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Abstract 
 
 

We propose a modification of kernel time series regression estimators that 

improves efficiency when the innovation process is autocorrelated. The 

procedure is based on a pre-whitening transformation of the dependent 

variable that has to be estimated from the data. We establish the asymptotic 

distribution of our estimator under weak dependence conditions. It is shown 

that the proposed estimation procedure is more efficient than the conventional 

kernel method. We also provide simulation evidence to suggest that gains can 

be achieved in moderate sized samples. 
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1 INTRODUCTION

Consider the following regression model

Yt =m(Xt) + ut, t = 1; : : : ; T; (1)

where the stationary residual process ut is autocorrelated, but satis…es E(utjX1; : : : ; XT ) = 0 almost
surely. The function m(:) is assumed to be unknown but smooth, and is the object of central
interest. There are two leading sampling schemes with regard to the process fXtg. First, the ‘…xed
design’ case where Xt is time or some smooth function thereof, i.e., Xt = f (t=T ) for some smooth
f; and second, the ‘random design’ case where Xt is a stationary stochastic process itself with a
nondegenerate marginal distribution.1 In the former case, both the standard least squares parametric
and kernel nonparametric estimator have variances proportional to the long run variance [i.e., the
spectral density at frequency zero] of the process futg: However, adjusting for serial correlation
brings no advantage in terms of estimator variance in either parametric or nonparametric method.
Speci…cally, when the regressors are polynomials in time OLS=GLS, see for example Andersen (1971,
p581). Much methodological work in nonparametric statistics has focussed on this sampling scheme,
especially with regard to bandwidth selection, see Hart (1991) for references.

The focus of this paper is the second sampling scheme where Xt is a non-degenerate stochastic
process. This setting arises in many applications, because time itself is often not the only relevant co-
variate. Indeed, in the 1970’s the linear regression model with autocorrelated disturbances was one of
the central models of interest and numerous procedures were created to deal with the estimation and
testing issues that ensued, including: Cochrane-Orcutt, Hildreth-Lu, Prais-Winsten, and Durbin-
Watson. As is well known, when the regression function is parametric the variance of the parameter
estimators is proportional to the long run variance of the process fXtutg and least squares standard
errors that ignore this fact are inconsistent and need to be modi…ed in a non-trivial way. Also, one
can generally improve e¢ciency of least squares estimators by using a GLS weighting scheme that
re‡ects the error autocorrelation function. Compare this with the case where m(:) is nonparametric,
which has been analyzed in Robinson (1983), Masry (1996ab) for example. In this case, standard
kernel regression smoothers do not take account of the correlation structure in Xt or ut and estimate
the regression function in the same way as if these processes were independent. Furthermore, the
variance of such estimators is proportional to the short run variance of ut; ¾2u = var(ut) and does not
depend on the regressor or error covariance functions °X (j) = cov(Xt;Xt¡j); °u(j) = cov(ut; ut¡j);
j 6= 0: Practitioners accustomed to correcting standard errors for dependence believe that the stan-
dard errors in nonparametric regression are therefore suspect. As Conley, Hansen, Luttmer, and
Scheinkman (1997) say: “Although theoretically correct the practice of ignoring serial correlation is

1Opsomer, Wang, and Yang (2001) have discussed the related case where the regressors are multivariate and
random, but the error covariance is a smooth function of the regressors. This case is more like the ‘…xed design’ in
some respects.



not likely to work well for the temporal dependence present in our short-term interest rate data”.
The purpose of this paper is to show that the autocorrelation function of the error process has useful
information to provide for improving estimators of the regression function. As a by-product one
might hope to obtain more accurate standard errors, given that the resulting error process is purged
of all correlation.

There is a related literature on estimating nonparametric regression with longitudinal or panel
data. For example: Severini and Staniswalis (1994), Zeger and Diggle (1994), Wild and Yee (1996),
and Wu, Chiang and Hoover (1998), among others. The …rst authors estimate the covariance matrix
of the correlated observations and use this in their kernel construction of the nonparametric regression
estimate. The other papers e¤ectively ignore the correlation structure entirely and “pretend” that the
data are really independent, this being the so–called “working independence” method. Ruckstuhl,
Welsh and Carroll (2000) and Lin and Carroll (2000) provided theoretical evidence in support of the
working independence method. In fact, they showed that for many situations and di¤erent methods
of kernel estimation, the working independence method is most e¢cient in terms of mean squared
error. That is, for the kernel methods proposed in the literature, it is generally better to ignore the
correlation structure entirely. Carroll et al. (2001) construct a kernel–type method that can take ad-
vantage of the correlations among the data. The method is a simple modi…cation, and generalization
to an arbitrary covariance matrix, of a method proposed by Ruckstuhl, Welsh and Carroll (2000).
The resulting estimator is asymptotically more e¢cient than the working independence estimator.

In this paper, we propose a new kernel-based procedure for estimating m(x) in the time series
regression model (1) that takes account of the correlation structure of the error terms and is as-
ymptotically more e¢cient than the usual methods. The basic idea of the proposed estimation is to
transform or “prewhiten” the original regression model so that the …ltered regression has a residual
term that is uncorrelated. However, because of the nonlinear feature of the regression function m(¢);
the transformation depends on both the function m(:) and on the parameters of the autoregressive
representation of u. We therefore …rst estimate these quantities and then construct a feasible trans-
formation of the dependent variable Yt. The resulting estimator we show to be asymptotically normal
and to be more e¢cient than the conventional kernel estimator. We allow for an error correlation
structure of unknown form, i.e., the autoregressive representation of the process need not be of …nite
order.

The rest of the paper is organized as follows. We introduce the proposed estimation method
in Section 2. Regularity assumptions and the limiting distribution of the estimator are given in
Section 3. Section 4 discusses model selection and bandwidth choice. Section 5 proposes an even
more e¢cient estimator. In Section 6 we report some numerical results on simulated data and on
stock index return data. Section 7 concludes. All proofs are given in the Appendix. For notation,
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we de…ne ¹q(K) =
R
uqK(u)du; and for fX : Rd ! R; we denote

f (r)X (x) =
X

r1+¢¢¢+rd=r

@rfX(x)
@xr11 ¢ ¢ ¢ @xrdd

:

2 ESTIMATION METHOD

2.1 Motivation and An Infeasible Estimator

Suppose that we have a sample f(X1; Y1); : : : ; (XT ; YT )g, where Xt 2 Rd and Yt 2 R; from the
nonparametric regression model (1). We assume that the residual process ut is stationary, mean
zero, and has an invertible linear process representation

ut =
1X

j=0

cj"t¡j; (2)

where "t are independent identically distributed with mean zero and variance ¾2": Without loss of
generality, c0 = 1: For convenience we shall temporarily assume that the process ut is independent
of the process Xt; but relax this assumption below. The coe¢cients fcjg1j=0 and the regression
functionm(¢) are unknown except that m(:) is a smooth function and the coe¢cients cj satisfy certain
summability conditions [e.g., the process is short memory] as speci…ed later in our assumptions. Our
assumptions permit ut to be any …nite order ARMA(p,q) process but we allow for the full class
of linear processes as is common in much literature on estimating linear regression with correlated
errors. The objective is to estimatem(x) at some interior point x and to provide con…dence intervals
for such estimates.

Let c(L) =
P1
j=0 cjL

j; where L is the usual lag operator. Inverting c(L) we obtain an autoregres-
sive representation of ut of potentially in…nite order. Let

c(L)¡1 = a(L) = a0 ¡ a1L¡ ¢ ¢ ¢ ¡ ajLj ¡ ¢ ¢ ¢ = a0 ¡
1X

j=1

ajLj (3)

be the inverse, and de…ne that a0 = 1 without loss of generality, we have

a(L)ut = "t:

Applying a(L) to regression (1), we obtain

a(L)Yt = a(L)m(Xt) + "t: (4)

The error term in this transformed model is now uncorrelated; however, the immediate usefulness of
this is unclear because m is nonlinear and so does not commute with the operator a(L) as would be
the case with a linear model:



We rewrite equation (4) as
Y t =m(Xt) + "t; (5)

where Y t is the …ltered series

Y t = Yt ¡
1X

j=1

aj (Yt¡j ¡m(Xt¡j )) :

The transformed model (5) is also a valid regression equation since "t is independent of Xt. If Y t were
known, as shown by the following Theorem, a nonparametric kernel regression of Y t on Xt would be
more e¢cient than the conventional kernel estimation. In this paper, we give asymptotic analysis
based on the Nadaraya-Watson procedure and make comparison for the corresponding estimators.
However, the same idea can be applied to other types of estimators, like local polynomials. This
leads to a di¤erence in the bias expression but the same variance for comparable implementations.
Let m̧(x) be the nonparametric estimator based on kernel regression of Yt on Xt and let m(x) be the
estimator based on kernel regression of Y t on Xt:

m̧(x) =
PT
t=1K

¡x¡Xt
h

¢
YtPT

t=1 K
¡x¡Xt
h

¢ ; m(x) =
PT
t=1K

¡x¡Xt
h

¢
Y tPT

t=1K
¡x¡Xt
h

¢ ;

where

K
µ
x¡Xi
h

¶
=

dY

j=1

k
µ
xj ¡Xij
h

¶
; (6)

with k being the corresponding kernel function and h being the bandwidth in the preliminary estima-
tion, Theorem 1 below gives the asymptotic distribution of m(x) and show that it is asymptotically
more e¢cient than m̧(x).

Theorem 1 Suppose that the assumptions given in Section 3 hold. Then,

p
Thd[m(x) ¡m(x) ¡ hq¹q(K)B(x)] =) N

Ã
0;
¾2" kKk2
fX(x)

!
;

where B(x) is a bias term that equals

X

p+r=q;1·p·q;0·r·q

1
p!r!
m(p)(x)

f(r)X (x)
fX(x)

:

Theorem 1 shows that the bias term of the estimator m(x) is the same as that of the conventional
kernel estimator m̧(x). In the case with a quadratic kernel, q = 2, and the bias term is simply
1
2¹2(K1)[m00(x) + 2m0(x) f

0

f (x)]. The smoother m(x) has a variance proportional to ¾2" and hence is
more e¢cient than the traditional kernel estimator m̧(x), which has variance proportional to

¾2u = ¾
2
"

1X

j=0

c2j ¸ ¾2":



For example, when ut = aut¡1+ "t; we have ¾2u = ¾2"=(1 ¡a2); which strictly exceeds ¾2" except when
a = 0: In fact, the e¢ciency gain of m(x) can be arbitrarily large in this case because 1=(1 ¡ a2) is
unbounded as a function of a:

2.2 The Estimator

In practice, Y t is unknown. Thus the regression (5) and m(x) are infeasible. We propose in this
section a feasible estimator of regression (5) by replacing the left hand side of this equation by an
approximation of Y t based on estimates of the coe¢cients aj and a truncation of the in…nite sum to
a …nite but large order sum. The proposed estimation procedure is as follows:

1. First obtain a preliminary consistent estimate of m by conventional kernel smoothing Yt on Xt
with corresponding kernel K0 and bandwidth h0. Denote the preliminary estimates as bm(Xt)
[see more discussions of our preliminary estimators in later sections] and calculate the estimated
residuals

but = Yt ¡ bm(Xt):

2. Let ¿ = ¿ (T ) be some truncation parameter suitably small relative to the sample size T but
large enough to avoid serious bias [see Assumption 6 in Section 3]. We conduct a ¿-th order
autoregression of but :

but = ba1but¡1 + ¢ ¢ ¢ + ba¿ but¡¿ + residual. (7)

De…ne the estimate bA¿ = (ba1; : : : ;ba¿)0 of A¿ = (a1; : : : ; a¿)0, where

bA¿ = (bU 0¿ bU¿)¡1bU 0¿bu;

where bu = (bu¿ ; : : : ; buT )0 and bU¿ is the (T ¡ ¿) £ ¿ matrix of regressors with typical element
but¡j:

3. Construct an approximation of Y t by

bY t = Yt ¡
¿X

j=1

baj (Yt¡j ¡ bm(Xt¡j)) ;

the proposed estimator of m(x) is then obtained from kernel smoothing bY t on Xt; calling the
resulting estimator em(x); i.e.,

em(x) =
PT
t=1K1

³
x¡Xt
h1

´
bY t

PT
t=1K1

³
x¡Xt
h1

´ ; (8)

where K1

³
x¡Xi
h1

´
is de…ned by the same formula as (6) with the corresponding kernel and

bandwidth replaced by k1 and h1:



The above procedures may be iterated to achieve better …nite sample performance in practice.
Also, in estimating the coe¢cients (ba1; ¢ ¢ ¢;ba¿ ), for reasons of parsimony, it may be advantageous to
‘model’ the residual process ut by some parametric ARMA process A(L)ut = B(L)"t; estimates of
aj may be obtained from inverting B(L):

We show in Section 3 that, under appropriate assumptions, the proposed estimator em(x) is
asymptotically equivalent to the infeasible estimator m(x), which is more e¢cient than the conven-
tional kernel estimation. In fact, the transformation we propose is also e¤ective in parametric models
[although not as e¤ective as a full GLS transform], see Kristensen and Linton (2001).

Recently, Vilar-Fernandez and Francisco-Fernandez (2001) have analyzed an alternative modi…-
cation of standard local polynomial regression. They included a ‘GLS-weighting’ for autocorrelation
in the criterion function. The resulting estimator involves transformation of both Y and X processes
by a matrix P; which is the square root of the inverse covariance matrix of (u1; : : : ; uT ): This trans-
formation does not improve the …rst order properties of the estimator although they have shown in
simulations that it can improve the …nite sample MSE.

2.3 Estimation of the Residuals

An important input in our procedure is the estimated residual but = Yt ¡ bm(Xt); whose construc-
tion presupposes an estimate of m(Xt): For the choice of bm(Xt), natural candidates include the
conventional Nadaraya-Watson estimator and the widely used local polynomial estimator or sieve
estimators. When the ordinary kernel estimator is used, additional trimming is usually needed to
remove the boundary bias because if we use all observations in estimating the error density, we are
pushed into the boundary. To avoid introducing another trimming on bm(Xt), we use local poly-
nomials instead of ordinary kernel estimators in the construction of residuals but. See Fan (1992),
and Fan and Gijbels (1996) for discussion on the attractive properties of local polynomials. Given
observations fYt; Xtgnt=1, the preliminary estimate of the regression function m(x) can be obtained
using the multivariate weighted least squares criterion

nX

t=1

2
4Yt ¡

X

0·jkj·p
bk ¢ (Xt ¡ x)k

3
5
2

K0

µ
Xt ¡ x
h0

¶
; (9)

where K0(u) is a nonnegative weight function on Rd and h0 is a bandwidth parameter, while p is an
integer with p ¸ 2: Let bm(x) = bb0; where bb0 is the minimizing intercept in (9). We compute this
estimator for each sample point and use it to construct the residuals but = Yt¡ bm(Xt); which are the
key input to the density estimate. Again, for convenience of comparison, we choose p = q¡ 1 so that
the bias and variance of the preliminary estimator are of the same orders of magnitude as the …nal
estimator. We give more discussion about the technical details of the local polynomial estimator in
the appendix.



3 MAIN RESULT

In this section we shall assume that the error process futg is independent of the process fXtg: To
proceed, we assume that fXtg is a ®-mixing process. Let Fba be the ¾-algebra of events generated
by the random variables fXt; a · j · bg. The stationary processes fXtg is called strongly mixing
[Rosenblatt (1956)] if

sup
A2F0

¡1;B2F1k
jPr (A \ B) ¡Pr(A)Pr(B)j ´ ®(k) ! 0 as k! 1: (10)

To facilitate the asymptotic analysis, we make the following assumptions on the residuals and
regressors, the kernel function k(¢); and the bandwidth parameters h0 and h1. In practice, even when
some of these conditions do not hold, if the residuals are autocorrelated, e¢ciency gain over the
conventional kernel estimator may still be found in the proposed estimator.

Assumption A

1. The kernels k = kj ; j = 0; 1 are bounded, have compact support [¡1; 1], are symmetric about
zero, and are Lipschitz continuous, i.e., there exists a positive …nite constant C such that
jk(u) ¡ k(v)j · C ju¡ vj : They also satisfy the property that

R
k(u)du = 1. For k1; there

exists an even positive integer q such that
Z
ujk1(u)du = 0; j = 1; : : : ; q¡ 1; and

Z
uqk1(u)du 6= 0:

The functions Hj(u) = ujK0(u) for all j with 0 · jjj · 2p+1; where K0 is de…ned by (6), are
Lipschitz continuous, i.e., there exists …nite C1 such that jHj(u) ¡Hj(v)j · C jju¡ vjj:

2. The process fXtg is strongly mixing with
P1
i=1 i

±f®(i)g1¡2=º < 1 for some 2 < º · µ and
± > 1 ¡ 2=º: The density fX of Xt and the joint densities of (Xt; Xt+`); (Xt; Xt+`; Xt+j);
(Xt; Xt+`; Xt+j; Xt+s) are uniformly bounded and are bounded away from zero on their supports.

3. For some µ > 2; E(jutjµ) <1.

4. The function m(¢) is q times partially di¤erentiable and the qth order partial derivatives are
Lipschitz continuous on X . The partial derivatives of fX exist and are continuous on X .

5. The process futg is a stationary invertible linear process representable in the form of (2), and
has inverse (3). In addition, there exists some ¸ 2 (0; 1) such that the linear process coe¢cients
jaj j are bounded by a constant multiple of ¸j.

6. The truncation parameter ¿ satis…es ¿ (T ) = · logT for some · > 0:

7. Bandwidths h0 and h1 satisfy that h0=h1 ! 0, T 1=2hd=21 h
2q
0 (logT ) ! 0, and T¡1=2h¡d0 h

d=2
1 (log T ) !

0.



The stationarity condition rules out examples like Xt = f (t=T ) for smooth f: Assumption 1 is a
standard assumption for kernel functions in nonparametric estimation. Under the mixing conditions
of Assumption 2, the temporal dependence among fXtg decreases fast enough as the time distance
increases, and thus is asymptotically ignorable. In particular, strong law of large numbers and central
limiting theorems continuous to hold for standardized summations and uniform convergence results
on the kernel smooth quantities still hold. The di¤erentiability of Assumption 4 ensures a Taylor
expansion to appropriate order. While Assumption 5 is stronger than the summability conditions in,
say Phillips and Solo (1992), the dominance requirement that jajj are bounded by a constant multiple
of ¸j is general enough to include leading cases like the widely considered stationary invertible ARMA
process. This dominance condition is useful in our technical development and, in particular, provides
a su¢cient condition for controlling the order of magnitude of various summations involving cj .
No doubt this condition could be weakened, but we do not attempt to do so or to …nd minimal
conditions under which our results hold. The expansion rate of the truncation parameter given in
Assumption 6 is also for convenience and our results hold for a much wider range of ¿. In fact,
from the proof in the Appendix we can see that as long as the tail summation (

P1
j=¿+1 aj ) of the

sequence aj is controlled under appropriate order, our results still hold. Assumption 7 assumes that
we undersmooth in the preliminary estimation stage so that the bias term coming from preliminary
estimation will be smaller than the leading bias term. Consequently, the feasible estimator has the
same asymptotic mean squared error (MSE) as the infeasible estimator m. Note that if we take
h1 = O(T¡1=(2q+d)) then Assumption 7 is satis…ed for all q; d and many sequences h0(T ):

Theorem 2 Suppose that Assumptions 1 to 7 hold. Then,

q
Thd1 [em(x) ¡m(x) ¡ hq1¹q(K1)B(x)] =) N

Ã
0;
¾2" kK1k2
fX(x)

!
:

We have a sort of ‘oracle’ property here: the feasible estimator em(x) is asymptotically equivalent
to m(x) and hence is more e¢cient than bm(x). By undersmoothing the pilot estimator bm(x) we can
make the bias of em(x) the same as the bias of bm(x). Therefore, em(x) should be preferred to bm(x):
A similar result applies to the procedure de…ned throughout with local polynomials of given order
under appropriate smoothness conditions, except that the bias function is di¤erent.

The asymptotic normal distribution given by Theorem 2 can be used to calculate pointwise
con…dence intervals for estimators described here. To do this we require an estimate of the asymptotic
variance: Let

ev(x) =
P
t K

¡
x¡Xt
h

¢2 e"2t£P
tK

¡x¡Xt
h

¢¤2 ;

where e"t = bY t ¡ em(Xt): Then,
em(x) § z®=2

p
ev(x); (11)



where z® are the standard normal critical values, provide valid two sided pointwise con…dence intervals
provided the estimation is undersmoothed, i.e., h1 = o(T¡1=(2q+d)). By de…nition "t is supposed to
be an uncorrelated sequence so that we might expect these standard errors to be more accurate than
those for bm(x):

One may substitute di¤erent smoothers like local polynomials and one may employ a di¤erent
estimation scheme to obtain the ba0js:One can also expect some improvement by iterating the process.
Speci…cally, de…ne again

eY t = Yt ¡
¿X

j=1

eaj (Yt¡j ¡ em(Xt¡j )) ;

where (ea1; : : : ;ea¿)0 are obtained from the least squares regression of Yt ¡ em(Xt) on
(Yt¡1 ¡ em(Xt¡1); : : : ; Yt¡¿ ¡ em(Xt¡¿ ))0; and kernel smooth eY t against Xt:

Finally, we can weaken our assumption of independence of X from u: For example, suppose that
ut = ¾(Xt)vt with ¾(Xt) a smooth function bounded away from zero and E(vtjX1; : : : ; XT ) = 0
and cov(vs; vtjX1; : : : ; XT ) = °v(js ¡ tj) for some covariance function °v. We will also need further
conditions like Masry (1996ab) on the dependence of the joint process (Yt; Xt): Under such conditions
it can be shown that our main result continues to hold, and indeed (11) is still valid as stated.

4 MODEL SELECTION

In practice, it is important to choose good values of the bandwidths as well as the truncation pa-
rameter ¿ : For the bandwidth h0 in preliminary estimation, we may simply choose h0 to be, say,
h±1 for some ± > 1 for convenience. A more complicate choice might be derived from higher order
expansions of the estimator. If we look at the higher order e¤ects, the leading bias and variance terms
in em(x) are of order hq1 and T¡1=2h¡d=21 ; and the second order terms are of orders hq0; T¡1h¡d=20 h¡d=21 ;
and T¡1=2h¡d=20 hq1: Balancing the leading terms gives us an optimal order of T¡1=(2q+d) for h1 (see
formula below). Given h1, we may choose h0 to balance the second order terms, giving order of
T¡1=(2q+d)h2q=(2q+d)1 for h0.

For the truncation parameter ¿ , in practice we may use various selection criteria such as AIC and
BIC in autoregression (7). If we consider an autoregression on the true ut; in the case where ut is
actually generated by a …nite order autoregression, the order selection based on the BIC criterion is
consistent and thus might be preferred. However, if the true model is not a …nite order autoregression,
AIC may be preferred since it leads to asymptotically e¢cient choice of optimal order in the class of
some projected in…nite order autoregressive processes. Let RSST (¿ ) be the residual sum of squares
of the autoregression (7), then if we use the Akaike criterion, we choose ¿ that minimizes

log
RSST (¿)
T

+
2¿
T
:

9



Or, if we consider the BIC criterion, we choose ¿ that minimizes

log
RSST (¿ )
T

+
¿ logT
T
:

For bandwidth h1; if our object is to …nd a point estimate we may choose h1 to minimize the
mean squared error. From our analysis we know that the leading terms in E [em(x) ¡m(x)]2 are
h2q1 ¹q(K)2B(x)2 and T¡1h¡d1 ¾2" kKk2 =fX (x). Minimizing the leading mean squared error us the
conventional optimal bandwidth choice of order T¡1=(2q+d):

hopt1 =

"
d
2q

kKk2
¹q(K)2

¾2"
fX(x)B(x)2

#¡1=(2q+d)

T ¡1=(2q+d): (12)

This formula is identical to the formula for the conventional kernel estimators except that the smaller
variance ¾2" replaces the usual ¾2u; so that any plug-in method de…ned for the usual estimators can
be easily applied here with a simple modi…cation. For example, a nonparametric plug-in method
can then be applied to estimate B(x) and fX(x): Alternatively, a ‘rule-of-thumb’ approach as that
de…ned in Fan and Gijbels (1996, p111) would appear to be attractive in practice.

Another convenient approach to global bandwidth choice is cross-validation. Denoting the residual
sum of squares corresponding to bandwidth h1 as

p(h1) =
1
T

TX

t=1

h
bY t ¡ emh1(Xt)

i2
¼(Xt);

where ¼(Xt) is a weight function introduced to allow elimination (or reduction) of boundary e¤ects,
we multiply p(h1) by a correction factor ¥(T¡1h¡d1 K1(0)=bfX(Xt)), which penalizes values of h1 too
low. Thus, we may select h1 based on minimizing the following generalized cross-validation :

G(h1) =
1
T

TX

t=1

h
bY t ¡ emh1(Xt)

i2
¥(T¡1h¡d1 K1(0)= bfX(Xt))¼(Xt):

For candidates of the correction function ¥, see, e.g., Härdle (1990). If, say, we choose the Akaike’s
information criterion (Akaike 1974), ¥(u) = exp (2u) :

5 EFFICIENT ESTIMATION

We now discuss how we can improve the e¢ciency of our estimator even more and to approach a
sort of GLS bound. There are two ways of doing this. The …rst approach is based on the back…tting
type of methodology. Recall that

a(L)Yt = a(L)m(Xt) + "t;



where "t is an uncorrelated sequence. Suppose that the coe¢cients a(L) are known so we can de…ne
the variable a(L)Yt: Then we have an in…nite order additive regression on the right hand side with
certain restrictions on the terms. From this representation we can in principle apply the ‘back…tting’
methodology of Linton and Mammen (2002) and proceed to estimation ofm by an iterative smoother.
Consider the special case where the error process is AR(1), i.e.,

ut = aut¡1 + "t;

where "t are i.i.d. mean zero and …nite variance. Then, letting Zt(a) = Yt ¡ aYt¡1 we have

Zt(a) =m(Xt) ¡ am(Xt¡1) + "t:

For each given a this is an additive model, Hastie and Tibshirani (1991), with a speci…c restriction on
the component functions that their ratio is proportional to a: Linton and Mammen (2002) analyzes a
similar problem and proposes a method of estimation based on back…tting and then pro…led likelihood
to obtain estimates of a: This method works quite nicely in simple models but is less satisfactory
when the error process is a general ARMA(p; q) because the many unknown parameters in a(L)
make the algorithm with the estimated parameters numerically unstable.

It turns out that the following alternative yet more convenient approach is just as e¢cient. Notice
that for each j where aj 6= 0; we can rewrite (4) as follows

Y jt = m(Xt¡j) +
1
aj
"t; (13)

where

Y jt =
1
aj

"
a(L)Yt ¡

1X

k6=j
akm(Xt¡k)

#
:

Given some estimate of Y jt ; denoted bY jt ; we can now smooth this against Xt¡j; call the resulting
estimator emj (x): Then we have under the same conditions as above that emj(x) has asymptotic
variance ¾2"=a

2
j for any j where aj 6= 0: Furthermore emj(x); emk(x) will be asymptotically independent.

By combining the estimators we can improve e¢ciency: speci…cally, let

emeff (x) =
¿X

j=0

!j emj(x);

where

!j =
a2jP¿
j=0 a

2
j
:

In practice, one has to use estimated weights, i.e., replace aj by eaj .2 It can be shown that

p
Thd[ emef f (x) ¡m(x) ¡ hq¹q(K)B(x)] =) N

Ã
0;

¾2"P1
j=0 a2j

kKk2
fX (x)

!
:

2See Chen and Linton (2001) for a discussion of this approach to e¢ciency. In parametric models, this would be
called minimum distance or minimum chi-squared.



Therefore, because a0; c0 = 1 we have

avar[emeff (x)]
avar[bm(x)] =

1P1
j=0 a

2
j
P1
j=0 c

2
j

· avar[em(x)]
avar[bm(x)] =

1P1
j=0 c

2
j

· 1:

We expect that avar[emeff (x)] provides a lower bound achievable by this sort of method. In the
AR(1) case, the asymptotic variance of em(x) is (kKk2 =fX(x))¾2"=(1 ¡ a2); while that of emef f (x) is
(kKk2 =fX(x))¾2"=(1+a2): Compare this with the linear regression model Yt = ¯Xt+ut; where Xt is
an i.i.d. process with zero mean. The variance of the OLS estimator of ¯x is (x2=¾2X)¾2"=(1¡a2) and
of the GLS estimator of ¯x is (x2=¾2X )¾2"=(1 + a2):3 This is suggestive that our e¢cient estimator is
like GLS and can’t be beaten on these terms.

In practice, the gain of emeff (x) over em(x) may not be so great in comparison with the gain of
em(x) over bm(x). For example, in the AR(1) case, the improvement of em(x) over the usual kernel
smoother bm(x) can be arbitrarily large, but emef f (x) can only have at best half the variance of em(x):
Therefore, it may be that in practice the bene…t from computing emef f (x) may be exceeded by its
small sample cost. We investigate this in the simulation experiments below.

One …nal comment on the relative advantage of our ‘ad hoc’ approach to e¢ciency relative to the
‘back…tting’ method of Mammen, Linton, and Nielsen (1999) and Linton and Mammen (2002). In the
two di¤erent situations of these cited papers, there is either no alternative estimator, or the alternative
estimator requires higher dimensional smoothing operations [e.g., the marginal integration approach
of Linton and Nielsen (1995)]. In the setting of our paper, there exist many consistent estimators
of m; and all of the proposed estimators, including our own, rely on smoothing operations with the
same number of covariates. Therefore, the back…tting methodology has no particular advantage here.

6 NUMERICAL RESULTS

6.1 Simulations

We investigate the performance of our procedure on simulated data. We have not tried to optimize
the performance of either the conventional kernel estimator or our own more e¢cient modi…cations.
Rather, we have taken what are fairly common choices, in real applications, of bandwidth etc., and
demonstrate that even with these implementations there are …nite sample gains to be made.

In the design we consider a wide range of time series speci…cations for the residual process ut;
including AR(1), AR(2), MA(1), MA(2), and ARMA(1,1) processes with di¤erent parameter values.

3There are some di¤erences though. First, the variance of the nonparametric estimators depend on the covariate
density at the point of interest [and the kernel and bandwidth of course]. Second, the nonparametric estimators have
variance that does not depend on the correlation properties of the covariate process and the variance of the standard
kernel procedure doesn’t even depend on the correlation of the error process, although our modi…ed estimators do
depend on this quantity indirectly. Interestingly, the e¤ect on the estimator variance is through the sum of squared
coe¢cients

P
j c2j and

P
j a2

j rather than through the covariance function of ut; which is proportional to
P

k cjcj+k :



For convenience, we write the residual process in the form of an ARMA(p; q) process with p and q
less than or equal to 2:

ut = ®1ut¡1 + ®2ut¡1 + "t + °1"t¡1 + °2"t¡2

with "t i.i.d. N (0; 1). We examined the time series for various combinations of di¤erent parameter
values that speci…ed in the tables below.

For the regression function, in the …rst design we took m(x) = 0 throughout, Xt i.i.d. U [¡1; 1]:
In our e¢cient estimator we consider both AR(1) and AR(2) prewhitening. The AR parameters
in the prewhitening process are estimated by least squares. We considered four sample sizes: T =
100; 200; 500; 1000: The number of replications is 200.

We investigate the proposed e¢cient estimator em(x) given by (8), as well as the estimator emeff (x)
considered in Section 6. We compare these estimators with the conventional kernel estimator m̧(x).
We chose exactly the same kernel and bandwidth in all these three estimators. In particular, we
use the fourth order kernel K(u) = 15(7u4 ¡ 10u2 + 3)+=32 and bandwidth h = 1:06sXT ¡1=5; where
sX is the sample standard deviation of X1; : : : ;XT : [other kernels are also tried and qualitatively
similar results were obtained]. For the preliminary estimation (to obtain the residuals), we use a
local polynomial estimation of order 3. Below we report the relative e¢ciency [the ratio of average
squared errors over the 200 replications] for di¤erent sample sizes and ARMA parameters. We
consider estimation at the point x = 0:

Tables 1-4 (corresponding to di¤erent sample sizes) report the relative e¢ciency (the ratio of
average squared errors) for the case that an AR(2) prewhitening was used (lag length was set at 2).
Various combinations of parameter values were examined. In these tables, Column “RE1” reports
the Relative E¢ciency of the proposed e¢cient estimator em(x) over the conventional estimator
m̧(x). Column “RE2” reports the Relative E¢ciency of the e¢cient estimator emeff (x) over the
conventional estimator m̧(x). For comparison purpose, we also provide the infeasible theoretical
asymptotic relative e¢ciency calculated based on the asymptotic variances of em(x) (¾2" kKk2 =fX(x))
and m̧(x) (¾2u kKk2 =fX(x)), this is reported as “RE0”.

We also considered an AR(1) prewhitening and reported the results in Tables 5-8. Note that
when the underlying process has a nontrivial MA part, our method is likely to be quite far from
matching the true autocorrelation structure in the errors. Nevertheless, even in those cases there are
positive results.

In the second design we took m(x) = x, where Xt are again i.i.d. U [¡1; 1]; and considered
estimation of a range of x. The same sample sizes and number of replications as in the …rst design
were used.

The proposed estimation can be applied to other smoothing procedures such as local polynomial
method. In this case, the proposed e¢cient estimator em(x) is given by a local polynomial regression
of bY t on Xt. Similarly, we can apply local polynomial smoothing to construct emeff (x) in Section 6.
In our second design, we compare these estimators (using AR(2) prewhitening) with the conventional



local polynomial estimator m̧(x). Local linear smoothing was used in our experiments. Again, we
chose the same kernel and bandwidth in these three estimators. In particular, we use the Gaussian
kernel and bandwidth h = 1:06sXT¡1=5. We consider estimation of m(¢) at the sample points
X1; : : : ; XT . In Tables 9 to 12, we report the relative e¢ciency for di¤erent sample sizes and ARMA
parameters. The relative e¢ciency reported in Tables 9-12 are calculated based on the ratio of
average squared errors over all x0s and the 200 replications. Summation of squared errors (denoted
as ISE) are also reported. In particular, ISE0, ISE1 and ISE2 give the sum of squared errors of the
conventional local linear estimator m̧(x); the proposed e¢cient estimators em(x) and emef f (x).

Some general conclusion can be found from the simulation experiments:
(1). The results show that the relative e¢ciency improves with sample size - there is likely a

considerable small sample e¤ect that is dominating in this range of parameters, and this requires a
very large sample indeed before the asymptotic predictions become reality. Nevertheless, in most
cases apart from i.i.d. (all parameters are zeros) our estimator improves on the standard kernel
procedure.

(2). In general, the more serial correlation, the larger e¢ciency gain is achieved from our
prewhitening procedure. However, consider the AR(1) case for example, note that the relative e¢-
ciency …rst improves as the AR coe¢cient increases and then disimproves as it approaches one. This
is partly due to the large downward bias in estimating ® in this region. We could perhaps improve
the relative e¢ciency by taking a larger bandwidth in the second step as would be permitted by our
theory.

(3). Both em(x) and emeff (x) improves the estimation in the presence of serial correlation, espe-
cially for large sample sizes, but none of them dominates the other. It seems that em(x) performs
slightly better than emeff (x) when the true error process is actually an AR process. This is intuitive
because an AR prewhitening was used. But di¤erent results were obtained when the error terms are
MA processes.

6.2 Application

We apply the proposed estimation procedure to stock return data on cross-market feedback e¤ect.
There have been some studies of the e¤ect of one market on another, specially the impact of North
American markets on the markets of other countries. In this application, we investigate the e¤ect of
returns on the S&P500 index on the subsequent volatility of the FTSE100 index. We estimate the
following model

r2UK;t = m(rUS;t¡1) + uUK;t (14)

on both daily and weekly data. With this frequency of data the means of rUK;t; rUS;t¡1 are small
and not modelling them does not make much di¤erence to the results. The functionm describes the



response of UK volatility to the returns on the US market in the day before. We might expect an
asymmetric response whereby negative returns in the US raise the volatility of the UK market by
more than positive returns, following work of Nelson (1991).

Our data sets are as follows: the weekly data are from April 2, 1984 to April 8, 2002, with 942
observations in total. The daily data starts from April, 2, 1984, and ends at April 17, 2002, with
4624 observations. We …rst estimated (14) by the standard kernel estimator; the correlograms in
Figures 1a and 1b show that there is quite a bit of structure left in the error terms, more so in the
daily data for sure.

We then …tted an AR(p) model to the residuals where p was chosen by BIC criterion and then
computed our prewhitened estimator. We report the autoregression estimates baj and the choices of
truncation parameter ¿ in Table 13 for the case h = 1:06sXT¡1=5: For the weekly data, Figures 2a,
2b, 2c and 2d show the prewhitened estimators in comparison with the standard estimator. From
Figure 2a to 2d, we used the following bandwidth choices hj = ±jsXT¡1=5 with hj = 0:66; 1.66, 2.66,
and 3.66, for j = 1; 2; 3; 4. Thus, these graphics provide estimates of the impact function m(¢) from
the case of under smoothing to the case of oversmoothing. In each …gure, we give the conventional
and prewhitened estimates using the same bandwidth (hj) and the prewhitened estimate using a

smaller bandwidth hjb =
h
1 ¡ P¿

j=1 ba2j
i1=5
±jsXT¡1=5.

We also show in …gures 3a, 3b, 3c and 3d our prewhitened estimator for the weekly data along
with 95% con…dence bands using the formula (11). Again, the bandwidth choices are the same as
those in …gures 2a, 2b, 2c and 2d.

The daily data gave qualitatively similar results, and we report the prewhitened estimators in
comparison with the standard estimator in Figures 4a to 4d, and the prewhitened estimator with 95%
con…dence bands in Figures 5a to 5d, where the bandwidth choices are parallel to those in …gures 2a
to 2d.

The basic shape of the functionm is certainly asymmetric. As expected, negative US returns are
generally associated with upward revisions of the conditional volatility in the UK market, while pos-
itive US returns are associated with smaller revisions in the UK market. The presence of asymmetric
cross-market feedback e¤ect on volatility is most apparent during a market crisis when large declines
in stock prices in the US market are associated with a signi…cant increase in the UK market volatility.
From these graphics, we see that for small return shocks in the US market, the UK volatility does
not change very much. However, as the magnitude of a negative US shock increases, the impact on
the UK volatility increases dramatically.
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Figure 1:

16



7 CONCLUSIONS AND GENERALIZATIONS

We expect that the numerical performance of our method can be improved in small samples. There
are a number of things to work on. First, better bandwidth choice should make a big di¤erence to
the goodness of …t of our method. Second, it may be that iterating the procedure can confer bene…ts
through more accurate estimates of the autoregressive coe¢cients. Along this line, it may be that
recentering the residuals and using quasi likelihood methods might also bring improvements.

The proposed estimation procedure may also be generalized to semiparametric models like partial
linear regression models or single index models in which there is interest in estimating the nonpara-
metric function in the presence of serial correlation. Typically, the parametric estimates do not a¤ect
the distribution of the nonparametric functions, so the procedures and results are rather obvious to
state.

A Proof of Theorems

We use k²k to denote the Euclidean norm of ²; C to signify a generic positive constant whose exact
value may vary from case to case. We denote Á(x; y; z; : : :) as a general function whose exact form
may change from case to case. For two random variables XT ; YT ; we say that XT ' YT whenever
XT = YT (1 + op(1)) as T ! 1:

Preliminaries The asymptotic properties of local polynomial estimator have been well developed
and documented, see, e.g., Fan and Gijbels (1996) and Masry (1996ab) and the references therein.
For convenience, we …rst give some general de…nitions for our local polynomial kernel nonparametric

regression estimators. Let N` =

Ã
`+ d¡ 1
d¡ 1

!
be the number of distinct d-tuples j with jj j = `.

Arrange these N` d-tuples as a sequence in a lexicographical order (with highest priority to last
position so that (0; : : : ; 0; `) is the …rst element in the sequence and (`; 0; : : : ; 0) the last element)
and let Á¡1

` denote this one-to-one map. Arrange the distinct values of ^(Dk)(m), 0 · jkj · p, as a
column vector of dimension N £ 1; where N =

Pp
`=0N` £ 1; where the ith element of that vector is

obtained by the following relation i = Á¡1
jj j (j)+

Pjjj¡1
k=0 Nk :Similarly, arrange the vector (Dk)(m): For

each j with 0 · jjj · 2p, let

¹j(K0) =
Z

Rd
ujK0(u)du; ºj(K) =

Z

Rd
ujK2

0 (u)du;

and de…ne the N £N dimensional matrices M and ¡ and N £ 1 vector B by

M =

2
66664

M0;0 M0;1 ¢ ¢ ¢ M0;p

M1;0 M1;1 ¢ ¢ ¢ M1;p
...

...
Mp;0 Mp;1 ¢ ¢ ¢ Mp;p

3
77775
; ¡ =

2
66664

¡0;0 ¡0;1 ¢ ¢ ¢ ¡0;p

¡1;0 ¡1;1 ¢ ¢ ¢ ¡1;p
...

...
¡p;0 ¡p;1 ¢ ¢ ¢ ¡p;p

3
77775
; B =

2
66664

M0;p+1

M1;p+1
...

Mp;p+1

3
77775
; (15)



whereMi;j and ¡i;j areNi£Nj dimensional matrices whose (`;m) element are, respectively, ¹Ái(`)+Áj(m)
and ºÁi(`)+Áj(m). Note that the elements of the matrices M and ¡ are simply multivariate moments
of the kernel K0 and K2

0 , respectively. De…ne also we denote

M¡1 =

2
66664

M0;0 M0;1 ¢ ¢ ¢ M0;p

M1;0 M1;1 ¢ ¢ ¢ M1;p

...
...

Mp;0 Mp;1 ¢ ¢ ¢ Mp;p

3
77775
:

Finally, arrange the Np+1 elements of the derivatives (1=j!)(Djm)(x) for jjj = p + 1 as a column
vector Dp+1(x;m) using the lexicographical order introduced earlier.

Minimizing (9) with respect to bk gives an estimate b̂k(x) and em(x) = b̂0(x) = e01M¡1
T ªn; where

e1 =(1; 0; : : : ; 0)0 is the vector with the one in the …rst position, MT (x) and ªT (x) are symmetric

N£N (N =
Pp
`=0 N`£1) matrix and N£ 1 dimensional column vector respectively and are de…ned

as

MT (x) =

2
66664

MT;0;0(x) MT ;0;1(x) : : : MT ;0;p(x)
... MT ;1;1(x) : : : MT ;1;p(x)
... .. . ...

MT;p;0(x) ¢ ¢ ¢ ¢ ¢ ¢ MT ;p;p(x)

3
77775
; ªT (x) =

2
66664

ªT ;0(x)
ªT ;1(x)

...
ªT ;p(x)

3
77775
;

where MT;jj j;jkj(x) is a Njj j £Njkj dimensional submatrix with the (l; r) element given by

£
MT;jj j;jkj

¤
l;r =

1
Thd0

TX

i=1

µ
x¡Xi
h0

¶Ájjj(l)+Ájkj(r)
K0

µ
x ¡Xi
h0

¶
;

and ªT;jj j(x) is a Njj j dimensional subvector whose r-th element is given by

£
ªT ;jjj

¤
r =

1
Thd0

TX

i=1

µ
x¡Xi
h0

¶Ájjj(r)
K0

µ
x ¡Xi
h0

¶
Yi:

The estimate of m(x) is given by em(x) = e1M¡1
T ªT and its bias and variance e¤ects can be

written as em(x) ¡ m(x) = e01M
¡1
T (x)UT (x) + e01M

¡1
T (x)BT (x).The stochastic term UT (x) and the

bias term BT (x) are N £ 1 vectors

UT (x) =

2
66664

UT;0(x)
UT;1(x)

...
UT;p(x)

3
77775
; BT (x) =

2
66664

BT;0(x)
BT;1(x)

...
BT;d(x)

3
77775
;

where UT;l(x) and BT ;l(x) are de…ned similarly as ªT;l(x) so that UT;jjj(x) and BT ;jjj(x) are a Njjj
dimensional subvectors whose r-th elements are given by

£
UT ;jjj

¤
r =

1
Thd0

nX

i=1

µ
x ¡Xi
h0

¶Ájjj(r)
K0

µ
x ¡Xi
h0

¶
ui



and
£
BT;jjj

¤
r =

1
Thd0

nX

i=1

µ
x¡Xi
h0

¶Ájjj(r)
K0

µ
x¡Xi
h0

¶
¢i(x);

where ¢i(x) = m(Xi) ¡ 1
k!

P
0·jkj·p(D

km)(x)(Xi ¡ x)k:
Under our assumptions given in the paper, we have the following uniform convergence results:

sup
x2X

jMT (x) ¡ f(x)M j = Op(h0 + T¡1=2h¡d=20 logT )

sup
x2X

j em(x) ¡m(x)j = Op(hp+1
0 + T¡1=2h¡d=20 logT ); (16)

which follow from the results of Masry (1996ab).

Proof of Theorem 1 To be comparable with notation in the feasible estimator em and Theorem
2, we conduct our proof using the notation K1 for the kernel and h1 for the bandwidth. Write

m(x) = m(x) +

PT
t=1 K1

³
x¡Xt
h1

´
[m(Xt) ¡m(x)]

PT
t=1K1

³
x¡Xt
h1

´ +

PT
t=1K1

³
x¡Xt
h1

´
"t

PT
t=1K1

³
x¡Xt
h1

´

´ m(x) +Bx + V x:

First note that

V x =
1
Thd1

PT
t=1K1

³
x¡Xt
h1

´
"t

bf 1X(x)
= Vx(1 + op(1));

where

Vx =
1
Thd1

TX

t=1

K1

³
x¡Xt
h1

´
"t

fX (x)
;

by the law of large numbers applied to T¡1h¡d1
PT
t=1K1

³
x¡Xt
h1

´
. Since fX (x) > 0; we can apply the

central limit theorem to Vx:

1
fX(x)

1
T 1=2hd=21

TX

t=1

K1

µ
x ¡Xt
h1

¶
"t
d! N

Ã
0;
¾2" kK1k2
fX (x)

!
:

Similarly,
Bx = Bx(1 + op(1));

where

Bx =
1
Thd1

TX

t=1

K1

³
x¡Xt
h1

´
[m(Xt) ¡m(x)]
fX (x)

' hq1¹q(K1)
X

p+r=q;1·p·q;0·r·q

1
p!r!
m(p)(x)

f (r)X (x)
fX(x)

= hq1¹q(K1)B(x):



For conventional quadratic kernel, q = 2, and the bias term is simply 1
2¹2(K1)[m00(x)+ 2m0(x)f

0

f (x)].
Thus,

q
Thd1 [m(x) ¡m(x) ¡ hq1¹q(K1)B(x)] =) N

Ã
0;
¾2" kK1k2
fX(x)

!
:

Proof of Theorem 2 We decompose em(x) intom(x) plus error terms coming from the preliminary
estimation and the truncation, and show that these terms are small order terms. First we write

bY t = Yt ¡
¿X

j=1

baj (Yt¡j ¡ bm(Xt¡j ))

= Yt ¡
1X

j=1

ajut¡j +
1X

j=¿+1

ajut¡j ¡
¿X

j=1

(baj ¡ aj)ut¡j

+
¿X

j=1

aj (bm(Xt¡j ) ¡m(Xt¡j )) +
¿X

j=1

(baj ¡ aj ) (bm(Xt¡j) ¡m(Xt¡j )) :

Substituting the above expression into (8), we have

em(x) = m(x) +

PT
t=1K1

³
x¡Xt
h1

´P1
j=¿+1 ajut¡j

PT
t=1K1

³
x¡Xt
h1

´ ¡
PT
t=1K1

³
x¡Xt
h1

´ P¿
j=1(baj ¡ aj)ut¡j

PT
t=1K1

³
x¡Xt
h1

´

+

PT
t=1K1

³
x¡Xt
h1

´P¿
j=1 aj (bm(Xt¡j ) ¡m(Xt¡j ))

PT
t=1 K1

³
x¡Xt
h1

´

+

PT
t=1K1

³
x¡Xt
h1

´P¿
j=1(baj ¡ aj ) ( bm(Xt¡j) ¡m(Xt¡j))

PT
t=1 K1

³
x¡Xt
h1

´

= m(x) + QT 1 ¡QT 2 +QT3 + QT 4:

We analyze the asymptotic properties of QTj; j = 1; :::; 4, in Lemmas A1 to A4, which are key
results for the proof of the Theorem.

Lemma A1. Under Assumptions 1 to 7

QT1 = op(T¡1=2h¡d=21 ):

Proof of Lemma A1. QT 1 is of smaller order because of the tail properties of the summable
sequence aj: Speci…cally,

QT 1 =
1
Thd1

PT
t=1K1

³
x¡Xt
h1

´P1
j=¿+1 ajut¡j

bf 1X (x)
;



where

bf 1X(x) =
1
Thd1

TX

t=1

K1

µ
x ¡Xt
h1

¶

is the conventional nonparametric density estimator that is uniformly consistent. First note that

QT1 =
1
Thd1

PT
t=1K1

³
x¡Xt
h1

´P1
j=¿+1 ajut¡j

fX (x)
(1 + op(1));

by the law of large numbers applied to T¡1h¡d1
PT
t=1K1

³
x¡Xt
h1

´
.

Since fX(x) > 0; we only need to verify the order of

1
T hd1

TX

t=1

K1

µ
x¡Xt
h1

¶ 1X

j=¿+1

ajut¡j:

Notice that it has mean zero and

var

"
1
Thd1

TX

t=1

K1

µ
x ¡Xt
h1

¶ 1X

j=¿+1

ajut¡j

#

=
µ

1
Thd1

¶2

E

(
TX

t=1

K1

µ
x¡Xt
h1

¶ 1X

j=¿+1

ajut¡j

)(
TX

s=1

K1

µ
x¡Xs
h1

¶ 1X

i=¿+1

aius¡i

)

=
µ

1
Thd1

¶2

E

(
TX

t=1

TX

s=1

K1

µ
x¡Xt
h1

¶
K1

µ
x¡Xs
h1

¶ 1X

i=¿+1

1X

j=¿+1

ajaius¡iut¡j

)

=
µ

1
Thd1

¶2

E

(
TX

t=s=1

K1

µ
x ¡Xt
h1

¶2 1X

i=¿+1

1X

j=¿+1

ajaiut¡iut¡j

)
+

µ
1
Thd1

¶2

E

(
TX

t=1

TX

s 6=t;s=1

K1

µ
x¡Xt
h1

¶
K1

µ
x ¡Xs
h1

¶ 1X

i=¿+1

1X

j=¿+1

ajaius¡iut¡j

)

=
µ

1
Thd1

¶2
(

TX

t=s=1

EK1

µ
x ¡Xt
h1

¶2 1X

i=¿+1

1X

j=¿+1

aiaj°u(ji¡ jj)
)

+

µ
1
Thd1

¶2
(
TX

t=1

TX

s6=t;s=1

EK1

µ
x¡Xt
h1

¶
K1

µ
x¡Xs
h1

¶ 1X

i=¿+1

1X

j=¿+1

ajai°u(jt¡ s + i¡ jj)
)

The …rst term is o(T ¡1h¡d1 ) because:
µ

1
Thd1

¶2
(

TX

t=s=1

EK1

µ
x¡Xt
h1

¶2 1X

i=¿+1

1X

j=¿+1

aiaj°u(ji¡ j j)
)

·
µ

1
Thd1

¶2

T ¢ E
(
K1

µ
x¡X1

h1

¶2
)( 1X

i=¿+1

1X

j=¿+1

aiaj

)
sup

0·i;j·1
j°u(ji¡ jj)j

and



(1). sup0·j;l<1 j°u(jj ¡ lj)j <1, by stationarity/mixing property of u;

(2). T ¢ EK1

³
x¡X1
h1

´2
= O(Thd1), by a direct calculation of expectation; and

(3).
P1
i=¿+1

P1
j=¿+1 aiaj = o(1) as ¿ ! 1, by summability of fajg1j=1.

The second term is o(T¡1h¡d1 ) :
µ
1
T

¶2 TX

t=1

TX

s 6=t;s=1

E
·

1
h2d1
K1

µ
x¡Xt
h1

¶
K1

µ
x¡Xs
h1

¶¸ 1X

i=¿+1

1X

j=¿+1

ajai°u(jt ¡ s+ i¡ jj)

=
µ
1
T

¶2 TX

t=1

TX

s 6=t;s=1

·Z
1
h2d1
K1

µ
x ¡ y
h1

¶
K1

µ
x ¡ z
h1

¶
fX;jt¡sj(y; z)dydz

¸

1X

i=¿+1

1X

j=¿+1

ajai°u(jt¡ s + i¡ j j)

=
µ
1
T

¶2 TX

t=1

TX

s 6=t;s=1

·Z
K1 (u)K1 (v) fX;jt¡sj(x¡ uh1; y ¡ vh1)dudv

¸ 1X

i=¿+1

1X

j=¿+1

ajai°u(jt¡ s + i¡ jj)

· C
µ
1
T

¶2 TX

t=1

TX

s6=t;s=1

1X

i=¿+1

1X

j=¿+1

ajai°u(jt¡ s + i¡ jj);

where the last inequality follows from the boundedness assumption of the density and joint densities
and the fact that

sup
0·i;j·1

¯̄
¯̄
¯
TX

s 6=t;t=1

TX

s=1

°u(jt¡ s + i¡ j j)
¯̄
¯̄
¯ = O(T ); (17)

where, again, the result (17) comes from the stationarity/mixing property of u: Thus

var

"
1
T h1

TX

t=1

K1

µ
x¡Xt
h1

¶ 1X

j=¿+1

ajut¡j

#
= o(T¡1h¡d1 ):

Therefore, the magnitude of QT 1 is as stated.

Lemma A2. Under Assumptions 1 to 7

QT2 = op(T¡1=2h¡d=21 ):

Proof of Lemma A2. We denote

A¿ = (U 0¿U¿ )
¡1U 0¿u = (a1; : : : ; a¿ )0;

where u = (u¿+1; : : : ; uT )0 and U¿ is like bU¿ with but replaced by ut; and write

baj 

¡  aj 

= (ba j 

¡ aj) + (aj ¡ aj) ;



i.e.
bA¿ ¡ A¿ =

³
bA¿ ¡ A¿

´
+

¡
A¿ ¡ A¿

¢
:

We …rst show that
PT
t=1K1

³
x¡Xt
h1

´P¿
j=1(aj ¡ aj)ut¡j

PT
t=1K1

³
x¡Xt
h1

´ = op(T¡1=2h¡d=21 ): (18)

Denote that
U¿ t = (ut¡1; : : : ; ut¡¿ )0

and de…ne the ¿ £ ¿ matrices

G¿ =
1
T
U 0¿U¿ =

1
T

X

t

U¿tU 0¿t =

Ã
1
T

TX

t=¿+1

ut¡jut¡l

!

j;l

¡¿ =
1
T
E(U 0¿U¿ ) =

1
T

X

t

EU¿ tU 0¿ t = (E(ut¡jut¡l))j;l :

Then, there exists a c > 0 such that
¸min(¡¿ ) ¸ c¿¡®

for some ® > 0: Therefore, °°¡¡1
¿

°° · c¡1¿®;

and

kG¿ ¡ ¡¿k = Op(QT ); (19)

where

QT =

r
log logT
T

;

provided ¿ · (logT )· for some · > 0: [Hannan and Deistler (1988, §5.3)]. Notice that

A¿ ¡ A¿ = G¡1
¿

"
1
T

X

t

U¿ t

Ã
"t +

1X

j=¿+1

ajut¡j

!#
;

we verify the magnitude of
1
T

X

t

U¿ t"t; (20)

and
1
T

X

t

U¿ t

Ã 1X

j=¿+1

ajut¡j

!
:



For the …rst component,

E

°°°°°
1
T

X

t

U¿ t"t

°°°°°

2

=
1
T 2

¿X

i=1

E

"
X

t

ut¡i"t

#2

=
¿
T
°u(0)¾

2
" = O

³ ¿
T

´
; (21)

thus (20) is of orderOp(T¡1=2¿ 1=2). For the second component, notice that ut is a stationary invertible
process whose linear process coe¢cients satisfy the given summability assumption,

E

°°°°°
1
T

X

t

U¿ t

Ã 1X

j=¿+1

ajut¡j

!°°°°°

2

=
1
T 2

¿X

i=1

E

"X

t

ut¡i

Ã 1X

j=¿+1

ajut¡j

!#2

=
1
T 2

¿X

i=1

E

" 1X

j=¿+1

1X

l=¿+1

ajal
X

t

X

s

ut¡iut¡jus¡ius¡l

#
:

Using the linear process representation of ut; we obtain

E

" 1X

j=¿+1

1X

l=¿+1

ajal
X

t

X

s

ut¡iut¡jus¡ius¡l

#
(22)

= E

" 1X

j=¿+1

1X

l=¿+1

ajal
X

t

X

s

Ã 1X

r=0

cr"t¡i¡r

!Ã 1X

p=0

cp"t¡j¡p

! Ã 1X

g=0

cg"s¡i¡g

!Ã 1X

h=0

ch"s¡l¡h

!#

=
1X

j=¿+1

1X

l=¿+1

ajal
X

t

X

s

Ã 1X

r=0

1X

p=0

1X

g=0

1X

h=0

crcpcgchE ["t¡i¡r"t¡j¡p"s¡i¡g"s¡l¡h]

!
:

Notice that "i are i.i.d. with mean zero, the expectation E ["t¡i¡r"t¡j¡p"s¡i¡g"s¡l¡h] is non-zero when
(i) s¡ i¡ g = s¡ l¡ h and t¡ i¡ r = t¡ j¡ p; or (ii) s¡ i¡g = t¡ i¡ r and t¡ j ¡p = s¡ l¡ h;
or (iii) s¡ i¡g = t¡ j¡p and t¡ i¡r = s¡ l¡h; or (iv) s¡ i¡g = s¡ l¡h = t¡ i¡r = t¡ j¡p.
By the summability condition of fcig1i=0; direct calculations show that

E

°°°°°
1
T

X

t

U¿t

Ã 1X

j=¿+1

ajut¡j

!°°°°°

2

= O

Ã
¿

" 1X

j=¿+1

a2j

#!
:

Under Assumption 5, there exists some 0 < ¸ < 1 such that jajj is bounded by a constant multiple
of ¸j ; we have

1X

j=¿+1

a2j = O(¸
¿):

Thus, under Assumption 6 that ¿ = · log T , with appropriately chosen · (say, · = ¡ ln¸ > 0),P1
j=¿+1 a

2
j = O (T ). Thus, combining the result of (21),

°°°°°
1
T

X

t

U¿ t

Ã
"t +

1X

j=¿+1

ajut¡j

!°°°°° = Op(T¡1=2¿1=2):



Giving our choice of ¿ , we have,for any small º > 0,
°°A¿ ¡ A¿

°° = op(T¡1=2+º)

This concludes the …rst part.

Next, we show that
PT
t=1K1

³
x¡Xt
h1

´P¿
j=1(baj ¡ aj)ut¡j

PT
t=1K1

³
x¡Xt
h1

´ = op(T¡1=2h¡d=21 ): (23)

We have

bA¿ ¡A¿ = bG¡1
¿ bg¿ ¡G¡1

¿ g¿
= ¡G¡1

¿ [ bG¿ ¡G¿ ]G¡1
¿ g¿ +G

¡1
¿ [bg¿ ¡ g¿ ]

+ bG¡1
¿ [ bG¿ ¡G¿ ]G¡1

¿ [ bG¿ ¡G¿ ]G¡1
¿ g¿ ¡ bG¡1

¿ [ bG¿ ¡G¿ ]G¡1
¿ [bg¿ ¡ g¿ ];

where

bG¿ =
1
T

bU 0¿ bU¿ =
Ã

1
T

TX

t=¿+1

but¡jbut¡l
!

j;l

;

bg¿ =
1
T

bU 0¿ bu =
Ã

1
T

TX

t=¿+1

but¡jbut
!

j

;

g¿ =
1
T
U 0¿u =

Ã
1
T

TX

t=¿+1

ut¡jut

!

j

:

Further de…ne the ¿ £ 1 vector

°¿ =
1
T
E(U 0¿u) = (E(ut¡jut))j :

Then,
kg¿ ¡ °¿k = Op(QT ): (24)

Notice that ³
bG¿ ¡G¿

´
j;l

=
1
T

TX

t=¿+1

(but¡jbut¡l ¡ ut¡jut¡l)

and

(bg¿ ¡ g¿ )j =
1
T

TX

t=¿+1

(but¡jbut ¡ ut¡jut):

Now write
but = ut ¡  

bV t ¡  

bBt ;



where
bBt = e01M¡1

T (Xt)Bn(Xt), bVt = e01M¡1
T (Xt)Un(Xt); (25)

for short. Then

but¡jbut¡l ¡ ut¡jut¡l = ¡ut¡j bVt¡l ¡ ut¡j bBt¡l ¡ ut¡l bVt¡j ¡ ut¡l bBt¡j
+bVt¡lbVt¡j + bBt¡j bBt¡l + bVt¡l bBt¡j + bBt¡j bVt¡l:

Clearly,
¯̄
¯̄
¯
1
T

TX

t=¿+1

³
bVt¡lbVt¡j + bBt¡j bBt¡l + bVt¡l bBt¡j + bBt¡j bVt¡l

´¯̄
¯̄
¯ (26)

· 1
T

TX

t=¿+1

³¯̄
¯bVt¡l

¯̄
¯
¯̄
¯bVt¡j

¯̄
¯ +

¯̄
¯ bBt¡j

¯̄
¯
¯̄
¯ bBt¡l

¯̄
¯ +

¯̄
¯bVt¡l

¯̄
¯
¯̄
¯ bBt¡j

¯̄
¯ +

¯̄
¯ bBt¡j

¯̄
¯
¯̄
¯bVt¡l

¯̄
¯
´

· 1
T

TX

t=¿+1

Ãµ
sup
s

¯̄
¯bVs

¯̄
¯
¶2

+
µ
sup
s

¯̄
¯ bBs

¯̄
¯
¶2

+ 2 sup
s

¯̄
¯bVs

¯̄
¯ sup
s

¯̄
¯ bBs

¯̄
¯
!

= Op((logT )T¡1h¡d0 + h2q0 )

by virtue of the uniform rate of convergence of the terms bVs; bBs over s:
The cross-product terms require more detailed analysis. Notice that

1
T

TX

t=¿+1

ut¡j bVt¡l

=
1
T

TX

t=¿+1

ut¡j
£
e01M

¡1
T (Xt¡l)Un(Xt¡l)

¤
' 1
T

TX

t=¿+1

ut¡j
£
e01 [MfX(Xt¡l)]

¡1 Un(Xt¡l)
¤
;

and M0;m are 1 £Nm row vectors, we have

1
T

TX

t=¿+1

ut¡j
£
e01 [MfX(Xt¡l)]

¡1 Un(Xt¡l)
¤

=
1
T

TX

t=¿+1

ut¡jfX (Xt¡l)¡1
pX

m=0

M0;mUn;m(Xt¡l)

=
1
T

TX

t=¿+1

ut¡jfX (Xt¡l)¡1
X

·

!0;·
Ã

1
Thd0

TX

r=1

µ
Xt¡l ¡Xr
h0

¶·
K0

µ
Xt¡l ¡Xr
h0

¶
ur

!

=
X

·

!0;·
1
T

TX

t=¿+1

TX

r=1

1
Thd0
fX (Xt¡l)¡1

µ
Xt¡l ¡Xr
h0

¶·
K0

µ
Xt¡l ¡Xr
h0

¶
ut¡jur;

where !0;· are elements in the …rst row of M¡1 and the sum over · is over a …nite index set. Thus,
notice that ur has linear process representation ut =

P1
j=0 cj"t¡j; denoting

1
Thd0
fX (Xt¡l)¡1

µ
Xt¡l ¡Xr
h0

¶·
K0

µ
Xt¡l ¡Xr
h0

¶



as w·;t¡l;r , we have

1
T

TX

t=¿+1

ut¡j
£
e01 [MfX (Xt¡l)]

¡1 Un(Xt¡l)
¤

=
X

·

!0;·
1
T

TX

t=¿+1

TX

r=1

w·;t¡l;r

Ã 1X

s=0

cs"t¡j¡s

!Ã 1X

b=0

cb"r¡b

!

=
X

·

!0;·'·;T;j;l;

where

'·;T;j;l =
1
T

TX

t=¿+1

TX

r=1

w·;t¡l;r

Ã 1X

s=0

cs"t¡j¡s

!Ã 1X

b=0

cb"r¡b

!
:

In addition, notice that X and " are independent, thus,

E
¯̄
'·;T ;j;l

¯̄2

=
1
T 2

1X

a=0

1X

b=0

1X

g=0

1X

s=0

TX

t=¿+1

TX

p=¿+1

TX

r=1

TX

h=1

cacbcgcsE (w·;t¡l;rw·;p¡l;h) E("t¡j¡s"p¡j¡g"r¡b"h¡a) :

Since "0s are i.i.d., the above expectation is non-zero when (i) r ¡ b = h ¡ a and t ¡ s = p¡ g; or,
(ii) r ¡ b = t¡ j ¡ s and h ¡ a = p¡ j ¡ g; or, (iii) r¡ b = p¡ j ¡ g and h ¡ a = t¡ j ¡ s; or, (iv)
h¡ a = r ¡ b = t ¡ j ¡ s = p ¡ j ¡ g. Simple calculations show that

'·;T ;j;l =
1
T

TX

t=¿+1

TX

r=1

w·;t¡l;r

Ã 1X

s=0

cs"t¡j¡s

!Ã 1X

b=0

cb"r¡b

!
= Op

µ
1
T

¶
: (27)

For example, if r ¡ b = h¡ a and t¡ s = p¡ g, we have the corresponding expectation

1
T 2

1X

a=0

1X

b=0

1X

g=0

1X

s=0

TX

t=¿+1

TX

r=1

cacbcgcsE(w·;t¡l;rw·;t¡s¡g¡l;h) E
¡
"2t¡j¡s"

2
r¡b

¢

=
1
T 2¾

4
"

1X

a=0

1X

b=0

1X

g=0

1X

s=0

TX

t=¿+1

TX

r=1

cacbcgcsE (w·;t¡l;rw·;t¡s¡g¡l;h)

= O
µ

1
T 2

¶
:

by summability condition of ca and calculation of expectation that

E(w·;t¡l;rw·;t¡s¡g¡l;h)

=
µ

1
Thd0

¶2 Z
1

fX (x)fX(z)

µ
x ¡ y
h0

¶·µ
z ¡ w
h0

¶·
K0

µ
x¡ y
h0

¶
K0

µ
z ¡ w
h0

¶

£fX;jt¡l¡rj;jg+sj;jt¡l¡hj(x; y; z; w)dxdydzdw

=
µ
1
T

¶2 Z
1

fX (x)fX(z)
u·v·K0 (u)K0 (v) fX;jt¡l¡rj;jg+sj;jt¡l¡hj(x; x¡ uh0; z; z ¡ vh0)dxdudzdv

= O(T¡2):



For the term with bias e¤ects,

1
T

TX

t=¿+1

ut¡j bBt¡l

=
1
T

TX

t=¿+1

ut¡j
¡
e01M

¡1
T (Xt¡l)Bn(Xt¡l)

¢
' 1
T

TX

t=¿+1

ut¡j
¡
e01[MfX(Xt¡l)]

¡1Bn(Xt¡l)
¢

' 1
T

TX

t=¿+1

ut¡j

Ã X

s6=t¡l

X

·

!0;·
1
Thd0
fX(Xt¡l)¡1K0

µ
Xt¡l ¡Xs
h0

¶µ
Xt¡l ¡Xs
h0

¶q+·¡1

hqm(q)(Xt¡l)

!

=
X

·

!0;·
1
T

TX

t=¿+1

ut¡j

Ã
1
Thd0

X

s 6=t¡l
fX (Xt¡l)¡1K0

µ
Xt¡l ¡Xs
h0

¶µ
Xt¡l ¡Xs
h0

¶q+·¡1

hqm(q)(Xt¡l)

!
:

By veri…cations of moments, we show that 1
T

PT
t=¿+1 ut¡j bBt¡l = Op(hq): In particular,

E

¯̄
¯̄
¯
1
T

TX

t=¿+1

ut¡j

Ã
1
Thd0

X

s 6=t¡l
fX (Xt¡l)¡1K0

µ
Xt¡l ¡Xs
h0

¶µ
Xt¡l ¡Xs
h0

¶q+·¡1

hqm(q)(Xt¡l)

!¯̄
¯̄
¯

2

=
1
T 2

TX

t=¿+1

TX

p=¿+1

Eut¡jup¡j
·

1
Thd0

¸2

h2q0
X

s

X

r

fX (Xt¡l)¡1fX(Xp¡l)¡1

K0

µ
Xt¡l ¡Xs
h0

¶
K0

µ
Xp¡l ¡Xr
h0

¶µ
Xt¡l ¡Xs
h0

¶q+·¡1 µ
Xp¡l ¡Xr
h0

¶q+·¡1

m(q)(Xt¡l)m(q)(Xp¡l)

=
h2q0
T 2

TX

t=¿+1

TX

p=¿+1

°u(jt ¡ pj)
µ

1
T hd0

¶2 X

s

X

r

EfX(Xt¡l)¡1fX (Xp¡l)¡1

K0

µ
Xt¡l ¡Xs
h0

¶
K0

µ
Xp¡l ¡Xr
h0

¶µ
Xt¡l ¡Xs
h0

¶q+·¡1 µ
Xp¡l ¡Xr
h0

¶q+·¡1

m(q)(Xt¡l)m(q)(Xp¡l)

= O
µ
h2q0
T

¶
; (28)

by the summability of
P
h °u(h) implied by the stationarity/mixing property of ut; and calculation

of expectations. The other terms follow by symmetric arguments. Therefore, by (26)-(28) we have
°°° bG¿ ¡G¿

°°° = Op(T¡1=2hq0 + (logT )T¡1h¡d0 + h2q0 )¿ : (29)

Similarly, we have

kbg¿ ¡ g¿k = Op(T¡1=2hq0 + (logT )T¡1h¡d0 + h2q0 )¿ : (30)

Notice that

bA¿ ¡A¿ = ¡G¡1
¿ [ bG¿ ¡G¿ ]G¡1

¿ g¿ +G
¡1
¿ [bg¿ ¡ g¿ ]

+ bG¡1
¿ [ bG¿ ¡G¿ ]G¡1

¿ [ 

bG ¿ 

¡  G¿ 

]G 

¡1
¿ g¿ ¡ bG¡1

¿ [ bG¿ ¡G¿ ]G¡1
¿ [bg¿ ¡ g¿ ]:



Furthermore, we can substitute ¡¡1
¿ and °¿ for G¡1

¿ and g¿ : Using (29), (30), and (19) and (24), we
obtain °°° bA¿ ¡ A¿ + ¡¡1

¿ [ bG¿ ¡G¿ ]¡¡1
¿ °¿ ¡ ¡¡1

¿ [bg¿ ¡ g¿ ]
°°° = Op(¢2

n); (31)

where ¢n =
¡
(logT )T¡1h¡d0 + h2q0

¢
¿.

We can then write
PT
t=1K1

³
x¡Xt
h1

´P¿
j=1(baj ¡ aj)ut¡j

PT
t=1K1

³
x¡Xt
h1

´ (32)

' 1
fX (x)

1
Thd1

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

(baj ¡ aj)ut¡j

' 1
fX (x)

1
Thd1

TX

t=1

K1

µ
x ¡Xt
h1

¶
U 0¿ t

h
¡¡1
¿ [ bG¿ ¡G¿ ]¡¡1

¿ °¿ ¡ ¡¡1
¿ [bg¿ ¡ g¿ ]

i
;

notice that
°°°°°

1
Thd1

TX

t=1

K1

µ
x ¡Xt
h1

¶
U 0¿ t

h
¡¡1
¿ [ bG¿ ¡G¿ ]¡¡1

¿ °¿ ¡ ¡¡1
¿ [bg¿ ¡ g¿ ]

i°°°°°

· 1
T

TX

t=1

°°°°
1
hd1
K1

µ
x ¡Xt
h1

¶°°°° kU 0¿ tk
h°°¡¡1

¿

°°
°°° bG¿ ¡G¿

°°°
°°¡¡1
¿ °¿

°°+
°°¡¡1
¿

°°kbg¿ ¡ g¿k
i
:

Thus (32) is of order Op
¡
(logT )T¡1h¡d0 + h2q0

¢
¿ c, where c is a constant. Under Assumption 6, (32)

is op(T¡1=2h¡d=21 ); which …nishes the proof for the second part.

Lemma A3. Under Assumptions 1 to 9

QT3 = Op(h
q
0) + op(T

¡1=2h¡d=21 ):

Proof of Lemma A3. First note that bm(Xt) ¡m(Xt) = bVt + bBt; where bBt and bVt are de…ned as
(25). Denote

bf 1X(x) =
1
Thd1

TX

s=1

K1

µ
x ¡Xs
h1

¶
:

We have

QT3 =

PT
t=1K1

³
x¡Xt
h1

´P¿
j=1 aj ( bm(Xt¡j) ¡m(Xt¡j))

PT
t=1K1

³
x¡Xt
h1

´
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=
T¡1h¡d1

PT
t=1K1

³
x¡Xt
h1

´ P¿
j=1 aj bVt¡j

T¡1h¡d1
PT
t=1K1

³
x¡Xt
h1

´ +
T¡1h¡d1

PT
t=1K1

³
x¡Xt
h1

´P¿
j=1 aj bBt¡j

T¡1h¡d1
PT
t=1K1

³
x¡Xt
h1

´

=
1
Thd1

1
fX(x)

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

aj bVt¡j +
1
Thd1

1
fX (x)

TX

t=1

K1

µ
x¡Xt
h1

¶ ¿X

j=1

aj bBt¡j

+
1
Thd1

bf 1X(x) ¡ fX (x)
fX(x)

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

aj bVt¡j

+
1
Thd1

bf 1X(x) ¡ fX (x)
fX(x)

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

aj bBt¡j:

We start with the …rst term, which can be written as

1
Thd1

1
fX (x)

TX

t=1

K1

µ
x¡Xt
h1

¶ ¿X

j=1

aj bVt¡j

' 1
Thd1

1
fX (x)

TX

t=1

K1

µ
x¡Xt
h1

¶ ¿X

j=1

aj
£
e01 [MfX(Xt¡j)]

¡1 Un(Xt¡j)
¤

=
X

·

!0;·
1
T

TX

r=1

ur
¿X

j=1

ajw·;T ;j;r ;

where

w·;T ;j;r =
1

Thd1hd0

TX

t=1

1
fX(Xt¡j )fX(x)

K1

µ
x ¡Xt
h1

¶
K0

µ
Xt¡j ¡Xr
h0

¶µ
Xt¡j ¡Xr
h0

¶·
:

We need to verify the boundedness of E(jw·;T;j;rj) :

E jw·;T;j;rj =
1

Thd1hd0

TX

t=1

E
1

fX (Xt¡j)fX (x)
K1

µ
x ¡Xt
h1

¶
K0

µ
Xt¡j ¡Xr
h0

¶µ
Xt¡j ¡Xr
h0

¶·

=
1
T

TX

t=1

Z ·
1
hd1hd0

fX;j;t¡r(y; z; w)
fX(x)fX (z)

K1

µ
x¡ y
h1

¶
K0

µ
z ¡ w
h0

¶µ
z ¡ w
h0

¶·
dydzdw

¸

=
1
T

TX

t=1

Z
fX;j;t¡r(x ¡ uh1; z; z ¡ vh0)

fX(x)fX (z)
K1 (u)K0 (v) v·dudzdv:

Again, under assumption 2 that the densities are bounded, E jw·;T ;j;r j is uniformly bounded over all
j and r. Since wTjs only depends on X1; : : : ;XT ; and u;X are mutually independent, we have

var

"
1
T

TX

r=1

ur
¿X

j=1

ajw·;T;j;r

#
=

1
T 2

TX

r=1

TX

s=1

E(usur)

"
E

Ã
¿X

j=1

ajw·;T ;j;r

!Ã
¿X

i=1

aiw·;T;i;s

!#



=
1
T 2

TX

r=1

TX

s=1

°u(js ¡ rj)
¿X

j=1

¿X

i=1

ajai (Ew·;T;j;rw·;T ;i;s)

· 1
T

Ã
°u(0) + 2

1X

j=1

°u(j)

!Ã 1X

j=1

jaj j
!2 µ

sup
j;r;T
E(jw·;T;j;r j)

¶2

= O(T ¡1)

by the summability of the aj and °u(j); and the boundedness of E(jw·;T ;j;r j): Thus

1
Thd1

1
fX (x)

TX

t=1

K1

µ
x¡Xt
h1

¶ ¿X

j=1

aj bVt¡j = Op(T¡1=2):

We now turn to the leading bias term, notice that

1
Thd1

1
fX (x)

TX

t=1

K1

µ
x¡Xt
h1

¶ ¿X

j=1

aj bBt¡j

'
X

·

!0;·
hq

Thd1

1
fX (x)

TX

t=1

K1

µ
x¡Xt
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¶

¿X
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1
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X
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K0

µ
Xt¡j ¡Xs
h0

¶µ
Xt¡j ¡Xs
h0

¶q+·¡1 m(q)(Xt¡j)
fX(Xt¡j)

:

Conditional on Xt¡j ; for each ·;

1
T

X

s 6=t¡j

1
hd0
K0

µ
Xt¡j ¡Xs
h0

¶µ
Xt¡j ¡Xs
h0

¶q+·¡1 m(q)(Xt¡j )
fX(Xt¡j)

' Et¡j

"
1
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K0

µ
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h0

¶µ
Xt¡j ¡Xs
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¶q+·¡1 m(q)(Xt¡j)
fX (Xt¡j)

#

=
1
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Z
K0

µ
Xt¡j ¡Xs
h0

¶µ
Xt¡j ¡Xs
h0

¶q+·¡1 m(q)(Xt¡j)
fX (Xt¡j)

fX;t¡j¡s(XsjXt¡j)dXs

=
Z
K0 (u) uq+·¡1m

(q)(Xt¡j)
fX (Xt¡j)

fX;t¡j¡s(Xt¡j ¡ uh0jXt¡j)du

' m(q)(Xt¡j )
fX;t¡j¡s(Xt¡j )
fX (Xt¡j)

Z
K0 (u) uq+·¡1du:

Thus

1
T hd1

1
fX (x)

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

aj bBt¡j

' hq
X

·

!0;·¹q+·¡1(K0)
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1
Thd1
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fX (x)
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µ
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¶
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1
T hd1

TX

t=1

1
fX(x)

K1

µ
x ¡Xt
h1

¶
m(q)(Xt¡j )

fX;t¡j¡s(Xt¡j )
fX (Xt¡j)

' E
·
1
hd1

1
fX(x)

K1

µ
x¡Xt
h1

¶
m(q)(Xt¡j)

fX;t¡j¡s(Xt¡j)
fX(Xt¡j)

¸
:

Thus,

1
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1
fX (x)

TX

t=1

K1

µ
x¡Xt
h1

¶ ¿X

j=1

aj bBt¡j

' hq0
X

·

!0;·¹q+·¡1(K0)
¿X
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1
Thd1
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1
fX (x)

K1

µ
x ¡Xt
h1

¶
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' hq0
X

·

!0;·¹q+·¡1(K0)
¿X

j=1

ajE
·
1
hd1

1
fX(x)

K1

µ
x¡Xt
h1

¶
m(q)(Xt¡j)

fX;t¡j¡s(Xt¡j)
fX (Xt¡j )

¸

= Op(hq0);

since 1X

j=1

jaj j <1

and
E

·
1
hd1

1
fX (x)

K1

µ
x ¡Xt
h1

¶
m(q)(Xt¡j )

fX;t¡j¡s(Xt¡j )
fX (Xt¡j)

¸
= O(1):

Finally we turn to the remainder terms

1
Thd1

bf 1X(x) ¡ fX (x)
fX(x)

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

aj bVt¡j, and

1
Thd1

bf 1X(x) ¡ fX (x)
fX(x)

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

aj bBt¡j:

Notice that
sup
x2X

¯̄
¯ bf1X (x) ¡ fX (x)

¯̄
¯ = Op(hq1) + OP (T¡1=2h¡d=21 (log T )1=2); (33)

sup
1·t·T

¯̄
¯bVt

¯̄
¯ = OP (T¡1=2h¡d=20 (log T )1=2); (34)

and
sup

1·t·T

¯̄
¯ bBt

¯̄
¯ = Op(hq0): (35)

Under Assumption 2, fX (x) is bounded away from zero, we have
¯̄
¯̄
¯

1
Thd1

bf 1X(x) ¡ fX (x)
fX(x)

TX

t=1

K1

µ
x ¡Xt
h1
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¯̄
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·
Ã 1X
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jajj
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¯̄
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¯̄
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µ
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¯̄
¯̄
¯̄
¯
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¡1=2h¡d=21 (logT )1=2)OP (T¡1=2h¡d=20 (logT )1=2)
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¯̄
¯
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·
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¯̄
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h1
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¯̄
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= Op(hq1 + T
¡1=2h¡d=21 (logT )1=2)OP(hq0);

noticing that

1
Thd1

TX
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¯̄
¯̄K1

µ
x¡Xt
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¶¯̄
¯̄ ! E

½
1
hd1

¯̄
¯̄K1

µ
x¡Xt
h1
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=
Z

jK1 (u)jfX(x ¡ uh1)du ' fX(x)
Z
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Lemma A4. Under Assumptions 1 to 7

QT4 = op(T¡1=2h¡d=21 ):

Proof of Lemma A4. We have
¯̄
¯̄
¯

1
Thd1

TX

t=1

K1

µ
x ¡Xt
h1

¶ ¿X

j=1

(baj ¡ aj ) ( bm(Xt¡j) ¡m(Xt¡j))
¯̄
¯̄
¯

· 1
Thd1

TX

t=1

¯̄
¯̄K1

µ
x ¡Xt
h1

¶¯̄
¯̄
°°° bA¿ ¡ A¿

°°°
"
¿X

j=1

( bm(Xt¡j) ¡m(Xt¡j))2
#1=2

· 1
Thd1

TX

t=1

¯̄
¯̄K1

µ
x ¡Xt
h1

¶¯̄
¯̄
°°° bA¿ ¡ A¿

°°° ¢ ¿ max
s

j bm(Xs) ¡m(Xs)j :

Notice that °°° bA¿ ¡A¿
°°° ·

°°° bA¿ ¡ A¿
°°° +

°°A¿ ¡ A¿
°° ;

and, from the proof of Lemma 2, we have
°°° bA¿ ¡ A¿

°°° = o p 

((log T )T 

¡1=2 h¡d =2
0 + hq0);



and °°A¿ ¡ A¿
°° = Op(T ¡1=2¿ 3=2):

In addition,
max
1·s·T

jbm(Xs) ¡m(Xs)j = Op(hq0 + T¡1=2h¡d=20 (logT )1=2);

thus
jQT4j = op(T¡1=2h¡d=21 ):

Proof of Theorem 3 The steps of proving Theorem 3 is similar to that for Theorem 2.
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B Tables and Figures

TABLE 1: Relative E¢ciency (RE), n = 100
(AR(2) Prewhitening, Estimating m(x) at x = 0)

ARMA Parameters Relative E¢ciency
®1 ®2 °1 °2 RE1 RE2 RE0

0 0 0 0 1.070 1.048 1.0000
0.1 1.046 1.012 0.9901
0.2 1.022 0.986 0.9615
0.5 0.981 0.962 0.8000
0.7 0.962 0.942 0.6711
0.9 0.963 0.933 0.5524

0.1 1.042 1.039 0.9900
0.2 1.024 0.994 0.9600
0.5 0.980 0.971 0.7500
0.7 0.961 0.982 0.5100
0.9 0.980 0.990 0.1900
0.1 0.1 1.026 0.999 0.9612
0.1 0.2 1.008 0.986 0.9166
0.2 0.2 0.991 0.983 0.8571
0.5 0.2 0.959 0.972 0.6048
0.7 0.2 0.950 0.962 0.3864
0.9 0.2 0.970 0.986 0.1357
0.1 0.5 0.971 0.954 0.7333
0.2 0.5 0.960 0.950 0.6621
0.5 0.5 0.942 0.941 0.4286
0.7 0.5 0.940 0.943 0.2615
0.9 0.5 0.976 0.980 0.0884

0.5 0.2 0.973 0.976 0.7752
0.2 0.2 1.016 0.997 0.9259
0.2 0.7 0.986 0.987 0.6536

0.2 0.2 0.990 0.988 0.9000
0.5 0.2 0.964 0.979 0.5850
0.7 0.2 0.980 0.990 0.2250
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TABLE 2: Relative E¢ciency (RE), n = 200
(AR(2) Prewhitening)

ARMA Parameters Relative E¢ciency
®1 ®2 °1 °2 RE1 RE2

0 0 0 0 1.058 1.046
0.1 1.024 1.021
0.2 1.007 0.996
0.5 0.975 0.960
0.7 0.966 0.938
0.9 0.964 0.929

0.1 1.012 1.026
0.2 1.001 0.996
0.5 0.938 0.953
0.7 0.908 0.919
0.9 0.933 0.940
0.1 0.1 1.004 1.001
0.1 0.2 0.988 0.986
0.2 0.2 0.970 0.972
0.5 0.2 0.919 0.919
0.7 0.2 0.896 0.894
0.9 0.2 0.929 0.929
0.1 0.5 0.961 0.945
0.2 0.5 0.947 0.929
0.5 0.5 0.907 0.887
0.7 0.5 0.889 0.874
0.9 0.5 0.926 0.922

0.5 0.2 0.946 0.952
0.2 0.2 0.970 0.990
0.2 0.7 0.956 0.962

0.2 0.1 0.979 0.987
0.2 0.2 0.958 0.971
0.5 0.2 0.933 0.948
0.7 0.2 0.936 0.951
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TABLE 3: Relative E¢ciency (RE), n = 500
(AR(2) Prewhitening)

®1 ®2 °1 °2 RE1 RE2

0 0 0 0 1.032 1.026
0.1 1.003 1.001
0.2 0.982 0.992
0.5 0.951 0.950
0.7 0.940 0.926
0.9 0.938 0.915

0.1 0.999 0.997
0.2 0.970 0.990
0.5 0.905 0.930
0.7 0.867 0.881
0.9 0.861 0.866
0.1 0.1 0.978 0.992
0.1 0.2 0.961 0.979
0.2 0.2 0.942 0.961
0.5 0.2 0.887 0.896
0.7 0.2 0.857 0.858
0.9 0.2 0.857 0.855
0.1 0.5 0.935 0.932
0.2 0.5 0.920 0.914
0.5 0.5 0.876 0.865
0.7 0.5 0.850 0.841
0.9 0.5 0.854 0.848

0.5 0.2 0.918 0.937
0.2 0.2 0.941 0.978
0.2 0.7 0.897 0.921

0.2 0.1 0.949 0.976
0.2 0.2 0.926 0.955
0.5 0.2 0.867 0.881
0.7 0.2 0.861 0.866
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TABLE 4
Relative E¢ciency (RE), n = 1000
®1 ®2 °1 °2 RE1 RE2

0 0 0 0 1.016 1.012
0.1 0.994 0.996
0.2 0.971 0.988
0.5 0.949 0.948
0.7 0.943 0.928
0.9 0.940 0.921

0.1 0.988 0.997
0.2 0.967 0.987
0.5 0.912 0.931
0.7 0.880 0.890
0.9 0.871 0.886
0.1 0.1 0.971 0.989
0.1 0.2 0.958 0.976
0.2 0.2 0.942 0.959
0.5 0.2 0.899 0.903
0.7 0.2 0.875 0.874
0.9 0.2 0.876 0.875
0.1 0.5 0.937 0.933
0.2 0.5 0.925 0.918
0.5 0.5 0.890 0.881
0.7 0.5 0.871 0.862
0.9 0.5 0.875 0.871

0.5 0.2 0.924 0.937
0.2 0.2 0.941 0.975
0.2 0.7 0.900 0.927

0.2 0.2 0.929 0.953
0.5 0.2 0.883 0.891
0.7 0.2 0.878 0.880
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TABLE 5: Relative E¢ciency (RE), n = 100
(AR(1) Prewhitening)

®1 ®2 °1 °2 RE1 RE2

0 0 0 0 1.043 1.029
0.1 1.024 1.016
0.2 1.006 1.005
0.5 0.966 0.991
0.7 0.953 0.979
0.9 0.948 0.974

0.1 1.024 1.138
0.2 1.007 1.009
0.5 0.966 0.989
0.7 0.952 0.976
0.9 0.971 0.990
0.2 0.2 0.976 0.996

TABLE 6: Relative E¢ciency (RE), n = 200
(AR(1) Prewhitening)

®1 ®2 °1 °2 RE1 RE2

0.1 1.000 1.001
0.2 0.980 0.993
0.5 0.935 0.960
0.7 0.920 0.944
0.9 0.914 0.937

0.1 0.999 0.999
0.2 0.979 0.993
0.5 0.923 0.948
0.7 0.897 0.916
0.9 0.928 0.939
0.2 0.2 0.943 0.968
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TABLE 7: Relative E¢ciency (RE), n = 500
(AR(1) Prewhitening)

®1 ®2 °1 °2 RE1 RE2

0.1 0.995 1.000
0.2 0.967 0.992
0.5 0.917 0.951
0.7 0.901 0.931
0.9 0.894 0.922

0.1 0.990 0.999
0.2 0.966 0.992
0.5 0.900 0.930
0.7 0.864 0.881
0.9 0.861 0.866
0.2 0.2 0.925 0.959

TABLE 8: Relative E¢ciency (RE), n = 1000
(AR(1) Prewhitening)

®1 ®2 °1 °2 RE1 RE2

0.1 0.983 0.996
0.2 0.964 0.988
0.5 0.925 0.950
0.7 0.912 0.934
0.9 0.908 0.927

0.1 0.983 0.996
0.2 0.960 0.987
0.5 0.909 0.930
0.7 0.880 0.890
0.9 0.877 0.881
0.2 0.2 0.930 0.950
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TABLE 9: Relative E¢ciency (RE), n = 100
(AR(2) Prewhitening, m(x) = x, estimate all points )

ARMA Parameters Integrated Squared Errors Relative E¢ciency
®1 °1 ISE0 ISE1 ISE2 RE1 RE2 RE0

0 0 0.0641 0.0658 0.0661 1.027 1.031 1.0000
0.1 0.0770 0.0776 0.0778 1.007 1.010 0.9901
0.2 0.0912 0.0905 0.0901 0.992 0.988 0.9615
0.5 0.1413 0.1363 0.1331 0.964 0.942 0.8000
0.7 0.1809 0.1733 0.1660 0.957 0.916 0.6711
0.9 0.2255 0.2157 0.2044 0.956 0.906 0.5524

0.1 0.0784 0.0789 0.0791 1.006 1.009 0.9900
0.2 0.0983 0.0968 0.0970 0.984 0.986 0.9600
0.5 0.2393 0.2216 0.2227 0.926 0.931 0.7500
0.7 0.6073 0.5409 0.5375 0.891 0.885 0.5100
0.9 3.6257 3.1559 3.1297 0.870 0.863 0.1900
0.2 0.2 0.1402 0.1343 0.1341 0.957 0.956 0.8571

TABLE 10: Relative E¢ciency (RE), n = 200
(AR(2) Prewhitening, m(x) = x, at all points )

ARMA Parameters Integrated Squared Errors Relative E¢ciency
®1 °1 ISE0 ISE1 ISE2 RE1 RE2 RE0

0 0 0.03488 0.03525 0.03531 1.0110 1.0120 1.0000
0.1 0.04205 0.04168 0.04171 0.9910 0.9918 0.9901
0.2 0.04991 0.04871 0.04907 0.9761 0.9834 0.9615
0.5 0.07756 0.07379 0.07287 0.9514 0.9396 0.8000
0.7 0.09941 0.09397 0.09118 0.9453 0.9173 0.6711
0.9 0.12400 0.11690 0.11260 0.9433 0.9076 0.5524

0.1 0.04287 0.04241 0.04252 0.9890 0.9918 0.9900
0.2 0.05398 0.05228 0.05302 0.9684 0.9822 0.9600
0.5 0.13480 0.12280 0.12410 0.9107 0.9197 0.7500
0.7 0.35850 0.31430 0.31330 0.8768 0.8736 0.5100
0.9 2.52290 2.14610 2.12810 0.8506 0.8435 0.1900
0.2 0.2 0.07732 0.07294 0.07349 0.9434 0.9505 0.8571
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TABLE 11: Relative E¢ciency (RE), n = 500
(AR(2) Prewhitening, m(x) = x, at all points )

ARMA Parameters Integrated Squared Errors Relative E¢ciency
®1 °1 ISE0 ISE1 ISE2 RE1 RE2 RE0

0 0 0.01463 0.01498 0.01487 1.024 1.016 1.0000
0.1 0.01802 0.01775 0.01792 0.985 0.994 0.9901
0.2 0.02143 0.02076 0.02110 0.968 0.984 0.9615
0.5 0.03345 0.03150 0.03140 0.942 0.938 0.8000
0.7 0.04295 0.04018 0.03940 0.935 0.917 0.6711
0.9 0.05360 0.05006 0.04870 0.933 0.908 0.5524

0.1 0.01838 0.01806 0.01827 0.982 0.994 0.9900
0.2 0.02323 0.02231 0.02281 0.960 0.982 0.9600
0.5 0.05895 0.05318 0.05399 0.902 0.916 0.7500
0.7 0.16130 0.14000 0.14021 0.868 0.869 0.5100
0.9 1.32120 1.10900 1.10240 0.839 0.834 0.1900
0.2 0.2 0.03340 0.03122 0.03168 0.934 0.948 0.8571

TABLE 12: Relative E¢ciency (RE), n = 1000
(AR(2) Prewhitening, m(x) = x, at all points )

ARMA Parameters Integrated Squared Errors Relative E¢ciency
®1 °1 ISE0 ISE1 ISE2 RE1 RE2 RE0

0 0 0.00794 0.00797 0.00801 1.0032 1.0084 1.0000
0.1 0.00961 0.00943 0.00956 0.9808 0.9954 0.9901
0.2 0.01142 0.01101 0.01125 0.9636 0.9844 0.9615
0.5 0.01783 0.01666 0.01667 0.9347 0.9348 0.8000
0.7 0.02289 0.02122 0.02086 0.9269 0.9110 0.6711
0.9 0.02857 0.02641 0.02575 0.9241 0.9009 0.5524

0.1 0.00980 0.00959 0.00975 0.9784 0.9951 0.9900
0.2 0.01239 0.01183 0.01216 0.9547 0.9818 0.9600
0.5 0.03154 0.02808 0.02868 0.8929 0.8580 0.7500
0.7 0.08695 0.07416 0.07460 0.8529 0.8580 0.5100
0.9 0.75080 0.61500 0.61340 0.8192 0.8170 0.1900
0.2 0.2 0.01781 0.01650 0.01684 0.9264 0.9452 0.8571
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TABLE 13: AR Coe¢cients in the Residuals
®1 ba1 ba2 ba3 ba4 ba5 ba6 ba7 ba8 ¿ (chosen by BIC)

Weekly Data 0.136 0.169 -0.022 -0.005 0.011 0.017 0.062 0.029 ¿ = 2

Daily Data 0.012 0.085 0.132 0.042 0.078 0.162 0.021 0.009 ¿ = 6

The residuals are estimated from the conventional procedure with h = 1:06sXT¡1=5:
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