984 and 1993.  This might have been calculated through some sort of sampling of 

variation in the data outside that interval.  However, any variability superimposed on 

the linear trend would have to model both meteorological variation and the 

subsequent response of households.  This is not a trivial task and it is our opinion 

that calculating variability in residential water use for all years would add little for the 

amount of extra modelling that would be required. 

This compromise in precision has implications about what the final time series 

can be used for.  Our objective of producing long-term scenarios for strategic 

decision support means that we are willing to forgo yearly variations considering a 

higher priority on capturing changes over decades. 

TABLE 3 ABOUT HERE 
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Several data sources were considered in deriving the indoor and outdoor 

water use intensities.  Troy et al. (2005) surveyed 29,000 households across Sydney 

to produce figures for total water use by residential dwellings of different density (see 

Table 3).  Grant et al. (2006) produced similar results for the suburb of Kalkallo north 

of Melbourne but did not distinguish different density types.  The residential water 

use data from Sydney is consistent with the quantities in the Kalkallo study and it is 

richer in detail hence it is the basis for the values assumed in the Victorian SFF. 

According the ABS Water Accounts Australia 2001 the split of indoor/outdoor 

use in Victorian households was approximately 65/35 respectively.  This is assumed 

to apply across all Victorian residential land - refer Table 3. 

Historical information on water use in buildings was derived from a report by 

Victoria’s Office of the Commissioner for the Environment (1988).  The total water 

use by buildings at the beginning of all scenarios is consistent with quantities 

reported in the Victorian Water Review (VWIA, 2004).  

Agriculture 

The water use in the agriculture sector was obtained from a variety of data sources 

on both area of irrigated crops and pastures and volume of water use.  Despite the 

large volumes involved, data on irrigation and other water use in agriculture is poor 

and patchy.  The overall approach involved the use and calibration of the agriculture 

module of the Australian SFF to obtain irrigation water volume from irrigation 

intensities and area of irrigated activity for SD in Victoria, as well as ABS data 

available for a small number of years.  Further data from the ABS and DWR was 

used to convert volumes of water used in SD to water regions. 

15 
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The beginning of this agriculture water use calibration is the calculation of 

irrigation intensities (volume per unit area).  Initial estimates were made from water 

use volumes given by the ABS (2000; 2004; 2006) and other miscellaneous sources, 

divided by the area of irrigated crops (including fruit and vegetable horticulture) and 

sown pasture.  These areas were obtained from a variety of data sources used in the 

extensive calibration of the Australian SFF agriculture module (Dunlop and Turner, 

2003), including data from the Inter-Regional Database (IRDB), ABS and national 

State of Environment reports (ABS, 2001a; ABS, 2001b; ASEC, 2002; Zhang et al., 

1999).  The initial estimates of irrigation intensities at SD were scaled by comparing 

aggregated irrigation volumes with state level data from the National Land and Water 

Resources Audit and Australian Water Resources Council (AWRC, 1987; NLWRA, 

2001).  Revised irrigation volumes were calculated (from intensities and areas), and 

combined with ABS Victorian data by using the higher data for those years.  Due to 

the lack of data on water used directly for livestock, this volume was calculated using 

the ratio of livestock to crop/pasture water volumes from ABS (2006), and the 

irrigation volume multiplied by this ratio. 

The final calibration step was to convert the SD based data to that for 

Victorian water regions.  Both DWR and ABS data for 1985 provide comparable 

breakdown by SWMA, and an average of these data sources was used to calculate 

the share apportioned to each water region.  This share was applied to the state total 

of agricultural water use obtained from an aggregation of the detailed SD time series 

data described above 

Re-use 

On-site re-use generally set to zero in history except for heavy industry processing 

and assembly and recycling industries who are assumed to re-use 30% of their 
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water requirements on site.  Mining is assumed to re-use 80% of their water.  Note 

that this is not the same as centralised recycling which is represented in the Waste 

Treatment and Collection section. 

Natural Water Supply   

Calculating natural water supply involved distributing total rainfall in a catchment to 

evapo-transpiration (ET), runoff to surface waters, and groundwater in such a way 

that the calculated runoff matched the reported mean annual runoff (MAR). 

Rainfall data was selected from rainwater gauges representing points in the 

upper reaches of each Victorian SWMA using the Rainman Streamflow 4.3+ 

software package and database (Clewett et al., 2003).  It is possible to use other 

hydrological models as alternative sources of data but we have focused on 

observations in the first instance to create an empirically based accounting system 

free of model assumptions. 

The Department of Water Resources (DWR, 1989) has values of historical 

MAR up to 1989 for each SWMA and further information is available in the State 

Water Reports (DSE, 2005; DSE, 2006). 

For each SWMA, flow to groundwater was assumed to be the state-wide 

average of 1% of the total rainwater input reported in (DWR, 1989). The calibration 

of runoff takes into account the different land-use in each water region, allowing ET 

and runoff rates to differ by water region and land-use, and over time.  Zhang’s 

(2003) evaporation rates for different land cover (trees and grass) were used in 

conjunction with land use information by LGA from the Victorian SFF. 

The water balance of ‘natural’ flows for the whole of Victoria can be 

summarised as in Water Victoria: A Handbook of Water Resources (DWR, 1989): 

17 



Historical Calibration of a Water Account System 

( ) ( ) ( ) ( %    %    %     %= + +Rainfall 100 ET 84 Runoff 15 Flow toGroundwater 1 ) (1) 

We have elaborated on this, disaggregating each variable in the above 

equation by location, by land uses at that location, and by separately identifying that 

part of runoff that comes off the hard surfaces of developed land as storm water. 

Storm water simulations are driven by rainfall and the proportion of developed 

land (housing, commercial, industrial etc.) in a given catchment.  The latter is directly 

linked to a development history or scenario represented by the ‘land use state’ 

variable which again comes from Victorian SFF.  Since there are very few historical 

records of storm water flows this is truly simulated and not calibrated to agree with 

any data.  

Our calculations also make allowance for the subtraction of rain collected for 

rainwater tanks from the rainfall total.  The calculation of the rainfall intercepted by 

roof systems considers both the roof area of developed land (the potential capture 

area) and the fraction of that area actually engaged in collecting rainwater. 

The water balance calculations retained the assumption of a 1% distribution to 

groundwater and it is by holding this factor constant that we used rainfall and runoff 

data as independent variables to impute the complete ET data set for each 

catchment.  These calculations effectively embed the information about land use and 

geography in the values of ET for each catchment area.  The order of magnitude of 

ET may be compared with the values for combined ‘in stream losses to groundwater 

infiltration and ET’ reported in the State Water Reports (DSE, 2005; DSE, 2006). 

While some historical time series data for specific SWMA were available, 

information on surface flows or ET was not always so forthcoming.  Given MAR 

values for 1989 (DWR, 1989) and 2000 (NLWRA, 2000) we can at least deduce the 
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fraction of rainfall going to surface flows for those years.  For time points outside 

those years we assume the same fraction of rainfall goes to surface flows and for the 

intervening years we presume a linear transition in the fraction to surface flow. 

Water Management 

In the WAS water is considered to be sourced either through a centralised system or 

by self-extraction from dams, rivers and ground water.  In addition there is the 

potential direct capture of rainwater by rainwater tanks and the capture of 

stormwater. 

The source of water varies with location: in south-west Victoria, for example, 

there’s a greater proportion sourced from ground than in the East Gippsland area 

where most water is extracted from the surface.  The proportion of water sourced 

from surface, ground water and the volume and distance of inter-regional transfers 

for each river basin was based on figures published by the Victorian Department of 

Water Resources (DWR, 1989).  

The Victorian data in Water Accounts Australia 2001 (ABS, 2004) suggest 

that approximately 10% of piped water is lost in transfer and losses in canals are 

assumed to be a minimum of four times this.  We do recognise that these rates can 

vary depending on the location and mode of water transportation.  From 

consultations at DSE we know that there exist open canal irrigation systems with 

combined evaporation and leakage losses of up to 90%. 

In addition to inter-regional transfers along pipes and canals, particular 

regions source their water from up-stream catchments (eg. along the Murray River).  

River networks such as this are sensitive to upstream diversions and we have been 
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careful to capture how such extractions affect the flow of water to downstream 

catchments. 

Potable Water Treatment and Supply 

It was assumed that all land uses that involved built structures required 100% 

potable water.  The fraction of water required that was actually consumed by 

different sectors was assumed to be: 20% for the residential, health, education, 

commercial, retail and business sectors; 10% in processing and assembly; 30% for 

all electricity generation involving steam generation or water cooling; and 90% in 

agriculture where production is reliant on high levels of evapo-transpiration.  These 

are necessarily crude assumptions based on input from experts in the fields or 

unpublished information and they highlight the need for more data collection on this 

topic. In the advent of more or better information, the calibration framework can 

easily be updated. 

Waste Water Treatment and Collection 

The proportion of waste water going to centralised waste water treatment was taken 

from ABS Water Accounts 1994-1997 and 2001: 95% from all residential and built 

land, 10% from processing and assembly and recycling industries. 

All waste water is assumed to be of black water quality. Though it is 

acknowledged that some part of waste water flows will be grey water, this is 

generally mixed with black water in Victorian waste water treatment.  All waste water 

treatment is assumed to be to tertiary standard. The calibrated energy intensity of 

discharged water treatment is dominated by the data from Melbourne (Kenway et al., 

2007). Melbourne's discharged water treatment energy requirements are higher than 

most Australian cities because the sewerage has to be pumped further.  For 2004-05 

a system average of 0.39 KWhr/m3 for treatment alone but including pumping of 
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discharged water, this becomes 0.94 KWhr/m3 (Kenway et al., 2007).  Again, the low 

resolution of these macro statistics indicates the need for further research. In the 

absence of more detailed data we are at least reassured that our calibration process 

will result in agreement with reported aggregate quantities.  All direct discharge and 

stormwater is assumed to go into rivers. 

Water Transfers 

The first guide for information on water transport between SWMA was Water 

Victoria: A Handbook of Water Resources (DWR, 1989, p63).  Table 4 shows what 

proportion of water received by a SWMA comes from which donating SWMA. 

TABLE 4 ABOUT HERE 

Generally all imports are to dams for water from both canals and pipes except 

for the Upper Murray and Loddon SWMAs which receive water to river from canals.  

Loddon and Avoca SWMAs also receive water directly to their respective rivers via 

piped input.  About 324 200 ML/year is imported to the Mallee-Wimmera catchment 

by canal and 142 000ML/year is imported into Kiewa and Ovens basins by pipe from 

outside the state (DSE, 2005; MDBC, 2003). 

River Flow, Groundwater and Dam Volume Accounts 

These are the accounts at the end point of the WAS that have to tally with historically 

observed quantities.  Given that they are the culmination of many of the calculations 

in the WAS, their output is heavily reliant on the calibration of numerous preceding 

variables.  In the river flow and groundwater accounts, the final result is little more 

than a basic accounting exercise but the involvement of water management in the 

form of diversions to dams and the complication of river networks, means the dam 

volume account requires a more sophisticated calibration. 
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River Flow Account 

This module requires no calibration at all since it contains purely an account of the 

various inflows and outflows to rivers excluding flows from tributaries and 

transactions with dams.  The River Flow Account depends on the outputs of 

preceding modules but in one sense it is incomplete as the ultimate calculation of 

river flow occurs in the Dam Volume Account after contributions and extractions to 

and from dams and the consequences of river networks has been calculated. 

With the constraints outlined above, the biggest determinant of river flow at 

this stage in the WAS is rainfall in the catchment.  Depending on the SWMA, water is 

generally extracted from dams or ground water, for all water uses, though in most 

SWMA some smaller amount is extracted from rivers. 

Ground Water 

Ground water is accounted for simply by subtracting extractions from natural inputs 

for a given region.  No assumptions are made about the subterranean transfer of 

water between regions. The hydrology of ground water systems across Victoria is 

outside the scope of the WAS though the simple metric of net flow to ground water is 

an indicator of sustainable extraction rates. 

Dam Volume Account 

The calibration task here is to reproduce observed dam levels by estimating suitable 

parameters.  In the WAS, all major dams within a region are treated as a lumped 

storage.  The calibration of total dam volumes for a given SWMA involved several 

interdependent components: multiple dams and inter-catchment transfers, flows from 

rivers, dam evaporation, and other factors.  A key parameter in the calibration is, , 

the fraction of river flow in a region that is not diverted to storage.  Within a single 

(isolated) region, this fraction by-passing storage can be estimated from the balance 

f
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equation for storage (where , the change in storage level from one time step to 

another, is the difference between inputs and outputs): 

DΔ

Δ =  (2) (1 )D f F I R− × + − − E

where is the river flow potentially entering the storage, F I represents other 

net inputs such as transfers from other regions (if made directly to the dam), R is the 

release of water from the dam, and E is loss due to evaporation.  Equation (2) is 

readily solved for . f

Since the WAS incorporates a river network, it is necessary to use an iterative 

procedure because the input to a lower dam depends on the river flow exiting the 

upper regions after solving the storage balance in those regions.  For the lower 

region, the river flow above the dam ( to be used in Equation 'F

uF+

(2)) is the sum of, , 

net river flow internal to the region (i.e. due only to river inputs and outputs that occur 

within the region, which is calculated elsewhere in the framework) and, , the river 

flow exiting the upper region: .   is calculated in the previous iteration 

from .  The number of iterations required is just the number of basin levels in the 

hierarchy of the river network. 

iF

uF

iF=F '
uF

fF

Despite the apparent importance of water storage, data for many of the 

factors in Equation (2) was not readily available for this calibration exercise.  A 

discontinuous record for observed dam volumes of the major dams in Victoria was 

collected from a range of sources (GMW, 2005; MDBC, 2005; MW, 2005).  A linear 

interpolation was performed over the years where no data was available to get a 

best estimate of observed dam levels.  Net inputs to river flow (excluding storage 

abstraction) were calculated from the WAS model, using the calibration steps 

described in other sections above.  Other inputs to storage were based on limited 
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data on inter-catchment transfers (refer Table 4).  Evaporation loss was calculated 

from published figures of major dam areas and estimates of evaporation rates.  No 

data was obtained on dam operations, such as the river flow abstracted to storage or 

the release of stored water.   

In the absence of further research to obtain such data, the appropriate 

calibration approach was to impute  to reproduce storage levels across Victoria 

using the other data.  Since release of water from dams within each one-year time-

step could not be discerned (in an accounting sense) from the river flow by-passing 

the storage, 

f

R was initially taken to be zero.  However, in order for the observed data 

on major storage levels to be reproduced it was also necessary to adjust evaporation 

rates for several dams and impute infrequent but large release of water from one 

major dam.  The releases occur in 1994, 1995 and 1998 following years of low 

rainfall, and are equivalent to a large fraction of the river flow in the upper catchment 

of the Murray River. 

The flow of the Murray River at its exit point from Victoria (the South Australia 

border) is an important metric by which to gauge the success of the overall 

calibration of the WAS.  Many of the rivers of SWMA flow into the Murray River and 

there are a number of major dams located on it.  Apart from being a major water 

way, the Murray River flow represents the end result of much of the calibration 

procedure and carries the cumulative uncertainties about flows from many 

catchments. 

FIGURE 4 ABOUT HERE 

Despite this, the WAS calculated flow in the Murray compares favourably with 

data from the Murray-Darling Basin Commission (MDBC).  In Figure 4 the long term 

24 



T.M. Baynes, G.M. Turner and J. West 

median and average flows in the Murray are shown with the same measures as 

modelled for pre-settlement conditions.  The WAS calculated flow in the Murray for 

earlier historical years is closer to the natural conditions, due to lower water use in 

the river system.  The flow calculated for the later historical years are in agreement 

with the average and median values for current conditions.  The good comparison 

provides a degree of validation of the WAS and its calibration, particularly as the 

Murray River flow at the SA border is the compound result of many influences. 

In the Murray-Darling River system Kirby et al. (2008) found that “about 75% 

of inflows, outflows, gains and losses is gauged, and about half of the remaining 

water balance can be attributed with additional data and modelling.  However, large 

unattributed losses and noise remain, amounting to about 12% of the water balance 

on average.”  

In our WAS this unknown flow is not explicitly recognised though it may be 

implicitly absorbed in several variables, for example, ET rates or from the 

equations above.  If, for example, the calculated flow was too high and river flow 

data were available and lower than our calculations, then we would have to make a 

judgement about what variables to adjust to calibrate to the lower river flow. 

f

Energy Needs of the Water Sector 

Deducing the energy consumption by the water sector presents an excellent 

demonstration of every stage in the calibration process using a wider collection of 

data inputs (refer Figure 5).  In particular, the ‘consistency’ stage of calibration of the 

water sector’s energy needs provided constraints on the connected Water Transfers 

module. 
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Both extensive and intensive variables were calibrated so that the total 

calculated electricity use for water treatment and transport matched or exceeded the 

reported total by ABARE (2007).  Note that the majority of energy provided to the 

Victorian water sector is in the form of electricity.  Hence, in variable names we have 

used the terms “energy” and “electricity” interchangeably.  The collection and 

categorisation of data proceeded as follows. 

FIGURE 5 ABOUT HERE 

The quantity of potable water treated and delivered was calculated from 

‘upstream’ population, industry and land use modules in the Victorian SFF – see 

Figure 5.  Kenway et al. (2007) have collated statistics from the water utilities of four 

major Australian cities and, from their figures, the electricity needed per litre had a 

system wide average of 470j/l for treatment and distribution of potable water in 

Melbourne in 2004-05.  Kenway et al. (2007) also calculate an intensity of 3400 j/l for 

waste water treatment and pumping in Melbourne for 2004-05.  Both these intensive 

figures been taken to be representative for the state as, according to the Victorian 

Water Industry Association Inc. (VWIA, 2004), the vast majority of Victoria’s waste 

water discharge occurs in or around Melbourne. 

In the process of collecting information on water supply and discharge, 

volume data on the re-use of water were found in ABS (2000; 2004; 2006) and used 

to estimate the electricity required for water re-use.  This re-use mainly occurs in 

mining, processing and assembly and heavy industries.  Where the energy intensity 

of the treatment of re-used water was unknown, we estimated this to be half that for 

potable water treatment.  This estimation comes from the simple reasoning that 

water is treated to be re-used but not to the same degree as potable water.  

Information on the energy intensity for desalinating water varies depending on 
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technology and the local salinity of water or seawater being desalinized.  While the 

approximate figure of 17Kj/litre was taken from the Melbourne Seawater Desalination 

Plant Feasibility Study (GHD, 2007), no water had been sourced through 

desalination over the historical record. 

Having obtained reasonable figures for the intensive and extensive variables 

concerning potable water supply, re-use and wastewater discharge, the remaining 

calibration task focussed on the electricity required for transfers of water between 

SWMA eg. for irrigation.  The preceding intensive variables could be reasonably 

assumed to apply across history and geography, but the variation in flows between 

SWMAs and differences in geography, did not permit such flexibility with what we 

could assume about the energy intensity of water transfers.  This situation was 

exacerbated by the paucity of time series data on water transfer flows. Transferred 

water flows were based on DWR (1989) information for 1986 and the estimated 

distance that water travelled was based on known canal or pipeline lengths. 

One aggregate reference, to calibrate to, was ABARE’s (2007) historical time 

series total energy requirement for Victoria’s water sector (1974 to present).  

However, there remained conflicts between that top-down total and a bottom up sum 

of the components mentioned above (refer Figure 6).  What follows is the 3-stage 

process by which we arrived at the energy intensities and quantities of water 

transport while attempting to be consistent with the aggregate statistics. 

FIGURE 6 ABOUT HERE 

Data from Kenway et al. (2007) and known transfers between Thompson and 

Yarra SWMAs, DWR (1989, p64) were used to get an initial value for the energy 

intensity of water transfer, 3.3 Gj/Gl/km.  This was then used to derive a first 
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estimate of energy for water transport which was added to the energy required in 

potable, re-used and waste water to produce a calculated total.  This was to be 

compared to the reported total in ABARE’s historical time series (TABARE). 

The only comprehensive data we had for transfer flows was from DWR (1989) 

for 1986.  This was used in conjunction with the 1986 ABARE total as summarised in 

Equation 18.  This adjusted the energy intensity of water transfer downwards so that 

the calculation of aggregate electricity needs for the Victorian water sector matched 

ABARE at 1986 (refer Figure 7). 

 
( )1986

int
1986

ABARET pot dis reuse
I

flow
− − −

=  (3) 

Where Iint is the intermediate energy intensity for water transfer, (TABARE – pot 

– dis – reuse)1986 is the residual after subtracting the potable, waste and reused 

water energy requirements from the ABARE total for 1986 and flow1986 is the water 

transfer flow datum for 1986 multiplied by the distances over which that water flows.  

FIGURE 7 ABOUT HERE 

Where the calculated total electricity required (Tcalculated shown as the pink line 

in Figure 7Error! Reference source not found.) deviates below the ABARE 

historical data, the water transfer energy intensity and transfer flows were both 

adjusted proportionally so that the ABARE data is matched - refer to Equations (4) 

and (5).  At any time where Tcalculated > TABARE: 

 int
int 1986

ABARE calculated
final

T TI I
I flow

−
=

×
×  (4) 

 1986
int 1986

ABARE calculated
final

T Tflow flow
I flow

−
=

×
×  (5) 
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In Equation (5), flowfinal is the final estimate of water transfers multiplied by the 

distances over which that water flows.  Where Tcalculated > TABARE, those variables 

remain unchanged from their values at 1986.  We assume the same relative 

uncertainty to flowfinal and Ifinal.  Both variables are equally unreliable, deriving from 

single measurements where no absolute uncertainties were known. 

FIGURE 8 ABOUT HERE 

The final total calculated energy requirement (pink line in Figure 8) for water 

transfers = Ifinal × flowfinal.  This is summed with the energy needed for all other water 

services and the total matches ABARE’s historical data exactly after 1986.  This is 

due, in part, to an increasing energy requirement for water transfers (blue line in 

Figure 8). 

The allowance to exceed ABARE’s historical statistics is based on the fact 

that data was collected from surveys which are, if anything, more likely to produce 

underestimates than otherwise (Baynes, 2007). 

DISCUSSION 

We have presented two detailed examples of a method for reproducing the physical 

history of the Victorian water sector.  We used available data from the water-sector 

in concert with a framework of models that simultaneously re-constructs the history 

of other sectors of the physical economy of Victoria.  The basic method comprises a 

series of steps: collating and cleaning data; comparing like source data; categorising 

data into common sets; consolidating like data; completing the data fill in parameters 

where gaps exist; and consistently imputing the values of parameters where there is 

no observed data, in keeping with the logic and relationships of the simulation 

framework, while reproducing other historical data.   
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This approach adopted in the WAS and other stocks and flows frameworks, 

relates to the objective of creating a transparent decision-support tool for strategic 

(long-term) resource management.  The system is represented ideally as the 

complete collection of physical processes, expressed in terms of indisputable 

accounting identities for example, the storage balance Equation (2), with these 

incorporating all appropriate inputs for the decision-making process.  A firm empirical 

basis is provided since the calibration predominantly employs and reproduces 

historical data. 

Advantages 

One of the merits of this approach is that it’s a tractable, consistent and systematic 

way of ‘bringing it all together’.  Another way of congregating information might be 

through relational databases but this would not present a user with the same clarity 

about the processes of data conflict resolution and consolidation. 

A significant, though seemingly obvious, insight from such calibration 

processes is that considerable information is obtained from early and repeated 

examination of the historical data as it is integrated in the SFF.  This informs 

assumptions about how historical data actually relates to the variables in the 

simulation framework.  Our experience has shown that poor assumptions are often 

made about the integration of historical data if the results of the integrated data are 

not viewed progressively in the calibration process. 

The explicit approach of representing processes, even where data is lacking, 

helps in recognising where further data collection would be useful.  Sensitivity 

analysis or related explorations of the system can identify the key parameters or 

driving factors, on which data collection can be focused.  Further historical or 
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measured data may then be incorporated, and a new history for the system 

calculated. 

Considerations 

By being broad in scope we have relinquished some precision.  We could be more 

detailed or disaggregated in our categories or use more detailed time series or time 

steps less than one year.  But this raises the question of how much precision do you 

need to be accurate? 

For example, it might be preferable to have detailed time series of intensities 

for waste water treatment.  This might represent the changing technology and 

standards applied.  In the absence of more information, we have used values from a 

single time point (2005) which are at least based on current knowledge and 

represent a reasonable estimate until more historical data comes to hand.  Another 

aspect of being aggregate is that some detail on flows may be subsumed in a more 

coarse data object or not be represented at all.  For example, losses from the 

distribution of potable water to urban users may not be important at a state level but 

could be significant for particular urban catchments.  Future versions of the WAS 

may be extended to capture such detail, 

While an aim of the calibration process is to make maximum use of existing 

data and logical relationships, some judgement is often required.  For instance, we 

may have differing confidence in some related data sets, and chose one as an 

authority in preference to another eg. volumes (of say water used) are likely to be 

more reliable than reported intensities (eg. outdoor water use per unit garden area).  

This choice is also in keeping with the overall purpose of providing whole-of-system 

analysis in our stocks and flows frameworks i.e. volumes or flows of physical 

quantities and the impact on stocks. 
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Judgement is also required when the values for several parameters are not 

well known, but collectively determine an observed output, such as the volume of 

inter-basin water transfers and the energy intensity of those transfers contributing to 

the total energy used in water transfer.  This occurs because SFF are designed to 

represent the detail of processes and relevant parameters are included even if 

relatively little data is available.  The calibration process and the whatIf?f® software 

make the data, logic and assumptions employed completely open to inspection.  We 

adopt this transparency and process-oriented approach to help identify, among other 

things, where further data acquisition and research would be beneficial.  Additions to 

and revisions of the simulated history can be made in the light of new data and 

knowledge.  Further discussion of the issue of dealing with uncertainties is provided 

below. 

Uncertainties and Unknowns 

There is a key difference between our calibration approach and those of more 

detailed hydrological models for example SIMHYD (Chiew et al., 2002; Kirby et al., 

2008).  A hydrological model is constructed to represent as much detail about the 

dynamics of the system as feasible and its parameters are initialized with known 

values, fitted using recursion calculations or simply by estimation.  Then the model is 

run to simulate over a time course and the outputs of the model are compared with 

available historical data.  Parameters may be fine tuned but there is usually some 

error, ε that represents the limit of the model to exactly reproduce historical data. 

This error term may derive from the external input to the model or it may be a result 

of the internal limitations of the model, for example, an overly simple representation 

of hydrological dynamics or an under parameterization (Cook et al., 2005). 

32 



T.M. Baynes, G.M. Turner and J. West 

This error term may be appropriate for a critically determined model where 

there are an equal number of independent variables as equations that involve them.  

In contrast, in the WAS there are many more independent variables than equations 

and process relationships are represented even if there is an apparent lack of 

historical or measured data i.e. it is greatly under-determined.  Many of the variables 

and parameters for instance are highly disaggregated.  For example, the single 

parameter determining the immediate destination of rainfall has the dimensions of 

location (29 SWMA), land use (14 types) and destination (evapo-transpiration, 

surface or ground) representing a total of 1218 time series.  For an under-

determined system, one or more variables can have a range of values that are 

consistent with other variables in the framework and with scientific understanding.   

In the set of simplified equations (refer Table 1) representing the collection of 

calculations in the WAS, there are 15 equations and approximately 25 or more 

variables that lack data (refer Table 5).  The extent that the system is under-

determined decreases as more system linkages are incorporated, such as the link 

employed in this work between the water system, and population, land-use and 

energy frameworks.   

TABLE 5 ABOUT HERE 

Importantly, the nature of the system accounting relationships remains 

relatively simple throughout the framework and this limits the instability that could 

arise from it being under-determined. 

Furthermore, judgements and calibration processes that impute otherwise 

unknown parameter values are open to inspection via a diagrammatic interface to 
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the coding and all data in the calibration framework.  Therefore, debate and 

improvements are focused on data, not on the “model”. 

The simplicity and transparency of the WAS suggest that calculating a 

residual or error term would require substantial effort and produce little extra useful 

information about uncertainty. 

CONCLUSIONS 

The purpose of the WAS, in connection with the Victorian SFF, is to simulate and 

explore many alternative future scenarios of water sourcing, treatment, delivery and 

end use cognisant of the historical record. 

Our methods employ calculations which enable us to reproduce historical data 

exactly where that data exist. This is possible because of both the linear accounting 

nature of the mathematics and a comprehensive use of relevant historical data. 

Where historical data does not exist, we use a transparent process of data modelling 

that is open to inspection and accessible to review. 

This paper presents an efficient way to congregate many, often disparate data 

sets to build a coherent picture of the physical history of water in Victoria. This 

information also connects to other SFFs to enable long term, cross-scale simulations 

based on a topically broad and temporally deep historical calibration.  Ultimately this 

feeds into a simulation framework capable of producing catchment level outputs for 

strategic decision support such as the operational and embodied consumption of 

water, flow in river networks and the energy cost of transporting and treating water. 
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Figure 1.  Maps showing the surface water management areas (SWMA) and major 
rivers of the State of Victoria and inset the boundaries of Victorian local 
government areas (LGA) 
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Figure 2.  Information flow in the WAS. Solid line indicates information about 
available water, dashed line shows water required and the dotted line 
shows the flow of information about energy needs of the water sector. 
“Water Puts” refers to the destination (ground, river or dam) of water 
discharged or transferred and storm water. “Water Takes” refers to the 
sourcing of water from rain collected on rooves, from ground, rivers or 
dams 
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Figure 3. The raw data used and the final historical time series of residential water 
use in Victoria. DWR refers to the Victorian Department of Water 
Resources, ABS is the Australian Bureau of Statistics and BRS is the 
Bureau of Rural Sciences 
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Figure 4. Flow of the Murray River leaving Victoria at the South Australian border. 
The time series is our calculated historical data. The average and 
median  annual current or natural conditions flows are the median and 
average of 109 years (1891-2000) of modelled current or natural 
conditions flow from MDBC (2003) 
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Figure 5.  Outputs from the Victorian SFF sectoral models drive water 
requirements. This subsequently determines activity for different water 
services.  The electricity consumed by these water services is calculated 
in the “Water System Energy Use” account 

 
 

 

Figure 6. The first estimate of energy intensity for water transfer used to generate 
the total electricity for water transfer (blue line). This was added to all 
other water related energy needs to produce the calculated total (pink) to 
be compared with ABARE’s historical data (black) 
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Figure 7. Intermediate estimate of electricity for water transfer (blue line) using 
data for transfer flows in 1986. The small change at 1983 is due to the 
Thompson-Yarra pipeline coming online 

 
 

 

Figure 8. Final step in the calibration of energy required for water transfers 
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Table 1. The following set of equations summarise the key relationships 
embodied in the WAS.  An explanation of the symbols is given in the 
lower part of the table  

 

Description Equation Number 

Natural 
availability of 
water 

, , ( )
l d

nat
l d l uW s R A fcA= −  1 

Water 
required 

, , , ,( )req
s s LGA wr i u LGA u LGA sW a W I B r= + −  2 

Allocation of 
water 
discharge 

, ,(1 )trt req con dis trt trt
tr s s s s tr u trW W f f s Sf= − +  3 

 ( ),(1 )(1 ) 1dis req con dis trt
s s s s uW W f f S f= − − + − tr  4 

Direct water 
transfers 
 

, , , , , , ,/ (1 )
wrf

exp imp tran
wr p wrt wrt wrf p wrt wrf p wrt wrf p

wrt wr

W M W s l d= −⎡ ⎤∑⎢ ⎥⎣ ⎦
 

5 

 
, ,

wrt

imp imp tran
wr p wrt wrt wrf p

wrf wr

W M W s
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∑ ,  

Where M[] represents the mapping of wrf  wr or wrt  wr 

6 

Water puts 
disposition 

, ,
, , , { , } { , } , , ,

where , ,

put tr dis imp put
b tr dis imp s t s t tr dis imp bW W s

b gnd riv dam

=

=
 

7 

Water takes 
disposition 

, , ,( (1 )take take req des roof exp
b b s ext s s u wr pW s W f W W= − − + )  8 

Ground 
water flow 

, ,
, ,

,gnd in out
z gnd z gnd

in z out z
W W W= −∑ ∑

 
9 

River flow 
account 

, ,
, ,

,riv in out
z riv z riv

in z out z
W W W= −∑ ∑

 
10 
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Dam 
account 

, ,
, ,

,dam in out
z dam z dam

in z out z
W W W= −∑ ∑

 
11 

 
, 0(1 )( )

t
bypass riv riv dam dam

out up time
time

D f W W W V R D =⎡ ⎤= − + + − − +⎣ ⎦∑  
12 

 riv bypass riv
outW f W=  13 

Water 
treatment 
capacity 

( ),
, ,

t
req dis trt

tr tr tr tl tr tr time
time

C W s C C−
0== − +∑  

14 

Water 
system 
energy use 

( ) , , , , ,
exp exp

tr tr wr wr p wrt wr p wr wr
tr

E C e W d e= +∑  
15 

 

Variable Meaning (units given in []) 

,l d

natW  flow of water originating from rainfall that goes to 
environmental destinations (d), for each land-use type (l), [l/a] 

,l ds  share of rainfall flow to each environmental destination(d), for 
each land-use type (l) 

R annual rainfall for a water region [mm/a] 

lA  land area within each water region, by different land-uses (l) 
[m2] 

uA  roof area within each water region, by type of built area (u) [m2] 

f  fraction of roof area used for rain-water capture in tanks 

c  proportion of annual rain-water flow captured by roof tanks 
req

sW  net water required by each sector (s) [l/a] 

iW  gross water required by non-urban sectors (i) [l/a] 

sr  re-use of water locally within a sector (s) [l/a] 

,u LGAB  area of built land-use [m2] 

,u LGAI  intensity (volume per unit area) of water use in built areas [l/m2] 

, ,s LGA wra  (mapping) parameter for converting data in LGAs to water 
regions (proportion of water use in an LGA that is within a 
water region), by each sector (s) 

Wtr
trt treated water flow by treatment type (tr) [l/a] 
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fscon fraction of water required that is consumed, by sector (s) 

fsdis fraction of discharged water, by sector (s), to be treated 

ss,tr
trt share of treatment type (tr) for water discharged by sector (s); 

sums to unity over tr 

S stormwater flow off urban area [l/a] 

fu,tr
trt fraction of stormwater flow from urban land-use (u) to be 

treated by treatment type (tr) 

Ws
dis untreated discharge water flow from sectors (s) [l/a] 

Wwr,p
exp water exported from a water region (wr) by type of transfer (p) 

[l/a] 
imp

wrtW  water imported to a receiving water region (wrt) [l/a] 

, ,
tran
wrt wrf ps  share of transfer type (p) and destination water region (wrt) for 

water exported from a water region (wrf); sums to unity over p 
and wrt 

lwrt,wrf,p loss rate per unit distance of water during transfer to 
destination (wrt) from a water region (wrf), by transfer type (p) 
[/km] 

dwrt,wrf,p distance of water transfer to destination (wrt) from a water 
region (wrf), by transfer type (p) [km] 

Wwr,p
imp water imported to a water region (wr) by type of transfer (p) [l/a]

, , , { , }
put

b tr dis imp s tW  water into receiving water body types (b: ground, river, 
storage), from treatment (tr), untreated discharge (dis), and 
imported by transfer (imp), by sector (s) and treatment type (p) 
[l/a] 

, ,
{ , }
tr dis imp
s tW  water from treatment (tr), untreated discharge (dis), and 

imported by transfer (imp), by sector (s) and treatment type (p) 
[l/a] 

, , ,
put
tr dis imp bs  share of water received by water body types (b), from 

treatment (tr), untreated discharge (dis), and imported by 
transfer (imp); sums to unity over water body types (b) for each 
source of water 

take
bW  water obtained from water body types (b) [l/a] 

, ,
take
b s exts  share of water obtained from water body types (b), by sector 

(s) and extraction type (centralised or self-extracted) (ext); 
sums to unity over water body types (b) and extraction type 
(ext) 

fsdes fraction of water required by sector (s) obtained from 
desalination 

{ : , , }b gnd riv damW  net flow into water body types (b): ground (gnd), river (riv) or 
storage (dam) [l/a] 
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{ , }
,{ : , , }
in out

y b gnd riv damW  separate flows into and out of water body types (b): ground 
(gnd), river (riv) or storage (dam); where y can be: sector (s), 
treatment type (tr), transfer type (p), land-use (l); and where in 
can be: natural (nat), imported (imp), or received (put); and out 
can be: exported (exp) or obtained (take) [l/a] 

D dam (storage) volume at time t  [l] 

0timeD =  initial dam (storage) volume  [l] 

fbypass fraction of river flow (above storage) that is not abstracted to 
storage 

V evaporation loss from storage [l/a] 

Rdam release of water from storage into the river network [l/a] 

,
riv

out upW  river flow entering the water region from upstream [l/a] 

trC  capacity of water treatment infrastructure, at time t [l/a] 

, 0tr timeC =  initial capacity of water treatment infrastructure [l/a] 

trC−  decommissioned capacity of water treatment infrastructure [l/a] 

,
trt
tr tls  share of treatment level (tl) capacity for each treatment type 

(tr); sums to unity of over treatment level 

E energy use, total, by the water sector [J/a] 

,
exp
wr wre  energy intensity of water transfer [J/l/km] 

tre  energy intensity of water treatment service [J/l] 
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Table 2. Key variables targeted for calibration, the data sources used and the 
calibration steps required 

Variable Data Sources Degree of Calibration 

Major dam 
levels 

Reports from the Murray Darling 
Basin Commission, Melbourne 
Water and Goulburn-Murray Water 
 

Collation, Comparison and 
Categorisation  
Consolidation, Completion and 
Consistency 

Water use ABS* Water Accounts 1994-2005 
ABS* Censuses of Population and 
Housing 1976-2001 
Victorian Water Report 2003/04 
 

Collation, Comparison and 
Categorisation, 
Consolidation, Completeness 
and Consistency 

River basin 
runoff 

Water Victoria: a Resource 
Handbook 
State Water Reports 
 

Collation, Comparison and 
Categorisation 

Water system 
energy use 

Australian Bureau of Agriculture 
and Resource Economics 

Collation, Comparison and 
Categorisation, Consolidation, 
Completeness and Consistency

Inter-basin 
water 
transfers 

Water Victoria: a Resource 
Handbook 

Collation 

Rainfall Australian Bureau of Meteorology 
Rainman V4 © Queensland 
Department of Primary Industries 

Collation 

* Australian Bureau of Statistics 
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Table 3. Indoor water use intensity at 2001 for residential development types 
derived from end use research (Troy et al., 2005). Separate dwellings 
are taken as ‘low density’, ‘medium density’ encompasses semidetached 
dwellings, terraces and apartments of less than 4 stories, ‘high density’ 
includes all dwellings in apartments greater than 4 stories high. Yearly 
water use per dwelling is × 0.65 to get indoor water use first 

Residential 
Development 
Type 

Yearly water 
use per 
dwelling 
(litres/year) 

Assumed 
average area 
(m2) / dwelling 

Indoor Water 
Intensity 
(litres/m2 per 
year) 

Low Density 309 000 300 669.5 
Medium Density  251 000 250 652.6 

High Density 218 000 200 708.5 
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Table 4. Transfers by pipe or canal from donating SWMAs (columns) to receiving 
SWMA (rows). Numbers show the contribution of donating catchments 
as a proportion of the total water transferred to receiving catchments 
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Kiewa River 1          

Broken River  1         

Campaspe River  1         

Loddon River  0.91 0.09        

Avoca River    0.62      0.38 

Mallee    0.74      0.26 

Wimmera-Avon Rivers          1 

Latrobe River     0.95 0.05     

Yarra River     0.84 0.16     

Moorabool River       1    

Barwon River        0.98 0.02  

Lake Corangamite        0.13 0.87  

Hopkins River         1  
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Table 5. Summary of data availability for variables in the WAS, providing a 
comparison of the number of unknowns with the number of equations 

Equation 
number 

Good 
data 

Moderate data Poor or no data 

A.1 lA , R uA  ,l ds , f, c,  
,l d

natW

A.2 req
sW

,

, 

,s LGAa

,u LGB
wr

A

,
 

Wi, , ,u LGAI sr   

A.3 req
sW  Wtr

trt S, ss,tr
trt, fscon, 

fsdis, fu,tr
trt

 

A.4 req
sW   S, Ws

dis, fsdis, 
fscon, fu,tr

trt 

A.5  
,

exp
wr pW , , 

lwrt,wrf,p, dwrt,wrf,p 

imp
wrtW , ,

tran
wrt wrf ps  

A.6  
,

imp
wr pW ,  imp

wrtW , ,
tran
wrt wrf ps  

A.7  
, , , { , }
put

b tr dis imp s tW   , ,
{ , }
tr dis imp
s tW

, , ,
put
tr dis imp bs

, 

 

A.8 req
sW , 

fsdes 

roof
uW , ,  ,

exp
wr pW take

bW ,  , ,
take
b s exts

A.9  
,
out

z gndW  ,
in

z gndW , Wgnd 

A.10 Wriv Wriv  ,
out

z rivW ,
in

z rivW  

A.11   damW ,
in

z damW ,
out

z damW

A.12  D, Wriv,  ,
riv

out upW fbypass, Wdam, 
Rdam, Dtime=0, V 

A.13  Wriv,  riv
outW fbypass 

A.14 ,req dis
trW  trC  ,

trt
tr tls , trC− , 

 , 0e=tr timC

A.15 E 
, , , ,, ,exp

tr wr wr p wrt wr pe W d ,
exp
wr wre , 

  ~15 unknowns ~25 unknowns 
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