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Abstract 
 
 
 
We consider a semiparametric distributed lag model in which the “news impact curve” m is 
nonparametric but the response is dynamic through some linear filters. A special case of 
this is a nonparametric regression with serially correlated errors. We propose an estimator 
of the news impact curve based on a dynamic transformation that produces white noise 
errors. This yields an estimating equation for m that is a type two linear integral equation. 
We investigate both the stationary case and the case where the error has a unit root. In the 
stationary case we establish the pointwise asymptotic normality. In the special case of a 
nonparametric regression subject to time series errors our estimator achieves efficiency 
improvements over the usual estimators, see Xiao, Linton, Carroll, and Mammen (2003). In 
the unit root case our procedure is consistent and asymptotically normal unlike the standard 
regression smoother. We also present the distribution theory for the parameter estimates, 
which is non-standard in the unit root case. We also investigate its finite sample 
performance through simulation experiments. 
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1 Introduction

In this paper we discuss the estimation of the unknown quantities in the model

B(L)Yt = A(L)m(Xt) + "t; (1)

where "t is a martingale di¤erence sequence with respect to the past of Yt and current and past

regressors Xt, while A(L) =
P1

j=0 ajL
j and B(L) =

P1
j=0 bjL

j are lag polynomial operators with

a0 = b0 = 1 for identi�cation, where Lxt = xt�1: The function m(:) is assumed to be unknown but

smooth, and is the object of central interest, although the dynamics of the model represented by

A(L); B(L) are also fundamental to the interpretation.

We �rst discuss a special case of central interest, the nonparametric regression model

Yt = m(Xt) + ut, t = 1; : : : ; T; (2)

where the covariates follow some stationary mixing process, while the residual process ut satis�es

A(L)ut = "t =
1X
j=0

ajut�j: (3)

In this case, A(L)Yt = A(L)m(Xt) + "t; which is a special case of (1) with A(L) = B(L): The

parametric version of the regression model (2) and (3) is a standard teaching topic in graduate

econometrics, Harvey (1981, Chapter 6). In the semiparametric model there are many standard

estimators of m and of the parameters of A(L) that are consistent under summability conditions

on A; see for example Robinson (1983), Bierens (1983), Masry and Fan (1997), Hidalgo (1997),

and Fan and Yao (2003)). However, unlike in the parametric case, the standard kernel regression

smoothers do not take account of the correlation structure in Xt or ut and estimate the regression

function in the same way as if these processes were independent. Furthermore, the variance of such

estimators is proportional to the short run variance of ut; �2u = var(ut) and does not depend on the

regressor or error covariance functions cov(Xt; Xt�j); cov(ut; ut�j); j 6= 0: This is a bit surprising

in comparison with the parametric case. One might think that there is useful information in the

autocorrelation structure for estimation of the mean. This point has been addressed recently by

Xiao, Linton, Carroll, and Mammen (2003) who proposed a more e¢ cient estimator of m based on

a prewhitening transformation

Yt �
1X
j=1

aj(Yt�j �m(Xt�j)) = m(Xt) + "t; (4)

where the right hand side is now a standard nonparametric regression with whitened errors. The

transform implicitly takes account of the autocorrelation structure. In practice they replaced the
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unknown quantities on the left hand side by preliminary estimates of m and aj(�): Their procedure

improves in terms of variance over the usual kernel smoothers.

The model (1) is more general than nonparametric regression with autocorrelated errors and

is perhaps more rightly viewed as a generalization of the distributed lag model. The traditional

distributed lag model (with m(x) = x) has been very popular in economics, Dhrymes (1971).1 More

recently, Hendry, Pagan, and Sargan (1984) reviewed the speci�cation of such models and gave a

taxonomy of special cases. It can be motivated from some simple economic relationships being

distorted by adaptive expectations, partial adjustment, etc., see Harvey (1981, Chapter 7). Suppose

there is a latent variable Y � that has some equilibrium relationship with covariateX; which in general

can be nonlinear so that Y �t = m(Xt): Then suppose that actual Y only responds to Y � with some

lagging mechanism, for example, Yt � Yt�1 = 
[Y �t � Yt�1] + "t for some 
 2 (0; 1); then we obtain
a special case of (1).2 The lags arise because production takes time or because agents take time to

respond to a signal or because there are institutional constraints. The traditional applications were

in for example production studies where Yt is output and Xt is the capital/labour ratio of a given

�rm or industry observed over time. More recent applications have been in rational expectations

models where the data are at di¤erent frequencies, Hansen and Hodrick (1980). The issues concerning

formulation and estimation of the lag polynomials A;B are pretty much resolved in the linear case,

see Hannan and Deistler (1988) for a more recent discussion in the multivariate case. Linearity of

m is just a convenience and was adopted many years ago when computational and technical issues

were binding. We allow for nonlinear m because for some problems linear m is not well motivated

and at odds with the data. Note that model (1) includes as a special case the so-called NARMAX

model introduced in Chen and Billings (1989) and used frequently by systems engineers in which the

function m is approximated by some polynomial with unknown coe¢ cients.

Finally, we remark that the ARCH(1) model of Linton and Mammen (2005) is a special case
when Yt = y2t and Xt = yt�1; while B(L) = 1: This model has been treated elsewhere.

We treat only the case where A(L); B(L) are described by a �nite dimensional parameter � =

(�; �) 2 Rp with � 2 Rpa parameterizing A and � 2 Rpb parameterizing B: We propose a strategy
for estimation of m along with the parameters of A(L) in (2), (3). This is essentially to estimate the

1Sims (1971) and Geweke (1978) consider a continuous time distributed lag model where Y (t) =
R1
�1 a(s)X(t �

s)ds + "(t) and the data are observed at discrete time intervals in which case the (high frequency) discrete time

approximation to this is like (1) with B(L) = 1 and A(L) =
P1

j=�1 ajL
j for some aj related to the function a(:)

under some conditions:
2The usual properties of linear dynamic regression models can be extended to the nonlinear case. Thus for example

we can de�ne the average instantaneous impact E[@Yt=@Xt] as equal to the average derivative of the function m; =

E[m0(Xt)]; a quantity that has been investigated elsewhere. The total dynamic average impact
P1

j=0E[@Yt+j=@Xt] =

E[m0(Xt)]
P1

j=0(B(L)=A(L))j is proportional to the instantaneous impact.
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transformed model (1) as an additive (possibly in�nite order) nonparametric regression, see Hastie

and Tibshirani (1991). Recently, Linton and Mammen (2005) have shown how to estimate similar

models using the theory of linear integral equations of the second kind; see also Carrasco, Florens and

Renault (2002). We obtain an estimating equation for m that is a type two linear integral equation

for each parameter value �. To obtain the parameters � we optimize a pro�le likelihood criterion. We

show that our method has attractive theoretical and �nite sample properties. In particular, in the

special case of nonparametric regression with autocorrelated error it has smaller asymptotic variance

than the main method of Xiao, Linton, Carroll, and Mammen (2003). Furthermore, the asymptotics

require weaker conditions with regard to the memory properties of the error terms. We de�ne our

method in the general model (1). In that case there is not such an obvious alternative estimator of

the function m: We mostly consider the case where both Xt; Yt are stationary and mixing processes

in which case the main statistical issue is e¢ ciency. We also consider the case where some of the

variables are nonstationary. This could arise for example from a unit root in the residual ut or in Xt

or in both, see Phillips and Park (1998). In this case, estimating in the original data (2) may lead

to inconsistency, whereas the transformation involved in (1) yields error terms with a lower order

of nonstationarity/persistence and hence consistency can be obtained, see Marinucci and Robinson

(2003). The estimation method is more or less the same as in the stationary case although the

justi�cation of it di¤ers. The distribution theory for the parametric part though is non standard in

this case: in fact we obtain T convergence to the Dickey-Fuller distribution under the unit root.

2 The Stationary Case

In this section we suppose that (Yt; Xt) are jointly stationary and weakly dependent mixing processes

and describe our estimation methods and their properties for this case.

2.1 Estimation Method

2.1.1 Population Characterization

We �rst suppose that A(L); B(L) are known. Letting Zt = B(L)Yt we have

Zt = A(L)m(Xt) + "t =
1X
j=0

ajm(Xt�j) + "t;

which is an additive autoregression with i.i.d. errors where the additive components are subject to

the restriction that they all share a common function m. In view of the assumed stationarity, de�ne
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the function m as the minimizer of the criterion

Q(�0;m) = E

24(Z0 � 1X
j=0

ajm(X�j)

)235 : (5)

This problem can be viewed as a projection in a suitable Hilbert space. Let L2(f0) be the Hilbert

space of square integrable functions with respect to the marginal density of Xt denoted f0: For the

stationary mixing process fXtg1t=�1; provided
P1

j=0 jajj <1; the random variable
P1

j=0 ajm(X�j)

is square integrable for any function m 2 L2(f0): The set G = f
P1

j=0 ajm(X�j) : m 2 L2(f0)g can
be viewed as a subspace of the Hilbert space of square integrable functions de�ned on the in�nite

product of random variables X = (X0; X�1; : : :): By the projection theorem there exists a unique

member of G closest to the random variable Z0:

A necessary condition for m to be the minimizer of (5) is that it satis�es the �rst order condition

E

"(
Z0 �

1X
j=0

ajm(X�j)

) 1X
k=0

akh(X�k)

#
= 0 (6)

for any measurable function h for which this expectation is well-de�ned. See Sagan (1969), Theorem

1.7 for example. The second order condition is �E[f
P1

k=0 akh(X�k)g2] which is negative implying
that the solution of the �rst order condition does indeed (locally) minimize the criterion. Taking h(:)

to be the Dirac delta function, we have that

1X
j=0

ajE[Z0jX�j = x] =
1X
j=0

a2jm(x) +
XX
j 6=k

ajakE[m(X�j)jX�k = x] (7)

for each x:3 This is an implicit equation for m(:): It can be re-expressed as a linear type two integral

equation in L2(f0): De�ne a
y
j = aj=

P1
j=0 a

2
j and a

�
j =

P
k 6=0 aj+kaj=

P1
l=0 a

2
l ; and let f0;j be the joint

density of (Xt; Xt�j): Then

m(x) = m�(x) +

Z
H(x; y)m(y)f0(y)dy; or m = m� +Hm; (8)

m�(x) =

1X
j=0

ayjE[Z0jX�j = x]

H(x; y) = �
�1X
j=�1

a�j
f0;j(y; x)

f0(y)f0(x)
:

3This equation can also be derived at by directly taking conditional expectations of Zt given each Xt�k; multiplying

by ak; and then summing over k:

4



This is similar to the equation derived in Linton and Mammen (2005) with the exception that there

Xt was lagged values of Yt: Equation (8) is an implicit equation in m and we need some conditions

on the operator H(x; y) to guarantee that there exists a unique solution.
Assumption A1. The operator H(x; y) satis�es the Hilbert-Schmidt condition i.e.,Z Z

H(x; y)2f0(x)f0(y)dxdy <1:

A su¢ cient condition for A1 is that the joint densities f0;j(y; x) have compact support and f0(x)

is bounded away from zero on this support, which we shall assume below. However, this is not

necessary and condition A1 can hold for many covariate processes with unbounded support. We

shall however restrict attention to the case where the support of the marginal covariate density f0
is a compact set [x; x]: Then the operator H is a bounded compact linear operator on the Hilbert

space of functions L2(f0). It is also self-adjoint, see Linton and Mammen (2005). It therefore has a

countable number of eigenvalues4:

1 > j�1j � j�2j � : : : ;

with
P1

j=0 �
2
j <1: The spectral radius of the operator r(H) = supj j�jj <1: Also, the value 0 is a

cluster point of the set f�jg1j=1 and 0 is the only cluster point, see Kress (1999, Theorem 3.9).

Assumption A2. There exist no measurable function m(:) with
R
m(x)2f0(x)dx = 1 such thatP1

j=0 ajm(Xt�j) = 0 with probability one.

This condition rules out a certain �concurvity�in the stochastic process fXtg. That is, the data
cannot be functionally related in this particular way. In the AR(1) case this says that there are no

nontrivial functions m that satisfy m(Xt)� �m(Xt�1) = 0 with probability one.5 A consequence of

A2 is that supj �j < 1 and therefore the operator I �H is strictly positive de�nite. Therefore, there

exists a unique solution to (8) that satis�es

m = (I �H)�1m�: (9)

This is the main characterization used for estimation, although we must �rst extend this to the case

where a general � is used not necessarily the true �0:

For each � = (�; �) 2 �; de�ne Zt(�) =
P1

j=0 bj(�)Yt�j and gj(x; �) = E[Zt(�)jXt�j = x];

j = 0;�1; : : :

m�
�(x) =

1X
j=0

ayj(�)gj(x; �)

4These are real numbers for which there exists functions ej(:) such that Hej = �jej :
5One example where this condition is not satis�ed is when Xt = t=T:
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H�(x; y) = �
�1X
j=�1

a�j(�)
f0;j(y; x)

f0(y)f0(x)
; (10)

where ayj(�) = aj(�)=
P1

j=0 a
2
j(�) and a

�
j(�) =

P
k 6=0 aj+k(�)aj(�)=

P1
l=0 a

2
l (�): We now let m vary

with �; that is, (5) is de�ned for any �, and let m� be the function that minimizes (5); this satis�es

m� = (I �H�)
�1m�

� for all � provided the conditions A1 and A2 hold uniformly over the parameter

space �. Furthermore, we can de�ne � = �0 as the minimizer of

Q(�;m�) = E

24(Z0(�)� 1X
j=0

aj(�)m�(X�j)

)235 (11)

with respect to � 2 �: Let m0 = m�0 : We adopt this pro�ling approach to de�ning �0;m0 as this

is the way our estimation strategy works. We suppose that assumptions A1 and A2 hold uniformly

over the parameter space � so that for each � 2 �; m� = (I �H�)
�1m�

� is well-de�ned. Note that

the operator H� is not necessarily a contraction, i.e., it may hold that r(H�) > 1 for some � 2 �:
Therefore, one cannot guarantee that the in�nite sum

P1
j=0H

j
� exists for all � 2 �.

In practice one has to replace m�
� and H� by estimators. Furthermore, one has also to estimate

the parameters of the �lters A;B. In the sequel we provide some details on this.

2.1.2 Further Details

Suppose we have a sample f(Y1; X1); : : : ; (YT ; XT )g: The general estimation strategy is

1. For each � compute estimators of bm�
�;
bH� of m�

�;H�

2. Solve an empirical version of the equation (8) to obtain an estimator bm� of m�

3. Choose b� to minimize the pro�led least squares criterion with respect to �: Let bm(x) = bmb�(x):
Let � = �(T ) be some truncation parameter and de�ne Z�t (�) =

P�
j=0 bj(�)Yt�j: The choice of

truncation depends on the dependence model A(L); B(L): For geometrically declining parameters

(as we shall assume) one can work with logarithmic truncation. There are many suitable estimators

of the regression functions and density functions in our estimator; we shall use local linear regression

estimators for m� and a fairly standard density estimator for H but other choices are possible.

For any sequence fZ�t (�)g and any lag j de�ne the estimator bgj(x; �) = bc0; where (bc0;bc1) are the
minimizers of the weighted sums of squares criterion

TX
t=j+1

fZ�t (�)� c0 � c1(Xt�j � x)g2Kh (Xt�j � x) (12)
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with respect to (c0; c1); where K is a symmetric probability density function, h is a positive band-

width, and Kh(:) = K(:=h)=h. Further de�ne

bf0;j(y; x) = 1

T � jjj

TX
t=jjj+1

Kh(y;Xt)Kh(x;Xt�j) ; bf0(x) = 1

T

TX
t=1

Kh(x;Xt):

bm�
�(x) =

�X
j=0

ayj(�)bgj(x; �) ; bH�(x; y) = �
��X
j=�1

a�j(�)
bf0;j(y; x)bf0(y) bf0(x) ;

bH�m(x) =

Z bH�(x; y)m(y) bf0(y)dy:
Here, for each x in the support of Xt; Kh(x; y) = K

x
h(x� y) for some kernel Kx such that Kx

h(u) =

h�1Kx(h�1u) and Kx
h(u) = Kh(u) for all x in the interior of the support of Xt:We shall assume that

the covariate is supported on [x; x] for some known x; x and that the covariate density is bounded

away from zero on this support. We need to make a boundary adjustment to the kernel K in bH� by

using the boundary kernels Kx
h(y � x) to ensure that the bias is the same magnitude everywhere.

Then de�ne bm� as any solution to the equation

m = bm�
� + bH�m; (13)

in L2( bf0): We discuss the computation of this solution in the appendix. Let b� = argmin�2� bQT (�);
where bQT (�) = 1

T

TX
t=�+1

(
Z�t (�)�

�X
j=0

aj(�)bm�(Xt�j)

)2
:

Finally, let bm(x) = bmb�(x):

3 Asymptotic Properties

Let F b
a be the �-algebra of events generated by the random variables fYt; Xt; a � j � bg. A

stationary processes fYt; Xtg is called strongly mixing [Rosenblatt (1956)] if

sup
A2F0�1;B2F1k

jPr (A \B)� Pr(A) Pr(B)j � s(k)! 0 as k !1: (14)

We shall consider two cases. First, the �weak form case�where we do not maintain that model (1)

holds only that fYt; Xtg is a stationary strong mixing process. Second, we maintain that in additional
model (1) holds with a martingale di¤erence error sequence "t. To facilitate the asymptotic analysis,
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we make the following assumptions on the residuals and regressors, the kernel function k(�); and the
bandwidth parameter h. Let �t;j(�) = Zt+j(�)�E[Zt+j(�)jXt]; �t;j(�) = m�(Xt+j)�E[m�(Xt+j)jXt];

�1�;t =
1X
j=0

ayj(�)�t;j(�) and �
2
�;t = �

�1X
j=�1

a�j(�)�t;j(�): (15)

B1 The process fXt; Ytg1t=�1 is stationary and alpha mixing with a mixing coe¢ cient, s(k) such

that for some C � 0 and some s < 1; s(k) � Csk:

B2 E
�
jYtj2�

�
<1 for some � > 2:

B3 The covariate process fXtg1t=�1 has absolutely continuous density f0 supported on [x; x] for

some �1 < x < x < 1 and the bivariate densities f0;j(�) are supported on [x; x]2: The
function m(�) together with the densities f0(�) and f0;j(�) are continuous and twice continuously
di¤erentiable over (x; x) [and (x; x)2]; and are uniformly bounded. f0 (�) is bounded away from
zero on [x; x]; i.e., infx�w�x f0(w) > 0:

B4 The parameter space � is a compact subset of Rp; and the value �0 is an interior point of �:
Also, A2 holds, and for any � > 0

inf
jj���0jj>�

Q(�;m�) > Q(�0;m�0):

B5 The density function � of (�1t;j(�); �
2
t;j(�)) is Lipschitz continuous on its domain. The joint

densities �0;j; j = 1; 2; : : : ; of (�
1
t;0(�); �

2
t;0(�)); (�

1
t;j(�); �

2
t;j(�)) are uniformly bounded :

B6 The parameters � 2 A and � 2 B compact subsets of Rpa and Rpb respectively: The coe¢ cients
satisfy sup�2A;k=0;1;2 jj@kaj(�)=@�kjj � Caj for some a < 1 and some �nite constant C; while
inf�2A

P1
j=0 a

2
j(�) > 0: Likewise, sup�2B;k=0;1;2 jj@kbj(�)=@�kjj � Cb

j
for some b < 1 and some

�nite constant C:

B7 The truncation sequence �T satis�es �T = C log T for some constant C > (�2 log b)�1:

B8 The bandwidth sequence h(T ) satis�es T 1=5h(T ) ! 
 as T ! 1 with 
 bounded away from

zero and in�nity.

B9 For each x 2 [x; x] the kernel function Kx has support [�1; 1] and satis�es
R
Kx(u)du = 1 andR

Kx(u)udu = 0, such that for some constant C; supx2[x;x] jKx(u)�Kx(v)j � Cju� vj for all
u; v 2 [�1; 1]: De�ne �j(K) =

R
ujK(u)du and jjKjj22 =

R
K2(u)du:

B10 "t satis�es E
�
"tjfXt�jg1j=0; f"t�jg1j=1

�
= 0 a.s.
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B11 (a) "t is i.i.d. and independent of the process fXtg; (b) "t is also normally distributed.

These conditions are similar to Linton and Mammen (2005) but we also need conditions on the

bj(�) coe¢ cients and separate conditions on X and Y .

Note that B1-B6 imply the uniform version of conditions A1-A2. Condition B1 rules out long

memory but allows a wide range of processes used in practice. We will make use of the mixing

property to apply the exponential inequality of Bosq (1998) and to establish a central limit theorem

for bm� in the weak form case. In this weak form case we can�t apply martingale limit theory. We

need to apply a central limit theorem to (local) averages of the processes �1�;t and �
2
�;t de�ned above.

These processes need not be mixing but are near epoch dependent processes on the strong mixing

bases Yt; Xt with exponentially declining weights under our conditions on B;A; we apply a CLT due

to Lu (2001) for such processes using conditions B1 and B5,B6.

Condition B3 is quite standard in the nonparametric regression literature. Note that we only

assume twice continuously di¤erentiable m.

In B4 we explicitly assume the identi�cation of the parametric part. We make this high level

assumption for three reasons. First, we need identi�cation in the weak case, and this seems like a

natural assumption to make in view of our de�nition of the weak form process. Second, we allow

the coe¢ cients aj(�); bj(�) to depend on � in a complicated way. Third, the mapping � 7�! m� may

be quite complicated to analyze. Hannan (1973) used high level conditions [c.f. his condition (4)]

similar to ours.

The truncation rate assumed in B7 is consistent with the exponential decaying mixing coe¢ cients.

It can be weakened at the expense of more detailed argumentation. In B8 we are anticipating a rate

of convergence of T�2=5 for bm�; which is consistent with second order smoothness on the function

m: The assumptions B10 are expressed in terms of the unobserved f"t�jg1j=1 and are equivalent
to assumptions on fyt�jg1j=1 under an invertibility condition. Assumption B10 is needed for the
consistency of the parameter estimates b�: In the pure regression model (2, 3) one only needs a weaker
assumption E

�
"tjfXt�jg1j=0

�
= 0 a.s. for consistent estimation of m and � as is known from the

parametric case:

De�ne the functions �� = (I �H�)
�1��� as solutions to the integral equations �� = �

�
� +H���; in

which:

���(x) =
f 00(x)

f0(x)

@

@x
H�m�(x) +H�m

00
�(x):

Then de�ne

!�(x) =
jjKjj22
f0(x)

var[�1�;t + �
2
�;t];

b�(x) =
1

2
�2(K)��(x);

9



where �j�;t; j = 1; 2 were de�ned above in (15). We prove the following theorem in the appendix.

Theorem 1. Suppose that B1-B9 hold. Then for each � 2 � and x 2 (x; x)
p
Th
� bm�(x)�m�(x)� h2b�(x)

�
=) N (0; !�(x)) ; (16)

Both the bias and variance in this result are quite complicated even though a local linear smoother

has been used in estimating gj. This is a �weak form�result, where the model (1) is not assumed.

We next maintain a �semi-strong form�assumption B10, which requires the �lters to be correctly

speci�ed. Under this assumption we can apply a CLT for martingale di¤erence sequences. We obtain

the properties of b� by an application of the asymptotic theory for semiparametric pro�led estimators,
see Severini and Wong (1992) and Newey (1994). This requires a uniform expansion for bm�(x) and

for the derivatives (with respect to �) of bm�(x). Under B10, we get that

�1�0;t + �
2
�0;t
=

1X
j=0

ayj"t+j:

Thus:

!�0(x) =
jjKjj22

P1
j=0 a

2
j(�0)E ["

2
t jXt�j = x]

f0(x)
hP1

j=0 a
2
j(�0)

i2 (17)

Let "t(�) = Zt(�)�
P1

j=0 aj(�)m�(Xt�j); and let

J = E

�
@2"t

@�@�>
(�0)

�
and I = E

�
@"t
@�

@"t

@�>
"2t (�0)

�
:

Theorem 2. Suppose that Assumptions B1 to B10 hold. Then,

p
T (b� � �0) =) N(0;J �1IJ �1):

Furthermore, for x 2 (x; x)
p
Th
�bm(x)�m(x)� h2b�0(x)� =) N (0; !�0(x)) :

Under the �strong form�special case B11(a), !(x) =jjKjj22�2"=f0(x)
P1

j=0 a
2
j : In the nonparametric

regression case we can compare the e¢ ciency of our procedure with that of alternative estimators like

the usual kernel regression estimator, which has asymptotic variance !Ker(x) =jjKjj22�2"
P1

j=0 c
2
j=f0(x);

where C(L) = A(L)�1: Compare also with the estimator of Xiao, Linton, Carroll, and Mammen

(2003), which has variance !XLCM(x) =jjKjj22�2"=f0(x): In this case, !(x) � !XLCM(x) � !Ker(x):
Our estimator can be modi�ed to get an asymptotic bias expression of the form that is asymp-

totically equivalent to

b(x) =
1

2
�2(K)m

00(x); (18)

10



which is as for a standard local linear estimator in regression. Then we get a straight mean squared

error reduction over the local linear regression estimator. There exist two proposals for additive

models to achieve a bias term of the form (18). The �rst approach is local linear smooth back�tting

of Mammen, Linton, and Nielson (1999). This estimator has the same asymptotic distribution as a

theoretical oracle estimator. The oracle estimator of one additive component uses the knowledge of

the other components and is based on standard local linear smoothing of the di¤erences of the obser-

vations minus the other components. In the smooth back�tting approach the back�tting algorithm

updates estimates of the functions and its derivatives. This approach could be implemented in our

setting by using an appropriate integral operator that acts on tuples of two functions (�tting m and

its derivative). A modi�cation of local linear smooth back�tting has been proposed in Mammen and

Park (2006). Their back�tting only uses one dimensional operators but achieves the same asymptotic

behaviour as local linear smooth back�tting. In our setting their approach works as follows. One

replaces bH� by bHmod
� (y; x) = �

��TX
j=�1

a�j(�)b�0j(y; x);
where b�jk(xj; xk) = epjk(xj; xk)epj(xj) �

R epjk(u; xk)duR epj(u)du
with

epj(xj) = bpj(xj)� bp�j(xj)2bp��j (xj) ;
bp�j(xj) =

1

n

nX
i=1

Khj(X
i
j � xj)(X i

j � xj);

bp��j (xj) =
1

n

nX
i=1

Khj(X
i
j � xj)(X i

j � xj)2;

epjk(xj; xk) = bpjk(xj; xk)� bp�jk(xj; xk)bp�j(xj)bp��j (xj) ;

bpjk(xj; xk) =
1

n

nX
i=1

Khj(X
i
j � xj)Lhk(xk; X i

k);

bp�jk(xj; xk) =
1

n

nX
i=1

Khj(X
i
j � xj)Lhk(xk; X i

k)(X
i
j � xj):

Here, the kernel L is de�ned as L(u) = 2K1=
p
2(u)�Kp

2(u). Furthermore, Lh is de�ned as

Lh(u; v) = fa(v; h)u+ b(v; h)gL
�
h�1(v � u)

�

11



with a and b chosen so that Z x

x

Lh(u; v)du = 1;Z x

x

(u� v)Lh(u; v)du = 0:

Note that the integration runs over u and not over v. Thus the kernel is not a boundary corrected

kernel in the usual sense. A similar proposal has been made in Linton and Mammen (2005, p789)

but their proposal could be not directly used here because there no corrections at the boundary

are needed. For a discussion of oracle e¢ ciency in additive models see also Horowitz, Klemelä, and

Mammen (2006). One can also replace the standard kernel density estimators by other suitable

density estimators like the Jones, Linton and Nielsen (1995) procedure, but it is not clear if such

estimators would achieve the IMSE performance of the two just discussed modi�ed estimators.

The asymptotic distribution can be used to guide bandwidth selection. The IMSE optimal band-

width is

h =

�
jjKjj22
�22(K)

�1=5 "
�2" (x� x)P1

j=0 a
2
j(�0)E [m

00(Xt)2]

#1=5
T�1=5

for the modi�ed estimator under homoskedasticity, where �2" is the variance of "t. In practice one

must replace these quantities by estimates based on a parametric or nonparametric scheme.

Under the �strong form�assumption B11 the parametric estimator is semiparametrically e¢ cient,

see Linton and Mammen (2005). There is generally an information loss from the necessity of esti-

mating the function m:

4 A Nonstationary Case

In this section we investigate the case where Yt can be nonstationary but Xt is stationary mixing as

before. We wish to allow for the possibility of unit roots even if they might be quite rare in practical

applications of this technology.

The most general case would be where both A;B contained unit roots either simple or complex.

For expositional reason we shall focus on the special case where B(L) = A(L) = 1�L: Consider the
model

(1� �L)Yt = (1� �L)m(Xt) + "t; (19)

where in fact �0 = 1 and "t obeys B11: In this case,

Yt = m(Xt) + ut; (20)

12



where ut = ut�1 + "t is a unit root process, Phillips (1987). We suppose that u0 = 0:

Direct estimation of Yt on Xt will produce inconsistent estimates of m: The Xiao, Linton, Carroll,

and Mammen (2003) procedure is also inconsistent in this unit root case because it relies on the initial

standard nonparametric regression estimator that is inconsistent. On the other hand our estimation

of the additive model

Yt � Yt�1 = m(Xt)�m(Xt�1) + "t

with white noise errors will produce consistent estimates of m: In fact, the theory for m�0 is exactly

as in Theorem 1. The task here is to determine that we can estimate the parameter � in (19)

consistently and thence estimate m consistently.6

One issue is that for � 6= 1; the process (1��L)Yt is non-stationary and so some of the de�nitions
of the previous section do not make sense. Instead we de�ne mT� to be the potentially time varying

minimizer of

QT (m) =
1

T

TX
t=1

E
�
fYt � �Yt�1 �m(Xt) + �m(Xt�1)g2

�
:

A necessary condition for m to be the minimizer is that it satis�es the �rst order condition

1

T

TX
t=1

E[Yt � �Yt�1jXt = x]� �E[Yt � �Yt�1jXt�1 = x] (21)

= (1 + �2)mT�(x) + � (E[mT�(Xt)jXt�1 = x] + E[mT�(Xt�1)jXt = x]) :

Then note that Yt � �Yt�1 = m(Xt) � �m(Xt�1) + "t + (1 � �)ut�1; and so E[Yt � �Yt�1jXt = x]

and E[Yt� �Yt�1jXt�1 = x] are time invariant. Furthermore, we have assumed that Xt is stationary.

Therefore, there exists a time invariant solution to equation (21) as in the purely stationary case.7

Furthermore, the solution is characterized by the integral equation (8) with in this special case:

m�
�(x) =

1

1 + �2
(E[Yt � �Yt�1jXt = x]� �E[Yt � �Yt�1jXt�1 = x])

H�(x; y) = �
�

1 + �2

�
f0;1(y; x)

f0(y)f0(x)
+
f0;1(x; y)

f0(y)f0(x)

�
:

What is di¤erent here is the error in estimating E [Yt � �Yt�1jXt�1 = x] for example can be large

unless � is close to one in which case the term (1 � �)ut�1 is small and the process Yt � �Yt�1 is
almost stationary. The di¤erence in behaviour of the resulting bm� for � = 1 and � 6= 1 is what drives
the faster rate of convergence for b�:

6Di¤erencing can be expected to eliminate unit roots so long as enough di¤erencing is undertaken. However,

di¤erencing produces additive models for which the optimal estimation strategy is a similar type of method to ours.
7Note also that m� = m for all �:
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De�ne bQT (�) = 1

T

TX
t=2

fYt � �Yt�1 � bm�(Xt) + �bm�(Xt�1)g2

and let b� = argmin� bQT (�): We use a subset of the regularity conditions B that are relevant. Let B
denote the standard Brownian Motion on [0; 1].

Theorem 3. Suppose that assumption B1 holds for Xt; that B2 holds for "t; that B3, B7-B9

and B11 hold. Then

T (b�� 1) =) R 1
0
B(s)dB(s)R 1
0
B2(s)ds

:

Furthermore, p
Th
�bm(x)�m(x)� h2b(x)� =) N (0; !(x)) ;

where

b(x) = (I �H1)
�1
�
f 00
f0

@

@x
H1m+H1m

00
�
(x)

and

!(x) = jjKjj22
E ["2t ]

2f0(x)
:

Note that the asymptotics for b� are the same as those of the infeasible least squares estimator
� =

PT
t=2 utut�1=

PT
t=2 u

2
t�1; so that estimation of m has no e¤ect on the limiting distribution. One

can also obtain local to unity asymptotics which are the same as those of �. The distribution theory

can be used to perform a test of the null hypothesis of a unit root.

This can be generalized easily to allow for short run dynamics in addition to the unit root.

Suppose that in (20), (1 � L)ut = C(L)"t; where C(L) =
P1

j=0 cjL
j and

P1
j=0 jjcjj < 1: Then by

the Beveridge-Nelson decomposition we have ut = C(1)
Pt

s=1 "s + C
�(L)"t under our assumptions,

where C�(L) =
P1

j=0 c
�
jL

j with c�j = �
P1

i=j+1 ci being summable. Then the result in Theorem 3

follows (for the corresponding estimator) with the correction factor C(1) in the variance:

5 Numerical Results

We investigate the performance of our procedure on simulated data in the context of a nonparametric

regression with correlated errors. Our purpose is to compare the performance of our estimator to the

natural competitor for that case, the local linear estimator. We focus on the relative performance

of two optimally implemented methods to dispense with issues about bandwidth selection and the

small sample performance of the benchmark estimator.

We suppose that

Yt = m(Xt) + ut; ut = �0ut�1 + "t

14



with m(x) = �0x
2=2; where Xt � N(0; 1); and "t � N(0; �2"): We take �0 = 1 and �2" = 1: We

examine the cases T 2 f800; 400; 200g and �0 2 f0; 0:05; 0:1; : : : ; 0:95; 1:0g; and use ns = 1000

replications: We compute our estimator bm using 200 grid points and use a grid search method to

select � 2 [�0� �; �0+ �] for � = 0:2:We also compute the standard local linear estimator em; in both
cases the Gaussian kernel was used.

We chose bandwidth to be optimal according to (asymptotic) weighted mean squared error

P c1(bm) = plim
T!1

T 4=5
Z c

�c
[bm(x)�m(x)]2 f0(x)dx;

which gives hopt = cKcMT�1=5; where cK = (2cjjKjj22=�22(K))1=5 is to do with the kernel and cM =

(�2"=(1+�
2
0)�

2
0(F0(c)�F0(�c)))1=5; where F0(x) is the c.d.f. of the covariate, is to do with the model.

We have taken c = 2; which corresponds to an interval containing almost 95% of the covariate

distribution. For the standard local linear estimator the optimal bandwidth is cKc�MT
�1=5 with

c�M = (�2"=(1 � �20)�20(F0(c) � F0(�c))1=5 provided �0 6= 1 (when �0 = 1 we set �0 in the formula

arbitrarily to 0.95):

In Figure 1 below we report the relative value of the performance measure PT (bm)=PT (em); where
PT (bm) = E Z c

�c
[bm(x)�m(x)]2 f0(x)dx

and where E is computed by the mean or median over Monte Carlo simulations.8 Both estimators use

their optimal bandwidths, and consequently their theoretical relative e¢ ciency is ((1��20)=(1+�20))4=5;
which is independent of the other parameters: This is plotted below along with the simulation aver-

age value for the di¤erent sample sizes against � values. The results indicate that bm is indeed more

e¢ cient than em and that the advantage takes o¤ after �0 = 0:8; until this value the advantage is less

than 20% in MSE terms. For small values of �0 the �nite sample performance ratio is actually better

than predicted, although this is partly because em performs worse than predicted by its asymptotic

theory. Note that when �0 = 1 the standard local linear estimator is inconsistent. The relative per-

formance seems to get slightly worse with sample size. The absolute performance of both estimators

improves with sample size but the MSE of em improves more rapidly in the relevant range of sample

sizes than does the MSE of bm:
8We also examined the IMAE performance measure, but the results are similar.
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Figure 1. Shows the empirical performance ratio PT (bm)=PT (em) for di¤erent sample sizes along with the
asymptotic value P1(bm)=P1(em) predicted from the asymptotic theory. Xt iid N(0; 1):

We also looked at the case where Xt is autocorrelated, speci�cally, Xt = 0:95Xt�1 + ut; where

ut is normally distributed such that Xt is marginally N(0; 1): Theoretically, this does not make any

di¤erence, and in practice if anything relative performance is improved for this case. The results are

not shown for brevity.

We next examine the performance of b�:When � < 1 the MSE decreases pretty much as predicted
and the distribution approximates a normal for the larger sample size. When �0 = 1; our simulations

show that the variance of b� decreases rapidly with sample size with standard deviation being 0:0161,
0:00896; and 0:00458 for T = 200; 400; and 800 respectively, which is consistent with superconsistency.

Below we show the qq plots of the empirical quantiles against those of the Dicky-Fuller density in this

unit root case. As the sample size increases the distribution approaches the asymptotic distribution.
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Figure 2. Shows the q-q plots of b� against the Dicky-Fuller density for three di¤erent sample sizes:
Xt = 0:95Xt�1 + ut with Xt � N(0; 1):

Overall these results are much better than obtained in Xiao et al. (2003) in terms of the small

sample relative performance, and show in some cases substantial gains over the standard smoothing

methods widely employed in practice. However, we acknowledge that in more complicated settings

where the order of the polynomials A;B is higher and perhaps has to be determined that the results

will worsen.

6 Extensions

We conclude the paper with a discussion of two important extensions.

6.1 Nonstationary X

Suppose that

Xt = Xt�1 + �t
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with �t also white noise and uncorrelated with "t: Thus Xt is a unit root process. This makes

a substantial di¤erence to the asymptotics since the corresponding operator H�(x; y) is random.

Provided Xt is null recurrent, we might expect consistency (Phillips and Park (1998)) but the rates

of convergence are slower and the asymptotic distributions change. Simulation results support the

consistency of bm. In particular, the corresponding graphic to Figure 1 is almost identical.
An alternative type of nonstationarity for Xt is deterministic trend. Suppose that

Xt = �(t=T ) + �(t=T )�t; (22)

where �t is a stationary mixing process, see Dahlhaus (1997). If � � 0; Xt is purely deterministic. In
this case, the asymptotics of kernel regression smoother are di¤erent and re�ect the autocorrelation

in ut; see Hart (1991) and Fan and Yao (2003, Theorem 6.1). Also, there is a problem applying our

method because of concurvity. Speci�cally, we have for any j; m((t� j)=T ) = m(t=T )+O(j=T ) and
so assumption A2 is violated. In this case we have B(L)Yt ' A(1)m(t=T ) + "t and there appears to
be no estimator that improves over the standard nonparametric regression. This is a bit like the well

known result that OLS=GLS when the regressors are polynomial or trigonometric time trends. See

Opsomer, Wang, and Yang (2001) for a review of nonparametric methods and results in this case.

In the more general locally stationary case, our method may work due to the stochasticness of �t:

6.2 Multivariate X; Y

WhenXt is multivariate the above method can be applied with obvious changes in the dimensionality

of various quantities. However, it may be appealing in that case to consider the following model

B(L)Yt =
dX
j=1

Aj(L)mj(Xjt) + "t;

where the functionsm1(:); : : : ;md(:) are unknown and the �lters Aj(L) =
P1

k=0 ajk; j = 1; : : : ; d: The

estimation strategy involves a combination of Mammen, Linton, and Nielsen (1999) and the methods

above. Instead one might want to make the functionm(X1t; : : : ; Xdt) obey some other dimensionality

reducing restrictions.

A Appendix

A.1 Computational Appendix

We discuss brie�y how we solve the equation (13) in practice. Note that one can rewrite (9) as an inte-

gral equation on [0; 1]2 as my
�(s) = m

�y
� (s) +

R 1
0
Hy
�(s; t)m�(t)dt; where Hy

�(s; t) = H�(F
�1
0 (s); F�10 (t))
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with y = F�10 (s); x = F�10 (t) and my
�(t) = m�(F

�1
0 (t)) and m�y

� (t) = m
�
�(F

�1
0 (t)) and F0 is the c.d.f.

of Xt. For simplicity we drop the super�uous y superscript in the sequel. Let ftj;n; j = 1; : : : ; ng be
some equally spaced grid of points in [0; 1]; and let qj;n = bF�10 (tj;n) be the empirical tj;n quantile of

Xt: Now approximate (13) by

bm�(qi;n) = bm�
�(qi;n) +

nX
j=1

bH�(qi;n; qj;n)bm�(qj;n); i = 1; : : : ; n: (23)

The linear system (23) can be written in matrix notation

(In � bH�) bm� = bm�
�; (24)

where In is the n � n identity, bm� = (bm�(q1;n); : : : ; bm�(qn;n))
> and bm�

� = (bm�
�(q1;n); : : : ; bm�

�(qn;n))
>;

while bH� = �
��X
k=�1

a+k (�)

" bf0;k(qi;n; qj;n)bf0(qi;n) bf0(qj;n)
#n
i;j=1

is an n � n matrix. We then �nd the solution values bm� = (bm�(q1;n); : : : ; bm�(qn;n))
> to this system

(24) by direct inversion when n is less than say 2000.

A.2 Proof of Theorems

A.2.1 Stationary Case

Proof of Theorem 1. The proof strategy uses the general result in Linton and Mammen (2005)

for the treatment of empirical integral equations. First, for general � we apply Linton and Mammen

(2005, Proposition 1). Thus we write

bm�
�(x)�m�

�(x) = bm�;B
� (x) + bm�;C

� (x) + bm�;D
� (x) (25)

( bH� �H�)m�(x) = bm�;E
� (x) + bm�;F

� (x) + bm�;G
� (x); (26)

where bm�;B
� (x) and bm�;E

� (x) are deterministic and O(T�2=5);

bm�;B
� (x) =

h2

2
�2(K)

�
m00
�(x)�

@2

@x2
(H�m�)(x)

�
bm�;E
� (x) =

h2

2
�2(K)

�
H�m

00
�(x) +

@2

@x2
(H�m�)(x) + 2

f 00(x)

f0(x)

@

@x
(H�m�)(x)

�
;

while: bm�;C
� (x) =

1

Tf0(x)

X
t

Kh(x;Xt)�
1
�;t
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bm�;F
� (x) =

1

Tf0(x)

X
t

Kh(x;Xt)�
2
�;t;

and the remainder terms bm�;D
� (x) and bm�;G

� (x) satisfy

sup
�2�

sup
x2Xint

�� bm�;j
� (x)

�� = op(T�2=5); j = D;G;

sup
�2�

sup
x2[x;x]

�� bm�;j
� (x)

�� = Op(T�2=5); j = D;G;

where Xint = [x+ h; x� h].
From this one obtains an expansion

bm�(x)�m�(x)�
h
mB
� (x) +m

E
� (x) + bm�;C

� (x) + bm�;F
� (x)

i
= op(T

�2=5); (27)

uniformly for � 2 � and for x 2 Xint and = Op(T�2=5); elsewhere. Here mB
� = (I �H�)

�1 bm�;B
� and

mE
� = (I�H�)

�1 bm�;E
� . From this expansion we obtain the main result. Speci�cally, bm�;C

� (x)+ bm�;F
� (x)

is asymptotically normal with zero mean and the stated variance after applying a CLT for near epoch

dependent functions of mixing processes. The asymptotic bias comes from mB
� (x) + m

E
� (x): Note

that because of the boundary modi�cation to the kernel we have E bf0(x) = f0(x) + O(h
2) and

E bf0;j(x; y) = f0;j(x; y) +O(h2) for all x; y:
Our proof below make use of the following results. For �T = T�3=10+� with � > 0 small enough,

max
1�j��T

sup
x;y2[x;x]

��� bf0;j(x; y)� f0;j(x; y)��� = op(�T ) (28)

sup
x2[x;x]

��� bf0(x)� f0(x)��� = op(�T ): (29)

This follows by the exponential inequality of Bosq (1998, Theorem 1.3), see Linton and Mammen

(2005, p817).

Proof of (25). Write

Zt(�)� Z�t (�) =
1X

j=�+1

bj(�)Yt�j:

We have E[Zt(�)� Z�t (�)] = E[Yt]
P1

j=�+1 bj(�) = O(b
�
) and

var [Zt(�)� Z�t (�)] =
1X

j=�+1

1X
j0=�+1

bj(�)bj0(�)cov(Yt�j; Yt�j0)

�
1X

j=�+1

1X
j0=�+1

jbj(�)jjbj0(�)jj
Y (j � j0)j

� sup
u
j
Y (u)j

 1X
j=�+1

jbj(�)j
!2
= O(b

2�
) = o(T�1)
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for each �: Similar bounds can be obtained for the covariance cov [Zt(�)� Z�t (�); Zs(�)� Z�s (�)] :
Let egj(x; �) denote (12) with Zt(�) replacing Z�t (�): Then

max
1�j��

sup
�2B

sup
x2[x;x]

jbgj(x; �)� egj(x; �)j = op(T�1=2): (30)

This follows using the above moment bounds and because of the assumed uniform decay rates on bj(�)

and its derivatives and the moment condition on Y: See Xiao et al. (2003) for a similar argument.

Then for each j � 0;

egj(x; �)� gj(x; �) = 1

Tf0(x)

T�jX
t=1

Kh (x;Xt) �t;j(�) +
h2

2
�2(K)bj(x; �) +RTj(x; �);

where bj(x; �) is the bias function and RTj(x; �) is the remainder term, which is op(T�2=5) uniformly

over j � �T ; x 2 [x; x] and � 2 B. By interchanging the order of summation we obtain for x 2 Xint

�X
j=0

ayj(�)

T�jX
t=1

Kh (x;Xt) �t;j(�) =
T��X
t=1

T�tX
j=0

Kh (x;Xt) a
y
j(�)�t;j(�)

=
T��X
t=1

Kh (x;Xt)
1X
j=0

ayj(�)�t;j(�)

�
T��X
t=1

Kh (x;Xt)
1X

j=T�t+1
ayj(�)�t;j(�)

=
T��X
t=1

Kh (x;Xt)
1X
j=0

ayj(�)�t;j(�)

�
TX

j=�+1

ayj(�)
T��X

t=T�j+1
Kh (x;Xt) �t;j(�)

�
1X

j=T+1

ayj(�)

T��X
t=1

Kh (x;Xt) �t;j(�);

where the terms apart from the �rst are of smaller order. Speci�cally,

max
1�j��

sup
�2�

sup
x2[x;x]

����� 1

Tf0(x)

TX
j=�+1

ayj(�)

T��X
t=T�j+1

Kh (x;Xt) �t;j(�)

����� = op(T�2=5) (31)

max
1�j��

sup
�2�

sup
x2[x;x]

����� 1

Tf0(x)

1X
j=T+1

ayj(�)
T��X
t=1

Kh (x;Xt) �t;j(�)

����� = op(T�2=5): (32)
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These follow by standard arguments. Therefore,

�X
j=0

ayj(�)[bgj(x; �)� gj(x; �)] = 1

Tf0(x)

T��X
t=1

Kh (x;Xt)

1X
j=0

ayj(�)�t;j(�)

+
h2

2
�2(K)

�X
j=0

ayj(�)bj(x; �) + op(T
�2=5)

uniformly over x 2 [x; x]. Claim (25) now follows from

bm�;B
� (x) =

h2

2
�2(K)

�X
j=0

ayj(�)bj(x; �) + op(T
�2=5) uniformly for x 2 Xint and � 2 �;

bm�;B
� (x) =

h2

2
�2(K)

�X
j=0

ayj(�)bj(x; �) +Op(T
�2=5) uniformly for x 2 x 2 [x; x] n Xint and � 2 �:

Proof of (26). We haveZ bH�(x; y)m�(y) bf0(y)dy � Z H�(x; y)m�(y)f0(y)dy

= �
��X
j=�1

a�j(�)

Z " bf0;j(x; y)bf0(x) � f0;j(x; y)
f0(x)

#
m�(y)dy +

�1X
j=���1

a�j(�)

Z
f0;j(x; y)

f0(x)
m�(y)dy

= �
��X
j=�1

a�j(�)

Z " bf0;j(x; y)bf0(x) � f0;j(x; y)
f0(x)

#
m�(y)dy + o(T

�2=5)

uniformly over x; � due to the uniform decay rates on aj(�): Speci�cally,

sup
�2�

sup
x2[x;x]

�����
�1X

j=���1
a�j(�)

Z
f0;j(x; y)

f0(x)
m�(y)dy

����� � Ca� �m = o(T�2=5);

where sup�2� supy2[x;x] jm�(y)j = m <1.
Denote by Z

f0;j(x; y)

f0(x)
m�(y)dy = E [m(Xt�j)jXt = x] � rj(x):

Then write R bf0;j(x; y)m�(y)dybf0(x) =
1
T

P
tKh (x;Xt)m

�
t�j

1
T

P
tKh (x;Xt)

; (33)

where

m�
t =

Z
Ky
h(y �Xt)m�(y)dy:
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Then note that for Xt 2 XintZ
Ky
h(y �Xt)m�(y)dy �m�(Xt) =

Z
Ky
h(y �Xt) [m�(y)�m�(Xt)] dy

= m0
�(Xt)

Z
Ky
h(y �Xt)(y �Xt)dy

+
1

2

Z
Ky
h(y �Xt)(y �Xt)

2m00
�(X

�
t (y))dy

=
h2

2
�2(K)m

00
�(Xt) + o(h

2)

by a second order Taylor expansion, a change of variables and property B9 of the kernels. The error

is uniformly o(h2) over t with Xt 2 Xint and �. Note that (33) is just like a local constant smoother
of m�

t�j on Xt and can be analyzed in the same way.

Using ba=bb� c = (ba�bbc)=bb; we haveR bf0;j(x; y)m�(y)dybf0(x) �
Z
f0;j(x; y)

f0(x)
m�(y)dy

=
1
T

P
tKh (x;Xt)

�
m�
t�j � rj(x)

�
1
T

P
tKh (x;Xt)

=
1
T

P
tKh (x;Xt) [m�(Xt�j)� rj(x)]

1
T

P
tKh (x;Xt)

+
1
T

P
tKh (x;Xt)

�
m�
t�j �m�(Xt�j)

�
1
T

P
tKh (x;Xt)

(34)

'
1
T

P
tKh (x;Xt) [m�(Xt�j)� rj(Xt)]

1
T

P
tKh (x;Xt)

+
1
Th

P
tKh (x;Xt) [rj(Xt)� rj(x)]

1
Th

P
tKh (x;Xt)

+
h2

2
�2(K)E[m

00
�(Xt�j)jXt = x]

' 1

Th

1

f0(x)

X
t

Kh (x�Xt) �t;j +
h2

2
�2(K)

�
r00j (x) +

2r0j(x)f
0
0(x)

f0(x)
+ E[m00

�(Xt�j)jXt = x]

�
(35)

by standard arguments for Nadaraya-Watson smoothers. The approximation is of order o(T�2=5),

uniformly over j � �T ; over x in Xint, and over � 2 �: Summing this up, gives (26) for x 2 Xint. The
proof for the boundary follows by standard arguments.

Proof of Theorem 2. The consistency of b� follows along the lines of Linton and Mammen
(2005) using the expansions obtained above uniform over �: Note that the solution value m� is twice

continuously di¤erentiable in � under our assumptions and
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@m�

@�
=

�
@m�

�

@�
+
@H�

@�
m�

�
+H�

@m�

@�
(36)

@2m�

@�@�>
=

�
@2m�

�

@�@�>
+
@2H�

@�@�>
m� +

@H�

@�

@m�

@�>

�
+H�

@2m�

@�@�>
: (37)

These de�ne @m�=@� and @2m�=@�@�
> as solutions to integral equations with di¤erent intercepts

but the same operator H� as (10), so the solution to these equations exists and is unique by the

arguments given above.

Let Q(�) = Q(�;m�) with Q(�;m�) de�ned in (11). We �rst show that

sup
�2�

��� bQT (�)�Q(�)��� P�! 0; (38)

which follows from sup�2� supx2[x;x] jbm�(x)�m�(x)j
P�! 0 given the moment and mixing conditions

etc. This follows from the expansions in Theorem 1 and standard uniform convergence arguments for

kernel smoothers. Speci�cally, sup�2� supx2[x;x] jbm�;j
� (x)j = op(1); j = B;C: The uniformity over �

comes from analysis of @m�
�(x)=@� and @ bm�;j

� (x)=@�: Then apply assumption B4 to yield consistency

of b�:
De�ne the score function and Hessian

@ bQT (�)
@�

=
1

T

TX
t=2

b"�t (�)@b"�t (�)@�

@2 bQT (�)
@�@�>

=
1

T

TX
t=2

@b"�t (�)
@�

@b"�t (�)
@�>

+ b"�t (�)@2b"�t (�)
@�@�>

;

where b"�t (�) = Z�t (�) �P�
j=0 aj(�)bm�(Xt�j): One then establishes a CLT for the score function at

� = �0 and a local uniform law of large numbers for the Hessian, which establish the CLT for b�:
We can now e¤ectively take � = �0 in Theorem 1. The asymptotic statement on the distribution

of bm�0(x)�m(x) directly follows from Theorem 1. Note that �1�;t + �
2
�;t =

P1
j=0 a

�
j"t+j.

A.2.2 Nonstationary Case

Proof of Theorem 3. Let

"t(�) = Yt � �Yt�1 �m�(Xt) + �m�(Xt�1) = Yt � �Yt�1 �m(Xt) + �m(Xt�1) = "t + (1� �)ut�1

b"t(�) = Yt � �Yt�1 � bm�(Xt) + �bm�(Xt�1):
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We have

QT (�) =
1

T

TX
t=2

"2t (�) =
1

T

TX
t=2

"2t + T (1� �)2
1

T 2

TX
t=2

u2t�1 + 2(1� �)
1

T

TX
t=2

"tut�1

' �2" + T (1� �)2�2"
Z
B2(s)ds+ 2(1� �)�2"

Z
B(s)dB(s):

The least squares estimator that minimizes QT (�); denoted �; has closed form expression � =PT
t=2 utut�1=

PT
t=2 u

2
t�1: It is consistent at rate T and furthermore

T (�� 1) =)
R
B(s)dB(s)R
B2(s)ds

: (39)

We next consider the di¤erence between bQT (�) and QT (�): We have
bQT (�) = QT (�) + 1

T

TX
t=2

fb"t(�)� "t(�)g2 + 2 1
T

TX
t=2

fb"t(�)� "t(�)g "t(�); (40)

b"t(�)� "t(�) = �(bm�(Xt)�m�(Xt)) + �(bm�(Xt�1)�m�(Xt�1)):

Proof of Consistency. We prove:

bQT (1)!p q (41)

for some q > 0 (hence bQT (1)=T !p 0); and

lim
T!1

inf
j��1j>�

1

T
bQT (�) > 0: (42)

Combine (41) and (42) yields b� P�! 1.

Proof of (41). The properties of bQT (1) can be derived using the expansion of Theorem 1, and
speci�cally the uniform over x consistency of bm1(x): We have bQT (1) P�! E("2t ) > 0:

Proof of (42). We �rst derive the properties of bm� �m� for � 6= 1: As in the stationary case
we can approximate bm��m� in terms of bm�

��m�
� and ( bH��H�)m�: The expansion for ( bH��H�)m�

is as above. The main di¤erence concerns the fact that the expansion for bm�
� �m�

� contains a term

that is large when � 6= 1 and indeed bm�
� does not consistently estimate m

�
� unless � = 1: Therefore,bm� �m� is dominated by the large term in bm�

� �m�
�: Speci�cally, (26) holds but (25) needs to be

modi�ed.

The intercept function m�
� is

m�
�(x) =

1

1 + �2
(E[Yt � �Yt�1jXt = x]� �E[Yt � �Yt�1jXt�1 = x]) =

1

1 + �2
[g0�(x)� �g1�(x)] ;
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a linear combination of g0�(x) = E[Yt��Yt�1jXt = x] and g1�(x) = E[Yt��Yt�1jXt�1 = x]: Therefore,

we must establish the properties of bgj�(x)� gj�(x); j = 0; 1; where bgj�(x) are the estimates of gj�(x)
when � 6= 1: We have

Yt��Yt�1�E [Yt � �Yt�1jXt = x] = m(Xt)�m(x)�� (m(Xt�1)� E[m(Xt�1)jXt = x])+"t+(1��)ut�1:

Yt��Yt�1�E [Yt � �Yt�1jXt�1 = x] = m(Xt)�E[m(Xt)jXt�1 = x]�� (m(Xt�1)�m(x))+"t+(1��)ut�1:

The terms m(Xt)�m(x) and m(Xt�1)�m(x) on the rhs contribute to biases; the stationary error
terms �� (m(Xt�1)� E[m(Xt�1)jXt = x]) + "t and m(Xt)�E[m(Xt)jXt�1 = x] + "t may contribute

to the variance but are standard, it is the term (1� �)ut�1 containing the unit root that is di¤erent.
We have

bgj�(x)� gj�(x) = 1

Tf0(x)

TX
t=j+1

Kh (x;Xt�j) "t + (1� �)
1

Tf0(x)

TX
t=j+1

Kh (x;Xt�j)ut�1

+
h2

2
�2(K)bj(x; �) +RT (x; �) � �T1(x) + �T2(x) + �T3(x) +RT (x; �);

where supx2[x;x] �T1(x) = Op(
p
log TT�2=5) and supx2[x;x] �T3(x) = Op(T

�2=5) under our bandwidth

conditions; while the remainder term is of smaller order than �T2(x). This approximation is valid

because the X process is stationary so the terms except �T2(x) are standard.

We consider the term �T2(x) and write �T2(x) =
p
T (1� �)�T (x) +

p
T (1� �)�T (x) with

�T (x) =
1

T

TX
t=1

E

�
1

f0(x)
Kh (x;Xt�j)

�
ut�1p
T

�T (x) =
1

T

TX
t=1

�
1

f0(x)
Kh (x;Xt�j)� E

�
1

f0(x)
Kh (x;Xt�j)

��
ut�1p
T
:

Clearly, because E
h

1
f0(x)

Kh (x;Xt�j)
i
= 1 +O(h2) uniformly in x;

�T (x) =
1

T

TX
t=1

ut�1p
T
+ op(1) = Op(1)

uniformly in x:

We argue that supx2[x;x] j�T (x)j = op(1): Note that E[�T (x)] = 0 by assumption B11. De�ne

�Tt =
1

f0(x)
Kh (x;Xt�j)� E

�
1

f0(x)
Kh (x;Xt�j)

�
: (43)

This has (approximately as T !1) covariance function

cov(�Tt; �Tt�r) = E

�
1

f 20 (x)
Kh (x;Xt)Kh (x;Xt�r)

�
� E2

�
1

f0(x)
Kh (x;Xt)

�
' f0;t�r(x; x)

f 20 (x)
� 1 � 
�(t� r);
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by the standard change of variable and dominated convergence argument.

Furthermore,

var [�T (x)] =
1

T 3

TX
t=j+1

E
�
�2Tt
�
E[u2t�1] +

1

T 3

XX
t6=s

E [�Tt�Ts]E[utus]

' �2"
T 3

XX
t6=s

minfs; tg
�(t� s) '
2�2"
T 3

T�1X
s=1

s
TX

t=s+1


�(t� s)

' 2�2"
T 2

T�1X
s=1

s(T � s)
1X
k=1


�(k) =
2�2"
3T

1X
k=1


�(k);

so that var [�T (x)] = O(T�1) and �T (x) = Op(T
�1=2) for each x 2 [x; x]: The pointwise result can

be extended to uniformity over x 2 [x; x] by standard arguments, so supx2[x;x] j�T (x)j = op(1) as

required. Therefore

bgj�(x)� gj�(x) = pT (1� �) 1
T

TX
t=1

ut�1p
T
+ op(

p
T ): (44)

Note that the rhs is the same regardless of location x and j and the error is uniform over these

quantities. By the usual arguments (Phillips (1987)), T�3=2
PT

t=1 ut�1 =) �"
R 1
0
B(s)ds: Therefore,

(bgj�(x)�gj�(x))=pT =) (1��)�"
R 1
0
B(s)ds for all x and j = 0; 1: In fact this convergence is uniform

over x:

It holds that:

1

T 2

TX
t=2

fb"t(�)� "t(�)g2 = (1� �)6
(1 + �2)2

�2"

�Z 1

0

B(s)ds

�2
+ op(1) (45)

(1� �) 1
T 2

TX
t=2

fb"t(�)� "t(�)gut�1 = �(1� �)4
1 + �2

�2"

�Z 1

0

B(s)ds

�2
+ op(1) (46)

1

T

TX
t=2

fb"t(�)� "t(�)g "t = �(1� �)3
1 + �2

1p
T

TX
t=2

ut�1p
T
"t + op(1) = Op(1): (47)
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We just show the argument for (45). We have

1

T 2

TX
t=2

fb"t(�)� "t(�)g2

=
1

T 2

TX
t=2

f(bm�(Xt)�m(Xt))� �(bm�(Xt�1)�m(Xt�1))g2

=
1

T 2

TX
t=2

�
(bm�

� �m�
�)(Xt)� �(bm�

� �m�
�)(Xt�1)

	2
+ op(1)

=
1

(1 + �2)2
1

T 2

TX
t=2

�
[bg0� � g0�](Xt) + �

2[bg1� � g1�](Xt�1)� �[bg0� � g0�](Xt�1)� �[bg1� � g1�](Xt)
	2

+ op(1)

=
(1� �)6
(1 + �2)2

(
1

T

TX
t=1

ut�1p
T

)2
+ op(1)

by (44). From this (45) follows. The arguments for (46) and (47) are similar.

Then, by (45)-(47) we have

bQT (�) ' �2" + T (1� �)2�2" Z 1

0

B2(s)ds+ 2(1� �)�2"
Z 1

0

B(s)dB(s)

+
(1� �)6T
(1 + �2)2

�2"

�Z 1

0

B(s)ds

�2
� 2(1� �)

4T

1 + �2
�2"

�Z 1

0

B(s)ds

�2
� �2(1� �)

3

1 + �2
Op(1):

Therefore

1

T
bQT (�) ' (1� �)2�2" Z 1

0

B2(s)ds+

�
(1� �)6
(1 + �2)2

� 2(1� �)
4

1 + �2

�
�2"

�Z 1

0

B(s)ds

�2
= (1� �)2�2"

Z 1

0

B2(s)ds� (1� �)
4 (�+ 1)2

(1 + �2)2
�2"

�Z 1

0

B(s)ds

�2
:

By the Cauchy-Schwarz inequality
R 1
0
B2(s)ds �

�R 1
0
B(s)ds

�2
: Therefore, with probability one:

1

T
bQT (�) � 4 (1� �)2 �2

(1 + �2)2
�2"

�Z 1

0

B(s)ds

�2
> 0 (48)

for all � 6= 1: This establishes (42).
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Proof of Asymptotic Distribution. Reparameterizing � 7! r = 1� �=T we get

bQT (r) ' �2" + r2T �2"
Z 1

0

B2(s)ds+ 2
r

T
�2"

Z 1

0

B(s)dB(s) + o(T�1);

so that the terms from the nonparametric estimation drop out. Therefore, the asymptotic distribution

is just the Dickey-Fuller, i.e.,

T (b�� 1) =) R 1
0
B(s)dB(s)R 1
0
B2(s)ds

:
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