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Abstract 
 

This article proposes a class of goodness-of-fit tests for the autocorrelation function 
of a time series process, including those exhibiting long-range dependence. Test 
statistics for composite hypotheses are functionals of a (approximated) martingale 
transformation of the Bartlett’s Tp-process with estimated parameters, which 
converges in distribution to the standard Brownian Motion under the null hypothesis. 
We discuss tests of different nature such as omnibus, directional and Portmanteau-
type tests. A Monte Carlo study illustrates the performance of the different tests in 
practice. 
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Let f be the spectral density function of a second order stationary time series process

{X (t)}t∈Z with mean µ and covariance function

Cov (X (j) ,X (0)) =

Z π

−π
f (λ) cos (λj) dλ; j = 0,±1,±2, . . . .

We shall assume that {X (t)}t∈Z admits the Wold’s representation

X (t) = µ+
∞X
j=0

a (j) ε (t− j) , with a (0) = 1 and
∞X
j=0

a2 (j) <∞, (1)

for some sequence {ε (t)}t∈Z satisfying E (ε (t)) = 0 and E (ε (0) ε (t)) = σ2 if t = 0; and = 0

for all t 6= 0. Under (1), the spectral density function of {X (t)}t∈Z can be factorized as

f (λ) =
σ2

2π
h (λ) , λ ∈ [0, π] ,

with h (λ) :=
¯̄̄P∞

j=0 a (j) e
ijλ
¯̄̄2
.

Let

H =
½
hθ :

Z π

0
log hθ (λ)dλ = 0, θ ∈ Θ

¾
, (2)

where Θ ⊂ Rp is a compact parameter space. Much of the existing time series literature is
concerned with parametric estimation and testing, assuming that h belongs to H, i.e. h =
hθ0 for some θ0 ∈ Θ, because the parameter θ0 and the functional form of hθ summarize the
autocorrelation structure of {X (t)}t∈Z. Notice that h ∈ H in (2) guarantees that a (0) = 1

in (1) and σ2 = minθ∈Θ 2
R π
0 f (λ) /hθ (λ)dλ. For our purposes, σ

2 can be considered a

nuisance parameter, as is also the mean µ.

Classical parameterizations that accommodate alternative models are the ARMA, ARFIMA,

fractional noise or Bloomfield’s (1973) exponential models (see Robinson, 1994 for defini-

tions). For instance, in an ARFIMA specification, H consists of all functions indexed by a

parameter vector θ =
¡
d, η0, δ0

¢0
, where θ ∈ Θ ⊂ (−1/2, 1/2)×Rp1 ×Rp2 , of the form

hθ (λ) =
1

|1− eiλ|2d
¯̄̄̄
¯Ξη

¡
eiλ
¢

Φδ (eiλ)

¯̄̄̄
¯
2

, λ ∈ [0, π] , (3)

such that Ξη and Φδ are the moving average and autoregressive polynomials of orders p1

and p2, respectively, with no common roots, all lying outside the unit circle.
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Before statistical inference on the true value θ0 is made, one needs to test the hypothesis

H0 : h ∈ H, which can be equivalently stated as

H0 :
Gθ0 (λ)

Gθ0 (π)
=
λ

π
for all λ ∈ [0, π] and some θ0 ∈ Θ, (4)

where

Gθ (λ) := 2

Z λ

0

f
¡
λ̄
¢

hθ
¡
λ̄
¢dλ̄, λ ∈ [0, π] .

Under H0, Gθ0 is the spectral distribution function of the innovation process {ε (t)}t∈Z and
Gθ0 (π) = σ2.

Given a record {X (t)}Tt=1 and a consistent estimator θT of θ0 under H0, a natural esti-
mator of Gθ0 is defined as GθT ,T (λ), where

Gθ,T (λ) :=
2π

T̃

[T̃λ/π]X
j=1

IX (λj)

hθ (λj)
, λ ∈ [0, π] . (5)

Here T̃ = [T/2], [z] being the integer part of z, and for a generic time series process

{V (t)}t∈Z ,

IV (λj) :=
1

2πT

¯̄̄̄
¯
TX
t=1

V (t) eitλj

¯̄̄̄
¯
2

, j = 1, ..., T̃ ,

denotes the periodogram of {V (t)}Tt=1 evaluated at the Fourier frequency λj = 2πj/T for
positive integers j.

The formulation of H0 in (4) suggests to use Bartlett’s Tp− process as a basis for testing
H0. The Tp − process is defined as

αθ,T (λ) := T̃ 1/2

·
Gθ,T (λ)

Gθ,T (π)
− λ

π

¸
, λ ∈ [0, π] .

Notice that αθ,T is scale invariant and that, for j 6= 0,mod (T ), IV (λj) is mean invariant,
so omission of j = 0 in the definition of Gθ,T entails mean correction. That is, αθ,T is

independent of both µ and σ2.

Under short-range dependence and H0, we have that

max
1≤j≤T̃

E
¯̄̄̄
IX (λj)

hθ0 (λj)
− Iε (λj)

¯̄̄̄
= o (1) ,

see Brockwell and Davis (1991, Theorem 10.3.1, p. 346). So, it is expected that αθ0,T will

be asymptotically equivalent to Bartlett’s Up − process for {ε (t)}t∈Z,

α0T (λ) := T̃ 1/2

·
G0T (λ)

G0T (π)
− λ

π

¸
, λ ∈ [0, π] ,
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with

G0T (λ) :=
2π

T̃

[T̃ λ/π]X
j=1

Iε (λj) , λ ∈ [0, π] .

In fact, under suitable regularity conditions, we shall show below that the aforementioned

equivalence holds also true under long-range dependence. Observe that the Up − process
α0T and the Tp − process αθ0,T are identical when {X (t)}t∈Z is a white noise process.
The Up−process α0T is useful for testing simple hypotheses when the innovations {ε (t)}Tt=1

can be easily computed, as is the case when {X (t)}t∈Z is an AR model. However, there are
many other models of interest whose innovations {ε (t)}Tt=1 cannot be directly computed,
e.g. Bloomfield’s exponential model, or difficult to obtain, like in models exhibiting long-

range dependence, such as ARFIMA models. In those cases, it appears computationally

much simpler to use αθ0,T for testing simple hypotheses.

The empirical processes α0T and αθ,T , with fixed θ, are random elements in D [0, π], the

space of right continuous functions on [0, π] with left hand side limits, the càdlàg space. The

functional space D [0, π] is endowed with the Skorohod’s metric (see e.g. Billingsley, 1968)

and convergence in distribution in the corresponding topology will be denoted by “⇒ ”.

Under suitable regularity conditions on {ε (t)}t∈Z , it is well known that

α0T ⇒ B1
π, (6)

where B1
π is the standardized tied down Brownian motion at π. In terms of the standard

Brownian motion B on [0, 1], B1
π can be represented as

B1
π (λ) = B

µ
λ

π

¶
− λ

π
B (1) , λ ∈ [0, π] .

Grenander and Rosenblatt (1957) proved (6) assuming that {ε (t)}t∈Z is a sequence of in-
dependent and identically distributed (iid) random variables with eight bounded moments.

The iid condition was relaxed by Dahlhaus (1985), who assumed that {ε (t)}t∈Z behaves
as a martingale difference, but still assuming eight bounded moments. Recently Klüppel-

berg and Mikosch (1996) proved (6) under iid {ε (t)}t∈Z , but assuming only four bounded
moments. The iid requirement is relaxed by the following assumption.

A1 The innovation process {ε (t)}t∈Z satisfies that E (ε (t)r| Ft−1) = µr with µr constant

(µ1 = 0 and µ2 = σ2) for r = 1, . . . , 4 and all t = 0,±1, . . . , where Ft is the sigma
algebra generated by {ε (s) , s ≤ t}.
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Assumption A1 appears a minimal requirement to establish a functional central limit

theorem for α0T , due to the quadratic nature of the periodogram.

To establish the asymptotic equivalence between αθ0,T and α
0
T , we introduce the following

smoothness assumptions on h.

A2 (a) h is a positive and continuously differentiable function on (0, π];

(b) |∂ log h (λ) /∂λ| = O
¡
λ−1

¢
as λ→ 0+.

This condition is very general and allows for a possible singularity of h at λ = 0. It holds

for models exhibiting long-range dependence, like ARFIMA(p2, d, p1) models with d 6= 0, as
can easily be checked using (3) and that

¯̄
1− eiλ¯̄ = |2 sin (λ/2)|.

Theorem 1 Assuming A1 and A2, under H0, (6) holds and

sup
λ∈[0,π]

¯̄
αθ0,T (λ)− α0T (λ)

¯̄
= op (1) .

We can relax the location of the possible singularity in h at any other frequency λ 6= 0, as
in Hosoya (1997) or, more recently, Giraitis, Hidalgo and Robinson (2001), or even allow for

more than one singularity. However, for notational simplicity, we have taken the singularity,

if any, at λ = 0. If the location of the singularity were at λ0 6= 0, then A2 would be modified
to

A2’ (a) h is a positive and continuously differentiable function on
£
0, λ0

¢ ∪ ¡λ0, π¤;
(b) |∂ log h (λ) /∂λ| = O

³¯̄
λ− λ0¯̄−1´ as λ→ λ0.

We now comment on the results of Theorem 1. This theorem indicates that αθ0,T is as-

ymptotically pivotal. One consequence is that critical regions of tests based on a continuous

functional ϕ : D [0, π] 7→ R can be easily obtained. Different functionals ϕ lead to tests with

different power properties. Among them are omnibus, directional and/or Portmanteau-type

tests. For example, classical functionals which lead to omnibus tests are the Kolmogorov-

Smirnov (ϕ (g) = supλ∈[0,π] |g (λ)|) and the Cramér-von Mises (ϕ (g) = π−1
R π
0 g (λ)

2 dλ),

whereas Portmanteau tests, defined as weighted sums of squared estimated autocorrelations

of the innovations, and directional tests are obtained by choosing an appropriate functional

ϕ, see Section 3 for details.

On the other hand, in practical situations the parameters θ0 are not known and, thus,

they have to be replaced by some estimate θT . In this situation, as Theorem 2 below
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shows, the Tp − process is no longer asymptotically pivotal, and hence the aforementioned
tests are not useful for practical purposes. The unknown critical values of functionals of

the Tp − process with estimated parameters can be approximated with the assistance of
bootstrap methods. This approach has been proposed by Chen and Romano (2000) or

Hainz and Dahlhaus (2000) for short-range models using the Up − process and by Delgado
and Hidalgo (2000), who allow also long-range dependence models using the Tp − process.
Alternatively, asymptotically distribution free tests can be obtained by introducing a tuning

parameter that must behave in some required way as the sample size increases. Among

them, the most popular one is the Portmanteau test, although it has only been justified

for testing short-range models. Box and Pierce (1970) showed that the partial sum of

the residuals squared autocorrelations of a stationary ARMA process is approximately chi-

squared distributed assuming that the number of autocorrelations considered diverges to

infinity with the sample size at an appropriate rate. A different approach, in the spirit of

Durbin, Knott and Taylor (1976) for the classical empirical process, is that in Anderson

(1997), who proposed to approximate the critical values of the Cramér-von Mises tests

for a stationary AR model. The method considers a truncated version of the spectral

representation of αθT ,T with estimated orthogonal components. The number of estimated

orthogonal components must suitably increase with the sample size. A similar idea was

proposed by Velilla (1996) for ARMA models. Finally, another alternative uses the distance

between a smooth estimator of the spectral density function and its parametric estimator

under H0. This approach provides asymptotically distribution free tests for short-range

models assuming a suitable behavior of the smoothing parameter as the sample size diverges,

see e.g. Prewitt (1998) and Paparoditis (2000). However, the final outcome of all these tests

depends on the arbitrary choice of the tuning/smoothing parameters for which no relevant

theory is available.

This article solves some limitations of existing asymptotically pivotal tests, only justified

under short-range dependence, by considering an asymptotically pivotal transformation of

αθT ,T related to the cusum of recursive residuals proposed by Brown, Durbin and Evans

(1975). We show that our testing procedure is valid under long-range specifications. In

the next section we provide regularity conditions for the weak convergence of αθT ,T and its

asymptotically distribution free transformation. In Section 3, we discuss the behavior of
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tests of very different nature -omnibus, directional and smooth/Portmanteau- under local

alternatives converging to the null at the rate T−1/2. Section 4 reports the results of a small

Monte Carlo experiment. Some final remarks are placed in Section 5. Section 6 provides a

Lemmata with some auxiliary results, which are employed to prove, in Section 7, the main

results of the paper.

2. TESTS BASED ON A MARTINGALE TRANSFORMATION OF THE TP

-PROCESS WITH ESTIMATED PARAMETERS

A popular estimator of θ0 is the Whittle estimator

θT := argmin
θ∈Θ

Gθ,T (π) , (7)

with Gθ,T defined in (5). Let us define

φθ (λ) :=
∂

∂θ
log hθ (λ) ; ST :=

1

T̃

T̃X
j=1

φθ0 (λj)φ
0
θ0 (λj)

and introduce the following assumptions,
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A3 (a) φθ0 is a continuously differentiable function on (0, π]; (b)
°°∂φθ0 (λ) /∂λ°° = O (1/λ)

as λ→ 0+; and for some 0 < δ < 1 and all λ ∈ (0, π], there exists a K <∞ such that

(c) sup{θ:kθ−θ0k≤δ} kφθ (λ)k ≤ K |logλ| ; (d)

sup
{θ:kθ−θ0k≤δ/2}

1

kθ − θ0k2
¯̄̄̄
hθ0 (λ)

hθ (λ)
− 1 + φ0θ0 (λ) (θ − θ0)

¯̄̄̄
≤ K

λδ
log2 λ;

and (e) Σθ0 := π−1
R π
0 φθ0 (λ)φ

0
θ0 (λ)dλ is positive definite.

These assumptions are standard when analyzing the asymptotic distribution of the Whit-

tle estimator θT and they are satisfied for all parametric linear processes used in practice.

Standard ARMA models satisfy a stronger condition, replacing the upper bounds in A3(c)

and (d) by a constant independent of λ. It can be easily shown that A3 is satisfied for

ARFIMA models. Note that A3 (e) and Lemma 1 in Section 6 imply that ST is positive

definite for T large enough.

A4 The estimator in (7) satisfies the asymptotic linearization

eT 1/2 (θT − θ0) = S−1T

Z π

0
φθ0 (λ)αθ0,T (dλ) + op (1) . (8)

The expansion (8), in Assumption A4, is satisfied under A1−A3 and additional standard
identification conditions, see Hannan (1973), Giraitis and Surgailis (1990), or Velasco and

Robinson (2000) for a later reference.

Define

α∞ (λ) := B1
π (λ)−

µ
1

π

Z λ

0
φ0θ0

¡
λ̄
¢
dλ̄

¶
Σ−1θ0

Z π

0
φθ0

¡
λ̄
¢
B1
π

¡
dλ̄
¢
.

Theorem 2 Under H0 and assuming A1 −A4 , uniformly in λ ∈ [0 , π],

(a) αθT ,T (λ) = α0T (λ)−

 1eT
[ eTλ/π]X
j=1

φ0θ0 (λj)

S−1T

Z π

0
φθ0

¡
λ̄
¢
α0T
¡
dλ̄
¢
+ op (1) ;

(b) αθT ,T ⇒ α∞.

Theorem 2 indicates that the asymptotic critical values of tests based on αθT ,T cannot

be tabulated. However, we can use a transformation of αθT ,T that converges in distribution

to the standard Brownian motion. To this end, it is of interest to realize that Theorem 2

(a) provides an asymptotic representation of αθT ,T as a scaled cumulative sum (cusum) of
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the least squares residuals in an artificial regression model. For that purpose, observe that

by (2), and using the fact that φθ0 is integrable (A3 (c)),Z π

0
φθ0 (λ)dλ = 0. (9)

Now, because Lemma 1 in Section 6 with ζ (λ) = φθ0 (λ) and (9) imply that°°°PT̃
k=1 φθ0 (λk)

°°° = O (logT ), the uniform asymptotic expansion in Theorem 2 (a) indicates

that

sup
λ∈[0,π]

¯̄̄̄
¯̄̄αθT ,T (λ)− 2π

G0T (π)

1eT 1/2

[ eTλ/π]X
j=1

uT (j)

¯̄̄̄
¯̄̄ = op (1) ,

where

uT (j) = Iε (λj)− γ0θ0 (λj)
 eTX
k=1

γθ0 (λk) γ
0
θ0 (λk)

−1 eTX
k=1

γθ0 (λk) Iε (λk) , j = 1, ..., T̃

are the least squares residuals in an artificial regression model with dependent variable

Iε (λj) and a vector of explanatory variables γθ0 (λj) :=
¡
1, φ0θ0 (λj)

¢0
. This fact suggests

to employ the cusum of recursive residuals for constructing asymptotically pivotal tests, as

they were proposed by Brown, Durbin and Evans (1975), see also Sen (1982).

Let us define

Aθ,T (j) :=
1

T̃

eTX
k=j+1

γθ (λk) γ
0
θ (λk) ,

and assume that

A5 Aθ0,T

¡
T̄
¢
is non singular for T̄ = T̃ − p− 1.

The (scaled) cusum of forward recursive least squares residuals is defined as

β0T (λ) :=
2π

G0T (π)

1

T̃ 1/2

[T̄ λ/π]X
j=1

eT (j) , λ ∈ [0, π] ,

where

eT (j) := Iε (λj)− γ0θ0 (λj) bT (j) , j = 1, ..., T̄ ,

are the forward least squares residuals and

bT (j) := A−1θ0,T (j)
1

T̃

T̃X
k=j+1

γθ0 (λk) Iε (λk) .
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It is worth observing that the motivation to employ only the first T̄ Fourier frequencies to

compute the recursive residuals is due to the singularity of Aθ,T (j) for all j > T̄ .

The empirical process β0T can be written as a linear transformation of α
0
T ,

β0T (λ) = Lθ0,Tα0T (λ) , λ ∈ [0, π] ,

where, for any function g ∈ D [0, π],

Lθ,T g (λ) = g

µ
T̄

T̃
λ

¶
− 1eT

[T̄ λ/π]X
j=1

γ0θ (λj)A
−1
θ,T (j)

Z π

λj+1

γθ

³
λ̃
´
g
³
dλ̃
´
.

The transformation Lθ0,T has the limiting version L0, defined as

L0g (λ) = g (λ)− 1
π

Z λ

0
γ0θ0

¡
λ̄
¢
A−1θ0

¡
λ̄
¢ Z π

λ̄
γθ0

³
λ̃
´
g
³
dλ̃
´
dλ̄,

where

Aθ0 (λ) :=

Z π

λ
γθ0

³
λ̃
´
γ0θ0

³
λ̃
´
dλ̃.

Notice that L0α∞ is the martingale innovation of α∞, see Khmaladze (1981).

This type of martingale transformation has been used by Khmaladze (1981) and Aki

(1986) in the standard goodness-of-fit testing problem, by Nikabadze and Stute (1997) for

goodness-of-fit of distribution functions under random censorship, by Stute, Thies and Zhu

(1998), Koul and Stute (1998, 1999) and Khmaladze and Koul (2004) for dynamic regression

models, and by Stute and Zhu (2002) for generalized linear models.

Henceforth, Bπ (λ) := B (λ/π) for λ ∈ [0, π] .

Theorem 3 Under H0 and assuming A1−A5,

β0T ⇒ Bπ.

Because β0T cannot be computed in practice, as it depends on θ0, it is suggested to use

βθT ,T , where

βθ,T (λ) := Lθ,Tαθ,T (λ)

=
2π

Gθ,T (π)

1eT 1/2

[T̄ λ/π]X
j=1

eθ,T (j) , λ ∈ [0, π]

and

eθ,T (j) =
IX (λj)

hθ (λj)
− γ0θ (λj) bθ,T (j) , j = 1, ..., T̄ ,

9



are the forward recursive residuals in the linear projection of IX (λj) /hθ (λj) on γθ (λj),

and where

bθ,T (j) = A−1θ,T (j)
1eT

T̃X
k=j+1

γθ (λk)
IX (λk)

hθ (λk)
.

In order to establish the asymptotic equivalence between β0T and βθT ,T , we also need

some extra smoothness assumptions on the model under the null.

A6 For some 0 < δ < 1 and all λ ∈ (0, π], there exists a constant K <∞ such that

sup
{θ:kθ−θ0k≤δ}

1

kθ − θ0k2
°°°φθ (λ)− φθ0 (λ)− φ̇θ0 (λ) (θ − θ0)°°° ≤ K |logλ| ,

and φ̇θ satisfies A3 (a)− (c).

This assumption holds for all models used in practice, like ARFIMA in (3), Bloomfield’s

exponential and the fractional noise models mentioned before. In fact, they satisfy even the

stronger condition with K |logλ| replaced by K.

Theorem 4 Under H0 and assuming A1−A6,

sup
λ∈[0,π]

¯̄
βθT ,T (λ)− β0T (λ)

¯̄
= op (1) .

Theorem 4 holds true, mutatis mutandis, with θT replaced by any T 1/2-consistent esti-

mator. Also, from a computational point of view, it is worth observing that

A−1θ,T (j) = A−1θ,T (j + 1)−
A−1θ,T (j + 1) γθ (λj) γ

0
θ (λj)A

−1
θ,T (j + 1)eT + γ0θ (λj)A−1θ,T (j + 1) γθ (λj) ,

and

bθ,T (j) = bθ,T (j + 1) +A
−1
θ,T (j) γθ (λj)

·
IX (λj)

hθ (λj)
− γ0θ (λj) bθ,T (j + 1)

¸
,

see Brown, Durbin and Evans (1975) for similar arguments.

Alternatively to βθT ,T , we could have considered the cusum of backward recursive resid-

uals, i.e.

β̄θT ,T (λ) :=
2π

GθT ,T (π)

1eT 1/2

[ eTλ/π]X
j=p+1

ēθT ,T (j) , λ ∈ [0, π] ,

where

ēθ,T (j) :=
IX (λj)

hθ (λj)
− γ0θ (λj) b̄θ,T (j) , j = p+ 1, ..., eT ,
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b̄θ,T (j) := Ā−1θ,T (j)
1eT

j−1X
k=1

γθ (λk)
IX (λk)

hθ (λk)
and Āθ,T (j) :=

1eT
j−1X
k=1

γθ (λk)γ
0
θ (λk) .

In this case, we can take advantage of the computational formulae,

Ā−1θ,T (j + 1) = Ā−1θ,T (j)−
Ā−1θ,T (j)γθ (λj+1)γ

0
θ (λj+1) Ā

−1
θ,T (j)eT + γ0θ (λj+1) Ā−1θ,T (j)γθ (λj+1)

and

b̄θ,T (j + 1) = b̄θ,T (j) + Ā
−1
θ,T (j + 1) γθ (λj+1)

·
IX (λj+1)

hθ (λj+1)
− γ0θ (λj+1) b̄θ,T (j)

¸
.

This formulation may be useful in small samples when we suspect that the main discrep-

ancy between the null and the alternative is near π. However, from Theorems 3 and 4, it is

easily seen that the empirical processes β̄θT ,T and βθT ,T have the same asymptotic behavior.

Let ϕ : D [0, π]→ R be a continuous functional, under H0 and the conditions in Theorem

4,

ϕ
¡
βθT ,T

¢ d→ ϕ (Bπ) ,

as a consequence of the continuous mapping theorem. For instance,

K̂T = sup
j=1,...,T̄

¯̄̄̄
βθT ,T

µ
jπ

T̄

¶¯̄̄̄
d→ sup

λ∈[0,π]
|Bπ (λ)| d= sup

ω∈[0,1]
|B (ω)| ,

ĈT =
1

T̄

T̄X
j=1

βθT ,T

µ
jπ

T̄

¶2
d→ 1

π

Z π

0
B2π (λ)dλ

d
=

Z 1

0
B2 (ω) dω.

The above limiting distributions are tabulated, see e.g. Shorack and Wellner (1986, pp. 34

and 748.)

3. LOCAL ALTERNATIVES: OMNIBUS, DIRECTIONAL AND

PORTMANTEAU TESTS

In this section, we shall show that tests based on βθT ,T are able to detect local alternatives

of the type

H1T : h(λ) = hθ0 (λ)

µ
1 + τ

1eT 1/2
l (λ) +

1eT sT (λ)
¶
, λ ∈ [0, π] and for some θ0 ∈ Θ,

where
R π
0 l (λ)dλ = 0, l (λ) satisfies the same properties as φθ0 in A3(a)−(c), τ is a constant,

possibly unknown, and for some finite T0, supT>T0 |sT (·)| is an integrable function. Let us
consider some examples.
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Example 1 If we wish to study departures of the white noise hypothesis in the direction of

fractional alternatives, we have that

h(λ)

hθ0 (λ)
=

1

|2 sin(λ/2)|2d/eT 1/2 , λ ∈ [0, π] ,
for some d 6= 0. By a simple Taylor’s expansion up to its second term,

l(λ) = −2 log |2 sin(λ/2)| and τ = d,

respectively, with the remainder function sT being such that for some 0 ≤ ε < 1, |sT (λ)| ≤
K|λ|−ε for all large T and some K <∞.

Example 2 If we consider departures in the direction of MA(1) alternatives, we obtain

that
h(λ)

hθ0 (λ)
= 1− η 1eT 1/2

2 cos (λ) +
1eT η2, λ ∈ [0, π] .

Thus, τ = η, l (λ) = −2 cos (λ) and sT (λ) = η2.

Example 3 If we consider departures in the direction of AR(1) alternatives, then

h(λ)

hθ0 (λ)
=

·
1− δ 1eT 1/2

2 cos (λ) +
1eT δ2

¸−1
, λ ∈ [0, π] .

Thus, τ = δ and l (λ) = 2 cos (λ) with |sT (λ)| ≤ K, for all large T and some K <∞.

For λ ∈ [0, π], let us define

L (λ) :=
1

π

Z λ

0

½
l
¡
λ̄
¢− γ0θ0 ¡λ̄¢A−1θ0 ¡λ̄¢ 1π

Z π

λ̄
γθ0

³
λ̃
´
l
³
λ̃
´
dλ̃

¾
dλ̄ (10)

and

M (λ) := Bπ (λ) + τ · L (λ) , λ ∈ [0, π] .

We have the following theorem.

Theorem 5 Assuming the same assumptions as in Theorem 4, under H1T ,

βθT ,T ⇒M .

Using the fact that M and Bπ are identically distributed, except for the deterministic

shift τ · L, and taking into account that 21/2 sin ((j − 1/2)λ) and 1/ (j − 1/2)2 π2 are the

12



eigenfunctions and eigenvalues in the Kac-Siegert representation of Bπ (Kac and Siegert,

1947), the orthogonal components of M

m (j) := 21/2
µ
j − 1

2

¶Z π

0
sin

µµ
j − 1

2

¶
λ

¶
M (λ) dλ, j = 1, 2, ...

are independently distributed normal random variables with mean τ · 9 (j) and variance 1,
where

9 (j) = 21/2
µ
j − 1

2

¶Z π

0
sin

µµ
j − 1

2

¶
λ

¶
L (λ)dλ, j = 1, 2, ....

Using, the (asymptotically) orthogonal components of βθT ,T ,

m̃T (j) = 2
1/2

µ
j − 1

2

¶Z π

0
sin

µµ
j − 1

2

¶
λ

¶
βθT ,T (λ)dλ, j = 1, 2, ...,

we obtain the spectral representation,

βθT ,T (λ) = 2
1/2

∞X
j=1

m̃T (j) sin
¡¡
j − 1

2

¢
λ
¢

π
¡
j − 1

2

¢ , λ ∈ [0, π] .

By Theorem 5 and the continuous mapping theorem, finitely many of the m̃T (j)́ s converge

in distribution to the corresponding m (j)́ s under H1T . Using Parseval’s Theorem,

ĈT
d→

∞X
j=1

m2 (j)

(j − 1
2)
2π2

.

Using similar arguments to those in Eubank and LaRicca (1992) in the context of the

standard empirical process with estimated parameters, tests based on

W̃n,T :=
nX
j=1

m̃2
T (j) ,

with a reasonable choice of n ≥ 1, will lead to gains in power, compared to ĈT , in the

direction of alternatives with significant autocorrelations at high lags. These Portmanteau

tests are related to Neyman’s (1937) smooth tests, a compromise between omnibus and

directional tests, and for each n ≥ 1, under H1T , we have that

W̃n,T
d→ χ2n

τ2 nX
j=1

92 (j)

 .
That is, tests based on W̃n,T are asymptotically pivotal under H0 (τ = 0) for each choice of

n, and more importantly, they are able to detect local alternatives converging to the null

13



at the parametric rate T−1/2, provided that 9 (j) 6= 0 for some j = 1, ..., n. The latter is in
contrast with the classical Portmanteau tests based on

Q̃nT ,T :=

nTX
j=1

³
T 1/2ρ̃T (j)

´2
, (11)

where ρ̃T (j) is some estimate of the j − th autocorrelation of the residuals. It has been
shown that Q̃nT ,T is approximately distributed as a χ

2
nT−p under H0 specifying a short-

range model and assuming that nT diverges as T → ∞. On the other hand, the resulting
test is able to detect alternatives converging to the null at the rate n1/4T T−1/2 (see e.g. Hong

1986), which is slower than T−1/2.

In practice, it is recommendable to use the discrete version

Ŵn,T :=
nX
j=1

m̂2
T (j)

of W̃n,T , with

m̂T (j) := 2
1/2

µ
j − 1

2

¶
· π
T̄

T̄X
k=1

sin

µµ
j − 1

2

¶
πk

T̄

¶
βθT ,T

µ
πk

T̄

¶
.

On the other hand, optimal tests of H0 in the direction H1T can be constructed apply-

ing results in Grenander (1950) (see also Grenander 1981, and references therein), as was

suggested by Stute (1997) in the context of goodness-of-fit testing of a regression function.

Asymptotically, testing for H0 in the direction ofH1T is equivalent to test H̄0 : E (m (j)) = 0

for all j ≥ 1, against H̄1 : E (m (j)) = τ · 9 (j) for all j ≥ 1 with L known, but maybe with
unknown τ . Under H̄0, the distribution of {m (j)}j≥1 is completely specified, as is also un-
der H̄1 when the parameter τ is known. Then, the likelihood-ratio for a finite dimensional

set (m (1) , ...,m (n)) is

Λn = exp

τ nX
j=1

9 (j) ·
µ
m (j)− τ · 9 (j)

2

¶ . (12)

Grenander (1950) showed that Λn →p Λ∞ as n → ∞, and that the most powerful test at
the α significance level has a critical region of the form {Λ∞ > k}, with P0 {Λ∞ > k} = α

if
P∞

j=1 9
2 (j) < ∞. The latter condition is satisfied in our context by Parseval’s Theorem

and A3(c) because l is a square integrable function.

Define

ψ :=

P∞
j=1 9 (j) ·m (j)³P∞
j=1 9

2 (j)
´1/2 .

14



Then under H0, ψ
d
= N (0, 1) , and in view of (12), ψ forms a basis to obtain optimal critical

regions. When the sign of τ is known, the critical region of the uniformly most powerful test

at the α significance level is {ψ > z1−α} when τ > 0 and {ψ < −z1−α} when τ < 0, where
zυ is the υ quantile of the standard normal. Also, when the sign of τ is unknown, the most

powerful unbiased test at the α significance level has critical region given by
©|ψ| > z1−α/2

ª
.

These arguments suggest an (asymptotically) optimal Neyman-Pearson test in the direc-

tion of H1T based on the first n orthogonal components of βθT ,T , using the test statistic

ψ̂n,T =

Pn
j=1 9 (j) · m̂T (j)³Pn

j=1 9
2 (j)

´1/2 .
Schoenfeld (1977) proposes the same type of statistic in the standard goodness-of-fit testing

context. Under H0 and the assumptions in previous sections, we have that

ψ̂n,T
d→ N (0, 1) as T →∞ for each fixed n.

Also, arguing as in Schoenfeld’s (1977) Theorem 3, it can be shown the convergence in

distribution of ψ̂nT ,T when nT increases with T. Approximately optimal tests for H0 in

the direction of H1T reject H0 at the α significance level when
¯̄̄
ψ̂nT ,T

¯̄̄
> z1−α/2 if τ has

unknown sign, ψ̂nT ,T > z1−α when τ > 0 and ψ̂nT ,T < −z1−α when τ < 0.

4. SOME MONTE CARLO EXPERIMENTS

A small Monte-Carlo study has been carried out to investigate the finite sample per-

formance of the different tests. To that end, we have considered the AR(1), MA(1) and

ARFIMA(0, d0, 0) models

(1− δ0L)X (t) = ε (t) , (13)

X (t) = (1− η0L) ε (t) , (14)

(1− L)d0 X (t) = ε (t) , (15)

respectively, where the parameter θ0 equals to δ0, η0 and d0 for the different models and L

is the lag operator. The innovations {ε (t)}Tt=1 are iid N (0, 1), and the sample sizes used
are T = 200 and 500 with different values of the parameters δ0, η0 and d0. For models

(13) and (14), we have considered δ0, η0 = −0.8,−0.5, 0.0, 0.5, 0.8, whereas for model (15),
d0 = 0.0, 0.2, 0.4. The ARFIMAmodel was simulated using an algorithm by Hosking (1984).
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For the three models and all values of θ0, we have computed the proportion of rejections

in 50,000 generated samples for both sample sizes. Whittle estimates are obtained according

to (7). For each of the models considered, φθ is given by

AR (1) , θ = δ : φδ(λ) =
∂

∂δ
log
¯̄̄
1− δeiλ

¯̄̄−2
= −2 δ − cosλ

1− 2δ cosλ+ δ2 ;

MA (1) , θ = η : φη(λ) =
∂

∂η
log
¯̄̄
1− ηeiλ

¯̄̄2
= 2

η − cosλ
1− 2η cosλ+ η2 ;

ARFIMA (0, d, 0) , θ = d : φd(λ) =
∂

∂d
log
¯̄̄
1− eiλ

¯̄̄−2d
= −2 log |2 sin (λ/2)| .

We also report, as a benchmark, the proportion of rejections using

C0T :=
1

π

Z π

0
α2θ0,T (λ)dλ = T

∞X
j=1

ρ2θ0,T (j)

π2j2
,

which is suitable for testing simple hypotheses. In addition, for the sake of comparison, we

provide the results for the Box and Pierce (1970) test statistic (11) using several values of

nT increasing with T , where ρ̃T (j), j ≥ 1, are the sample autocorrelations of the residuals
{ε̂ (t)}Tt=1. Specifically, for the AR(1) model,

ε̂ (t) = (1− δTL)X (t) ,

with X (t) = 0 for t ≤ 0; for the MA(1) model,

ε̂ (t) = X (t)− ηT ε̂ (t− 1) ,

with ε̂ (0) = 0, whereas for the ARFIMA(0, d, 0) model,

ε̂ (t) =
t−1X
j=0

ϑ(j, dT )X(t− j),

where ϑ(j, d) are the coefficients in the formal expansion (1− L)d =P∞
j=0 ϑ(j, d)L

j, with

ϑ(j, d) =
Γ (j − d)

Γ (−d)Γ (j + 1) ; Γ (a) =
Z ∞

0
xa−1e−xdx.

The standardized values of Q̃nT ,T ,
³
Q̃nT ,T − nT

´
/
√
2nT , are compared with the 5% critical

value of the standard normal, see Hong (1996), instead of the usual χ2(nT−1) approximation

correcting by the loss of degrees of freedom due to parameter estimation, which is justified

under Gaussianity. Both approximations provide similar proportion of rejections. We have

also tried the weighting suggested by Ljung and Box (1978), which produced very similar

results.
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First we analyze the size accuracy of the Cramér-von Mises test based on βθT ,T . The

empirical sizes of the tests based on ĈT , reported in Table 1, are reasonably close to the

nominal ones. The asymptotic approximation improves noticeably when the sample size

increases from T = 200 to T = 500, being this improvement uniform for all the models,

although the empirical size is smaller than the nominal level. Tests based on Q̃nT ,T have

serious size distortions for the smaller sample size and large values of |η| in the MA(1) model,
since Whittle estimates can be quite biased in these cases. The empirical size of tests based

on Q̃nT ,T depends substantially on the number of autocorrelations used. In addition, for

the larger choices of nT implemented, Q̃nT ,T over-rejects H0. The usual recommendation

nT = o
¡
T 1/2

¢
seems also reasonable here, in terms of size accuracy.

Next, we study the power performance of the tests. To this end, we report first, in Table

2, the proportion of rejections under the alternative hypothesis for different non-nested

specifications with the model specified under the null. We cannot conclude that one test is

clearly superior to the others in any of the four cases analyzed. As expected, the power of

the Portmanteau test decreases as nT increases. In view of Tables 1 and 2, we can conclude

that a choice of large nT , around T−1/2, produces reasonable size accuracy, but such a

choice is not the best possible one in order to maximize the power. The test based on ĈT

is fairly powerful compared to the Portmanteau test for all cases considered, and it works

remarkably well when testing an AR(1) in the direction of a MA(1) alternative.

Finally, we analyze the power of the different tests when testing an AR(1) specification

in the direction of local ARFIMA(1, d, 0) with d = τ/T 1/2, and in the direction of local

ARMA(1, 1) alternatives with moving average parameter η = τ/T 1/2, for different values

of τ . The proportion of rejections for these designs is reported in Tables 3 and 4. We also

consider tests based on the test statistics Ŵn,T and ψ̂n,T (one sided and two sided, ψ̂
+
n,T

and
¯̄̄
ψ̂n,T

¯̄̄
respectively) choosing n = 3 and 6, which has been recommended by Stute,

Thies and Zhu (1998) for a different goodness-of-fit test problem. Of course, tests based on

the first n (asymptotic) orthogonal components of βθT ,T are sensitive to the choice of n,

as it also happens with tests based on the n (asymptotic) orthogonal components of αθT ,T

(the estimated autocorrelations of the innovations) in Portmanteau tests. The omnibus

test based on ĈT still works fairly well compared to the others, including the optimal and

smooth tests. The directional tests are the most powerful in the directions for which they
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are designed, and the tests based on Ŵn,T and Q̃nT ,T work very similarly, though Ŵn,T

exhibits a better size precision for the choices of n considered.

5. FINAL REMARKS

Our results can be extended to goodness-of-fit tests of models that can accommodate

simultaneously stationary and non-stationary time series. For instance, if the increments

Y (t) := (1− L)X (t) , t = 0,±1, . . ., are second order stationary with zero mean and
spectral density g such that

lim
λ→0+

|λ|2(d−1) g (λ) = G > 0 for some d ∈ [0.5, 1.5),

we can define the pseudo-spectral density function of {X (t)}t∈Z, f , as

f (λ) =
1

|1− eiλ|2 g (λ) .

Thus, when d 6= 1, g has a singularity at λ = 0, as it happens with many long-range

dependent time series (cf. A2). If {X (t)}t∈Z is stationary, f becomes the standard spectral
density function.

If either {Y (t)}t∈Z or {X (t)}t∈Z satisfy a Wold’s decomposition, f admits the factoriza-
tion

f (λ) =
σ2

2π
h (λ) ,

where h satisfies A2. Thus, given a parametric family H, for example the ARFIMA speci-
fication given in (3), a Tp − process for testing that h ∈ H is

αwθT ,T (λ) :=
eT 1/2

"
Gw
θT ,T

(λ)

Gw
θT ,T

(π)
− λ

π

#
, λ ∈ [0, π] ,

where Gw
θ,T is analogous to Gθ,T , but using the tapered periodogram, e.g.

IwX (λ) :=

¯̄̄PT
t=1w (t)X (t) e

itλ
¯̄̄2

2π
PT

t=1w
2 (t)

.

Here θT = argminθ∈ΘGw
θ,T (π) is the Whittle estimator proposed by Velasco and Robinson

(2000), which admits a similar asymptotic first order expansion as in (8), and where w is a

taper function, e.g. the full cosine taper

w (t) =
1

2

µ
1− cos

µ
2πt

T

¶¶
, t = 1, . . . , T.
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If the full cosine taper is used, because of its desirable asymptotic properties (see Velasco,

1999), it is recommended in practice to base our tests on the empirical process βwθT ,T , where

βwθ,T (λm) :=

µ
P 24
T̃

¶1/2
2π

Gw
θ,T (π)

mX
j=1

ewθ,T (j) , m = 1, ..., T ,

with

ewθ,T (j) :=
IwX (λj)

hθ (λj)
− γ0θ (λj) bwθ,T (j) , bwθ,T (j) := A−1θ,T (j)

1eT
eTX

k=j+1

γθ (λk)
IwX (λk)

hθ (λk)
,

and

P 24 := lim
T→∞

T
PT

t=1w
4 (t)³PT

t=1w
2 (t)

´2 = 35

18
.

Under appropriate regularity conditions, it can be proved using tools in Velasco (1999) and

Velasco and Robinson (2000) that βwθT ,T ⇒ Bπ.

Finally, the methodology can be extended to test the correlation structure of the inno-

vations of regression models (e.g. distributed-lags models) using the martingale part of the

Up − process based on the residuals. When E (z (t)u (s)) = 0 for all t, s, where {z (t)}Tt=1
are the regressors and {u (t)}Tt=1 the error term, the residual Up−process is asymptotically
equivalent to the Up− process based on the true innovations, and there is no need of using
tests based on the martingale part of the Up−process. When E (z (t)u (t− s)) 6= 0 for some
s > 0, the first order expansion of the residuals Up−process depends on the cross-spectrum
of the innovations and regressors. However, it seems possible to apply the results in this

paper to implement tests based on the (approximate) martingale part of this Up − process
with estimated parameters.

6. LEMMAS

This section provides a series of lemmas which will be used in the proofs of the main

results. Some of them can be of independent interest. Henceforth, z(k) denotes the k − th
element of a p×1 vector z and K a finite positive constant. Also, we shall abbreviate g (λj)

by gj for a generic function g (λ).

Lemma 1 Let ζ : (0 , π]→Rp be a function such that kζ (λ)k≤ K |logλ|�, 9 ≥ 1 , and
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k∂ζ (λ) /∂λk≤ Kλ−1 |logλ|�−1 for all λ > 0 . Then, as T →∞,

sup
λ∈[0 ,π]

°°°°°°°
1eT
[eTλ/π]X
j=1

ζj−
1

π

Z λ

0
ζ (x) dx

°°°°°°°≤ K
³
log eT´�eT . (16)

Proof. The left side of (16) is bounded by

sup
λ∈[0,π/eT)

°°°° 1π
Z λ

0
ζ (x)dx

°°°°+ sup
λ∈[π/eT ,π]

°°°°°°°
1eT
[ eTλ/π]X
j=1

ζj −
1

π

Z λ

0
ζ (x) dx

°°°°°°° . (17)

The first term of (17) is bounded by

1

π

Z π/eT
0

kζ (x)kdx ≤ K
Z π/eT
0

|log x|� dx ≤ K
³
log eT´�eT .

Next, by the triangle inequality, the second term of (17) is bounded by

sup
λ∈[π/eT ,π]

°°°°° 1eT ζ (λ)− 1π
Z π/eT
0

ζ (x)dx

°°°°°+ sup
λ∈[π/eT ,π]

1

π

[ eTλ/π]−1X
j=1

Z (j+1)π/eT
jπ/eT

°°ζj − ζ (x)°°dx. (18)
The first term of (18) is bounded by K eT−1 ³log eT´� since kζ (x)k ≤ K |log x|�. Next, by
the mean value theorem, the second term of (18) is bounded by

K

eT−1X
j=1

Z (j+1)π/eT
jπ/eT

1

λj

¯̄̄̄
jπeT − x

¯̄̄̄
|log x|�−1 dx ≤ K

eT−1X
j=1

1

j

Z (j+1)π/eT
jπ/eT |log x|�−1 dx

≤
K
³
log eT´�eT .

¤

The next lemma corresponds to Giraitis, Hidalgo and Robinson’s (2001) Lemma 4.4,

which we state, without proof, for easy reference. For this purpose, let uj := h
−1/2
j (2πT )−1/2

PT
t=1X(t)e

itλj

vj := (2πT )
−1/2PT

t=1 ε(t)e
itλj andRXε (λ) the spectral coherency (Brillinger, 1981, pp. 256-

257) between X and ε. Also herewith c will denote the conjugate of the complex number

c.

Lemma 2 Assuming A1 and A2, then, as T →∞, the following relations hold uniformly
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over 1 ≤ j < k ≤ eT :
E (ujvj) = RXε,j +O

¡
j−1 log (j + 1)

¢
;

E (ujvj) = O
¡
j−1 log (j + 1)

¢
;

max (|E (ukvj)| , |E (ukvj)|) = O
¡
j−1 log (k)

¢
;

max (|E (vkuj)| , |E (vkuj)|) = O
¡
j−1 log (k)

¢
.

The next lemma corresponds to the proof of expression (4.8) of Robinson (1995b, pp. 1648-

1651), using the orders of magnitude of the terms a1, a2, b1 and b2 in Robinson (1995b) and

his Lemma 3, but using our Lemma 2 instead of Robinson’s (1995a) Theorems 1 and 2

when appropriate.

Lemma 3 Let ζ :[0 , π]→Rp satisfy the same conditions of φθ0 in A3 (a) − (c). Then,
assuming A1 and A2, as T →∞, for 1 ≤ r < s ≤ eT, h = 1, . . . , p :
E

¯̄̄̄
¯̄ sX
j=r

ζ
(h)
j vj (uj − vj)

¯̄̄̄
¯̄
2

≤ K log2 (T )
sX

j=r

(
j−1 log (T ) +

sX
k=r

³
j−2 log2 (T ) + j−1k−1/2

)́
.

Lemma 4 Let ζ :[0 , π]→Rp satisfy the same conditions of φθ0 in A3 (a)− (c) and write

αζT (λ) :=
1eT 1/2

[ eTλ/π]X
j=1

ζj

µ
Iε,j − σ2

2π

¶
, α̃ζT (λ) :=

1eT 1/2

[ eTλ/π]X
j=1

ζj

µ
IX,j
hj
− σ2

2π

¶
.

Then, under the conditions of Theorem 1, for some 0 < δ < 1/6 ,

E sup
λ∈[0,π]

°°°α̃ζT (λ)− αζT (λ)°°° = O
³
T−δ

´
. (19)

Proof. It suffices to show that (19) holds true for each element of the vector α̃ζT (λ) −
αζT (λ). Then, by the triangle inequality, the left side of (19) is bounded by

E sup
λ∈[0,π]

1eT 1/2

[ eTλ/π]X
j=1

¯̄̄
ζ
(k)
j

¯̄̄
|uj − vj |2 + 2E sup

λ∈[0,π]

¯̄̄̄
¯̄̄ 1eT 1/2

[ eTλ/π]X
j=1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄ . (20)

The first term of (20) is bounded by

1eT 1/2

eTX
j=1

¯̄̄
ζ
(k)
j

¯̄̄ ½µ
E |uj |2 − σ2

2π

¶
−
µ
E (ujvj)− σ2

2π

¶

−
µ
E (ujvj)− σ2

2π

¶
+

µ
E |vj |2 − σ2

2π

¶¾

= O

 logTeT 1/2

eTX
j=1

log (j + 1)

j

 = O
³
T−δ

´
,
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by Lemma 2, because E |vj |2 = (2π)−1 σ2 and by assumption,
¯̄̄
ζ
(k)
j

¯̄̄
≤ K logT .

Next, to show that the second term of (20) is O
¡
T−δ

¢
, it suffices to show that

E max
s=1,...,eT

¯̄̄̄
¯̄ 1eT 1/2

sX
j=1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄ = O

³
T−δ

´
. (21)

By the triangle inequality, the left side of (21) is bounded by

E max
s=1,...,[ eTβ]

¯̄̄̄
¯̄ 1eT 1/2

sX
j=1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄+ E

¯̄̄̄
¯̄̄ 1eT 1/2

[ eTβ]X
j=1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄ (22)

+E max
s=[ eTβ]+1,..., eT

¯̄̄̄
¯̄̄ 1eT 1/2

sX
j=[eTβ]+1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄ , (23)

where 1
3 < β < 1

2 . Using the inequality¡
supp |cp|

¢2
= supp |cp|2 ≤

X
p

|cp|2 , (24)

by the Cauchy-Schwarz inequality, the square of (22) is bounded by

4eT
[ eTβ]X
s=1

E

¯̄̄̄
¯̄ sX
j=1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄
2

= O
³eT 2β−1 log4 T´ = O

³
T−2δ

´
using Lemma 3.

To complete the proof, we need to show that (23) = O
¡
T−δ

¢
. To that end, let q =

0, . . . ,
h eT ςi− 1 with 1

3 < ς < β. By the triangle inequality, (23) is bounded by

E
1eT 1/2

max
s=[ eTβ]+1,...,eT

¯̄̄̄
¯̄̄


sX
j=[ eTβ]+1

−
[ eTβ]+q(s) eT/[ eT ς ]X

j=[ eTβ]+1

 ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄ (25)

+E
1eT 1/2

max
s=[ eTβ]+1,...,eT

¯̄̄̄
¯̄̄[ eTβ]+q(s) eT/[ eT ς ]X

j=[ eTβ]+1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄

where q(s) denotes the value of q = 0, . . . ,
h eT ςi − 1 such that h eTβi + q(s)eT/ h eT ςi is the

largest integer smaller than or equal to s, and using the convention
Pd

c ≡ 0 if d < c.

By the definition of q (s) and the Cauchy-Schwarz inequality, the square of the second

term of (25) is bounded by

E 1eT max
q=0,...,[ eT ς ]−1

¯̄̄̄
¯̄̄[ eTβ]+q eT/[ eT ς ]X

j=[ eTβ]+1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄
2

≤ 1eT
[ eT ς ]−1X
q=0

E

¯̄̄̄
¯̄̄[ eTβ]+q eT/[ eT ς ]X

j=[ eTβ]+1

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄
2
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by (24). But, using Lemma 3, we have that the right side of the last displayed inequality is

bounded by

K
log4 TeT

[ eT ς ]−1X
q=0

Ã
1 +

|q|+ eT 1−ςeTβ + |q|1/2+ eT 1
2
(1−ς)

!
≤ K log4 T

³eT ς−β + eT ς− 1
2

´
≤ K eT−2δ,

where |q|+ = max {1, |q|}. To complete the proof we need to show that the first term in

(25) is O
¡
T−δ

¢
. To that end, we note that this term is bounded by

E
1eT 1/2

max
q=0,...,[ eT ς ]−1

max
s

¯̄̄̄
¯̄̄ sX
j=1+[ eTβ]+q eT/[ eT ς ]

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄ ,

where the maxs runs for all values s = 1 +
h eTβi + q eT/ h eT ςi , . . . , h eTβi + (q + 1) eT/ h eT ςi.

By the Cauchy-Schwarz inequality and (24), the square of the last displayed expression is

bounded by

1eT
[ eT ς ]−1X
q=0

[ eTβ]+(q+1) eT/[ eT ς ]X
s=1+[eTβ]+q eT/[ eT ς ]

E

¯̄̄̄
¯̄̄ sX
j=1+[ eTβ]+q eT/[ eT ς ]

ζ
(k)
j vj (uj − vj)

¯̄̄̄
¯̄̄
2

≤ K
log4 eTeT

[ eT ς ]−1X
q=0

[ eTβ]+(q+1) eT/[ eT ς ]X
s=1+[ eTβ]+q eT/[ eT ς ]

(
1

|q|+
+
eT (1−ς)/2
|q|3/2+

)

≤ K
log4 eTeT

³eT 1−ς logT + eT 3
2
(1−ς)

´
≤ K eT 1

2
(1−3ς) log4 T ≤ K eT−2δ,

where in the first inequality we have used Lemma 3 and that for q ≥ 1 and ψ ≥ 0,

sX
j=1+[ eTβ]+q eT/[ eT ς ]

j−ψ ≤ K³eTβ + q eT 1−ς
´ψ
 [ eTβ]+(q+1) eT/[ eT ς ]X
j=1+[ eTβ]+q eT/[ eT ς ]

1

 ≤ K eT (1−ς)(1−ψ)
qψ

.

This completes the proof. ¤

Remark 1 Lemma 4 holds true for αζT (λ) and α̃
ζ
T (λ) replaced by

α̈ζT (λ) := αζT (π)− αζT (λ), ëαζT (λ) := α̃ζT (π)− α̃ζT (λ)

respectively. This is so, because the triangle inequality implies that

E sup
λ∈[0,π]

¯̄̄
α̈ζT (λ)− ëαζT (λ)¯̄̄ ≤ 2E sup

λ∈[0,π]

¯̄̄
αζT (λ)− α̃ζT (λ)

¯̄̄
.
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Define for µ and ϑ ∈ [0, π],

cs (µ,ϑ) =
2

T eT 1/2

[ eTϑ/π]X
p=[ eTµ/π]+1

ζp cos (sλp) , (26)

where ζ is as in Lemma 1 and µ < ϑ.
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Lemma 5 For 0 ≤ µ < ϑ1, ϑ2 ≤ π, as T →∞,
T−1X
t=1

T−tX
s=1

cs (µ,ϑ1) c
0
s (µ,ϑ2) = g (µ, ϑ1, ϑ2) (1 + o (1)) , (27)

where g (µ,ϑ1, ϑ2) = π−1
R ϑ1∧ϑ2
µ ζ (u) ζ 0 (u)du−

³
π−1

R ϑ1
µ ζ (u) du

´³
π−1

R ϑ2
µ ζ 0 (u) du

´
.

Proof. A typical component of the matrix on the left of (27) is

4

T 2 eT
[ eTϑ1/π]X

p1=[ eTµ/π]+1
ζ(k1)p1

[ eTϑ2/π]X
p2=[ eTµ/π]+1

ζ(k2)p2

T−1X
t=1

T−tX
s=1

cos (sλp1) cos (sλp2)

=
4

T 2 eT
[ eTϑ1/π]∧[ eTϑ2/π]X
p=[ eTµ/π]+1

ζ(k1)p ζ(k2)p

T−1X
t=1

T−tX
s=1

cos2 (sλp) (28)

+
2

T 2 eT
[ eTϑ1/π]X

p1=[ eTµ/π]+1
ζ(k1)p1

[ eTϑ2/π]X
p2=[ eTµ/π]+1;p2 6=p1

ζ(k2)p2

T−1X
t=1

T−tX
s=1

{cos (sλp1+p2) + cos (sλp1−p2)} .

Because cos2 λ = (1 + cos (2λ)) /2, then using formulae in Brillinger (1981, p. 13) we have

that
PT−1

t=1

PT−t
s=1 cos

2 (sλp) = (T − 1)2 /4 and, for p1 6= p2,

T−1X
t=1

T−tX
s=1

{cos (sλp1+p2) + cos (sλp1−p2)} = −T ,

and hence we conclude that the right side of (28) is, recalling that eT = [T/2],
(T − 1)2
T 2

 1eT
[ eTϑ1/π]∧[ eTϑ2/π]X
p=[ eTµ/π]+1

ζ(k1)p ζ(k2)p

− 2

T eT
[ eTϑ1/π]X

p1=[ eTµ/π]+1
ζ(k1)p1

[ eTϑ2/π]X
p2=[ eTµ/π]+1;

p2 6=p1

ζ(k2)p2

= g(k1,k2) (µ, ϑ1, ϑ2) (1 + o (1)) ,

by Lemma 1 and where g(k1,k2) (µ, ϑ1, ϑ2) denotes the (k1, k2) th element of the matrix

g (µ,ϑ1, ϑ2). ¤

We now introduce the following notation. For 0 ≤ v1 < v2 ≤ π,

E1,T (v1, v2) :=

 1eT
[ eTv2/π]X

p=[ eTv1/π]+1
ζp

Ã eT 1/2

T

TX
t=1

¡
ε2 (t)− σ2¢! (29)

E2,T (v1, v2) :=
TX
t=2

ε (t)
t−1X
s=1

ε (s) ct−s (v1, v2) , (30)

where ct (·, ·) is given in (26) and ζ is as in Lemma 1.
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Lemma 6 Let 0 ≤ v1 < v < v2 < π. Then assuming A1, for k = 1, ..., p and for some

β > 0 and 0 < δ < 1,

E
µ¯̄̄
E(k)j,T (v1, v)

¯̄̄β ¯̄̄E(k)j,T (v, v2)
¯̄̄β¶ ≤ K (v2 − v1)2−δ , j = 1, 2, (31)

where E(k)1,T (v1, v) and E(k)2,T (v1, v) are the kth components of (29) and (30) respectively.

Proof. We begin with j = 1. By Lemma 1,¯̄̄̄
¯̄̄ 1eT

[ eTv2/π]X
p=[ eTv1/π]+1

ζ(k)p −
1

π

Z v2

v1

ζ(k) (x)dx

¯̄̄̄
¯̄̄ ≤ K

¯̄̄
log eT ¯̄̄�eT ≤ K (v2 − v1)1−δ/2 ,

after we notice that we can take eT−1 ≤ (v2 − v1), since otherwise (31) holds trivially. On
the other hand, A1 implies that E

³PT
t=1

¡
ε2 (t)− σ2¢´2 ≤ KT . So, using the inequality

(v2 − v) (v − v1) < (v2 − v1)2 and Cauchy-Schwarz inequality, we have that E
³¯̄̄
E(k)1,T (v1, v)

¯̄̄ ¯̄̄
E(k)1,T (v, v2)

¯̄̄´
≤

K (v2 − v1)2−δ.
To complete the proof, it suffices to examine that the inequality in (31) holds true for

j = 2. Now

E
³
E(k)2,T (v1, v2)

´4
= 16

4Y
j=1

X
1≤sj<tj≤T

c
(k)
tj−sj (v1, v2)E (ε (t1) ε (s1) ...ε (t4) ε (s4)) .

Since the number of equal indices in the set {t1, s1, ..., t4, s4} does not exceed 4, by Assump-
tion A1, it follows that |E (ε (t1) ε (s1) ...ε (t4) ε (s4))| ≤ K. Moreover, by A1, the inequality
|E (ε (t1) ε (s1) ...ε (t4) ε (s4))| 6= 0 can hold only if any tj, sj are repeated in {t1, s1, ..., t4, s4}
at least twice. Hence by Cauchy-Schwarz inequality, we obtain that

E
³
E(k)2,T (v1, v2)

´4 ≤ K
4Y

j=1

 X
1≤sj<tj≤T

³
c
(k)
tj−sj (v1, v2)

´21/2

= K

 X
1≤s<t≤T

³
c
(k)
t−s (v1, v2)

´22 .
But by Lemma 5, the right side of the last displayed equation is bounded by

K

Ã
1

π

Z v2

v1

³
ζ(k) (u)

´2
du−

µ
1

π

Z v2

v1

ζ(k) (u) du

¶2!2
≤ K (v2 − v1)2−δ

because
¯̄̄R v2
v1

³
ζ(k) (x)

´p
dx
¯̄̄
≤ K |v2 − v1|1−δ/2 for p = 1, 2. This concludes the proof choos-

ing β = 2 by the Cauchy-Schwarz’s inequality. ¤
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Lemma 7 Denote ηp := Iε,p − σ2/ (2π) and

R1
T (v) =

2πeT 1/2

[ eTv/π]X
p=1

ζpηp and R2T (v) =
2πeT 1/2

eTX
p=[ eTv/π]+1

ζpηp, (0 ≤ v < π)

with ζ as in Lemma 1. Let 0 ≤ v1 < v < v2 ≤ π. Then assuming A1, for some β > 0 and
0 < δ < 1,

(a) E
µ°°°Rj

T (v2)−Rj
T (v)

°°°β °°°Rj
T (v)−Rj

T (v1)
°°°β¶ ≤ K (v2 − v1)2−δ , j = 1, 2. (32)

(b) Rj
T (v)

d→ N
³
0, 4π2V (j) (v)

´
, j = 1, 2,

where V (1) (v) = σ4
R v
0 ζ (u) ζ

0 (u)du/π + σ4κ
R v
0 ζ (u) du

R v
0 ζ

0 (u) du/π2 and

V (2) (v) = σ4
R π
v ζ (u) ζ

0 (u) du/π+σ4κ
R π
v ζ (u) du

R π
v ζ

0 (u) du/π2, with κ denoting the fourth

cumulant of {ε (t) /σ}t∈Z.

Proof. We begin with (a). We shall consider R2T (v) only, R
1
T (v) being similarly handled.

From the definition of ηp, and that

R2T (v)−R2T (v2) =
2πeT 1/2

[ eTv2/π]X
p=[ eTv/π]+1

ζpηp,

we have that

R2T (v)−R2T (v2) = E1,T (v, v2) + E2,T (v, v2) ,

where E1,T (v, v2) and E2,T (v, v2) are given in (29) and (30) respectively. Now (32) follows
immediately from Lemma 6 and standard inequalities.

Part (b). We will examine R1
T (v)

d→ N ¡0, 4π2V (1) (v)¢, being the proof for j = 2 identi-
cally handled. But this follows by an obvious extension of Theorem 4.2 of Giraitis, Hidalgo

and Robinson (2001) because ζ (u) satisfies the same conditions of hn (u) there. ¤

Lemma 8 Assume A1−A4. Then, we have that for some 0 < δ < 1/6,

(a)
2πeT 1/2

[ eTλ/π]X
j=1

ζj

µ
IX,j
hθT ,j

− σ2

2π

¶
=

2πeT 1/2

[ eTλ/π]X
j=1

ζj

µ
Iε,j − σ2

2π

¶
(33)

−

σ2eT
[ eTλ/π]X
j=1

ζjφ
0
θ0,j

 eT 1/2 (θT − θ0)

+Op

µ
1

T δ

¶
,
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(b)
2πeT 1/2

eTX
j=[ eTλ/π]+1

ζj

µ
IX,j
hθT ,j

− σ2

2π

¶
=

2πeT 1/2

eTX
j=[ eTλ/π]+1

ζj

µ
Iε,j − σ2

2π

¶

−

σ2eT
eTX

j=[ eTλ/π]+1
ζjφ

0
θ0,j

 eT 1/2 (θT − θ0)

+Op

µ
1

T δ

¶
,

where the Op

¡
1/T δ

¢
is uniform in λ ∈ [0, π], and where ζ (u) and kζ (u)k are as in Lemma

1.

Proof. We examine (a), part (b) being similarly handled. The difference between the

left side of (33) and the first term on its right side is

2πeT 1/2

[ eTλ/π]X
j=1

ζj
IX,j
hθ0,j

·
hθ0,j
hθT ,j

− 1 + φ0θ0,j (θT − θ0)
¸

(34)

+
2πeT 1/2

[ eTλ/π]X
j=1

ζj

µ
IX,j
hθ0,j

− Iε,j
¶
− 2πeT 1/2

[ eTλ/π]X
j=1

ζjφ
0
θ0,j

IX,j
hθ0,j

(θT − θ0) .

First we notice that

θT − θ0 = Op

³
T−1/2

´
, (35)

which follows by (8) in Assumption A4, and because

1eT 1/2

eTX
k=1

φθ0,k

µ
IX,k
hθ0,k

− Iε,k
¶
= Op

³
T−δ

´
, (36)

(recall that under H0, hj = hθ0,j), by Lemma 4 and Markov’s inequality, and

2π

σ2 eT 1/2

eTX
k=1

φθ0,kIε,k
d→ N

µ
0,
1

π

Z π

0
φθ0 (u)φ

0
θ0 (u)du

¶
d
=

Z π

0
φθ0 (u)Bπ (du) (37)

by Lemma 7 with ζ (u) = φθ0 (u). Notice also that
PeT

k=1 φθ0,k = O (logT ) by Lemma 1

because (9) and that A3 part (c) implies that φθ0 (λ) satisfies the same conditions of ζ (λ)

in Lemma 1.

Next, A3 part (d) implies that, uniformly in λ ∈ [0, π], the norm of the first term of (34)

is bounded by

K eT 1/2 kθT − θ0k2 1eT
[ eTλ/π]X
j=1

¯̄
log2 λj

¯̄ °°ζj°° IX,jhθ0,j
= Op

³
T−1/2

´
, (38)
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because (35) implies that we can take δ = KT−1/2 in A3 part (d) so that λ−δj < K when

δ < KT−1/2 and j ≥ 1, and also because by Markov’s inequality and Lemmas 4 and 7,

sup
λ∈[0,π]

¯̄̄̄
¯̄̄ 1eT
[ eTλ/π]X
j=1

¯̄
log2 λj

¯̄ °°ζj°°µ IX,jhθ0,j
− σ2

2π

¶¯̄̄̄¯̄̄ = Op

³
T−1/2

´

and because by Lemma 1 with kζ (u)k ¯̄log2 (u)¯̄ there,
sup

λ∈[0,π]

¯̄̄̄
¯̄̄ 1eT
[ eTλ/π]X
j=1

¯̄
log2 λj

¯̄ °°ζj°°− 1π
Z λ

0

¯̄
log2 (u)

¯̄ kζ (u)kdu
¯̄̄̄
¯̄̄ = o

³eT−1/2´ .
The second term of (34) is Op

¡
T−δ

¢
by Lemma 4 and Markov’s inequality. Next, proceeding

similarly as in (38), since ζ (λ)φ0θ0 (λ) satisfies the same conditions of ζ (λ) |logλ|, the third
term of (34) is eT−1σ2P[ eTλ/π]j=1 ζjφ

0
θ0,j

eT 1/2 (θT − θ0)+Op

¡
T−δ

¢
, which concludes the proof.¤

Lemma 9 Assuming A1, for any 0 ≤ υ < (1− δ) /4, with δ as in Lemma 7, we have that
for all k = 1, ..., p,

(a) E

E(k)1,T (λ1, π)

(π − λ1)υ −
E(k)1,T (λ2, π)

(π − λ2)υ

2 ≤ K (λ2 − λ1)2−δ−2υ (39)

(b) E

E(k)2,T (λ1, π)
(π − λ1)υ −

E(k)2,T (λ2, π)
(π − λ2)υ

4 ≤ K (λ2 − λ1)2−δ−4υ (40)

for all 0 < λ1 < λ2 < π, and where E(k)1,T (λ1, λ2) and E(k)2,T (λ1, λ2) are given in (29) and (30)
respectively.

Proof. We begin with (b). By standard inequalities, the left side of (40) is bounded by

KE
µ

1

(π − λ1)υ E
(k)
2,T (λ1, λ2)

¶4
+K

µ
1

(π − λ1)υ −
1

(π − λ2)υ
¶4
E
³
E(k)2,T (λ2, π)

´4
.

By Lemma 6, for any 0 < δ < 1, we have that the last displayed expression is bounded

by

K
(λ2 − λ1)2−δ
(π − λ1)4υ

+K

µ
1

(π − λ1)υ −
1

(π − λ2)υ
¶4
(π − λ2)2−δ . (41)

Consider the case that λ2 − λ1 ≤ 2−1 (π − λ2) first. By mean value theorem, (41) is

K
(λ2 − λ1)2−δ
(π − λ1)4υ

+
K

(π − λ1)4υ (π − λ2)δ+4υ−2
υ4 (λ2 − λ1)4

(β (π − λ1) + (1− β) (π − λ2))4−4υ
≤ K (λ2 − λ1)2−δ−4υ +K (π − λ2)−δ−4υ−2 (λ2 − λ1)4

29



where β = β (λ1, λ2) ∈ (0, 1), and then because π − λ1 > λ2 − λ1 and π − λ1 ≥ π − λ2 > 0.
But the right side of the last displayed inequality is bounded by K (λ2 − λ1)2−δ−4υ since
λ2 − λ1 ≤ 2−1 (π − λ2).
Next, consider the case for which 2−1 (π − λ2) < λ2 − λ1. Using the inequality aς − bς ≤

(a− b)ς for any 0 < ς < 1 and a ≥ b, we have that (41) is bounded by

K (λ2 − λ1)2−δ−4υ +K (λ2 − λ1)
4υ (π − λ2)2−δ

(π − λ1)4υ (π − λ2)4υ
≤ K (λ2 − λ1)2−δ−4υ ,

where we have used that 0 < λ2 − λ1 ≤ π − λ1 and π − λ2 < 2 (λ2 − λ1). This completes
the proof of part (b).

Next part (a). By definition and A1, the left side of (39) is bounded by

K

(π − λ1)2υ

 1eT
[ eTλ2/π]X

j=[ eTλ1/π]+1
ζ
(k)
j


2

+K

µ
1

(π − λ1)υ −
1

(π − λ2)υ
¶2 1eT

eTX
j=[ eTλ2/π]+1

ζ
(k)
j


2

≤ K (λ2 − λ1)2−δ−2υ

by Lemma 1 and proceeding as in part (b). ¤

In what follows we shall abbreviate γ0θ,qA
−1
θ,T (q) by Hθ,T (q).

Lemma 10 Assuming A1−A5, for all ε > 0,

lim
λ0→π

lim sup
T→∞

Pr

 sup
λ0≤λ≤π

¯̄̄̄
¯̄̄ 1eT

[Tλ/π]X
k=[Tλ0/π]+1

Hθ0,T (k)eT 1/2

eTX
j=k+1

γθ0,j

µ
IX,j
hθT ,j

− σ2

2π

¶¯̄̄̄¯̄̄ > ε

 = 0.

(42)
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Proof. Abbreviate h−1θT ,jIX,j − Iε,j by κj and take λ0 > π/2 without loss of generality.

Noting that h−1θT ,jIX,j − σ2/ (2π) = κj + ηj , where ηj = Iε,j − σ2/ (2π), we have that

sup
λ0≤λ≤π

¯̄̄̄
¯̄̄ 1eT

[Tλ/π]X
k=[Tλ0/π]+1

Hθ0,T (k)eT 1/2

eTX
j=k+1

γθ0,j
¡
κj + ηj

¢¯̄̄̄¯̄̄ (43)

≤ KeT
TX

k=[Tλ0/π]+1

kHθ0,T (k)k
µ
1− keT

¶ δ
2

 sup
[Tλ0/π]≤k≤T

°°°°°°°°
³
1− keT

´− δ
2

eT 1/2

eTX
j=k+1

γθ0,jκj

°°°°°°°°
+ sup
[Tλ0/π]≤k≤T

°°°°°°°°
³
1− keT

´− δ
2

eT 1/2

eTX
j=k+1

γθ0,jηj

°°°°°°°°
 ,

for any 0 < δ < 1. The first factor on the right of (43) is bounded by

K

¯̄̄̄
¯̄̄ 1eT

TX
k=[Tλ0/π]+1

°°γθ0,k°°µ1− keT
¶ δ

2
−1
¯̄̄̄
¯̄̄ ≤ KÃT − £Tλ0/π¤eT

! δ
2

,

using that °°°A−1θ0,T (k)°°° ≤ K µ1− keT
¶−1

,

because kAθ0 (λ)k ≥ K−1 (π − λ) by Assumption A5 and because Lemma 1 implies that
sup

[Tλ0/π]≤k≤T

°°°Aθ0,T (k)−Aθ0

³h
kπ/eTi´°°° = O

¡
T−1 log2 T

¢
.

Next, by Lemma 9, the second term inside the braces on the right of (43) is Op (1) for

δ > 0 small enough, whereas Lemma 8 and (35) imply that the first term is bounded by

sup
[Tλ0/π]≤k≤T

°°°°°°°°
³
1− keT

´− δ
2

eT
eTX

j=k+1

γθ0,jφ
0
θ0,j

°°°°°°°°Op (1) +Op

 sup
[Tλ0/π]≤k≤T

³
1− keT

´− δ
2

T δ


= Op

³
|π − λ0|

δ
2

´
because T−1 ≤ eT−1 ≤ inf[Tλ0/π]≤k≤T ³1− k/eT´, 0 < δ < 1 and an obvious extension of

Lemma 1 but with ζ (λ) = γθ0 (λ)φ
0
θ0 (λ) there. So, (43) is Op

³
|π − λ0|δ

´
, which implies

that (42) holds true because δ > 0. ¤

Lemma 11 Assuming A1−A6,

sup
λ∈[0,π]

°°°°°°°
1eT 1/2

eTX
j=[ eTλ/π]+1

¡
φθT ,j − φθ0,j

¢µ IX,j
hθT ,j

− σ2

2π

¶°°°°°°° = Op

µ
logT

T 1/2

¶
. (44)
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Proof. The expression inside the norm on the left of (44) is

1eT 1/2

eTX
j=[ eTλ/π]+1

φ̇θ0,j

µ
IX,j
hθT ,j

− Iε,j
¶
(θT − θ0)

+
1eT 1/2

eTX
j=[ eTλ/π]+1

φ̇θ0,j

µ
Iε,j − σ2

2π

¶
(θT − θ0)

+
1eT 1/2

eTX
j=[ eTλ/π]+1

³
φθT ,j − φθ0,j − φ̇θ0,j (θT − θ0)

´µ IX,j
hθT ,j

− σ2

2π

¶
. (45)

By A6 and then noting that |a− b| ≤ (a− b) + 2b for a > 0 and b > 0, the norm of the

third term of (45) is bounded by

K
kθT − θ0k2eT 1/2

eTX
j=1

|log (λj)|
¯̄̄̄
IX,j
hθT ,j

− σ2

2π

¯̄̄̄

≤ K
kθT − θ0k2eT 1/2


eTX

j=1

|log (λj)|
µ
IX,j
hθT ,j

− σ2

2π

¶
+
σ2

π

eTX
j=1

|logλj|
 = Op

µ
logT

T 1/2

¶
by (35) and then using Lemmas 8 and 7 with ζ (λ) = |logλ|, and Lemma 1 respectively. So,
uniformly in λ the third term of (45) is op (1). Likewise, the first term of (45) is Op

¡
T−1/2

¢
uniformly in λ using Lemma 8 with ζ (λ) = φ̇θ0 (λ) and (35). Observe that φ̇θ0 (λ) satisfies

the same conditions that ζ (λ) in Lemma 8 by A6. Finally, the second term of (45) is

Op

¡
T−1/2

¢
by Lemma 7 with ζ (λ) = φ̇θ0 (λ). ¤

Lemma 12 Assuming A1−A6, for all ε > 0,

lim
λ0→π

lim sup
T→∞

Pr

 sup
λ0≤λ≤π

¯̄̄̄
¯̄̄ 1eT

[Tλ/π]X
q=[Tλ0/π]+1

HθT ,T (q)eT 1/2

eTX
j=q+1

γθT ,j

µ
IX,j
hθT ,j

− σ2

2π

¶¯̄̄̄¯̄̄ > ε

 = 0.

(46)

Proof. Notice that (35) implies that it suffices to show (46) in the set©kθT − θ0k < KT−1/2m−1T
ª
, where mT +m

−1
T T−1/2 → 0. On the other hand, Lemma 11

and then Lemma 8 imply that, uniformly in q,

1eT 1/2

eTX
j=q+1

γθT ,jκj =

σ2eT
eTX

j=q+1

γθ0,jφ
0
θ0,j

 eT 1/2 (θ0 − θT ) +Op

³
T−δ

´
1eT 1/2

eTX
j=q+1

γθT ,jηj =
1eT 1/2

eTX
j=q+1

γθ0,jηj +Op

³
T−1/2

´
(47)
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proceeding as in the proof of (44) but with κj + ηj replaced by ηj there. Observe that we

can take λ0 > π/2. Next, uniformly in q, A6 implies that

sup
[Tλ0/π]≤q≤T

kAθT ,T (q)−Aθ0,T (q)k = (π − λ0)Op (kθT − θ0k)

which will imply that, with probability approaching one, as T →∞,°°°A−1θT ,T (q)°°° ≤ °°°A−1θ0,T (q)°°°³1 +KT−1/2m−1T ´ ≤ K µ1− qeT
¶−1

,

because kAθ0 (λ)k ≥ K−1 (π − λ) and Lemma 1 implies that
sup

[Tλ0/π]≤q≤T

°°°Aθ0,T (q)−Aθ0

³h
qπ/eTi´°°° = O

¡
T−1 log2 T

¢
. So, we have that for 0 < δ <

1/2,

sup
λ0≤λ≤π

°°°°°°°
1eT

[Tλ/π]X
q=[Tλ0/π]+1

HθT ,T (q)eT 1/2

eTX
j=q+1

γθT ,j

µ
IX,j
hθT ,j

− σ2

2π

¶°°°°°°° (48)

≤ K sup
λ0≤λ≤π

¯̄̄̄
¯̄̄ 1eT

[Tλ/π]X
q=[Tλ0/π]+1

°°γθ0,q°°µ1− qeT
¶−1+δ/2 ¯̄̄̄¯̄̄

×
 sup
[Tλ0/π]≤q≤T

°°°°°°
µ
1− qeT

¶−δ/2 1eT 1/2

eTX
j=q+1

γθ0,jηj

°°°°°°+Op

³
|π − λ0|δ/2

´ ,
by (47) and because T−1 ≤ eT−1 ≤ inf[Tλ0/π]≤q≤T ³1− q/eT´. But Lemma 9 implies that
sup[Tλ0/π]≤q≤T

°°°°³1− q/eT´−δ/2 eT−1/2PeT
j=q+1 γθ0,jηj

°°°° = Op (1), and A3 implies that

sup
λ0≤λ≤π

1eT
[Tλ/π]X

q=[Tλ0/π]+1

°°γθ0,q°°µ1− qeT
¶−1+δ/2

≤ K
Ã
T − £Tλ0/π¤eT

!δ/2

,

and hence the left side of (48) is Op

³
|π − λ0|δ/2

´
. From here we conclude that (46) holds

true because δ > 0. ¤
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7. PROOFS

This section provides the proofs of the main results which are based on the series of

lemmas given in the previous section.

Proof of Theorem 1

Part (a) follows by Lemma 4 with ζ(λ) = 1 there. The proof of part (b) follows immedi-

ately from part (a) and Lemma 7 with ζ (λ) = 1 there. ¤

Proof of Theorem 2

Part (a). By Lemma 8 with ζ (λ) = 1 there and the definitions of Gθ,T (λ) and G0T (λ),

we have that

eT 1/2
¡
GθT ,T (λ)−G0T (λ)

¢
= −

σ2eT
[ eTλ/π]X
j=1

φ0θ0,j

 eT 1/2 (θT − θ0) + op (1) (49)

= −

σ2eT
[ eTλ/π]X
j=1

φ0θ0,j

S−1T

2π

Gθ0,T (π)
eT 1/2

eTX
k=1

φθ0,k
IX,k
hθ0,k

+op (1) ,

by (8) and (9), and where the op (1) is uniform in λ ∈ [0, π]. Likewise,

eT 1/2
¡
GθT ,T (π)−G0T (π)

¢
= op (1) (50)

because (36) and (37) and that by Lemma 1 with ζ (λ) = φθ0 (λ) and (9), we have that°°°eT−1PeT
j=1 φθ0,j

°°° = O
¡
T−1 logT

¢
. So, (50) holds true. Also, it is worth noticing that

Lemma 1 with ζ (λ) = φθ0 (λ)φ
0
θ0 (λ) implies that kST −Σθ0k = O

¡
T−1 log2 T

¢
.

On the other hand, noting that (50) and A1 imply that

G0T (π) = σ2 +Op

³
T−1/2

´
, (51)

and that
¯̄
Gθ0,T (π)−G0T (π)

¯̄
= op

³eT−1/2´ by Lemma 4, then by (49) , (50) and (36),
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uniformly in λ, we obtain that

αθT ,T (λ) = α0T (λ) +
eT 1/2

¡
GθT ,T (λ)−G0T (λ)

¢
G0T (π)

+GθT ,T (λ)
eT 1/2

µ
1

GθT ,T (π)
− 1

G0T (π)

¶
(52)

= α0T (λ)−
1eT
[ eTλ/π]X
j=1

φ0θ0,jS−1T 2π

G0T (π)
eT 1/2

eTX
k=1

φθ0,kIε,k

+ op (1) ,
which concludes the proof of part (a).

Next part (b). Taking into account part (a), part (b) follows because Lemma 7 guarantees

the fidi’s convergence of α0T and its tightness. Tightness of the second term on the right of

(52) follows by (37) and Lemma 1 and then because
R λ
0 φθ0(u)du is Hölder’s continuous of

order greater than 1/2 by A3. This concludes the proof of the theorem. ¤

Proof of Theorem 3

Using (51) and recalling that Hθ,T (j) = γ0θ,jA
−1
θ,T (j), we obtain that

β0T (λ) =
1eT 1/2

[Tλ/π]X
j=1

µ2π
σ2
Iε,j − 1

¶
−Hθ0,T (j)

1eT
eTX

k=j+1

γθ0,k

µ
2π

σ2
Iε,k − 1

¶+ op (1) ,
(53)

where the op (1) is uniform in λ ∈ [0, π].
Suppose, to be shown later, that the convergence in [0, λ0] holds true for any 0 < λ0 < π.

Then, because Bπ and the limit of the process eT−1/2P[Tλ/π]j=1

³
Iε,j − σ2

2π

´
are continuous in

[0, π], Billingsley’s (1968) Theorem 4.2 implies that it suffices to show that for all ε > 0,

lim
λ0→π

lim sup
T→∞

Pr

 sup
λ0≤λ≤π

¯̄̄̄
¯̄̄ 1eT

[Tλ/π]X
j=[Tλ0/π]+1

Hθ0,T (j)eT 1/2

eTX
k=j+1

γθ0,k

µ
2π

σ2
Iε,k − 1

¶¯̄̄̄¯̄̄ > ε

 = 0,

which follows by Lemma 10, cf. the second term on the right of (43).

So, to complete the proof we need to show that, for any 0 < λ0 < π,

1eT 1/2

[Tλ/π]X
j=1

µ2π
σ2
Iε,j − 1

¶
−Hθ0,T (j)

1eT
eTX

k=j+1

γθ0,k

µ
2π

σ2
Iε,k − 1

¶⇒ 1

π1/2
Bπ (λ) , (54)

in [0, λ0]. Fidi’s convergence follows by Lemma 7 part (b) after we note that the second
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term on the right of (53) is

1eT 1/2

eTX
k=1

 1eT
k∧[Tλ/π]X

j=1

Hθ0,T (j)

 γθ0,k µ2πσ2 Iε,k − 1
¶

and
µeT−1Pk∧[Tλ/π]

j=1 Hθ0,T (j)

¶
γθ0,k satisfies the same conditions of Lemma 7 for ζ (λ), e.g.

those of hn (λ) in Giraitis, Hidalgo and Robinson’s (2001) Theorem 4.2. Then, it suffices to

prove tightness. Since α0T is tight, we only need to show the tightness condition of

ΛT (λ) =
1eT
[Tλ/π]X
j=1

Hθ0,T (j)

 1eT 1/2

eTX
k=j+1

γθ0,k

µ
Iε,k − σ2

2π

¶ . (55)

By Billingsley’s (1968) Theorem 15.6, it suffices to show that

E (|ΛT (ϑ)− ΛT (µ)| |ΛT (λ)−ΛT (ϑ)|) ≤ K |λ− µ|2δ

for all 0 ≤ µ < ϑ < λ ≤ π and some δ > 1/2. Observe that we can take eT−1 < |λ− µ|
since otherwise the last inequality is trivial. Because (λ− ϑ) (ϑ− µ) < (λ− µ)2, by the
Cauchy-Schwarz’s inequality, it suffices to show the last displayed inequality holds for

E |ΛT (λ)− ΛT (µ)|2 which is

1eT 3
[Tλ/π]X

j,k=[Tµ/π]+1

Hθ0,T (j)

eTX
�1=j+1

eTX
�2=k+1

γθ0,�1γ
0
θ0,�2E

·µ
Iε,�1 −

σ2

2π

¶µ
Iε,�2 −

σ2

2π

¶̧
H 0
θ0,T (k)

≤ KeT 2
[Tλ/π]X

j,k=[Tµ/π]+1

kHθ0,T (j)k kHθ0,T (k)k ≤ K
µ¯̄̄ eH (λ)− eH (µ)¯̄̄2 + eT−2 log2 T̃¶ ,

where eH (λ) := π−1
R λ
0 Hθ0 (x) dx and

°°° eHT (λ)− eH (λ)°°° ≤ K eT−1 logT , whereeHT (λ) := eT−1P[Tλ/π]j=1 kHθ0,T (j)k by Lemma 1. From here we conclude by Billingsley’s

(1968) Theorem 15.6, because eH (λ) is a monotonic, continuous and nondecreasing function
such that

¯̄̄ eH (λ)− eH (µ)¯̄̄ ≤ K |λ− µ|δ, δ > 1/2 and eT−1 ≤ |λ− µ|. ¤

Proof of Theorem 4

By definition of βθ,T and β
0
T , it suffices to show that¯̄̄̄

¯̄̄ 1eT 1/2

[Tλ/π]X
k=1

µ
IX,k
hθT ,k

− Iε,k
¶
−Hθ0,T (k)

1eT
eTX

j=k+1

γθ0,j

µ
IX,j
hθT ,j

− Iε,j
¶¯̄̄̄¯̄̄ (56)
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and

1

GθT ,T (π)

 1eT
[Tλ/π]X
k=1

Hθ0,T (k)
1eT 1/2

eTX
j=k+1

γθ0,j

µ
IX,j
hθT ,j

− GθT ,T (π)

2π

¶
− 1

GθT ,T (π)

 1eT
[Tλ/π]X
k=1

HθT ,T (k)
1eT 1/2

eTX
j=k+1

γθT ,j

µ
IX,j
hθT ,j

− GθT ,T (π)

2π

¶ (57)

converge to zero uniformly in λ ∈ [0, π]. Expression (56) is op (1), uniformly in λ ∈ [0, π],
because the contribution due to the term in brackets in the last line of (52), that is

−φ0θ0,j
³
2π
¡
G0T (π)

¢−1
S−1T eT−1/2PT̃

k=1 φθ0,kIε,k
´
is easily seen to be zero. Next, because

1eT
[Tλ/π]X
k=1

°°γθ0,k°°°°°A−1θ0,T (k)°°° 1eT
eTX

j=k+1

°°γθ0,j°°
≤ K

1eT
[Tλ/π]X
k=1

°°γθ0,k°°°°°°A−1θ0,T (k)µ1− keT
¶°°°°

≤ K
1eT
[Tλ/π]X
k=1

°°γθ0,k°° ≤ K
by integrability of γθ0 and that

°°°°Aθ0,T (k)
³
1− k/eT´−1°°°° > 0 by A3 and A5, it implies that

the contribution into (56) due to the term op (1) on the right of (52) is negligible.

Next we examine (57). Because (50) and (51), it suffices to show that

1eT
[Tλ/π]X
k=1

Hθ0,T (k)eT 1/2

eTX
j=k+1

γθ0,j

µ
IX,j
hθT ,j

− σ2

2π

¶
− HθT ,T (k)eT 1/2

eTX
j=k+1

γθT ,j

µ
IX,j
hθT ,j

− σ2

2π

¶
(58)

converges to zero uniformly in λ ∈ [0, π], after observing that

sup
λ∈[0,π]

¯̄̄̄
¯̄̄[Tλ/π]X
k=1

HθT ,T (k)

eTX
j=k+1

γθT ,j −
[Tλ/π]X
k=1

Hθ0,T (k)

eTX
j=k+1

γθ0,j

¯̄̄̄
¯̄̄ = 0.

First, we observe that Lemmas 10 and 12 imply that it suffices to show the uniform

convergence in λ ∈ [0, λ0] for any λ0 < π. But (58) is equal to

1eT
[Tλ/π]X
k=1

HθT ,T (k)
1eT 1/2

eTX
j=k+1

¡
γθ0,j − γθT ,j

¢µ IX,j
hθT ,j

− σ2

2π

¶
(59)
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+
1eT
[Tλ/π]X
k=1

(Hθ0,T (k)−HθT ,T (k))
1eT 1/2

eTX
j=k+1

γθ0,j

µ
IX,j
hθT ,j

− σ2

2π

¶
. (60)

So, the theorem follows if (59) and (60) are op(1) uniformly in λ ∈ [0, λ0].
To that end, we first show that

sup
λ∈[0,π]

1eT
[Tλ/π]X
j=1

°°φθ0,j − φθT ,j°° = op (1) , (61)

sup
λ∈[0,λ0]

°°°A−1θ0,T (λ)−A−1θ0 (λ)°°° = o (1) , (62)

sup
λ∈[0,λ0]

°°°A−1θT ,T (λ)−A−1θ0,T (λ)°°° = op (1) . (63)

(61) follows proceeding as with the proof of (44) in Lemma 11 but without the factor

h−1θT ,jIX,j −σ2/ (2π), (62) follows because Assumption A5 implies that Aθ0 (λ0) > 0 and be-

cause by Assumption A3
°°φθ0 (λ)φ0θ0 (λ)°° satisfies the same conditions of ζ (λ) in Lemma 1,

so that

sup
λ∈[0,λ0]

kAθ0 (λ)−Aθ0,T (λ)k = O
¡
T−1 log2 T

¢
,

whereas (63) follows proceeding as with the proof of (61) and (62).

Now we show that (59) is op(1) uniformly in λ ∈ [0, λ0], which follows by Lemma 11 and
(61) − (63) noting that

³
γ0θ0,j − γ0θT ,j

´
=
¡
0, φ0θ0,j − φ0θT ,j

¢
, so does (60) by (61) and (63)

and that

sup
λ∈[0,π]

¯̄̄̄
¯̄̄ 1eT 1/2

eTX
j=[ eTλ/π]+1

γθ0,j

µ
IX,j
hθT ,j

− σ2

2π

¶¯̄̄̄¯̄̄ = Op (1)

by Lemmas 7 and 8 with ζ (λ) = γθ0 (λ) there and observing (35) and that by Lemma 1,eT−1PeT
j=[ eTλ/π]+1 γθ0,jφ0θ0,j → R π

λ γθ0 (x)φ
0
θ0 (x) dx. ¤

Proof of Theorem 5

Under H1T , we have that by definition,

Gθ0,T (λ) =
2πeT
[ eTλ/π]X
j=1

IX,j
hj

+
σ2τeT 3/2

[ eTλ/π]X
j=1

lj

+
2πτeT 3/2

[ eTλ/π]X
j=1

lj

µ
IX,j
hj
− σ2

2π

¶
+
1eT 2
[ eTλ/π]X
j=1

sT,j
IX,j
hj
.
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By Lemmas 1, 4 and 7 with ζ (λ) = τl (λ), and because |sT | is integrable, we have that

Gθ0,T (λ) =
2πeT
[ eTλ/π]X
j=1

Iε,j +
σ2τeT 1/2π

Z λ

0
l (u) du+ op

³
T−1/2

´
.

So, using (51) because
R π
0 l (u)du = 0, we have that uniformly in λ ∈ [0, π],

eT 1/2

µ
Gθ0,T (λ)

Gθ0,T (π)
− λ

π

¶
= eT 1/2

 2π

G0T (π)
eT
[ eTλ/π]X
j=1

Iε,j − λ

π
+

τeT 1/2π

Z λ

0
l (u)du


+op (1)

= α0T (λ) +
τ

π

Z λ

0
l (u) du+ op (1) .

From here the conclusion is straightforward. ¤
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Table 1.

Empirical size of omnibus and Portmanteau tests at 5% of significance.

T = 200

ĈT C0T Q̃3,T Q̃6,T Q̃10,T Q̃20,T
δ0, H0 : AR(1)
-0.8 4.92 4.69 3.34 3.72 3.91 3.61
-0.5 4.38 4.96 2.80 3.38 3.60 3.41
0.0 4.07 4.96 2.66 3.35 3.45 3.37
0.5 3.59 4.95 2.67 3.33 3.57 3.40
0.8 3.08 4.92 2.89 3.44 3.73 3.54
η0, H0 : MA(1)
-0.8 4.25 8.37 4.32 4.54 4.42 3.95
-0.5 4.16 5.06 2.83 3.41 3.65 3.38
0.0 4.08 4.96 2.51 3.26 3.46 3.32
0.5 3.60 5.08 2.65 3.30 3.55 3.41
0.8 3.89 7.72 15.33 15.30 15.33 15.05
d0, H0 : I(d)
0.0 3.53 4.96 2.76 3.40 3.68 3.47
0.2 3.54 4.95 2.76 3.39 3.63 3.46
0.4 3.58 5.21 2.79 3.39 3.59 3.44

T = 500

ĈT C0T Q̃3,T Q̃6,T Q̃15,T Q̃35,T

5.07 5.17 3.56 3.87 4.35 3.97
4.96 5.16 3.12 3.75 4.17 3.82
4.62 5.10 3.00 3.63 4.11 3.82
4.50 5.04 2.97 3.82 4.17 3.80
4.27 5.11 3.33 3.77 4.32 3.88

4.89 6.67 4.13 4.39 4.56 4.07
4.89 5.18 3.13 3.76 4.15 3.83
4.62 5.10 2.94 3.61 4.05 3.82
4.49 5.15 2.96 3.77 4.13 3.82
4.63 6.42 8.03 8.44 8.68 8.17

4.48 5.10 3.13 3.90 4.29 3.83
4.54 5.15 3.14 3.89 4.27 3.81
4.58 5.37 3.14 3.88 4.27 3.80
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Table 2.

Empirical power of omnibus and Portmanteau tests at 5% of significance.

H0 : AR(1). H1 : MA(1).
T = 200

η ĈT Q̃3,T Q̃6,T Q̃10,T Q̃20,T
-0.8 100.00 99.97 99.95 99.25 92.34
-0.5 80.82 70.16 55.53 44.38 31.25
0.2 7.12 5.04 4.98 4.86 4.34
0.5 70.82 72.03 57.50 46.06 32.15
0.8 99.56 99.99 99.95 99.30 92.76

T = 500

ĈT Q̃3,T Q̃6,T Q̃15,T Q̃35,T
100.00 100.00 100.00 100.00 100.00
99.84 99.23 97.54 88.65 68.72
12.16 8.31 7.35 6.27 5.21
98.59 99.32 97.83 89.19 69.29
100.00 100.00 100.00 100.00 100.00

H0 : MA(1). H1 : AR(1).
T = 200

δ ĈT Q̃3,T Q̃6,T Q̃10,T Q̃20,T
-0.8 100.00 100.00 100.00 100.00 99.99
-0.5 84.36 77.15 66.51 57.37 44.02
0.2 7.16 3.71 3.99 3.94 3.63
0.5 77.08 74.86 64.04 54.79 31.78
0.8 100.00 100.00 100.00 100.00 99.97

T = 500

ĈT Q̃3,T Q̃6,T Q̃15,T Q̃35,T
100.00 100.00 100.00 100.00 100.00
99.73 99.47 98.45 94.26 82.89
12.04 6.65 6.42 5.73 4.80
99.19 99.41 98.35 93.77 82.04
100.00 100.00 100.00 100.00 100.00

H0 : I(d). H1 : AR(1).
T = 200

δ ĈT Q̃3,T Q̃6,T Q̃10,T Q̃20,T
0.2 11.34 12.84 13.00 11.27 13.13
0.5 26.81 34.11 41.17 35.55 24.94
0.8 9.82 12.86 21.01 21.32 15.41

T = 500

ĈT Q̃3,T Q̃6,T Q̃15,T Q̃35,T
34.92 33.35 33.01 23.98 15.71
75.29 81.36 87.81 80.73 58.52
33.21 38.74 57.53 61.63 39.15

H0 : AR(1). H1 : I(d).
T = 200

d ĈT Q̃3,T Q̃6,T Q̃10,T Q̃20,T
0.1 8.22 4.98 5.66 5.11 4.83
0.2 19.90 13.74 16.20 15.23 11.81
0.3 36.03 25.92 32.00 30.50 24.35
0.4 48.83 34.86 43.78 43.31 35.48

T = 500

ĈT Q̃3,T Q̃6,T Q̃15,T Q̃35,T
16.79 12.07 14.09 12.34 9.10
51.77 45.04 53.29 47.54 36.11
82.80 74.84 85.12 81.44 69.62
94.40 87.30 95.56 94.31 87.38
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Table 3.

Empirical size and power under local alternatives at 5% of significance

H0 : AR(1). H1 : ARFIMA(1,d = τ/T 1/2, 0).
T = 200

τ ρ ĈT Ŵ3,T Ŵ6,T

¯̄̄
ψ̂3,T

¯̄̄ ¯̄̄
ψ̂6,T

¯̄̄
ψ̂
+

3,T ψ̂
+

6,T Q̃3,T Q̃6,T

0 0.0 4.07 3.19 2.59 4.70 4.81 4.48 5.12 2.66 3.35
0.5 3.59 2.98 2.32 3.79 4.24 3.62 3.99 2.67 3.33
0.8 3.08 2.52 1.94 3.94 3.10 3.75 4.02 2.89 3.44

1 0.0 6.26 5.40 4.37 8.39 11.13 13.44 16.63 3.68 4.25
0.5 3.57 2.90 2.26 3.45 4.19 4.19 5.64 2.73 3.37
0.8 3.01 2.25 1.66 4.10 4.52 7.80 8.53 3.87 4.41

2 0.0 12.19 12.04 10.53 19.93 26.15 28.94 35.10 7.80 9.13
0.5 3.44 2.91 2.36 3.47 4.15 4.25 6.27 2.91 3.58
0.8 4.84 3.16 2.19 9.17 10.33 16.59 17.98 8.45 7.58

3 0.0 21.92 23.63 21.27 35.77 44.37 47.20 54.61 15.17 18.02
0.5 3.26 2.74 2.39 3.65 4.43 4.99 6.48 3.27 3.92
0.8 9.13 6.61 4.10 20.13 22.90 31.95 35.14 21.18 16.12

4 0.0 33.38 27.13 24.15 50.40 59.39 62.18 69.12 23.88 29.88
0.5 3.41 2.47 2.38 4.09 4.75 6.80 7.61 4.32 4.67
0.8 17.48 14.65 9.09 38.10 43.37 53.13 57.56 46.00 33.97

τ ρ
0 0.0
0.5
0.8

1 0.0
0.5
0.8

2 0.0
0.5
0.8

3 0.0
0.5
0.8

4 0.0
0.5
0.8

T = 500

ĈT Ŵ3,T Ŵ6,T

¯̄̄
ψ̂3,T

¯̄̄ ¯̄̄
ψ̂6,T

¯̄̄
ψ̂
+
3,T ψ̂

+
6,T Q̂3,T Q̂6,T

4.62 4.22 3.66 4.81 4.78 4.57 5.06 3.00 3.63
4.50 3.99 3.40 4.26 4.58 4.27 4.43 2.97 3.82
4.27 3.56 3.09 3.90 3.85 4.63 3.63 3.33 3.77

6.93 7.03 6.29 9.35 11.62 14.63 17.54 4.37 5.13
4.58 4.42 4.08 4.85 5.35 58.3 7.43 3.02 3.93
4.74 4.13 3.47 5.72 5.90 9.61 9.83 4.12 4.64

14.22 15.51 14.23 23.43 29.37 33.47 39.37 10.03 11.60
4.69 4.72 4.67 4.83 6.49 6.37 10.18 3.08 4.21
7.36 6.13 4.73 11.57 12.08 19.11 19.81 7.27 7.38

26.86 31.03 29.55 44.70 53.35 56.44 63.59 21.28 24.91
4.65 5.04 5.48 4.71 7.14 5.44 11.31 3.30 4.60
13.56 11.62 8.18 23.46 24.65 34.56 35.78 15.23 13.51

43.62 51.19 49.81 66.34 74.28 75.93 81.84 37.13 43.93
4.65 5.18 6.35 5.05 7.03 5.09 10.80 3.81 5.09
24.44 23.10 16.17 42.07 44.05 54.86 56.23 31.28 25.74¯̄̄

ψ̂n,T

¯̄̄
denotes two sided tests, whereas ψ̂+

n,T are one sided (right hand side) tests.
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Table 4.

Empirical size and power under local alternatives at 5% of significance

H0 : AR(1). H1 : ARMA(1,1), ψ = τ/T 1/2.
T = 200

τ ρ ĈT Ŵ3,T Ŵ6,T

¯̄̄
ψ̂3,T

¯̄̄ ¯̄̄
ψ̂6,T

¯̄̄
ψ̂
+

3,T ψ̂
+

6,T Q̃3,T Q̃6,T

0 0.0 4.13 3.09 3.58 3.98 4.39 4.18 4.39 2.65 3.36
0.5 3.62 2.80 2.22 3.68 4.04 3.93 4.14 2.67 3.31
0.8 3.06 2.38 1.86 3.00 3.21 3.45 3.64 2.93 3.46

1 0.0 4.22 3.10 2.58 3.88 4.23 3.74 3.93 2.76 3.40
0.5 5.52 4.08 2.90 5.51 5.76 8.86 9.20 3.08 3.61
0.8 7.81 5.63 3.66 7.77 7.98 13.13 13.62 5.47 5.05

2 0.0 5.01 3.50 2.79 3.77 4.06 3.36 3.46 3.45 3.82
0.5 8.53 6.10 4.02 8.58 9.06 14.33 14.61 4.51 4.56
0.8 18.07 13.73 8.53 20.63 21.26 30.93 31.41 12.52 10.66

3 0.0 7.79 5.04 3.76 4.62 4.92 6.00 6.06 5.60 5.32
0.5 10.64 7.80 5.16 10.84 11.25 17.39 17.87 5.76 5.41
0.8 32.10 27.17 17.65 37.68 38.18 50.25 50.49 23.84 20.09

4 0.0 14.60 9.51 6.65 10.86 11.01 16.70 16.78 11.03 8.99
0.5 10.67 8.16 5.42 10.65 11.01 17.11 17.57 5.93 5.56
0.8 45.29 42.62 29.55 52.48 52.79 64.96 64.97 36.18 31.63

τ ρ
0 0.0
0.5
0.8

1 0.0
0.5
0.8

2 0.0
0.5
0.8

3 0.0
0.5
0.8

4 0.0
0.5
0.8

T = 500

ĈT Ŵ3,T Ŵ6,T

¯̄̄
ψ̂3,T

¯̄̄ ¯̄̄
ψ̂6,T

¯̄̄
ψ̂
+
3,T ψ̂

+
6,T Q̂3,T Q̂6,T

4.70 4.43 3.86 4.66 5.68 4.52 4.62 2.99 3.64
4.50 4.23 3.70 4.53 4.55 4.50 4.52 2.99 3.80
4.39 3.94 3.40 4.22 4.26 4.37 4.38 3.34 3.78

4.74 4.37 3.83 4.70 4.75 4.31 4.35 3.02 3.70
6.68 5.72 4.73 6.71 6.61 10.25 10.36 3.75 4.32
9.56 8.06 6.00 10.03 10.08 16.20 16.28 6.26 5.82

5.00 4.47 3.90 4.76 4.87 3.61 3.62 3.34 3.90
11.06 8.94 6.81 11.48 11.43 18.23 18.17 6.06 5.88
23.21 19.66 13.89 26.87 26.88 38.01 37.99 15.66 13.35

6.31 5.17 4.38 4.95 5.03 3.19 3.18 4.25 4.55
16.44 13.17 9.58 17.26 17.24 26.26 26.03 9.45 8.39
42.78 38.92 28.30 50.11 49.91 62.36 62.42 32.23 27.37

9.48 6.98 5.57 5.09 5.16 4.09 4.07 6.40 5.98
21.08 17.22 12.42 22.10 21.95 32.15 31.99 12.84 10.89
62.44 60.69 47.41 70.99 70.86 80.69 80.67 52.01 46.42¯̄̄

ψ̂n,T

¯̄̄
denotes two sided tests, whereas ψ̂+

n,T are one sided (right hand side) tests.
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