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Abstract

We study the impact of large cross-sections of contemporaneous aggregation of
GARCH processes and of dynamic GARCH factor models. The results crucially
depend on the shape of the cross-sectional distribution of the GARCH
coefficients and on the cross-sectional dependence properties of the rescaled
innovation. The aggregate maintains the core nonlinearity of a volatility model,
uncorrelation in the levels but autocorrelation in the squares, when the rescaled
innovation is common across units. The nonlinearity is, however, lost at the
aggregate level, when the rescaled innovation is orthogonal across units. This is
not a consequence of the usual result of a vanishing importance of purely
idiosyncratic risk as, under appropriate conditions, this is simply not fully
diversifiable in arbitrary large portfolios. Non-GARCH memory properties arise at
the aggregate level. Strict stationarity, ergodicity and finite kurtosis might fail for
the aggregate despite the micro GARCH do satisfy these properties. Under no
conditions aggregation of GARCH induces long memory conditional
heteroskedasticity.

Keywords: Contemporaneous aggregation; GARCH,; conditionally
heteroskedastic factor models; common and idiosyncratic risk; nonlinearity;
memory.
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1 Introduction

The ARCH model of Engle (1982) and the GARCH development (Bollerslev
1986) represent the most popular approaches, within the class of nonlin-
ear models, used to describe the conditional heteroskedasticity observed in
many financial time series. The chief motivation underlying this success is
represented by their excellent widespread performance in fitting the empirical
distribution of financial asset returns, synthesized in a number of well known
stylized facts; see e.g. Bollerlsev, Chou, and Kroner (1992) and Bollerslev,
Engle, and Nelson (1995).

More recent interest in ARCH and GARCH processes has focused on
the impact of temporal aggregation (Drost and Nijman 1993) (Drost and
Werker 1996) (Corradi 1999), refining the original work of Diebold (1988)
and Nelson (1990a). This work was motivated by the need, on one hand,
of bridging the discrete time specification of these models with continuous
time pricing formulae of modern finance and, on the other, of obtaining
coherent volatility forecasts for different time horizons, relevant for practical
risk management; see e.g. Christoffersen and Diebold (1997).

Looking at large asset markets naturally prompts the analysis of contem-
poraneous aggregation, in the sense of cross-sectional (arithmetic) averaging.

A recent strand of empirical research shows that the effect of shocks to
the conditional variance of asset returns is very persistent but is eventually
absorbed as time passes (see e.g. Gallant, Rossi, and Tauchen (1993)), con-
sistent with the notion of long memory in volatilities (Ding, Granger, and
Engle 1993) but not with IGARCH type behaviour. Several volatility models
have been proposed to account for this recent stylized fact of asset return
dynamics (see e.g. among others Robinson (1991), Baillie, Bollerslev, and
Mikkelsen (1996) and Robinson and Zaffaroni (1997)) but its foundation has
not been well understood yet.

The impact of contemporaneous aggregation (henceforth aggregation) of
linear (ARMA) processes is well known, in particular as a possible source of
long memory in observed macroeconomic time series, as noted in Robinson
(1978) and further developed in Granger (1980) among others. A systematic
analysis is in Lippi and Zaffaroni (1999). The available results valid for
ARMA are not readily applicable to a nonlinear framework except when
linear models represent a good approximation. Unfortunately this does not
apply to GARCH, their main feature being that, unlike linear processes,



they exhibit correlated squares and uncorrelated levels. Indeed, in order
to employ the linear aggregation results in a nonlinear framework, Ding and
Granger (1996) have to consider a suitable parameterization of the aggregate.
Under certain parametric distributional assumptions on the GARCH(1,1)
coefficients, they shown that long memory might arise for a large number
of units. The linear aggregation framework is also used in Andersen and
Bollerlsev (1997) in a Stochastic Volatility (SV) setting through the so-called
mixture of of distribution hypothesis.

More generally, when the dynamics of single stocks is well described by
GARCH behaviour, uncovering the induced statistical properties of a large
portfolio is clearly relevant both from a theoretical and practical perspective,
e.g. in order to better understand and thus estimate and forecast volatility
dynamics of stock return indexes. The GARCH paradigm applies to finite
portfolios in the sense that the class of weak GARCH, viz. replacing condi-
tional expectations with linear projections (Drost and Nijman 1993), is closed
under aggregation of a small number of units (Nijman and Sentana 1996).
Even stronger results apply within a SV framework, as the (finite) portfolio
belongs precisely to the same class of the micro SV models (Meddahi and
Renault 1998).

Finally, since the development of the CAPM and the APT, common
shocks, represented respectively by the ‘market’ portfolio return or simply by
latent common factors, have played a key role in asset pricing theory when
facing a large number of assets but there is little doubt that idiosyncratic
shocks are an important determinant of assets dynamics. Suitable assump-
tions, typically expressed by uniform boundedness of the eigenvalues of the
idiosyncratic variance-covariance matrix since Chamberlain and Rothschild
(1983), however allow to neglect idiosyncratic shocks in large portfolios. It is
then crucial to understand the conditions that insure portfolio full diversifi-
cation of idiosyncratic-driven risk when each asset is modelled by GARCH.

In this paper we study the impact of aggregation of heterogeneous strong
GARCH processes when the number of units gets large. Shape and degree of
heterogeneity across units’ parameters is described by means of a semipara-
metric specification of the distribution over the GARCH coefficients. Both
the case of a homogeneous and heterogeneous, across units, rescaled innova-
tion is considered.

Consider, for sake of exposition, the case of heterogeneous ARCH(1) pro-
cesses, when both the parameters and the rescaled innovations are potentially



varying across units
Tit = 24,6 04ty (1)

with

Uzt = w; + Oéz‘%?,tq- (2)
where we assume that the «; and the w; are 1.1.d drawn from a distribution
with support [0,7), for a real 0 < v < 1, and (0, 00) respectively. The z;,
form an ii.d. (0,1) sequence which will be, in turn, assumed to be either
common (z;; = z say) or mutually orthogonal across units. Given n units,
the aggregate process is defined as 1/n > | z;;. It turns out that the shape
near v of the cross-sectional distribution of the «; fully characterizes the
probabilistic properties of the aggregate as n gets large. A difficulty of the
analysis, with respect to the ARMA case, is that care need to be taken due
to the GARCH model dichotomy, i.e. the very different statistical properties
of the model in the levels and in the squares, respectively. For example, the
degree of unbounded kurtosis of the micro processes, dictated by the value
of v plays a crucial role, unlike within the linear framework.

Noteworthy results are that when the distribution of the «; is sufficiently
dense around 1, the aggregate will not vanish even when the z;; are perfectly
orthogonal across units. In fact, as n gets large the aggregate will display
the same degree of nonstationarity independently from the nature of the
rescaled innovation, i.e. whether common or idiosyncratic across units. On
the other hand, the type of cross-sectional dependence of the rescaled inno-
vation has dramatic impact on the degree of nonlinearity of the aggregate. In
the purely idiosyncratic case the ‘GARCH’ nonlinearity is completely washed
out whereas is maintained in the common case. Recalling that «; < 1/\/§
represents the bounded kurtosis condition for ARCH(1), we show that for
a dense enough distribution of the «; around 1/ V/3 the squared aggregate
displays unbounded kurtosis even with covariance stationary (hereafter, sta-
tionary) squared micro processes. More importantly, allowing v > 1, the
aggregate might not be strictly stationary and ergodic, unlike the micro
GARCH.

Aggregation of heterogeneous GARCH induce memory properties of the
aggregate different from the ones of the underlying micro processes. In con-
trast to a common view, we show that it is not possible to generate long
memory conditional heteroskedasticity at the aggregate level. More gener-
ally, the aggregate will not belong to the class of weak (and strong) GARCH,



in contrast to the small number of units case (Nijman and Sentana 1996).
This implies that if GARCH models are fitted to returns on single stocks,
a different volatility model is required for a large portfolio, whose statistical
properties are here characterized.

The plan of the paper is as follows. In section 2 we focus on the ARCH(1)
case. Definitions and assumptions are introduced in section 2.1 and sec-
tion 2.2 and 2.3 focuses on the case of orthogonal and common rescaled inno-
vation, respectively. Section 3 generalizes the framework discussing GARCH,
dynamic GARCH factor models and other extensions. All the results are for-
mally stated in Theorems whose proofs are reported in Appendix A. Section 4
discusses the aggregation implications and possible misspecification from ex-
ploiting the ARMA representation of squared GARCH. Section 5 concludes.

2 Aggregation of ARCH(1)

In this section we focus on ARCH(1) micro heterogeneous units as specified

in (1) and (2).

2.1 Definitions and assumptions

In order to characterize a framework made by a large number n of units,
whose aggregate

1 .n
Xnyt = leyt7 (3)
i

we specify heterogeneity across units by means of a distribution function for
the time-invariant ARCH(1) coefficients w;, ;. Time-varying heterogeneity
is also allowed, through the rescaled innovation.

Henceforth ~ denotes asymptotic equivalence, i.e. a(z) ~ b(z), as x —
Zo, when a(z)/b(z) — 1, and ¢, C bounded in modulus constants, writing
cg, Oy when depending on a parameter §. We denote by S5 (0 < 6 < 2) a 6-
stable random variable with zero location parameter; see e.g. Samorodnitsky

and Taqqu (1994)".

1 Using Samorodnitsky and Taqqu (1994) notation, Ss refers to Ss(o,3,0) for real pa-
rameters ¢ > 0 (scale parameter) and —1 < § < 1 (skewness parameter). We leave the
values for o, 8 unspecified although, when 0 < § < 1 we will obtain 3 = 1, i.e. a totally
skewed to the right §-stable random variable
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Given a real v with 0 < v < 1, we assume that the ARCH coefficients
satisfy the following:

Assumption I (v)
(i) The w; and the o; are mulually independent for any i, j.
(1) The w; are i.i.d. with E(w?) < oo and 0 < ¢, < w; < oo for any i and
some constant c,.
(iit) The «; have an absolutely conlinuous distribution in the interval [0,7),
depending upon the real parameter b, (b, > —1), whose densily, denoted by
B(+;by) behaves, as o; — v,

Blai; by) ~ Gy, (v — o)™, (4)

with Cb,y > 0.

Remark 1.1 Assumption [ () (#47) represents a mild semiparametric spec-
ification of the density function of the «;, only imposing its behaviour in a
neighbourhood of 7. The constraint b, > —1 is the obvious integrability
condition. Indeed, it can be alternatively expressed as

Blai; by) = Blag)(y — aw)™,

for any integrable function B(-) defined on [0, ] with B(a) ~ C, as o — v,
with 0 < C < oco. A wide variety of parametric specifications B(-; ) for
0 € © C R? is allowed, e.g. as the Beta density.

Remark 1.2 A great deal of generality is enhanced replacing (4) with

Blai;by) ~ Gy (v — o) L(1/ [y — au]), (3)

where L(-) denotes a slowly varying function (Zygmund 1977), i.e. for any
x>0, L(tz)/L(t) — 1, when t — oo (e.g. L(-) = [log(+)]® for any real &).
Focusing on density functions with a pole in =y, the hyperbolic term and the
slowly varying function describe all possible behaviours (except for patho-
logical cases). In fact, the integrability constraint rules out the possibility
of having a pole at v with a rate faster than —1. The gap between 7y and
—1 is naturally filled by slowly varying functions, given that L(z)z° — 0, as
x — oo, for any L(-) and 6 < 0 (Yong 1974, Lemma I-11). Qualitatively,
considering (5) has no consequence on the results, besides that L(-) will ex-
plicitly appear. For simplicity’s sake, we will assume throughout the paper

that L(-) = 1.



Remark 1.3 The independence assumption (i) has virtually the same im-
pact of assuming that the w; are constant across units. The effect of relaxing
such assumption will be discussed in section 3.

Remark I.4 Nelson (1990b) shows that the probabilistic properties of
GARCH(1,1) crucially depend on whether (for an arbitrary unit i) w; is
greater or equal to zero. Assuming a strictly positive ¢, rules out the possi-
bility that, for some i, Uzt — 0 almost surely as t — oo.

Remark 1.5 Only covariance stationary ARCH(1) units are considered.
It is well known that this implies a considerable restriction on the admissi-
ble values for the «; consistent with strictly stationary ARCH(1) defined by
the well-known condition «; e”/%¢i) < 1 (Nelson 1990b, Theorem 2) which
reduces to a; < 2F (E = 0.577... is the Euler constant) for Gaussian z;,. Al-
though our framework can be fairly easily extended to this case, we will only
briefly comment in section 3 on the possibility of o; > 1 as, in general, this
induces explosive behaviours of the aggregate, hiding relevant implications of
the aggregation mechanism. The only exception will be made in Theorem 6
were we allow v > 1 precisely in order to evaluate the impact of aggregation
in terms of the strict stationarity and ergodicity properties.

The impact of aggregation crucially depends on the type of cross-sectional
dependence of the rescaled innovation z;;. We will consider two cases, when
the z;; are perfectly orthogonal across units, expressing a source of time-
varying heterogeneity, and, in contrast, when they are perfectly correlated
across units. For sake of clarity, we will write 2;;, = ¢;; and 2;; = u; respec-
tively in the two cases. The ¢;; and the u;, called respectively the idiosyn-
cratic and the common shock, satisfy:

Assumption 11

(i) The u, are i.i.d. across t and the €, are i.i.d. across t,i, satisfying
E(uy) = E(er) = 0, var(uy) = var(e;r) = 1 and zero fourth-order cumulant.
(11) The {us, €;+} and the {w;, a;} mutually independent.

Remark I1.1 Both the u; and the ¢;; behave like standard Gaussian noise
up to the fourth moment. The normalizations are made for simplicity’s sake
but can be easily relaxed as in Nelson (1990b). Setting 6, = F |u;| and
A = Elog(u?), it follows that 6, < (F(u2))Y? =1 and A\, < logE(u2) = 0.
Remark I1.2 Assumption I/, in particular the i.i.d. assumption, implies
that the micro processes are strong GARCH (Drost and Nijman 1993, Defi-



nition 1).

Hereafter, we will denote the conditional expectation and conditional vari-
ance operators, given the GARCH coefficients, by F,(-) and var,(-) respec-
tively. Moreover we will always assume that Assumption /[ holds without
stating this explicitly.

We will denote, for clarity’s sake, the aggregate (3) by ¥X,,; in the id-
iosyncratic case (z;¢+ = €;¢) and by YX,,; in the common case (2;; = uy).
Note that no distinction needs to be made between stock and flow variables,
unlike the temporal aggregation case (Drost and Nijman 1993).

2.2 Idiosyncratic innovations

In this case X, ; is given by a sum of purely idiosyneratic components as
1 n
B
Xn,t = - Z €:,t04,t,
n <=
=1

with Uzt given in (2). Simple calculation yields under Assumption [/

=1

1
2 1—041"

var, (EXW) =

Theorem 1 Asn — oo, under Assumption 1(~y):
When v < 1, uniformly in b,

var, (" X,4) — 0, a.s.

When v =1
(1) If by > 0, there exists a positive constant C' such that a.s.

var, (¥ X, ;) ~ Cn" .
(11) If by = 0, there exist a positive constant C' such that a.s.
var, (* X,.1) ~ Cn'logn.
(111) If by < 0, selting 6 = by + 1, a.s.
var, (¥ Xn) ~ n A Ss,

with Ss > 0(0 < 6 < 1) a.s., where a.s. indicates almost surely.
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Proof: See Appendix A.

Let us focus on the case v = 1. When b; > —1/2, Theorem 1 gives the
usual result that £ X, ; converges to zero in mean-square as n tends to infinity.
However, for by < —1/2 we obtain the rather striking result that the variance
of X, , tends to infinity at rate n-@ntD/G1+D) 5 5 viclating the usual result
on the vanishing importance of idiosyncratic risk at the aggregate level.

When «; = « for any 4, that is when one allows only for time-varying
heterogeneity through the €;¢, it easily follows that X, ; — 0 in mean-
square for v < 1. For v = 1, var, (P X,,;) is unbounded.

Obviously the #X,, , are martingale differences for any n. On the other
hand, the ‘GARCH’ nonlinearity arises once one considers the squared ag-
gregate process Y, :

1 n
EYn,t = Z €i,t€5,t94,t0 j,t-
ne =
From
1 [& =
Varn(EYn,t) = A Zvarn(eit U?,t) +2 Z En(E?,t U?,t)En(Eit 0_32',1&) , (6)
i=1 i,7=1

it follows that the dominating expression of var, (*Y,, ;) is

wy (L4 o)
(1-3a2)(1— ) (7)

En(‘ﬁ,t) =

As originally shown by Engle (1982), a bounded fourth moment requires
a?<1/3foranyi=1,...,n

However, this implies that looking at the correlation structure for ¥V}, ; as
n — 0o becomes irrelevant in light of Theorem 1. When the «; are bounded
below 37 1/2, the E X, . converge to zero in mean-square for any value of b\/§71

and thus the #Y,,, converge to zero in probability by Slutsky’s theorem.

Theorem 2 The stationarity condition for Y, (cf. Assumption I (\/?;71))
implies that as n — oo
BY,e = 0,

uniformly in b\/gq.



To allow for micro processes with unbounded kurtosis, we investigate the
behaviour of the aggregate of the ‘truncated’ processes, viz. conditioning on
the rescaled innovations defined prior to time zero, €; s (s < 0),

it = €4,t04.¢,
with
t—1 k
~9 k 2
O;¢ = Ws Z Q; H “it—g | (8)
k=0  j=1

recalling that within this section 2;; = ¢;;. Let E)N(n,t =1/n>7 | % The
conditional ARCH(1) based on (8) is equivalent to the conditional model as
defined in Nelson (1990b, eq. (6)) with the initial distribution of &7, being
a Dirac mass at zero. Hereafter —, denotes convergence in distribution.

Theorem 3 Asn — oo, under Assumption 1(7y):
(i) When y < 1, uniformly in b, or v =1, with by > 0,

E E
\/E Xn,t —d Xt;

where {¥ X, } is a stationary Gaussian noise N(0,V) with V = E(w/(1 — «)).
(1) When v =1, with by < 0,

E E vy
\/E Xn,t —d Xt;

where {E)N(t} is a nonstationary Gaussian noise N(0,V;) with V; ~ ct™" as
t — oo for some 0 < ¢ < o0.

Proof: See Appendix A.

When the micro GARCH processes are mutually orthogonal the (normal-
ized) aggregate has a normal asymptotic distribution, both in the station-
ary and in the nonstationary case. This has the strong implication that
the ‘GARCH’ nonlinearity is completely washed out by aggregation. In
fact, in both cases the limit process is made by independent (and identi-
cally distributed in the stationary case) random variables (r.v.’s). Moreover,
in the nonstationary case, weak convergence of the normalized aggregate

EXn’t/\/UCLTn (E)N(m) does not follow. In fact, the distribution of EX _EX_

and of ZX, + X, coincide for any ¢ # s, and therefore the erraticness of



EX,—EX, cannot controlled for by choosing |t — s| small enough. Formally,
a necessary condition for tightness in I, the space of functions defined over
[0,1] that are right-continuous and have left-hand limit (Billingsley 1968, pg.
109), does not hold (Billingsley 1968, condition (ii) Theorem 15.2).

Hence weak convergence to some Gaussian probability measure does not
follow, although the limit process {#X,} is self-similar with index —b, (Samorodnitsky
and Taqqu 1994, Definition 7.1.1). Thus, from Theorem 1 and 3, it follows
that the nonlinearity vanishes at the aggregate level, when facing purely
idiosyncratic risk, albeit this is not due to the asymptotic degeneracy of
aggregate dynamics.

2.3 Common innovations

In this section the aggregate VX, ; is not made by a sum of purely idiosyn-
cratic components anymore,

n
U
U W
Xn’t__n E O_i,t-

=1

In fact all the 0,,, 7 =1,...,n contain the same set of realizations us, s < 1.
Indeed, due to the dependence between o;; and o,

var, (Y X

7

1
)=

pORACHR )

Exploiting the fact that the rescaled innovations are equal across units, a
simple way to evaluate the possibility of asymptotic degeneracy of VX, , is
based on the absolute first moment:

1

En |V X0t |= 5% > En(oig). (10)
=1

Bounding F,(0;;) from below and from above as in Nelson (1990b, Theorem
3) yields

6u n 1/2 . (S n w‘1/2
— X 1< — _t
n ; -y 62 1/2 B ’ t’ n ZZ; (1 - 0411/26u)

10



Under Assumption [(1) ;62> < 62 < 1 implying that asymptotically the
absolute first moment is bounded and bounded away from zero and thus
UXW never converges to zero in L.

This does not imply that VX, , is stationary asymptotically but, by
Jensen’s inequality, that the conditional variance of Y X, ; is always bounded
away from zero. As in the idiosyncratic case, the stationarity conditions for
Y X+ follow from the behaviour of the conditional variance.

Theorem 4 Asn — oo, under Assumption 1(~y):
When v < 1, uniformly in by, for some constant C,

var, (Y Xp,) — C, a.s.,0< C < <.

When v =1
(i) If by > —1/2,
varn(UXn,t) ~ (.
(11) If by = —1/2, there exist positive constants ¢,C such that a.s.

c(logn) < var, (Y X, ;) < C (logn)?.
(iit) If by < —1/2, setling 6 = —(by + 1) /by, a.s.

varn(UXn,t) ~ n7711+_1 Ss,
with Ss >0(0 < 6 < 1) a.s.
Proof: See Appendix A.

Unlike the idiosyncratic case the variance of the VX, ; is always bounded
away from zero for any values of b,. However, when b, < —1/2 the variance
explodes as n becomes large. Moreover, this happens at exactly the same
rate as for the variance of the #X,,; so that the conjecture by which com-
mon rescaled innovations have stronger impact on aggregate volatility than
idiosyncratic ones falls short.

The fact that the asymptotic distribution of the aggregate Y X,, ; is never
degenerate suggests looking at the asymptotic behaviour, in terms of the au-
tocovariance function (ACF), of the square aggregate Y}, ; imposing bounded
kurtosis.

Set

var, (YY) = % (3varn(zn: 0i)” + 2En(zn: Ui’t)4> . (11)

=1 =1

11



Theorem 5 Asn — oo, under Assumption 1(~y):

When ~v < \/371, uniformly in b, for some constant C,
var, (YY) — C, a.s.,0< C < <.

When v = \/371
(1) If b g1 > —3/4,
var, (Y'Y, ) ~ C.
(i1) If b= —3/4, there exist positive constants ¢, C' such that a.s.

c(logn) < var,(YV,,) < C (logn)™.
(1i1) If b g1 < —3/4, setting 6 = —(b 51 +1)/(3b z-1 +2), as.

4b 3
Nl

Varn(UYn,t) ~n lvatt Ss,
with Ss >0(0 < 6 < 1) a.s.

Proof: See Appendix A.
When the «; are strictly bounded away from \/571 the squared aggregate

will always be stationary. However, when v = \/571’ the squared aggregate is
asymptotically nonstationary for a dense cross-sectional distribution of the «;

around \/?;71. Hence, the aggregate Y X,, ; might display unbounded kurtosis
despite all the micro ARCH(1) have finite kurtosis.

In order to characterize the memory properties of the aggregate without
limiting to the bounded kurtosis case, the asymptotic distribution of the
aggregate is established.

Hereafter, —; denotes convergence in Ly, py, = E(af) and E(w}F) = py
for any real k.

Theorem 6 There erist processes (1yXnyt, (2)Xnyt such that
min[(l)Xn,t, (Q)Xn’t:l S UXn’t S max[(l)Xn,t, (Q)Xn’t:l7 a.s. (12)
(i) Under Assumption I (), as n — oo,

oo k 1/2
1) Xnt =1 ()Xt = Uz p1/2 (Z e 11 Ufg) ; (13)
k—0 =1

k=0 =1

00 k
(2)Xn,t —1 (2)Xt = Ut P1/2 (Z HE/2 H ’utj’) . (14)

12



For any real positive v, 1yX¢ and 9 Xy are bounded (in modulus) a.s.,
strictly stationary and ergodic if ye* < 1, uniformly in b,. When ~ye* =1,
this holds when by > —1/2 and by > 0 for (1yX;, (9 X:, respectively.

(11) The asymptotic stationarity conditions of W) Xne and o Xyn ¢ and UXM,
in the levels and in the squares, coincide (cf. Theorem 4 and 5) and, for
v < V3 ash— oo,

COU((i)X2$27 (Z)Xt2+h) ~ G /yh f%\/§71 (h)7 1= 17 27
for constants 0 < ¢; < oo (i = 1,2) setling

26y +1) 5
Jrs(h) = { h72(b5+1)&1 b @ty zié’ (15)
Proof: See Appendix A.

The intrinsic nonlinearity of GARCH as well as the cross-sectional depen-
dence of the 0;;, do not allow to derive the precise expression for the limit
aggregate process. However, for large n the limit of Y X, ; is enveloped by
(1)X¢ or (99X, whose statistical properties are more easily obtainable.

In particular both (yX; and (5 X, display the ‘GARCH’ nonlinearity.
Thus, it does not follow that the nonlinearity characterizing the micro level
is washed out by aggregation, in contrast to the idiosyncratic rescaled inno-
vation case. Note that no normalization nor truncation are required, thus
deriving the asymptotic distribution of the (plain) aggregate. Remarkably,
bounded fourth moment conditions are not imposed, as convergence in L
(instead of Ls) is established.

However, the probabilistic properties of the aggregate can be drastically
influenced by aggregation. Comparing our result with Nelson (1990b), it
follows that when ve* = 1, the limit aggregate processes, X and (99 Xy,
might lose the strict stationarity and ergodicity properties characterizing the
micro GARCH, for a sufficiently dense distribution of the cv; near 1/e** > 1.

An important implication of Theorem 6 follows with respect to the defi-
nitions of strong and weak GARCH. Nijman and Sentana (1996) show that
low order weak GARCH are closed under contemporaneous aggregation. The
result presented here clearly shows that both strong and weak ARCH are not

13



closed under aggregation for large n. In fact the coefficients py, in (13) and
(14) cannot be derived by expanding the ratio of polynomials in the lag op-
erator I (cf. (28) in Appendix A for their asymptotic behaviour), e.g. as
(14+aL+...4a,L%)/(1+b,L+...+0b,LP) for given integers p,q > 0 and
constants ay, ..., a4, by, ..., by, as from Drost and Nijman (1993, Definitions
1,2 and 3).

Aggregation induces a change in the memory of the aggregate. Under
bounded kurtosis, the squared aggregate displays short memory but of a dif-
ferent type with respect to the memory of micro ARCH. Theorem 6 suggests
that a necessary condition for obtaining an hyperbolically decaying ACF,
and thus long memory, of the aggregate is v = 1. For this purpose, con-
sider the ‘truncated’ aggregate Z;; = u:0;4, setting z;; = wu; in (8). Set
U)N(m =1/n3>7 % and

np = —F——, (16)

with, as usual, U}N/n,t = UXEM.
Theorem 7 There exist processes {(1)}7n,t}, {(2)}7n,t} such that
)Yt <Vt < @)Vnr a.s. (17)

Under Assumption I (1), uniformly in by, for h =0,%1, ..,
ast,n — oo (the order is inessential)

coVn ((5)Un,t, @)Unptn) — 1, a.s. i =12,
setting (;\Yn,t = (Z-)Y/n,t/ varn((i)f/n,t) (i=1,2).

Proof: See Appendix A.
Aggregation of strong GARCH does not induce a long memory volatility
model for the aggregate?, in contrast to common wisdom. This is due to

2Theorem 7 seems to suggest convergence in distribution of the normalized-truncated
squared aggregate to a constant (with respect to time) r.v. This is, however, an arti-
fact, namely the usual result on the misleading information stemming from the moments’
convergence, as convergence in distribution to a time-varying random limit holds without
need of any normalization (cf. Theorem 6,(i)).
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the core nonlinearity of GARCH which, in turn, yields the nonstationary
‘Innovations’ H§:1 u?fj and H;?:l ;| in (13) and (14). On the other hand,
under /(1) the coefficients 45 do exhibit the required hyperbolic behaviour,
e, pp ~ ck @D as k — oo for some 0 < ¢ < oo (cf. (28)). Note that
renormalizing the u; such that E(uj) = 1 will not change the result as this
induces F(u?) < 1 (cf. Appendix A for a further discussion).

Hence, the aggregation mechanism cannot invoked to explain the widespread
empirical finding of long memory in squared stock return indexes, when main-
taining the assumption that single stocks have a GARCH behaviour. This
does not mean that aggregation had no effect on the probabilistic properties
of the aggregate, as indicated by Theorem 6. For instance GARCH(p, ¢) are
strongly mixing with geometric rate (Davis and Mikosch 1998, Lemma A.2
for ARCH(1)). This result is ultimately based on their Markovian structure

which is lost by aggregation.

3 Generalizations

3.1 Aggregation of GARCH

We now discuss extension of the results to the case when the observable micro
processes are strong GARCH(1,1)

it = 23,t04.¢, (18)
2 _ 2 2

R A ﬂigi,tfl'

We need to introduce the following sequences of r.v.’s

T = (o + ), (19)
vi = (o + %) + 202 = 72 + 2a. (20)

The following two conditions replace Assumption (7).

Assumption 111
The w; and {ay, 5;} satisfy cases (i), (i) of Assumption I () and the m; satisfy
I(1) (did).

Assumption IV (7)
The w; and {a;, B;} salisfy cases (i), (ii) of Assumption I () and the v; satisfy
1(3) (i),

15



Remark IV.1 The cross-sectional distribution of the 7;, the so-called ‘per-
sistence’ parameter, imparts the statistical properties of the aggregate in the
level whereas the cross-sectional distribution of the v; imparts the statistical
properties of the squared aggregate.

Remark IV.2 When 3; = 0(i = 1,..,n) yields v; = 3a?. In fact, for sim-
plicity’s sake, IV (7y) restricts to the bounded micro kurtosis case and the
possibility of v; > 1 (a; > \/?;71 for ARCH(1)) is ruled out.

Remark IV.3 Assumption /1] and IV () can be seen as naturally induced
by the distributions of the «; and §;, with support [0, tunes) and|0, Bmaz),
and having probability densities behaving as Co(Qmer — @), @ — 1~ and
Cs(Bimaz — B)?, 3 — 1~ for constants 0 < C,,Cs < oo and b,,bs > —1,
respectively (cf. Appendix B).

It follows that under Assumption [/ and [V () Theorem 1-3, for the
case of idiosyncratic innovations, and Theorem 4-7, for the case of common
innovations, extend to GARCH(1,1). This contrasts with Ding and Granger
(1996) who, considering the case of micro GARCH(1,1), show that only the
distribution of the (3; matters and the distribution of the «; is completely
irrelevant. This outcome is due to their particular ‘triangular array’ structure
(cf. their equation (4.16)), which yields a similar yet different definition of
aggregation of heterogeneous strong GARCH (cf. (3)). This is confirmed by
Theorem 7 which rules out long memory at the aggregate levels, in contrast
to Ding and Granger (1996)

However, some care need to be given to the extension of the asymptotic
distribution result when the rescaled innovation is common across units (cf.
Theorem 6). This is formalized as follows.

Theorem 8 There exist processes {(,-))N(n,t}, {@Xnit}, 1 =1,2 such that a.s.
min| 1) Xy, (2) X, <min (1) X, 1,2 X, <Y X e <ma (1) X (2) X e <miac (1) Xy (2) X o]
We define (Z-))N(t, &)X (i = 1,2) in the proof.

i) Under Assumption IV and ot 6, + F74 < 1(i=1,2), as n — oo,
g

max max

(i)Xn,t —1 (i)Xt7 =12
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For any real positive cpmaz, Bmaz (,-))N(t (i =1,2) are bounded (in modulus)
strictly stationary and ergodic when ((Qmaze/?)V* 4+ B Y < 1(i =

a.s.,
1,2), uniformly in by, bg, respectively. When ((qumage™/?)V1 485 ) =1 (i =
1,2) this holds for min[b,,bg] > (i —2)/2 (i =1,2).

I

(11) The asymptotic stationarity conditions for W)Xn,t; 2)Xnyt and UXM co-
incide, viz. Assumption [11 with by > —1/2 for the levels and Assumption
IV(y) with v <1 ory = 1,by > =3/4 for the squares. Under the lalter
conditions, as h — oo,

COU((i)Xfa (Z)Xt2+h) S & (amam + ﬂmam)h f%l(h)u L= 17 27 (21>
for constants 0 < ¢; < oo (1 = 1,2) with f,1(h) defined in (15).

Proof: See Appendix A.

We provide a double envelope for the aggregate. In fact, we exploit the
fact that for GARCH(p, q) there exist different nonlinear moving average rep-
resentations (Zaffaroni 1999), unlike for ARCH(1), and choose the represen-
tation suitably depending on whether we need to characterize the asymptotic
distribution and the strict stationarity conditions or, more simply, the mem-
ory (second-order) properties of the aggregate. Note that in the former case,
the (Z-)Xn,t (= 1,2) represent a looser envelope to VX, ; as slightly different
conditions are required in (i) for (1))~Q and (Q)Xt respectively. This does not
apply to the ;3 X, (i = 1,2) which, as discussed in (ii), exhibit the same
second-order asymptotic properties, in turn equal to the ones of ¥V X, ;, both
for the levels and the squares.

When frap = 0, viz. the ARCH(1) case, then assumption IV () (0 < v <

1) collapses to () (0 < v < \/371)). Hence, a comparison with Theorem 6
suggests that the inequality in (21) is in fact sharp.

In contrast to all the other propositions, further conditions had to be
imposed beyond [V(7y) due to the intrinsic nonlinearity and the greater
complexity of higher dimension GARCH models. This holds more gener-
ally for aggregation of heterogeneous GARCH(p, q) models, for simplicity’s
sake reparameterized as GARCH(m, m) for m = max|p, ¢, given by (18) and

m
2 2 2
Opp = Wi + Z(ai,jzi,pj + ﬂi,j)gz‘,pj-
i
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It follows that the cross-sectional distribution of the m; = Y1 | (cv; ;4 3, ;) de-
fines the probabilistic properties of # X, ; and the cross-sectional distribution
of the v; = Z;”Zl(ﬂzj + QOA?J-) the ones of £V, ;.

3.2 Aggregation of conditionally heteroskedastic fac-
tor models

This framework can be used to evaluate the impact of aggregation of the
components of conditionally heteroskedastic factor models (see e.g. Sentana

(1998))

Tig = Binfie + Biploie + o + BixSre Fwig, i =1,...,n, (22)

where f; = (fi4,..., frt)' 1s a vector of K (n > K) unobserved common fac-
tors, the 3;; (j = 1,.., K) are the associated factor loadings and the w;; (i =
1,..,n) indicate idiosyncratic r.v.’s, orthogonal to the f;,(j =1, .., K).

Setting wy = (w4, ..., Wy,)" assume By, y(wy) = 0, By (w,wy) = [y and
Eea(fy) =0, Eea(fe f]) = A with By q(wy f}) = 0, E;_1(-) denoting the
expectation operator conditionally on {fs, z;s,8 < t,i = 1,2,...}. The
time variation in A; and I'; motivates the denomination of conditionally het-
eroskedastic factor model. For simplicity’s sake we assumed that the factor
loadings 3;; are time invariant but this could be easily generalized to the
case where the factor loadings are time-varying, with 3, determined at
time ¢ — 1.

As showed in Sentana (1998), depending on the specification of the A; and
the I'; several multivariate volatility models are described by (22), in particu-
lar the latent factor model with ARCH factors of Diebold and Nerlove (1989)
and the factor GARCH model of Engle (1987). When the w;, are assumed
mutually orthogonal, with E(I';) < oo, or mildly correlated across units,
(22) is referred to as a conditional exact or approximate K factor structure
(Hansen and Richard 1987), generalizing the definition of (unconditional)
factor structures (Chamberlain and Rothschild 1983).

Assuming that both the f;; and the w;, have time-varying conditional
second moment, parameterized as a strong GARCH(p, q), yleldsforp =¢ =1

vech(A) = Q + Ayvech(fi 1 f{ ) + Bivech(A¢-1),

_ 2 _ 2 2 c
Wi = %4 04t, Opp = Wi + W,y 4 + ﬂz‘%tq; t=1,.,n,
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where A;, By are square matrices and Q a vector of order K(K +1)/2.

Choosing z;; = €+ or alternatively z;; = u;, satisfying Assumption /1,
suggests that a conditional exact or approximate K factor structure for the
the x;; could be obtained.

In Chamberlain and Rothschild (1983) the maximum degree of cross-
sectional dependence allowed for the w;; is expressed by boundedness of
the maximum eigenvalue of F(I';), uniformly in n. This clearly collapses
to limpcomaxi—y, pvar(w;;) < oo when I'y is diagonal. In our random
coefficients framework, when 2;; = €, this requires

lz Y
=1

w

) < coa.s.
n—1-—-oq l-«
as n — oo. This holds, under Assumption [(y), when either v < 1 or
v =1 with by > 0. Consider the case 2;; = u; and thus when the w;, are
correlated across units with F(w;w;,) = F(u?)E(0;.0;;). Under the same

above conditions, as n — oo
n
tr(Ty) =Y o7y ~cn as.,
=1

for some 0 < ¢ < co. This is clearly satisfied under the uniformly bounded
eigenvalues condition. However, the degree of cross-sectional dependence is
too strong as one cannot diversify away the risk induced by the w;,, i.e.
var(l/nd" yw;.) > ¢ > 0 for some 0 < ¢ < oo, uniformly in b,, for any n
(cf. Theorem 4). Hence, although setting z;; = u; delivers an interesting case
of conditionally heteroskedastic factor model with cross-sectional correlated
idiosyncratic risk, this rules out the case of (conditional) approximate factor
models.
The portfolio, made by 1/nth of each asset, would then be

R
Xn,t - n ;ﬂzft + n ;wz,ty

setting 3; = (i1, ..., Bi.x)’. The impact of aggregation on the factors part
depends entirely on the cross-sectional properties of the 3;. The case of static
factor loadings is straightforward but one could generalize the framework
introducing time variation, e.g. if the factor loadings ;; are modelled as

19



ARMA | then apply the aggregation framework of Lippi and Zaffaroni (1999).
On the other hand, using the previous results, we can completely characterize
the statistical properties of the idiosyncratic part.

This has sound implications. In particular, when there are no common
factors (K = 0) an exact zero factor structure would induce a Gaussian
model for the portfolio and not a volatility model. Moreover, when the
cross-sectional distribution of the ¢ is dense around 1 (by < —1/2), the av-
erage of the idiosyncratic component would not vanish but it rather displays
an unbounded variance as n gets large, even in the exact factor structure
case. Hence, idiosyncratic risk may not be fully diversifiable even when one
can trade a possibly infinite number of assets. This is also relevant when de-
veloping statistical inference methods on such nonlinear factor model based
on a large cross-sections as the commonly held hypothesis of a vanishing
importance of the idiosyncratic part of the portfolio fails.

3.3 Further extensions

(i) When one focuses on strictly stationary micro GARCH, this implies the
possibility of inducing explosive behaviours at the aggregate levels when the
a; > 1. Aggregation of strong IGARCH is an important particular case,
where the 7; will have a degenerate distribution at 1.

Although the case 1 < v does not appear to be empirically relevant
(see e.g. Bollerlsev, Chou, and Kroner (1992)), our framework can easily
account for such possibility. Clearly now one needs to evaluate conditional
moments not only with respect to the GARCH coefficients but also with
respect to past rescaled innovations, viz. consider the truncated aggregates
EXW, UXn,t. For example, focusing on the idiosyncratic case, one obtains
that as t,n — oo, under ()

y /22 ey
n )

Varn(EXn,t> ~ ’yt (C (toa log(nMQt))l/Q W + C/

for positive constants 0 < ¢, < co. We skip details for simplicity’s sake. In
contrast to Theorem 1, even allowing v = 1 then, irrespective of the value of
b,, ¥ X, + converges to zero in mean-square as t/n — oo suggesting that the
usual result arises when n is large compared with t. A fixed ¢ is an important

particular case. When n ~ ct® ™ for some ¢ > 0 the results of Theorem 1
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are re-obtained. On the other hand, when v > 1, then the rate of divergence
is exponential with respect to the time dimension. By the same arguments,
the variance of the limit Gaussian process in Theorem 3,(ii) explodes at an
exponential rates and it loses the self-similar property. Parallel results can
be obtained for the common component case.

(ii) The assumption of independence (cf. remark 1.3) between the «; and
the w; plays an important role. In fact, the results will be affected by the
assumed shape and degree of mutual dependence; e.g. in the extreme case
that w; = @;(1 — o?) for some i.i.d. sequence {@;} (independent of the «;),
then the usual result arises for any shape of the cross-sectional distribution.
More in general, we can assume that the distribution of the w;, conditioning
on the o;, behaves as B(w; | a;) ~ C, (v — a;)* as a; — 7~ for some
-1 < b,,0 < C, < co. The results would depend on the magnitude of
by + b,

(iii) We can allow for cross-correlation across units not only through a
common rescaled innovation but also by assuming dependence across the ;.
This could be potentially relevant from an economic standpoint. Indeed, the
limit laws which this paper is based on and employed in Lemma 1, have
been extended to the case of stationary dependent sequences satisfying some
form of mixing condition (see references in Samorodnitsky and Taqqu (1994,
pg. 575)) and therefore fairly easily adaptable to our framework. There is
nonetheless a problem of interpretation in adapting the time series meaning
of dependence to a cross-sectional framework, except for the limit case of
independence.

4 Exploiting the linear ARMA representa-
tion of GARCH

It is well known that any GARCH(p,q) process can be represented as an
ARM A(m, p) with m = maz{p, q} in the squared process (Bollerslev 1986).
In our case

Vit wl—l—z 5+ Bij)Yii—; Zﬂzhvm ht Vig, (23)

=1
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where v, = a:?’t and the v, , are a martingale difference sequence given by

Vi = (zft - 1)Uzt.

It follows that, conditioning on the «; ;, 5;; and the w;, conditional mo-
ments of the y;; can be evaluated straightforwardly, suggesting that the ag-
gregation results for linear ARMA processes can be employed directly. How-
ever, the distribution of the shock v;; is a function of the autoregressive and
moving average parameters, unlike from the linear ARMA case. Thus the
difference between the idiosyncratic and common components is rather vacu-
ous as, even in the case z;; = uy, the v; ¢ are still a function of the index i and
thus can no longer be interpreted as common shocks. More importantly, this
structure of the non-Gaussian innovations v;; delivers different expressions
for the conditional moments, with respect to the linear ARMA. Therefore
the advantage of using the linear representation (23) are clearly nil.

Considering the ARCH(1) case (p =0, ¢ = 1 in (23)), setting

. 1 2
Yn,t = Zyi,tu
nti4

simple calculations yield

En(Yn,t) = % ; 1 C_UZOéiJ
varn(Yn,t)
. i Zn: WiWs; E<Z12,t - 1)(Z]2,t - 1)
nt 2= (1= au)(1 — o) [B(zip250)2(1 — queyy) — B (27, — 1)(25, — 1))

Note that the Yn,t are not the arithmetic averages of the y;;, as the normal-
ization 1/n? is used. When z;; = €4, En(Ynt) coincides with var, (¥ X, ;)
whereas Uarn(Yn,t) does not coincide with var, (*Y,, ;) (cf. (6)), although the
additional terms are of smaller order in n and would not influence the asymp-
totic results. However, when z;;, = u; the double product terms, which rep-
resent the important difference between the idiosyncratic and common cases,
are excluded.

Thus, evaluation of the aggregation mechanism via the ARMA represen-

tation, henceforth ‘linear aggregation’, albeit simpler in terms of calculation
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of the conditional moments, would yield a misleading inference on the impor-
tance of common versus idiosyncratic shocks with respect to the probabilis-
tic properties of the aggregate. Another difficulty of the ‘linear aggregation’
arises when one needs to evaluate the absolute first moment of the UXn,t.
Comparing (23) with Assumption [11 it follows that the impact of aggrega-
tion on GARCH(p, q) is uniquely determined by the autoregressive part of
the model, the moving average part having absolutely no influence, in anal-
ogy with the case of aggregation of linear ARMA processes; see e.g. Granger
(1980).

5 Conclusions

In this paper we establish the impact of contemporaneous aggregation on het-
erogeneous GARCH processes by means of asymptotic results in the number
of micro units, e.g. approximating the dynamics of a large portfolio with
GARCH single stocks. The key features of the micro structure are both
the shape of the cross sectional distribution of the GARCH coefficients and
the degree of cross-sectional dependence of the rescaled innovations. When
the micro units are purely idiosyncratic, sufficient conditions for aggregate
non-degeneracy do exist, in contrast to the common belief of a vanishing
importance of idiosyncratic risk. However, the nonlinearity is lost through
aggregation, unlike the case of common rescaled innovations. Even though
in the latter case the aggregate is a volatility model, non-GARCH memory
properties arise. Long memory conditional heteroskedasticity is ruled out.
Unlike the small number of units case, even the class of weak GARCH is not
closed under aggregation over a large number of units.

Contemporaneous aggregation, in the asymptotic sense, is an important
mechanism and its properties are only partially known even for the most
common volatility models. A desirable feature for classes of volatility models
would be to obtain long memory versions of the models based on aggregation
of short memory ones. This holds for linear processes (Lippi and Zaffaroni
1999) but, as we have seen, fails for GARCH. From an empirical standpoint,
both the assumptions and the testable implications, e.g. on the memory of
the squared aggregate, can be analyzed using both disaggregate data on single
stocks and stock indexes data. These issues are the focus of forthcoming
research.
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6 Appendix A

We recall that ¢, C' denote arbitrary constants, always bounded but not nec-
essarily the same, the symbol ~ denotes asymptotic equivalence and P(A),
14, respectively, the probability and the indicator function of any event A.

We begin with the following lemma which adapts to out framework known
results on convergence of normed sums in ii.d. random variables in the
domain of attraction of a possibly non-normal stable distribution.

Lemma 1 Given a a sequence of i.i.d. positive r.v.’s with probability density
B(;b) defined in the interval [0,7y) for real v > 0 such that for a real b(—1 <
b<oo)and a Cy >0, a5 a0 — 17,

B(a;b) ~ Cy(y — )" L(1/(y — a)), (24)

where L(-) denotes a slowly varying function. Set 6 = (b+1)/k. Then a.s.,
asn — oo,

(1) If2 <6,

1Z 1 1

L -1/2g

ni= (v — )k ((’Y_Oé)k)—l—n 7
(2)Ifl<é6<2,

L LI TR N P ST

ni= (7 — ) (y—a)* ’
(3)I[6=1,

1 . .

1
n
(4)If0<é6<1,
1Z 1 ~
L e 1/6-1
ni= (v — ai)* () %

where L(n), L(n) are slowly varying functions. We recall that S5 (0 < § < 2)
defines a 6-stable r.v. with zero location parameter (cf. footnote 1), including
the case of the normal distribution (Sy). In case (4) Ss will be a totally skewed
to the right 6-stable r.v. with zero location parameter, implying Ss > 0 a.s.
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Proof: Under (24) the y; = 1/(v — a;)" have distribution in the domain of
attraction of possibly non-normal stable distribution with index 6. In fact,
denoting by f,(-) the probability density function of the variables y;,

Ful) = 3By —u b 1 < < oo,

with f,(u) ~ u= DAL (4VE) as 4 — co. Therefore, as n — oo,
Py; = an) ~ L{ay/")(a,)” T,

For cases (2), (3), (4) the result follows applying any non-Gaussian central
limit theorem (CLT) for ii.d. variates (see e.g. LePage, Woodroofe, and
Zinn (1981)) to scaled and normalized partial sums

1 n
a(;yi_bi)u

with the sequence {a,}, {b,} defined by
nP(y; > a,) — 1, n — oo,
b, = /lj:k xf,(z)dx.
Hence, as n — o0, one obtains
an = n'/? L(n),

for a slowly varying function ZNQ() induced by L(-). Then the result follows
noting that for i.i.d. variates convergence in probability implies convergence
a.s. with, as n — o0,

n 1 n n

1 ~ 1
— ; ~ L(n)nt/* " ——— ; — b)) + =) b, a.s.
;y (n) T () nlfo > (i — bi) n;

n - —

Note that when 6 < 1 one can set b,, = 0 and when 6 > 1 one can use the
unconditional expectation, i.e. b; = F(y;) = E(y1).

When 6 < 1 we make use of the fact that if n=°Z, —4 7, as n — oo, for

r.v.’s {Z,}, Z and constant 3 > 0 with Z > 0 a.s., then the Z, diverge to
plus infinity in probability. Under the assumptions made, the limit §-stable
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r.v. is totally skewed to the right for 6 < 1, and thus its support is included
in the half-positive real line (Samorodnitsky and Taqqu 1994, Proposition
1.2.11 and Theorem 1.8.1 (ii)).

When 6 =1, by Yong (1974, Lemma I-11 (1-32%)), as — o0,

setting L(n) = L(n"/®+) LYY ()Y log(n L(n)).
For case (1) a standard CLT for i.i.d. variates (Lindeberg-Lévy) applies.
([l

Remark When I(-) = 1 then L(-) = 1 and L(-) = log(-).

Lemma 2 Under the assumptions of Lemma 1 with v =1, for any integer
p=1,2,.. and real k, as n — oo,
(i) i i
1 Z 1 s~ et C’l Z(l _ Oéi)(pfl)bJr(pflfk)’
i

n i1,.ip=1 (1 - Oéil...ozl-p>

for constants 0 < ¢, C < oco. The boundedness condition is pb+ (p — k) > 0.
(it) When pb+ (p — k) > 0 for any integer v > 0 and r (0 < r < p) with
S=p—r,asn — o0,

ne B yeneeenyip=1 (1— oy, ...c,)

where, as u — 00,

for 0 < c < 0.
Proof: Case k < 0 is trivial. We discuss case p = 2 and k& = 1 as the other

cases follow exactly along the same lines.
(i) As n — oo, for some 0 < ¢ < o0,

n 1
> T oo c/ (1 =61 —a;t) ldt < < a.s.,
—~ 1 — 0
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by I(1). Using Gradshteyn and Ryzhik (1994, # 3.197-3), the integral of the
RHS equals
B(Lb+1)2F1(1,1;2+ by o), (25)

where B(:,-) is the Beta function and o F} (-, ; -; -) denotes the hypergeometric
function (Gradshteyn and Ryzhik 1994, section 9.1). Hence, as o; — 1, by
Gradshteyn and Ryzhik (1994, # 9.122-1 and # 9.131-1)

(25) ~ (c Lyso 4 clog(1 — ;) 1p—o + (1 — ;)" 1b<0) ;

for 0 < ¢,d,d” < oo yielding, as n — oo,

1 i

1 n
D Ml e SR

i—1 1-— OéZ'Oéj

for 0 <¢,C < .
(ii) When r = 2 (s = 0), by Gradshteyn and Ryzhik (1994, # 3.197-3 ), as
n — oo,

UU

Lo~ = UB 1,0+ 1) Fy(1 1; 24 b; 04
nQ”Z:J_OZ% n;a (u+ 1,0+ D)o Fy(1,u+ 1;u+ 2+ b; o),

for 0 < ¢ < o0. Using the aforementioned results of Gradshteyn and Ryzhik
(1994), as a; — 17,

~ LpsoaFi(Liu+ L;u4+2+b;1) 4+ Tpeo(l — Oéi)b2F1(u+ 1+b,b4 1;u+24b;1)1<0,

the logarithmic term, arising when b = 0, being absorbed by the second one.
Simplifying terms yields, as n — oo,

1 &L atal T(b)C(u + 1)
ﬁ Zl 1— o 1b>0w——1M ZO& + 1b<0—ZOé 1 — Oél b7 (26)
INES Qe

for 0 < ¢, ¢ < co. By Stirling’s formula (Brockwell and Davis 1987, pg. 522)

5
/0 WP (6 — )t ~o O EFI L g D) (27)
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as k — oo, forb>—1,0< C < ooand 0 <8 < oo. Thus, under I(7) for

0<c<oo,as k — oo,
g ~ ey kT, (28)

It follows that the limit (as n — o0) of both terms on the RHS of (26) are
asymptotically equivalent to u~ D for u — oco. Recall that to impose
stationarity 26+ 1 > 0.

Finally, when r =1 (s = 1), as n — o0,

I

3,j=1

1 & 1 &

T Oél% ~en ;O/flwo +c - ;O/f(l — ;)" 1y<0,
for 0 <¢,d <oco. O

Proof of Theorem 1: Apply Lemma 1 with k = 1. O

Proof of Theorem 3: (i) Given the i.i.d.ness of the z;,, the Lindeberg-
Lévy CLT applies, as n — 0o. Note that 1/n> " w;/(1 — ;) converges to
F(w;/(1 — o)) a.s., bounded when b; > 0. Easy calculations gives, for any
integer u > 0 and any n,

1 & 1 &
COUn(m Z; Tit, m Z; $i,t+u) =0
= =

where cou, (., .) denotes the covariance operator, conditioning on the w;, o; (i =
1,..,n).

(ii) The convergence in distribution is obtained following (i). From (28),
when b; <0, as t — o0,

1—Oéi

1— t t—1
E(‘%?,t):%:E(wi al) = E(w) > p ~ct™™,
k=0

for some 0 < ¢ < c0. O
Proof of Theorem 4: By Schwarz inequality

o0 a
st (S [1:2,)
h=1

a=0

and taking expectations

(wiw;) 2 )1/2
var, (Y X, > — Z 7
= (1= auey

28



and, likewise,

=1

CZ w2 ’
U 7
Val“n( Xn,t) S g Z (1 _ Oél‘)l/Q 5

for 0 < ¢,C < 0o, Case v < 1 easily follows as

1/n2§n:1/ — o) —Z(l/ﬂZ@) <1/(1 7% < oo,

i,5=1 k=0

and 1/n>"  af — p as. uniformly in k. When v = 1, apply Lemma 1
with k =1 and k = 1/2 respectively. O

Proof of Theorem 5: Bound E(3;_; 0;+)*, the relevant term in var, (VY ),
by Schwarz inequality as follows:

n

ww-ww)1/2 (1 4+ oo a00)
y > W Wl 1L Ul 29
ZJ K Z — 3(aajoa5)'?) (1 — qio0,a5) (29)

“ n 1/2 1/4 4
E(; Ui,t)4 < (l Z i al)l(/léla )3%)1/4) ‘ (30)

ni43

Then apply Lemma 1 with k = 1/4 (upper bound) and Lemma 2 with p = 4
and k =1 (lower bound). O

Proof of Theorem 6: From two versions of Minkowski’s inequality
(Hardy, Littlewood, and Polya 1964, generalization of Theorems 24 and 25
to infinite series (Ch.V)), for any sequence a;;,i = 1,... and j = 1,...,n
one obtains:

1 n 12 1/2
(Z—Zaw/ )

% Ongzl

IA
S| e
M:
/\
L[]8
2
&)
SNa—

S

/_\

Mg
—
M:
B)
&)

S
SN———
OJ
=

yielding (12), where

1/2
') 1 n k
W)Xt = U (Z(_ Z%‘UQO‘?/Q)Q H U?g) )

k=0 i=1 j=1

00 1 n k
@Xns = Uy (Z =S w2l T ey |
k—o Tt =1 =1

N——
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(1) Under Assumption [(7v), setting ¥, = (1/n>7 4 wil/Qoz?) and x, =
FE(Xa), using a version of the law of iterated logarithms (Stout 1974, Corollary
5.2.1),i.e. asn — oo

B oL/2 yyqpi/2 wl/ o
Xo — Xa ~ nl/g i) (loglog(nvar(wl/Qoz M2 a.s. (32)

together with (28) and var(w; 1/2 af) < E(w;a?%), yields

B, !(1)X t—(l)Xt!

piloglogn >
< b Z! Xi)” = () |2 85 = O (TS kG0 (51 16,)8),

n k—0

En ! (2)Xn,t — Xt |

> piloglogn >
S 8D s —xn | 6 = O (PPLIRN S g G (125, ),

k—0 n k—0

Og.s.(+) denoting an O(+) that holds a.s., where the first inequality is obtained
using
’ a1/2 . Cl/2 ’§’ a— ¢ ’1/27
for any real positive a,c. Recalling that xx = p1/2p by 1(7), as n — oo,
WXnt =1 ()Xt (2)Xne —1 (2)Xer

Note that this holds for v/, < 1(i = 1,2) or 4¥/*6, = 1 with b, > 4/i —
1 and, thus, for a larger set than the admissible values of v as stated by
Assumption (7).

Concerning the boundedness, strict stationarity and ergodicity properties,
we adapt the proof of Nelson (1990b, Theorem 2). By Dudley (1989, Theorem
8.3.5), with probability one there exists a constant K < oo such that for all
k>K

1:[ yup_; = O((ve ) s, (33)

using (28).

For (9 Xy, replacing yu; ; with Y 2fus 4| in (33), the same applies noting
that Elog [ug= A\, /2. Using (33) in (13) and (14) yields the stated conditions
for

| () Xe|< 00, as. i=1,2.
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Strict stationarity and ergodicity follows using Stout (1974, Theorem 3.5.8)
and Royden (1980, Proposition 5 and Theorem 3), by the same arguments
used in Nelson (1990b, pg. 329).

(ii) Consider (1)X;. For simplicity’s sake, set w; = 1(i = 1,..,n) as this is
completely innocuous. Then for integer u > 0

COU((l)X1t27 (1)Xt2+u Z /J“k/QMT/2COU Uy H U’t 77 U’t+u H U’t+u s
k,r=0

and, by means of the cumulants’ theorem (Leonov and Shiryaev 1959) one
easily obtains

u—1
cov ut Hut ]7ut+u H ut+u s = E(H U?Jrufs) X (34)

(UG’T U’t Hut ) E1Ut+u s) +E U’t cov Hut R ]1,1Ut+u s)) )
s=u s=u

taking r > u — 1 for otherwise (34) vanishes. Hence using Gradshteyn and
Ryzhik (1994, # 3.381-3 and # 8.357) and straightforward evaluation of

expectations yields terms such as
S 123 iy~ €7 30 (37RO () 2,
k=0 k=0

for 0 < ¢ < 0o as u — oo. Distinguishing between the two cases 3y2 = 1 and
37?2 < 1 yields the result, e.g. when 372 =1

cou(m X7, X 7ra) ~ ey (L+ 0 D) — o0,

for 0 < ¢ < 0.
Using the same arguments, by means of tedious calculations, the same
applies to the ACF of (3)X7, noting that

k1 ko

@X¢ = X7+ uf Z firgpatings2 T TT e i | s -

klj&kg j=1s=1
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Proof of Theorem 7: Set w; = 1(i = 1,..,n) as this is completely
innocuous. Using (31) and squaring yields (17). Recall that

~ 1 t—1 n k 2
wine = ———— (LSl [Tt ),
vary, (1) Yoz k=0 izl
~ 1 ) t—1 1 n k/2 k 2
ins = 1 (L3l [T o)
vary((9)Yn,e)  \k=0 "ot s—1

Let us consider ()%, Using the cumulant’s theorem yields, for integer

h >0,
COUn((l)Y/n,t, (1)57n,t+h)

h—1 r
= E(]] uin_;)cova( ufz 1/nZo¢k/2 Hut 5 U Z 1/nZof/2 h/2)2 S | K
7=0 s=1

z": (Cacts) h/2 1-— (3(oziozjozaozb)1/2) 1 — (zoogap)t?
i ¢ 1— 3(oyaam)? 1 — (ogajom)Y?
N 1 1 — (3(cuajanm))t (a0 )t/2 — (3(cvau) ')
I — ()2 | 1= 3(auojoeon)t/? Y 1 — 3(cqau)/?
1= (ozlozjozaozb)t/2 T (as0,)1? 1 — (cqap)t/?
(ozlozjozaozb 1/2 % 1 — (cgap)/?

121 — (3(aaay)/?)!
1-— S(OéiOéj)l/Q

)
1 — (3(ciaqap)?)t
+ 1/2 [ - ) ) — (aaw)

(aup) 1 — 3(uojagop)'/?

1— (ozlozjozaozb )t/2

1 — (ao;)V/?
+ (Oéa@b)t/Q—(a %) ]

11— (ozzozjozaozb)l/Q 1— (oziozj)l/Q
21— (ozaozb)t/2 1— (oziozj)tﬂ)

31— (ap)/? 1 — (i )V/?

Let us consider first the case when ¢ goes to infinity before n. Under I(1), for
a sufficiently large n, 3(cyajaqa0)"? > 1 for some set of indexes 7, 5, a, b. It is
absolutely innocuous assuming that this holds for all the summands yielding,
as { — oo,

COUn((l)Y/n,t, (1)57n,t+h)

3 Zn: (cractn)™? (3(aiajaqa)'/?)!
nt .. N
2,7,a,0=1

3(ozaozb)1/2 N 3(oziozj)1/2 )
3(agan)V? =1  3(eyay)V/2 — 17

1
(g aap) /2 — 1( +
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so that, considering its ratio with Uarn((l)ffn,t), yields
tlig Covn((l)gn,tu (l)gn,t+h) = Oé?n)u a.s.,

where a1y < ... < ay) indicates the ordered statistics. In fact, cov, ((1yUn,t5 (1)Un,t1n)
can be expressed as a weighted mean, 1/n*3Y7; ) (a0)" ?w; ;.o p(t) say,
with w(l) ()(a), (b)( ) — licj—a—b—n a.s. as t — 0o when there are no repeti-
tions, ie. ag,—1) < ag)ix = 1,..,n, k = i,7,a,b. The case of repetitions
easﬂy follows. Under I(1), ) is a strongly consistent estimator for v yield-
ing, as n — 00,

ally — 1, a.s

(n) e

The key factor that drives the result is the particular shape of the nonsta-
tionary ‘innovations’ H;?:l u? ;- However, if we consider the different normal-
ization such that F(u}) = 1, this would imply E(u?) = k (say) with & < 1.
As a consequence, a factor k" appears, due to E( ;l &uerh J) requiring to
impose v = 1/k > 1 in order to offset the former exponential term. How-
ever, when considering the other term of covn((l)}?n t (1){/71 t+h) (involving the
> iiap—1); the same arguments just made apply yielding a( )y = — (1/k)" a.s.
as n — 00. Therefore, limy, o limy o OV (1) Un,ts 1)Unrn) = 1 a.s..

Finally, consider the case when n goes to infinity before ¢. Then

lim covn((l)Ym,(l)Yth) A(t; h), a.s.,

n—0o0

setting

1 — (3(aiazoeap)?)t 1 — (iazogam)t?
A(t; h) = 3E [ (cg)? 7 _ J
(t: ) ((a )" 1 — 3(aaogan)t/? 1 — (e oq0p)Y?
1 1 — (3(cyorjarq0p)t?) (o ‘)t/21 — (3(arq)/2)?
I — ()2 | 1= 3(aajogn)t/? B 1 — 3(cq)/?
t/2 t/2
1 (oyaa)” + (csa)"? 1 — (cun)”
(ozlozjozaozb)l/Q 1 — (aqau)V/?
1 — (3(oyajaq0p)t2)
1 — 3(ovjaq0p)'/?

_I_

ial = (3(eua,)'/?)!

+ 1-— S(OéiOéj)l/Q

1— (aqm)/? ~ ()

1 — (oyajaq0)t?

+ (aaab)t/Q

1 — (OéiOéj>t/2
1 (g0 )V/? 1— (oz,-ozj)l/Q]
21 — (g2 1 — ()2

31—(a ap)/21 — (e )1/2>
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Using

8

!
o g polog(2)

, x>0, 85— 00, (35)
1—=x —x

by a Taylor expansion in ¢ around 0 and 1 — 1/z <log(z) <z —1, (z > 0)
yields, as ¢ — oo,

A(t; h) ~ ct? 3 (piniey2 e2)?, h=0,%+1, ... a.s.
for some constant 0 < ¢ < co (independent of h). Using (28), as ¢ — oo,
A(t;h) /AL 0) — 1 a.s.,

uniformly in & = 0, %1, .... The same arguments apply to covn(2)Un.t, (2)Un,t+n)-
([l
Proof of Theorem 8: Using (31)

min{(1)Xo 1, 0 Xnt) <Y Xnr < max|y Xy, 20X,

where

i 1/2
(l)Xn,t = U (Z o ZWZI/Q H ﬂz + Oéiufj)l/Q)Q) )
_ j=1
@Xnt = U (Z Zw1/2 H B + oziufj)m) :
=1

The first and the last inequalities in the first statement of the theorem,
involving the (Z-)Xn,t (i = 1,2), follows considering the nonlinear moving av-
erage representation of ARCH(co) of Zaffaroni (1999, section 2) which, for
heterogeneous GARCH(1,1), reduces to

0_12,1& = Wy Z Ni,l(t)7 (36)

Lk [0 2
Niyg=110+ 1z>OZO‘ B; Z(k)ut g Wt—gi——jr | (37)

k=0
setting
) I—k4+11-k+2—51 l—-51——Jk-1
Z(k) Lico+leso D, D>, Y
=1 jo=1 Jr=1
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For GARCH(l 1), (37) represents an alternative way of writing [T;_,(3 +
a;u? ) (cf. Nelson (1990b, eq. (10))). However, (37) is more suitable to our
purpose because it neatly separates the contribution of the coeflicients and
of the rescaled innovations.

Applying Hardy, Littlewood, and Polya (1964, Theorem 24 (2.11.2) and
27 (2.12.2)) yields

© L = 1 - 1/2
o= (S Sty Y Ml
1=0 k=0 n =
= 1 n -
(Q)X"t = Ut (ZZZ(k) ’ut 31’ ’ut*jlf...fjk’ (—ng/Qaf/Qﬂfl WQ)) 7
1=0 k=0 n =
and
A )] 12 12 o) 2 1/2
(1)Xt = Uy ZZZ(k)ut i ut i ﬂk(E(wi ;"B N?
1=0 k=0
© L = B
)Xo = (Z DI DAL R LTS B(w; ks WQ)) :
1=0 k=0

i) We follow the proof of Theorem 6. Applying (32) to the sequence

{wil/Qozf/Qﬂi(l*k)/Q} yields, as n — oo,

1 _
’E ng/Qaf/Qﬂfl k)2 _ B(wY2ak /23002y
i—1
piloglogn B
= Oa.s((lT)l/2 o2 gU-k)/2 (k+1)" (bat1)/2 (1— k) (b@+1)/2)7

max/~max

using (38). Note that (maa —I—Nﬂmm) +2a2,.. <7 (cf. (20)).

Considering the case of (9)X,;, the result then follows from
By | Xne — X4l

oo 1

= Ous. ((M)WZ[Z (,i) a2, 8k B D/2 - (Gt D/ (; l)(bﬁ+1)/2]>
n =0 k=0

= O.. ((MW? SO b 02 (G2 6, 4 g1/2 ) )

mal
n -0

35



Imposing IV(7) is not sufficient per se, unless for small enough 7, as it implies
that 0 < 3 < v/? and 0 < a; < (=0 + (3~ — 2ﬂ2)1/2)/3 without ensuring
boundedness of the series. Following the proof of Theorem 6, the result
follows for (I)Xn,t where the stronger condition al/4 6, + 314 < 1 is needed
(recall that, by Assumption /11, 0 < aumax + Bimae < 1). Finally, note that
when oz;/;émé +3/4 =1(i = 1,2) then the result follows when min|b,, bs] >
4/i —1(i = 1,2). These cases do not seem relevant and therefore are not
commented in the statement of the theorem.

Boundedness, strict stationarity and ergodicity easily follows by using the
same arguments of the proof of Theorem 6, using (33) with v = 1 and, as

U — 00,
E(Oéu) ~ (amam)u uf(boﬂrl)’ E(ﬂu) ~ (ﬂmam)u uf(b@+1)7 (38)
for 0 < ¢, < oo, from (28) (cf. remark IV.3 and B.1), with

I
Z (l)ak/i oruk /2 ﬂr(rlft;mz)/ikﬂ(baﬂ)/i (k — l)72(b@+1)/i

mazx
k=0 k

SCk;fQ(min(ba,b@)+1)/i((Oémame)\u/Q)l/z ﬂl/l) (i=1,2).

max )

for some 0 < ¢ < oo, using fig%l = (é) Note that, due to the greater

complexity of GARCH(1,1), the required conditions are much stronger for
(Q)Xt than for (1))~Q.

(i) Set w; = 1(i = 1,..,n) as this is completely innocuous. Consider
1)Xn¢ and set 6;(t) = (3; + a;u2)'/2. Then for any integer u > 0

cov((y Xy 1 )Xo pyu) = A+ B,

with
A=A +A2,
A= z": Eul:[l (t+u—3)6(t+u—s))
X Z cov(u?, 6, (£)6,(t ))E(l:[l 6;(t —r)6;(t — 7)) E( J_I St +u—h)o(t+u—h))|,
Ay = Zn: Eul:[l 8ot +u— )6 (t+u—s))

2,7,a,b=1 s=1
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k k

Xi Eu?8.(t)6(t))cov(J[ &t — )65t — ), J[ balt +u— R)&(t+u—h))|,

r=1 h=u+1

and
B Bl +B27
o0 1 n k2
Bi=Euj) >, — > cov utH(S (t —r)6;(t — ) ][ balt +u— 5)6,(t + u —s)),
ki>ky TG 5ap—1 s—1
ko >u
00 1 n ko
By=Eui) >, — > cov utH(S (t —7r)8;(t —7) ][ balt +u— 8)8(t + u—s)),
k=i =1 s—1
27714

where for A we have used the cumulants’ theorem. Note that the ACF of
()X, is nonnegative, given that cov((3; + au2)V? (B; + a;u2)?) > 0 for
any 1, j, and using

m m m k—1 m m
=1 =1 k=1 j=1 J=k+1 j=k+1

for sequence of independent r.v.’s {C;, D;}.
By Schwarz inequality for some 0 < ¢ < oo

1 n T Ty ) 2
AISC(_ 3, {mmmem) )

4 — (772 1/2
nt o (T mamy) Y
1 & (i) 2
Ay <c i Z 1/4 |-
nt ol L= (vvivaty)

For By and Bs, using the cumulants’ theorem, for some 0 < ¢, C' < o0,

Z Z TaTp)" (cov(ut,é ()6 (t)) (ij)m/2(7raﬂb)(kru)/2

k1>k2>ua b,2,7=1

+ E(Uféa( )6(1)) (7Tz'7Tj)(krkﬁuw(Vz"/j)(kru)/él(l/al/b)(kr“)/él)
C & (mymymem,)™/? 1 1
< 4 Z 1— (7_[_1 )1/2 1 — ( 172 + .

7 abii=1 T Ty }) 1 — (vivjvavy) /4
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c n
B2 < n4 abg‘;l 7Ta 7Tb (
oo u—1
cou(uy, 84(1)6,(1)) [Z S (i )2 (g, ) 27 4 Z ;)" (g b)(k2“)/2]
ko>u k1=0 ko>ki1>u
+E(ugba(t) (1)) X
u—1 kq
Z Z?T?T (kl kg)/%uu Valp) k2/4—|—z Z TaTp) (’” kl)/%uu Valp) kl/
k1=0ko=0 k1=0ko=k1+1
00 k1+u
+ > lz: () Ert ek Ry p ) 2 “)/44—2 Z Tamy) B2 R Ry p ) R/
k1=uko=k1+1 k1=uko=k1+1+u
1 1 i) 1
Z TaT) U/Q ([ 1/2 Rl (i) 1/2 1/2]
i 1 — (mm;)1/2 1 — (mumy) 1 — (mempmym)V/2 1 — (mam)
n 1 ( 1 n 1 )
1 — (nvvery) V4 1 — (mamp) V2 1 — (mymy) Y2
(viv; Uaub)“/4 1 (7Ta7Tb)1/2 )
1 — (ivjvary) V41 — (mam) V2 (vivvain) V4 — (mam) V2 '

Considering the dominating term (in Bj), yields

N 1 n wg/%gjﬂ
COU((I)Xn,tu (1)Xn t+u) = Cﬁ bZ ) 1 — (U‘ij Vb)1/47 (39)
@,0,2,7= 4 @

for some 0 < C' < co. When v < 1 the limit (as n — o0) of (39) behaves as
(E(?T?/Q))Q, when u — 0o, and thus the result follows applying (28). Recalling
that, in the limit, we need to characterize the behaviour near 1 of the v;,
we use T; ~ (Qmazr + Omax) Viy @s v; — 17, when v = 1. Lemma 2, with
p =4, r =2 concludes.

The same arguments (with tedious calculations) apply to the ACF of

2 .
(2)X¢, using
n k1 ko

@Xn: = X, +utZ ZHH(”—T (t —s)

k1>k2 zg 1r=1s=1
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7 Appendix B

In this section we give a set of sufficient conditions on couples of r.v.’s,
independent of each other, yielding a convolution with a distribution of the
type described in Assumption [ (1). The following result is certainly known
but we could not find a reference.

Lemma 3 Let o and 3 be absolutely continuous r.v.’s, independent of each
other, defined respectively in the interval [0, k| and [0, 1—k| for some constant
0 < k < 1. Let us assume that their density functions, labelled g,(.) and gs(.),
satisfy

ba

go(x) ~co(k—x)" asx — k|

gs(y) ~ cs(l =k —y)” asy — (1—k),
and either
dgs(y)

“ay (l—k—y)" ' asy —(1-k),

or

dge

with bounded constants ¢, >0, cg >0, [ ¢, [>0,] ¢y ][>0, by > —1, b5 > —1,

and the g,(-), gs(-) and either dg,(y)/dy or dgs(y)/dy are all bounded ev-
erywhere else in their support. Then the r.v. m = a + 3, convolution of «
and 3, is absolutely continuous with probability density g-(.), defined on the
support [0,1], satisfying

Gr(2) ~en(L—2)" asz— 17,

with
0 <er <ooand by =b,+bs+1,

and bounded in the interval [0,1).

Proof: The density function of 7 is given by the following convolution:

gw(?«’) = / ga(Z - 3)1(0§275§k)g[3(3)1(0§s§(17k))d3-

— 00
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Asz— 17,

1—- 1

g=(2) ~c k(k: +5—2)" (1 — (k+5))ds = c/ (u— 2)" (1 — w)’?du

z—k z

=c(l—2) / (1 — u)*#du — cb,, / w)?e (G — 2)Pe du, (40)

where the second equality is obtained from the mean value theorem with
@ = Ou+ (1 — 0) for some 6 € (0,1). By Schwarz inequality, when b, # 1/2,
for the second integral in (40), as z — 17,

1 1 2 n 1/2
1 — et (5 — Yoy < 1 — »)2p 43 _/ P )\ ?a-24s
/z (LmwfP i =2 du s { 5 =gt = 2) /A il B

1— (1= )%t
(2b, — 1)0

~ C(l . Z)ba+b@+1( )1/2 ~ 0(1 . Z)ba+b@+17

for some 0 < ¢, C < o0, using 519;92 ~ a, as § — 01, for any real a. The

same applies when bs = 1/2 using — M ~ 1, as # — 0*. Thus, the first
integral in (40) dominates. When z < 1 (strlctly) or when z < m@n(l —k, k)
the above expressions are bounded. O

Remark B.1 By (28), as u — oo,

E(a") ~ ¢ kty~CGatl) E(B") ~d (1— k:)“uf(bf’ﬂ), E(@") ~ ' u~ et

for 0 <e¢,d,d < 0.

Remark B.2 Lemma 3 implies the familiar results whereby, when both
0>b,>—-1/2and 0 > bs > —1/2, the density function g(.) is continuous
even if g,(.) and gg(.) are not.

Remark B.3 The result can be easily generalized to the case of m r.v.’s, all
independent of each other. If each of them has support [0,¢;], j=1,...,m
and b; denotes the exponent at c; of the jth r.v., then when all the m r.v.’s
satisfy the assumptions of Lemma 3 their convolution will have a density
function with support [0,3°7"; ¢;] and with exponent 7" b; + (m — 1) at
Z] 165
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