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Abstract 
 

 
We investigate a class of semiparametric ARCH(∞) models that includes as a 

special case the partially nonparametric (PNP) model introduced by Engle and Ng 

(1993) and which allows for both flexible dynamics and flexible function form with 

regard to the 'news impact' function. We propose an estimation method that is based 

on kernel smoothing and profiled likelihood. We establish the distribution theory of 

the parametric components and the pointwise distribution of the nonparametric 

component of the model. We also discuss efficiency of both the parametric and 

nonparametric part. We investigate the performance of our procedures on simulated 

data and on a sample of S&P500 daily returns. We find some evidence of 

asymmetric news impact functions in the data. 
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1 Introduction

Stochastic volatility models are of considerable current interest in empirical …nance following the sem-
inal work of Engle (1982). Perhaps the most popular version of this is Bollerslev’s (1986) GARCH(1,1)
model in which the conditional variance ¾2t of a martingale di¤erence sequence yt is

¾2t = ®+ ¯¾
2
t¡1 + °y

2
t¡1: (1)

This model has been extensively studied and many of its properties are now known, see Bollerslev,
Engle, and Nelson (1994). Usually this model is estimated by Gaussian Quasi-Likelihood. In the last
…fteen years there have many additional parametric volatility models studied in the literature. All

these models are nonlinear, which poses di¢culties both in computation and in deriving useful tools
for statistical inference. Parametric models are also prone to misspeci…cation especially in this context
because of the lack of any theoretical guidance as to the correct functional form. Semiparametric
models can provide greater ‡exibility and robustness to functional form misspeci…cation, see Powell

(1994).
Engle and Gonzalez-Rivera (1989) considered a semiparametric model with a standard GARCH(1,1)

speci…cation for the conditional variance but allowed the error distribution to be of unknown func-

tional form. They suggested a semiparametric estimator of the variance parameters based on splines.
Linton (1993) proved that a kernel version of their procedure was adaptive in the ARCH(p) model
when the error distribution was symmetric about zero. Drost and Klaassen (1997) extended this

work to consider GARCH structures and asymmetric distributions: they compute the semiparamet-
ric e¢ciency bound for a general class of models and construct an estimator that achieves the bound
in large samples. This line of research is about re…nements to existing consistent procedures.

More recently attention has focused on functional form issues in the conditional variance function

itself. This literature begins with Pagan and Schwert (1990) and Pagan and Hong (1991). They
consider the case where ¾2t = ¾2(yt¡1); where ¾(¢) is a smooth but unknown function, and the
multilag version ¾2t = ¾2(yt¡1; yt¡2; : : : ; yt¡d): Härdle and Tsybakov (1997) applied local linear …t to

estimate the volatility function together with the mean function and derived their joint asymptotic
properties. The multivariate extension is given in Härdle, Tsybakov, and Yang (1998). Masry and
Tjøstheim (1995) also estimate nonparametric ARCH models using the Nadaraya-Watson kernel

estimator. Fan and Yao (1998) have discussed e¢ciency issues in the model (2)

yt =m(yt¡1) + ¾(yt¡1)"t; (2)
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where m(¢) and ¾(¢) are smooth but unknown functions, and "t is a martingale di¤erence sequence
with unit conditional variance. In practice, including only one lag is unlikely to capture all the
dynamics, and we must extend this model to include more lagged variables. The problem with this
generalization is that nonparametric estimation of multi-dimension regression surface su¤ers from

the well-known “curse of dimensionality”: the optimal [Stone (1986)] rate of convergence decreases
with dimensionality d. For example, under twice di¤erentiability of m(¢) and ¾(¢), the optimal rate
is T¡2=(4+d) for whatever d, which gets rapidly worse with dimension. In addition, it is hard to

describe, interpret and understand the estimated regression surface when the dimension is more
than two. Furthermore, this model greatly restricts the dynamics for the variance process since it
e¤ectively corresponds to an ARCH(d) model, which is known in the parametric case not to capture

the dynamics well. In particular, if the conditional variance is highly persistent, the non-parametric
estimator of the conditional variance will provide a poor approximation, as reported by Perron (1998).
So not only does this model not capture adequately the time series properties of many datasets, but
the statistical properties of the estimators can be poor, and the resulting estimators hard to interpret.

Additive models o¤er a ‡exible but parsimonious alternative to nonparametric models, and have
been used in many applications. A direct extension is to assume that the volatility [and perhaps the
mean too] is additive, i.e.,

¾2t = cv +
dX

j=1

¾2j (yt¡j): (3)

Estimation in additive models has been studied in Hastie and Tibshirani (1990), Linton and Nielsen
(1995) and Tjøstheim and Auestad (1994). Previous nonparametric approaches have considered only

…nite order ARCH(p) processes, see for example Pagan and Hong (1990), Masry and Tjøstheim
(1997), and Carroll, Mammen, and Härdle (2002). The best achievable rate of convergence for esti-
mates of ¾2j (:) is that of one-dimensional nonparametric regression. Yang, Härdle, and Nielsen (1999)

proposed an alternative nonlinear ARCH model in which the conditional mean is again additive, but
the volatility is multiplicative:

¾2t = cv
dY

j=1

¾2j (yt¡j): (4)

To estimate (4) they applied the method of marginal integration using local linear …ts as a pilot
smoother, and derived the asymptotic normal distribution of the component estimates; they converge
at the one-dimensional rate. The closed form of the bias and variance are also given. Kim and Linton
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(2002) generalize this model to allow for arbitrary [but known] transformations, i.e.,

G(¾2t) = cv +
dX

j=1

¾2j (yt¡j); (5)

where G(:) is known function like log or level. In Xia, Tong, Li, and Zhu (2002) there is a discussion

of index models of the form

¾2t = ¾
2

Ã
dX

j=1

¯jy
2
t¡j

!
; (6)

where ¾2(:) is an unknown function. Models (3)-(6) deal with the curse of dimensionality but still do
not capture the persistence of volatility, and speci…cally they do not nest the favourite GARCH(1,1)
process.

This paper analyses a class of semiparametric ARCH models that generalizes the Engle and Ng
(1993) model and has both general functional form aspects and ‡exible dynamics. Speci…cally, our
model nests the simple GARCH(1,1) model but permits more general functional form. It contains

both …nite dimensional parameters that control the dependence and a single unknown scalar function
that determines the shape of the news impact curve. This model allows for an asymmetric leverage
e¤ect, and as much dynamics as GARCH(1,1). Our estimation approach is to derive population

moment conditions for the nonparametric part and then solve them with empirical counterparts.
The moment conditions we obtain are linear type II integral equations, which have been extensively
studied in the applied mathematics literature, see for example Tricomi (1955). The solution of
these equations only requires the computation of two-dimensional smoothing operations, and so is

attractive computationally. From a statistical perspective, there has been some recent work on this
class of estimation problems. Starting with Friedman and Stuetzle (1981), in Breiman and Friedman
(1985), Buja, Hastie, and Tibshirani (1989), and Hastie and Tibshirani (1990) these methods have

been investigated in the context of additive nonparametric regression and related models. Recently,
Opsomer and Ruppert (1997) and Mammen, Linton, and Nielsen (1999) have provided a distribution
theory for this speci…c class of problems. Newey and Powell (1989,2003) studied nonparametric

simultaneous equations, and obtained an estimation equation that was a linear integral equation also,
except that it is the more di¢cult type I. They establish the uniform consistency of their estimator.
Hall and Horowitz (2003) establish the optimal rate for estimation in this problem and propose
two estimators that achieve this rate. Neither paper provides distribution theory. Our estimation

methods and proof technique is purely applicable to the type II situation, which is nevertheless quite
common. Our paper goes signi…cantly beyond the existing literature in two respects. First, the
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integral operator does not necessarily have norm less than one so that the iterative solution method
of successive approximations is not feasible. This also a¤ects the way we derive the asymptotic
properties, and we can’t apply the results of Mammen, Linton, and Nielsen (1999) here. Second,
we have also …nite dimensional parameters and their estimation is of interest in itself. We establish

the consistency and pointwise asymptotic normality of our estimates of the parameter and of the
function. We establish the semiparametric e¢ciency bound and show that our parameter estimator
achieves this bund. We also discuss the e¢ciency question regarding the nonparametric component

and conclude that a likelihood-based version of our estimator can’t be improved on without additional
structure. We investigate the practical performance of our method on simulated data and present
the result of an application to S&P500 daily data. The empirical results indicate some asymmetry

and nonlinearity in the news impact curve. Our model is introduced in the next section. In section
3 we present our estimators. In section 4 we give the asymptotic properties. Section 5 reports some
numerical results and section 6 concludes.

2 The Model and its Properties

We shall suppose that the process fytg1t=¡1 is stationary with …nite fourth moment. We concentrate

most of our attention on the case where there is no mean process, although we later discuss the
extension to allow for some mean dynamics. De…ne the volatility process model

¾2t(µ;m) = ¹+
1X

j=1

Ãj(µ)m(yt¡j); (7)

where ¹ 2 R; µ 2 £ ½ Rp and m 2 M, where M = fm: measurableg. At this stage, the constant
¹ can be put equal to zero without any loss of generality. It will become important below when we
will consider more restrictive choices of M. Here, the coe¢cients Ãj (µ) satisfy at least Ãj(µ) ¸ 0

and
P1
j=1 Ãj(µ) <1 for all µ 2 £: The true parameters µ0 and the true function m0(:) are unknown

and to be estimated from a …nite sample fy1; : : : ; yTg. Following Drost and Nijman (1993), we can
give three interpretations to (7). The strong form ARCH(1) process arises when

yt
¾t

= "t (8)

is i.i.d with mean zero and variance one, where ¾2t = ¾2t(µ0;m0). The semi-strong form arises when

E(yt jFt¡1 ) = 0 and E(y2t jFt¡1) ´ ¾2t ; (9)
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where Ft¡1 is the sigma …eld generated by the entire past history of the y process. Finally, there is
a weak form in which ¾2t is de…ned as the projection on a certain subspace. Speci…cally, let µ0; m0

be de…ned as the minimizers of the following population least squares criterion function

S(µ;m) = E

"
fy2t ¡

1X

j=1

Ãj (µ)m(yt¡j)g2
#
: (10)

This criterion is well de…ned when E(y4t ) <1:
In the special case that Ãj(µ) = µj¡1 we can rewrite model (7) as a di¤erence equation in the

unobserved variance
¾2t = µ0¾

2
t¡1 +m(yt¡1); t = 1; 2; : : : ; (11)

and this model is consistent with a stationary GARCH(1,1) structure for the unobserved variance
when the further restriction is satis…ed:

m(y) = °y2 + ®

for some parameters ®;° . More generally, m is the ‘news impact function’ and determines the way in

which the volatility is a¤ected by shocks to y; while the parameter µ; through the coe¢cients Ãj(µ);
determines the persistence. Our model allows for general “news impact functions” including both
symmetric and asymmetric functions, and so accommodates the leverage e¤ect [Nelson (1991)].

Our model generalizes the model considered in Carroll, Mammen, and Härdle (2001) in which

¾2t =
P¿
j=1 µ

j¡1
0 m0(yt¡j) for some …nite ¿ : Their estimation strategy was quite di¤erent from ours:

they relied on an initial estimator of a ¿ -dimensional surface and then marginal integration [Linton
and Nielsen (1995)] to improve the rate of convergence. This method is likely to work poorly when ¿

is very large. Indeed, a contribution of our paper is to provide an estimation method for µ0 andm(¢)
that just relies on one-dimensional smoothing operations but is also amenable to theoretical analysis.
Some other papers can be considered precursors to this one. First, Gouriéroux and Monfort (1992)

introduced the qualitative threshold ARCH (QTARCH) which allowed quite ‡exible patterns of
conditional mean and variance through step functions, although their analysis was purely parametric.
Engle and Ng (1993) analyzed precisely this model (7) with Ãj(µ) = µj¡1 and called it ‘Partially
Nonparametric’ or PNP for short. They proposed an estimation strategy based on piecewise linear

splines.1 Finally, we should mention some work by Audrino and Bühlmann (2001): their ‘model’
1Wu and Ziao (2002) investigate this model too, but they used data on the implied volatility from option prices,

which means they can estimate the function m by standard partial linear regression.
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includes ours as a special case.2 However, although they proposed an estimation algorithm, they did
not establish even consistency of the estimator.

In the next subsection we discuss a characterization of the model that generates our estimation
strategy. If m were known it would be straightforward to estimate µ from some likelihood or least

squares criterion. The main issue is how to estimate m(:) even when µ is known. The kernel method
likes to express the function of interest as a conditional expectation of observable variables, but this
is not directly possible here because m is only implicitly de…ned. However, we are able to show

that m can be expressed in terms of all the bivariate joint densities of (yt; yt¡j); j = §1; : : : ; i.e.,
this collection of bivariate densities form a set of su¢cient statistics for our model.3 We use this
relationship to generate our estimator.

2.1 Linear Characterization

Suppose for pedagogic purposes that the semi-strong process de…ned in (9) holds. Take marginal
expectations for any j ¸ 1

E(y2t jyt¡j = y ) = ¹+ Ãj (µ0)m(y) +
1X

k6=j
Ãk(µ0)E[m(yt¡k)jyt¡j = y]:

For each such j the above equation implicitly de…nes m(:): This is really a moment condition in the
functional parameter m(:) for each j; and can be used as an estimating equation. As in the para-

metric method of moments case, it pays to combine the estimating equations to improve e¢ciency.
Speci…cally, we take the following linear combination of these moment conditions:

1X

j=1

Ãj(µ0)E(y
2
t jyt¡j = y ) = ¹

1X

j=1

Ãj (µ0) +
1X

j=1

Ã2j (µ0)m(y) (12)

+
1X

j=1

Ãj(µ0)
1X

k 6=j
Ãk(µ0)E[m(yt¡k)jyt¡j = y];

which is another equation in m(:). This equation arises as the …rst order condition from the least
squares de…nition of ¾2t ; given in (10) as we now discuss. The quantities µ0;m0(:) are the unique
minimizers of (10) over £ £ M by the de…nition of conditional expectation. Furthermore, the

2Their model is that ¾2
t = ¤(yt¡1; ¾2

t¡1) for some smooth but unknown function ¤(:):
Hafner (1998) and Carroll et al. (2002) have found evidence in support of the restriction that the news impact curve

is similar across lags, which is implicit in our model.
3Hong and Li (2003) has recently proposed basing a test on a similar reduced class of distributions.
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minimizer of (10) satis…es a …rst order condition and in the appendix we show that this …rst order
condition is precisely (12). In fact, this equation also holds for any µ 2 £ provided we replace m0 by
mµ: Note that we are treating ¹ as a known quantity.

We next rewrite (12) for any given µ in a more convenient form. Let p0 denote the marginal

density of y and let pj;l denote the joint density of yj; yl: De…ne

Hµ(y;x) = ¡
§1X

j=§1

Ã¤j (µ)
p0;j(y; x)
p0(y)p0(x)

; (13)

m¤
µ(y) =

1X

j=1

Ãyj(µ) [gj(y) ¡ ¹] ; (14)

where Ãyj (µ) = Ãj(µ)=
P1
l=1 Ã

2
l (µ) and Ã¤j (µ) =

P
k 6=0 Ãj+k(µ)Ãj(µ)=

P1
l=1 Ã

2
l (µ); while gj(y) = E(y20 jy¡j =

y) for j ¸ 1: Then the function mµ(:) satis…es

mµ(y) =m¤
µ(y) +

Z
Hµ(y; x)mµ(x)p0(x)dx (15)

for each µ 2 £ [this equation is equivalent to (12) for all µ 2 £]: The operator

Hj (y;x) =
p0;j(y; x)
p0(y)p0(x)

is well studied in the literature [see Bickel et al. (1993, p 440)]; our operator Hµ is just a weighted
sum of such operators, where the weights are declining to zero rapidly. In the back…tting estimation
of additive nonparametric regression, the corresponding integral operator is an unweighted sum of

such kernels over the …nite number of dimensions [see Mammen, Linton, and Nielsen (1999)]. In the
fully independent case with Ãj(µ) = µ

j¡1 we have Hµ(y; x) = ¡2µ=(1 ¡ µ):
Our estimation procedure will be based on plugging estimates bm¤

µ and bHµ ofm¤
µ or Hµ, respectively

into (15) and then solving for bmµ. The estimates bm¤
µ and bHµ will be constructed by plugging

estimates of p0;j, p0 and gj into (14) and (13). Nonparametric estimates of these functions only
work accurately for arguments not too large. We do not want to enter into a discussion of tail

behaviour of nonparametric estimates. For this reason we change our minimization problem (10),
or rather restrict the parameter sets further. We consider minimization of (10) over all µ 2 £
and m 2 Mc where now Mc is the class of all bounded measurable functions that vanish outside
[¡c; c]; where c is some …xed constant [this makes ¾2t = ¹ whenever yt¡j =2 [¡c; c] for all j]. Let us

denote these minimizers by µc and mc. Furthermore, denote the minimizer of (10) for …xed µ over
m 2 Mc by mµ;c. Then µc and mc minimize E[fy2t ¡ ¹ ¡ P1

j=1 Ãj(µ)m(yt¡j )g2] over £ £ Mc and
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mµ;c minimizes E[fy2t ¡ ¹ ¡ P1
j=1 Ãj(µ)mµ(yt¡j)g2] over Mc. Estimates of m0 can be constructed

by estimating mc and letting c converge to in…nity.4 In practice one might get better estimates if
m0 we …t nonparametrically inside [¡c; c] and parametrically outside this interval. In particular, ¹
could be …tted by a semiparametric approach. Motivated by traditional parametric GARCH models

a more sophisticated parametric estimate for the tails would be a quadratic …t. We don’t enter these
discussions here and let c and ¹ be constant in the following. By the same arguments as above we
get that mµ;c satis…es

mµ;c(y) = m¤
µ(y) +

Z c

¡c
Hµ(y; x)mµ;c(x)p0(x)dx

for jyj · c and vanishes for jyj > c. For simplicity but in abuse of notation we omit the subindex c

of mµ;c and we write
mµ = m¤

µ + Hµmµ: (16)

For each µ 2 £; Hµ is a self-adjoint linear operator on the Hilbert space of functions m that are

de…ned on [¡c; c] with norm kmk22 =
R c
¡cm(x)

2p0(x)dx and (16) is a linear integral equation of the
second kind. There are some general results providing su¢cient conditions under which such integral
equations have a unique solution. Speci…cally, provided the Fredholm determinant of Hµ is non-zero
then there exists a unique solution given by the ratio of two in…nite series in Fredholm determinants,

see Tricomi (1957). See also Darolles, Florens, and Renault (2002) for a nice discussion on existence
and uniqueness for type I equations.

We assume the following high level condition:

Assumption A1. The operator Hµ(x;y) is Hilbert-Schmidt uniformly over µ; i.e.,

sup
µ2£

Z Z
Hµ(x; y)2p0(x)p0(y)dxdy <1:

A su¢cient condition for A1 is that the joint densities p0;j(y;x) are uniformly bounded for j 6= 0

and jxj; jyj · c and that the density p0(x) is bounded away from 0 for jxj · c. This condition can
also be satis…ed in certain unbounded cases. For example, when the process is stationary Gaussian
provided that supµ2£

P1
j=1 Ãj(µ) <1:

Under assumption A1, for each µ 2 £; Hµ is a self-adjoint bounded linear operator on the Hilbert
space of functions L2(p0). Also this condition implies that Hµ is a compact operator and therefore
has a countable number of eigenvalues5:

1 > j¸µ;1j ¸ j¸µ;2j ¸ ::::;
4 It can be shown that limc!1 mµ;c = mµ in various ways.
5These are real numbers for which there exists functions gµ;j(:) such that Hµgµ;j = ¸µ;jgµ;j:
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with

sup
µ2£

1X

j=1

¸2µ;j <1: (17)

Assumption A2. There exist no µ 2 £ and m 2 Mc with kmk2 = 1 such that

1X

j=1

Ãj(µ)m(yt¡j) = 0 a.s.

This condition rules out a certain ‘concurvity’ in the stochastic process. That is, the data cannot
be functionally related in this particular way. It is a natural generalization to our situation of the

condition that the regressors be not linearly related in a linear regression.
Assumption A3. The operator Hµ ful…lls the following continuity condition for µ; µ0 2 £:

sup
kmk2·1

kHµm ¡ Hµ0mk2 ! 0 for jµ ¡ µ0j ! 0:

This condition is straightforward to verify.
We now argue that because of (A2) and (A3) for a constant 0 < ° < 1

sup
µ2£
¸µ;1 < °: (18)

To prove this equation note that for µ 2 £ and m 2 Mc with kmk2 = 1

0 < E

2
4

Ã 1X

j=1

Ãj(µ)m(yt¡j )

!2
3
5

= Âµ
Z c

¡c
m2(x)p0(x)dx+ Âµ

Z c

¡c

Z c

¡c
m(x)m(y)

X

jkj¸1

Ã¤k(µ)p0;k(x; y)dxdy

= Âµ

Z c

¡c
m2(x)p0(x)dx¡ Âµ

Z c

¡c
m(x)Hµm(x)p0(x)dx;

where Âµ =
P1
j=1 Ã

2
j (µ) is a positive constant depending on µ: For eigenfunctions m 2 Mc of Hµ

with eigenvalue ¸ this shows
Z
m2(x)p0(x)dx¡ ¸

Z
m2(x)p0(x)dx > 0:

Therefore ¸µ;j < 1 for µ 2 £ and j ¸ 1. Now, because of (A3) and compactness of £, this implies
(18).

9



From (18) we get that I¡Hµ has eigenvalues bounded from below by 1¡° > 0. Therefore I¡Hµ
is invertible and (I ¡ Hµ)¡1 has only positive eigenvalues that are bounded by (1 ¡ °)¡1:

sup
µ2£;m2Mc;kmk2=1

°°(I ¡ Hµ)¡1m
°°
2 · (1 ¡ °)¡1: (19)

Therefore, we can directly solve the integral equation and write

mµ = (I ¡ Hµ)¡1m¤
µ (20)

for each µ 2 £:
The representation (20) is fundamental to our estimation strategy. We next discuss a further

property that leads to an iterative solution method rather than a direct inversion. If it holds that

j¸µ;1j < 1; then mµ =
1X

j=0

Hjµm¤
µ:

In this case the sequence of successive approximations m[n]
µ = m¤

µ +Hµm[n¡1]
µ ; n = 1; 2; : : : converges

to the truth from any starting point. This sort of property has been established in other related
problems, see Mammen, Linton, and Nielsen (1999) and Linton, Mammen, Nielsen, and Tanggaard
(2001), and is the basis of most estimation algorithms in this area.6 Unfortunately, the conditions

that guarantee convergence of the successive approximations method are not likely to be satis…ed
here even in the special case that Ãj(µ) = µj¡1. The reason is that the unit function is always
an eigenfunction of Hµ with eigenvalue determined by ¡ P§1

j=§1 µ
jjj1 = ¸µ ¢ 1; which implies that

¸µ = ¡2µ=(1 ¡ µ): This is less than one in absolute value only when µ < 1=3: This implies that we

will not be able to use directly the particular convenient method of successive approximations [aka
back…tting] for estimation. However, one can apply this solution method after …rst transforming the
integral equation. De…ne

º = minfj : j¸jj < 1g
¼º = L2 projection onto span(e1; : : : ; ev¡1);

where ej is the eigenfunction corresponding to ¸j : Then

m = m¤ + H(I ¡ ¼º)m +H¼ºm;
6The standard “Hastie and Tibhsirani back…tting’ approach to estimation here would be to substitute empirical

versions in equation (12) and iteratively update. In this method you are estimating for example E[m(yt¡k)jyt¡j = y]
rather than the operator that produces it, which makes it slightly di¤erent from the Mammen, Linton, and Nielsen
(1999) ‘Smooth back…tting approach’.
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which is equivalent to
m = m¤

¼ +H¼m; (21)

wherem¤
¼ = (I¡H¼º)¡1m¤ and H¼ = (I¡H¼º)¡1H(I¡¼º): It is easy to check that jjH¼ jj < 1; and

so the method of successive approximations for example can be applied to the transformed equation.

2.2 Likelihood Characterization

In this section we provide an alternative characterization ofmµ; µ in terms of the Gaussian likelihood.
We use this characterization later to de…ne the semiparametric e¢ciency bound for estimating µ in

the presence of unknown m:
We now suppose that m0(:); µ0 are de…ned as the minimizers of the criterion function

`(µ;m) = E
·
log¾2t (µ;m) +

y2t
¾2t (µ;m)

¸
(22)

with respect to both µ;m(:); where ¾2t (µ;m) = ¹ +
P1
j=1 Ãj(µ)m(yt¡j ): Notice that this criterion is

well de…ned [i.e., the expectation is …nite] in many cases where the quadratic loss function is not
de…ned because say E(y4t ) = 1:

Minimizing (22) with respect tom for each given µ leads to the nonlinear integral equation for m

1X

j=1

Ãj (µ)E
·

1
¾2t(µ;m)

jyt¡j = y
¸
=

1X

j=1

Ãj (µ)E
·
y2t

¾4t(µ;m)
jyt¡j = y

¸
: (23)

This equation is di¢cult to work with from the point of view of statistical analysis. We consider

instead a linearized version of this equation. Suppose that we have some initial value (or approxi-
mation) to ¾2t ; then linearizing (23) about ¾2t ; we obtain the linear integral equation

mµ = m¤
µ + Hwµmµ; (24)

m¤
µ =

P1
j=1 Ãj (µ)E

£
¾¡4t y2t jyt¡j = y

¤
P1
j=1 Ã

2
j (µ)E

£
¾¡4
t jyt¡j = y

¤ ; Hwµ (x; y) = ¡
1X

j=1

1X

l=1
l6=j

Ãj(µ)Ãl(µ)wj;l(x;y)
p0;l¡j (x; y)
p0(y)

wj;l(x;y) =
E[¾¡4

t jyt¡l = x; yt¡j = y]P1
j=1 Ã

2
j(µ)E[¾

¡4
t jyt¡j = y]

:

This is a second kind linear integral equation inmµ(:) but with a di¤erent intercept and operator from
(16). See Hastie and Tibshirani (1990, Section 6.5) for a similar calculation. Under our assumptions,
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see B4 below, the weighted operator satis…es assumptions A1 and A3 also. For a proof of A3 note
that

0 < E

"
¾¡4
t

1X

j=1

Ãj (µ)m(yt¡j)

#2

:

Note that in generallymµ di¤ers frommµ . They are de…ned as minimizers for di¤erent functionals.
However, for the strong and semistrong versions of our model we get mµ0 = mµ0 . We also write
¾2t(µ) = ¹ +

P1
j=1 Ãj (µ)mµ(yt¡j). Compare with ¾2t (µ) = ¹+

P1
j=1 Ãj(µ)mµ(yt¡j).

2.3 E¢ciency Bound for µ

We now turn to a discussion about some properties of µ: Speci…cally, we discuss the semiparametric
e¢ciency bound for estimation of µ in the strong ARCH model whenm is unknown in the case where

yt=¾t is iid normal. This discussion is indirectly related to the characterizations of mµ that we have
obtained.

Suppose that m is a known function but the parameter µ is unknown, i.e., we have a speci…c

parametric model. The log likelihood function is proportional to

`T (µ) =
1
2

TX

t=1

log s2t (µ) +
y2t
s2t (µ)

; where s2t (µ) =
1X

j=1

Ãj(µ)m(yt¡j ):

The score function with respect to µ is

@`T (µ)
@µ

= ¡1
2

TX

t=1

ut(µ)
@ log s2t (µ)
@µ

= ¡1
2

TX

t=1

ut(µ)
1
s2t (µ)

1X

j=1

¢
Ãj(µ)m(yt¡j );

where ut(µ) = (y2t =s2t(µ) ¡ 1) and
¢
Ãj(µ) = @Ãj(µ)=@µ: The Cramer-Rao lower bound here (when m

is known) is

I¡1
µµ = 2

Ã
E

"µ
@ log ¾2t
@µ

¶2
#!¡1

;

since E(u2t ) = 2: See Bollerslev and Wooldridge (1992).
Now suppose that we parameterize m by ´ and write m´ ; so that we have a parametric model

with parameters (µ; ´): The score with respect to ´ is

@`T (µ; ´)
@´

= ¡1
2

TX

t=1

ut(µ; ´)
@ log ¾2t (µ; ´)

@´
= ¡1

2

TX

t=1

ut(µ; ´)
1

¾2t (µ; ´)

1X

j=1

Ãj (µ)
@m´(yt¡j )
@´

:

12



The e¢cient score function [see Bickel et al. (1993, pp )] is the projection of @`T (µ; ´)=@µ onto the
orthocomplement of span[@`T (µ; ´)=@´]; this is a linear combination of @`T (µ; ´)=@µ; @`T (µ; ´)=@´ and
has variance less than @`T (µ; ´)=@µ re‡ecting the cost of the nuisance parameter. Now consider the
semiparametric case. We have to compute the e¢cient score functions for all such parameterizations

of m: Because of the de…nition of the process ¾2t the set of possible score functions with respect to
m is

Sm =

(
TX

t=1

ut
1
¾2t

1X

j=1

Ãj(µ)g(yt¡j ) : g meas

)
;

where we have evaluated at the true parameters. To …nd the e¢cient score function in the semipara-
metric model we have to …nd the projection of @`T (µ; ´)=@µ onto the orthocomplement of Sm: We
seek a function g0 that minimizes

E

2
4
(

1
s2t

@s2t
@µ

¡ 1
s2t

1X

j=1

Ãj (µ)g(yt¡j)

)2
3
5 (25)

over all measurable g: This minimization problem is similar to that which mµ solves. In particular,
we can show that g0 satis…es the linear integral equation (see appendix for details)

g0 = g¤ + Hwµ0g0; (26)

where the operator Hwµ0 was de…ned below (24), while

g¤(y) =

P1
j=1 Ãj(µ)E

h
1
s4t

@s2t
@µ jyt¡j = y

i

P1
j=1 Ã

2
j (µ)E

£
s¡4
t jyt¡j = y

¤ .

Note that the integral equation (26) is similar to (24) except that the intercept function g¤ is di¤erent

from m¤
µ:

Denote the implied least squares predictor in (25) as

1
s2t

1X

j=1

Ãj (µ)g0(yt¡j) =
1
s2t

1X

j=1

Ãj(µ)(I ¡ Hwµ0)¡1g¤(yt¡j) ´ Pm
@ log s2t
@µ

: (27)

We assume that this predictor of @ log s2t=@µ is imperfect, in the sense that the residual variance in

13



(25) is positive. The e¢cient score function in the semiparametric model is thus

1
2

TX

t=1

ut
·
@ log s2t
@µ

¡ Pm
@ log s2t
@µ

¸

=
1
2

TX

t=1

ut
1
s2t

1X

j=1

· ¢
Ãj(µ)(I ¡ Hµ0)¡1m¤

µ0 ¡ Ãj (µ)(I ¡ Hwµ0)¡1g¤
¸
(yt¡j )

=
1
2

TX

t=1

ut
1
s2t

1X

j=1

·
(I ¡ Hwµ0)¡1

½ ¢
Ãj(µ)m

¤
µ0 ¡ Ãj(µ)g¤

¾¸
(yt¡j):

By construction this score function is orthogonal to any element of Sm: The semiparametric e¢ciency
bound is

I¤¡1
µµ = 2

Ã
E

"µ
@ log s2t
@µ

¡ Pm
@ log s2t
@µ

¶2
#!¡1

; (28)

i.e., any regular estimator of µ in this semiparametric model has asymptotic variance not less than
I¤¡1
µµ : This bound is clearly larger than in the case wherem is known. We will construct an estimator

that achieves this semiparametric e¢ciency bound. It can be easily checked that

@ log ¾2t
@µ

=
@ log s2t
@µ

¡ Pm
@ log s2t
@µ

:

3 Estimation

We shall construct estimates of µ and m from a sample fy1; : : : ; yTg: We proceed in four steps.
First, for each given µ we estimate mµ by solving an empirical version of the integral equation (16).

We then estimate µ by maximizing a pro…le least squares criterion. We then use the estimated
parameter to give an estimator of m: The last step consists in solving an empirical version of the
linearized likelihood implied integral equation (24), and doing a two step quasi-Newton method to

update the parameter estimate.

3.1 Our Estimators of m¤
µ and Hµ

We now de…ne local linear based estimates bm¤
µ of m¤

µ and kernel density estimates bHµ of Hµ, respec-
tively. Local linear estimation is a popular approach for estimating various conditional expectations
with nice properties (see Fan (1992, 1993)). De…ne the estimators (bgj(y);bg0j(y)) of (gj (y); g0j(y)) as

14



the minimizers of the weighted sums of squares criterion

(bgj(y);bg0j(y)) = argmin
®;̄

X

t

©
y2t ¡ ¹¡ ®¡ ¯(yt¡j ¡ y)

ª2 Kh (yt¡j ¡ y) ; (29)

where K is a symmetric probability density function, h is a positive bandwidth, and Kh(:) =

K(:=h)=h. The summation is over all t such that 1 · t¡ j · T:
First select a truncation sequence ¿ T with 1 < ¿ T < T: Then compute

bm¤
µ(y) =

(
(1 ¡ µ2)P¿T

j=1 Ãj (µ)bgj(y) if jyj · c
0 else.

To estimate Hµ we take the following scheme

bHµ(y;x) = ¡
¿TX

jj j=1

Ã¤j (µ)
bp0;j(y; x)

bp0(y)bp0(x)
; (30)

bp0;j(y;x) =
1

T ¡ jjj

minfT ;T+jgX

t=maxf1;jg
Kh(y¡ yt)Kh(x ¡ yt+j );

bp0(x) =
1
T

TX

t=1

Kh(x ¡ yt):

We de…ne
bHµm =

Z c

¡c
bHµ(y;x)m(x)bp0(x)dx: (31)

For each µ 2 £; bHµ is a self-adjoint linear operator on the Hilbert space of functionsm that are de…ned
on [¡c; c] with norm kmk22 =

R c
¡cm(x)

2bp0(x)dx: Note that when µ = 0; the operator bHµ(y; x) = 0

and bmµ is the corresponding kernel regression smoother.
Suppose that the sequence fb¾2t ; t = 1; : : : ; T g and µ are given. Then de…ne bgaj (¢) to be the local

linear smooth of b¾¡4
t y2t on yt¡j; let bgbj (¢) be the local linear smooth of b¾¡4

t on yt¡j; and let bgcl;j(¢)
be the bivariate local linear smooth of b¾¡4

t on (yt¡l; yt¡j); with the population quantities de…ned

correspondingly. Then de…ne

bm¤
µ =

P¿T
j=1 Ãj(µ)bgaj (y)P¿T
j=1 Ã

2
j (µ)bgbj (y)

; bH bwµ
µ (x; y) = ¡

¿TX

j=1

¿TX

l=1
l6=j

Ãj(µ)Ãl(µ)bwµj;l(x;y)
bp0;l¡j (x; y)
bp0(x)bp0(y)

;

where

bwµj;l(x;y) =
bgcl;j(x; y)P¿T
j=1 Ã

2
j (µ)bgbj (y)

:
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3.2 Our Estimators of µ and m

Step 1. De…ne bmµ as any solution of the equation

bmµ = bm¤
µ + bHµ bmµ: (32)

This step is the most di¢cult and requires a number of choices. In practice, we are going to solve
the integral equation on a grid of points, which reduces it to a large linear system. As the number

of grid points increases the approximation becomes arbitrarily good. See below for more discussion.
Step 2. We next choose µ 2 £ to minimize the following criterion

bST (µ) =
1
T

TX

t=¿T+1

©
y2t ¡ b¾2t (µ)

ª2
; where b¾2t (µ) =

¿TX

j=1

Ãj(µ) bmµ(yt¡j):

When µ is one dimensional this optimization can be done by grid search since µ is a scalar and lies
in a compact set.

Step 3. De…ne for any y 2 [¡c; c] and t ¸ ¿T + 1 :

bm(y) = bmbµ(y) and b¾2t =
¿TX

j=1

Ãj(bµ)bm(yt¡j ):

The estimates ( bm(y);bµ) are our proposal for the weak version of our model. For the semistrong and
strong version of the model the following updates of the estimate are proposed.

Step 4. Given (bµ; bm(:)): Compute bm¤
µ and bHbwµ

µ using the sequence fb¾2t ; t = 1; : : : ; Tg de…ned

above, then solve the linear integral equation

emµ = bm¤
µ + bH bwµ

µ emµ (33)

for the estimator emµ; and let e¾2t (µ) =
P¿T
j=1 Ãj(µ) emµ(yt¡j) for each µ: Next de…ne eµ as any minimizer

of

èT (µ) =
1
T

TX

t=¿T+1

log e¾2t (µ) +
y2t

e¾2t (µ)
:

To avoid a global search we suppose that eµ is the location of the local minimum of èT (µ) with smallest

distance to bµ. Compute em(y) = emeµ(y) and e¾2t =
P¿T
j=1 Ãj (eµ)em(yt¡j):

These calculations may be repeated for numerical improvements. Step 4 can be interpreted as a
version of Fisher Scoring, discussed in Hastie and Tibshirani (1990, Section 6.2).
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3.2.1 Solution of Integral Equations

There are many approaches to computing the solutions, see for example Riesz and Nagy (1990). Rust
(2000) gives a nice discussion about solution methods for a more general class of problems. The two
issues are: how to approximate the integral in (31), and how to solve the resulting linear system.

For any integrable function f on [¡c; c] de…ne J(f ) =
R c
¡c f (t)dt: Let ftj;n; j = 1; : : : ; ng be some

grid of points in [¡c; c] and wj;n be some ‘weights with n a chosen integer. A valid integration rule
would satisfy Jn(f) ! J(f ) as n ! 1; where Jn(f) =

Pn
j=1wj;nf(tj;n): For example, Simpson’s rule

or Gaussian Quadrature both satisfy this. Now approximate (32) by

bmµ(x) = bm¤
µ(x) +

nX

j=1

wj;n bHµ(x; tj;n)bmµ(tj;n)bp0(tj;n): (34)

This is equivalent to the linear system [Atkinson (1976)]

bmµ(ti;n) = bm¤
µ(ti;n) +

nX

j=1

wj;n bHµ(ti;n; tj;n) bmµ(tj;n)bp0(tj;n); i = 1; : : : ; n: (35)

To each solution of equation (35) there is a unique corresponding solution of (34) with which it agrees
at the node points. Under smoothness conditions on bHµ; the solution of the system (35) converges
in L2 to the solution of (32) as n ! 1; and at a geometric rate. The linear system can be written

in matrix notation
(In ¡ bBµ)bmµ = bm¤

µ;

where In is the n£n identity, bmµ = (bmµ(ti;n); : : : ; bmµ(ti;n))0 and bm¤
µ = (bm¤

µ(t1;n); : : : ; bm¤
µ(tn;n))0; while

bBµ = ¡

2
4wj;n

¿TX

j`j=1

Ã¤` (µ)
bp0;`(ti;n; tj;n)

bp0(ti;n)

3
5
n

i;j=1

is an n£n matrix. We then …nd the solution values bmµ = ( bmµ(y1); : : : ; bmµ(yn))0 to this system. Note
that once we have found bmµ(tj;n), j = 1; : : : ; n; we can substitute back into (34) to obtain bmµ(x) for

any x 2 [¡c; c]: More sophisticated methods also involve selection of the grid size n and scheme.
There are two main classes of methods for solving large linear systems: direct methods including

Cholesky decomposition or straight inversion, and iterative methods. Direct methods work …ne so
long as n is only moderate, say up to n = 1000; and so long as we do not require too much accuracy

in the computation of µ: For larger problems, iterative methods are indispensable. We next describe
the sort of iterative approaches that we have tried.
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When bHµ has operator norm strictly smaller than one; one can directly apply a version of the
Back…tting/Gauss-Seidel/Successive approximation method of Hastie and Tibshirani (1990) or Mam-
men, Linton, and Nielsen (1999). However, as we pointed out already the operator bHµ only satis…es
this condition for a small subset of µ values. Instead, it is necessary to modify the algorithm along

the line discussed in (21), see also Hastie and Tibshirani (1990, Section 5.2). Below we describe a
simple version of this, called ‘convergent splitting’ in the numerical analysis literature. We factorize

In¡ bBµ = Cµ ¡Rµ (36)

where the matrices Cµ and Rµ are chosen to satisfy

½(C¡1
µ Rµ) < 1;

where ½ denotes spectral radius.7 Then from starting value bm[0]
µ ; compute the iteration

bm[r+1]
µ = C¡1

µ Rµ bm
[r]
µ +C¡1

µ bm¤
µ

until convergence. In practice, we have chosen Cµ = 2µ=(1 ¡ µ)In and found good results. The
iteration is continued until some convergence criterion is satis…ed. For example, one can stop when

jj bm[r+1]
µ ¡ bm[r]

µ jj < ² or jj(In ¡ bBµ) bmµ ¡ bm¤
µjj < ²

for some small ²: Here, jjxjj = (x0x)1=2 is the Euclidean norm on vectors in Rn:

4 Asymptotic Properties

4.1 Regularity Conditions

We will discuss properties of the estimates bmµ and bµ under the weak form where we do not assume

that (9) holds but where µ0;m0 are de…ned as the minimizers of the least squares criterion function
(10). Asymptotics for bm = bmbµ and for the likelihood corrected estimates em and eµ will be discussed
under the more restrictive setting that (9) holds.

De…ne ´j;t = y2t+j ¡ E(y2t+jjyt) and ³j;t(µ) =mµ(yt+j) ¡ E[mµ(yt+j)jyt]; and let

´1µ;t =
1X

j=1

Ãyj(µ)´j;t and ´2µ;t = ¡
§1X

j=§1

Ã¤j(µ)³j;t(µ): (37)

7The spectral radius of a square symmetric matrix is the largest (in absolute value) eigenvalue.
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Let ® (k) be the strong mixing coe¢cient of fytg de…ned as

® (k) ´ sup
A2F0

¡1; B2F1k
jP (A \ B) ¡ P (A)P (B)j ; (38)

where Fab is the sigma-algebra of events generated by fytgba.

B1 The process fytg1t=¡1 is stationary and alpha mixing with a mixing coe¢cient, ®(k) such that
for some C ¸ 0 and some large s0;

®(k) · Ck¡s0 :

B2 E
¡
jytj2½

¢
<1 for some ½ > 2:

B3 The kernel function is a symmetric probability density function with bounded support such that
for some constant C; jK(u) ¡K(v)j · C ju ¡ vj: De…ne ¹j(K) =

R
ujK (u)du and ºj(K) =R

ujK2(u)du:

B4 The function m together with the densities (marginal and joint)-m(¢), p0(¢), and p0;j (¢) are

continuous and twice continuously di¤erentiable over [¡c; c] and are uniformly bounded. p0 (¢)
is bounded away from zero on [¡c; c]; i.e., inf¡c·w·c p0(w) > 0: Furthermore, for a constant
c¾ > 0 we have that a.s.

¾2t > c¾: (39)

B5 The conditional distribution functions of ´1µ;t and ´2µ;t given yt = u are continuous at the point
y:

B6 E
h¡
´jµ;1

¢2
+

¡
´jµ;t

¢2 jy1 = u1; yt = u2
i

is uniformly bounded for j = 1;2; t ¸ 1 and u1 and u2
in neighborhoods of y:

B7 The parameter µ is contained in the compact set £ ½ Rp: Also, A2 holds, and for any ² > 0

inf
jµ¡µ0j>²

S(µ;mµ) > S(µ0; mµ0):

B8 The truncation sequence ¿ T satis…es ¿ T = C logT for some constant C:

B9 The bandwidth sequence h(T ) satis…es h(T ) = °(T )T ¡1=5 with °(T ) bounded away from zero
and in…nity.
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B10 The coe¢cients satisfy supµ2£;k=0;1;2 j@kÃj(µ)=@µkj · jpÃj for some …nite p and Ã < 1; while
infµ2£

P1
j=1 Ã

2
j (µ) > 0:

The following assumption will be used when we make asymptotics under the assumption of (9).

B11 The semistrong model assumption (9) holds, so that the variables ´t = y2t¡¾2t form a martingale
di¤erence sequence with respect to Ft¡1: Let "t = yt=¾t; ut = (y2t ¡ ¾2t )=¾2t ; which are also both

martingale di¤erence sequences by assumption.

Condition B1 is quite weak, although the value of s0 can be quite large depending on the value
of ½ given in B2: Carrasco and Chen (2002) provide some general conditions for such processes to
be strongly stationary and ¯¡mixing; these conditions involve restrictions on the function m0 and
the distribution of the innovations, in addition to restrictions on µ0: Conditions B3,B4 are quite

standard assumptions in the nonparametric regression literature. Under the assumption of (9), the
bound (39) follows if we assume that inf¡c·w·cm(w) > ¡¹=P1

j=1 Ãj: Conditions B5, B6 are used
to apply the central limit theorem of Masry and Fan (1997) and can be replaced by more primitive

conditions. Assumption B7 is for the identi…cation of the parametric part. Following Hannan (1973)
it is usual to impose these high level conditions [c.f. his condition (4)]. The truncation rate assumed
in B8 can be weakened at the expense of more detailed argumentation. In B9 we are anticipating

a rate of convergence of T¡2=5 for bmµ; which is consistent with second order smoothness on the
data distribution. Assumption B10 is used for a variety of arguments; it can be weakened in some
cases, but again at some cost. It is consistent with the GARCH case where Ãj(µ) = µj¡1 and
@kÃj(µ)=@µ

k = (j ¡ 1) ¢ ¢ ¢ (j ¡ k)µj¡k¡1:

4.2 Properties of bmµ and bµ
We establish the properties of bmµ for all µ 2 £ under the weak form assumption. Speci…cally, we do

not require that (8) holds, but de…ne mµ as the minimizer of (10) over Mc.
De…ne the functions ¯jµ(y) as solutions to the integral equations

¯ jµ = ¯
¤;j
µ (y) +Hµ¯jµ; j = 1; 2;

in which:

¯¤;1µ (y) =
@2

@y2
m¤
µ(y);
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¯¤;2µ (y) =
§¿TX

j=§1

Ã¤j (µ)
½
E(mµ(yt+j)jyt = y)

p000(y)
p0(y)

¡
Z

[r2p0;j(y; x)]
mµ(x)
p0(y)

dx
¾
;

where r2 = (@2=@x2) + 2(@2=@x@y) + @2=@y2 is the Laplacian operator. Then de…ne
¹µ(y) = ¡ P§1

j=§1 Ã
¤
j (µ)E[mµ(yt+j)jyt = y]; and

!µ(y) =
º0(K)
p0(y)

©
var[´1µ;t + ´

2
µ;t] + ¹

2
µ(y)

ª
(40)

bµ(y) =
1
2
¹2(K)

£
¯1µ(y) + ¯

2
µ(y)

¤
; (41)

where ´jµ;t; j = 1; 2 were de…ned in (37). We prove the following theorem in the appendix.
Theorem 1. Suppose that B1-B9 hold. Then for each µ 2 £ and y 2 [¡c; c]

p
Th

£
bmµ(y) ¡mµ(y) ¡ h2bµ(y)

¤
=) N (0; !µ(y)) : (42)

Furthermore,
sup

µ2£;jyj·c
jbmµ(y) ¡mµ(y)j = op(T¡1=4); (43)

sup
µ2£;¿T·t·T

¯̄
b¾2t (µ) ¡ ¾2t (µ)

¯̄
= op(T¡1=4); (44)

sup
µ2£;¿T·t·T

¯̄
¯̄@b¾

2
t

@µ
(µ) ¡ @¾

2
t

@µ
(µ)

¯̄
¯̄ = op(T ¡1=4); (45)

From this result we obtain the properties of bµ by an application of the ‘standard’ asymptotic
theory for semiparametric estimators [see for example Bickel, Klaassen, Ritov, and Wellner (1993)];

this requires a uniform expansion for bmµ(y) and some similar properties on the derivatives (with
respect to µ) of bmµ(y):

Theorem 2. Suppose that B1-B10 hold. Then

p
T (bµ ¡ µ0) = Op(1): (46)

These results can be applied to get the asymptotic distribution of bm = bmbµ.
Theorem 3. Suppose that B1-B10 hold and that bµ is an arbitrary estimate (possibly di¤erent

from the above de…nition) with
p
T (bµ ¡ µ0) = Op(1). Then for y 2 [¡c; c]
p
Th

£
bmbµ(y) ¡ bmµ0(y)

¤
= op(1): (47)
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Under the additional assumption of B11 we get that

p
Th

£
bmbµ(y) ¡mµ0(y) ¡ h2b(y)

¤
=) N (0; !(y)) ; (48)

where

!(y) =
º0(K)

p0(y)
hP1

j=1 Ã
2
j (µ0)

i2
1X

j=1

Ã2j (µ0)E
£
¾4tu

2
t jyt¡j = y

¤
(49)

and

b(y) = ¹2(K)f1
2
m00(y) + (I ¡ Hµ)¡1[

p00
p0
@
@y

(Hµm)](y)g:

The bias of bm is rather complicated and it contains a term that depends on the density p0 of yt.
We now introduce a modi…cation of bm that has a simpler bias expansion. For µ 2 £ the modi…ed

estimate bmmodµ is de…ned as any solution of

bmmodµ = bm¤
µ + bHmodµ bmmodµ ;

where the operator bHmod is de…ned by use of modi…ed kernel density estimates

bHmodµ (y; x) = ¡
§¿TX

j=§1

Ã¤j (µ)
bpmod0;j (y; x)

bpmod0 (y)bp0(x)
;

bpmod0;j (y; x) = bp0;j(x; y) +
bp00(x)
bp0(x)

1
T ¡ jj j

X

t

(yt ¡ y)Kh(yt ¡ y)Kh(yt+j ¡ x);

bpmod0 (x) = bp0(x) +
bp00(x)
bp0(x)

1
T

TX

t=1

(yt ¡ y)Kh(yt ¡ y):

In the de…nition of the modi…ed kernel density estimates bp00 could be replaced by another estimate

of the derivative of p0 that is uniformly consistent on [¡c; c], e.g. 1
T

TP
t=1

(yt ¡ y)Kh(yt ¡ y)=[h2¹2(K)].

The asymptotic distribution of the modi…ed estimate is stated in the next theorem.

Theorem 4. Suppose that B1-B11 hold and that bµ is an estimate as in Theorem 3. Then for
y 2 [¡c; c] p

T h
£
bmmodbµ (y) ¡mµ0(y) ¡ h2bmod(y)

¤
=) N (0;!(y)) ;

where !(y) is de…ned as in Theorem 3 and where

bmod(y) =
1
2
¹2(K)m00(y):
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4.3 Properties of em and eµ
We now assume thatbµ is consistent and so we can con…ne ourselves to working in a small neighborhood

of µ0; and our results will be stated only for such µ:We shall now assume that (9) holds, so that the
variables ´t = y2t ¡ ¾2t form a martingale di¤erence sequence with respect to Ft¡1: Let "t = yt=¾t;
ut = (y2t ¡ ¾2t )=¾2t ; which are also both martingale di¤erence sequences by assumption. We suppose

for simplicity that "t has a time invariant kurtosis ·4.

B12 The variables "t have a time invariant conditional kurtosis ·4

E
£
u2t jyt¡j = y

¤
= ·4 + 2:

De…ne

!ef f (y) =
º0(K)(·4 + 2)

p0(y)
P1
j=1 Ã

2
j (µ)E

¡
¾¡4
t jyt¡j = y

¢ (50)

Theorem 5. Suppose that B1-B12 hold. For some bounded continuous function beff (y) we have

p
Th

£
embµ(y) ¡mbµ(y) ¡ h2beff (y)

¤
=) N

¡
0; !eff (y)

¢
:

The next theorem discuss the asymptotic distribution of eµ.
Theorem 6. Suppose that B1-B12 hold. Then

p
T (eµ ¡ µ0) =) N (0; V ); where V = (·4 + 2)

Ã
E

"µ
@ log s2t
@µ

¡ Pm
@ log s2t
@µ

¶2
#!¡1

:

Thus when the errors are Gaussian eµ achieves the semiparametric e¢ciency bound. When B12

does not hold, asymptotic normality can still be shown but the limiting distribution has a more
complicated sandwich form. Standard errors robust to departures from B12 can be constructed from
the representation (94) given in the appendix.

4.4 Nonparametric E¢ciency

Here, we discuss the issue about e¢ciency of the nonparametric estimators. Our discussion is heuristic
and is con…ned to the semistrong case and to comparison of asymptotic variances. This type of

analysis has been carried out before in many separable models, see Linton (1996,2000); it sets out
a standard of e¢ciency and a strategy for achieving it and hence improving on the given method.
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Horowitz and Mammen (2002) apply this in generalized additive models. In our model, there are
some novel features due to the presence of the in…nite number of lags.

We …rst compare the asymptotic variance of bmbµ and bmmodbµ with the variance of an infeasible
estimator that is based on a certain least squares criterion. Let

Sj(¸) =
1
Th

X

t

K
µ
y ¡ yt¡j
h

¶£
y2t ¡ ¾2t;j(¸)

¤2 ; (51)

where ¾2t;j(¸) =
P¿T
k=1
k 6=j
Ãk(µ)m(yt¡k) + Ãj(µ)¸; and de…ne emj (y) = ȩj = arg max¸ Sj (¸): This least

squares estimator is infeasible since it requires knowledge of m at fyt¡k; k 6= jg points. It can easily

be shown that

p
Th[ emj(y) ¡m(y) ¡ h2bj(y)] =) N

Ã
0;

(·4 + 2)º0(K)E (¾4tu
2
t jyt¡j = y)

Ã2
j (µ)p0(y)

!

for all j = 1; 2; : : : with some appropriately chosen bias terms bj. Now de…ne a class of such estimators

fP
j wj emj :

P
j wj = 1g; each of which will satisfy a similar central limit theorem. The optimal

(according to variance) linear combination of these least squares estimators satis…es

p
Th[ emopt(y) ¡m(y) ¡ h2b(y)] =) N

Ã
0;

º0(K)
p0(y)

P1
j=1 Ã

2
j (µ) [E (¾4tu2t jyt¡j = y)]¡1

!

with some bias function b(y). This is the best that one could do by this strategy; the question is,
does our estimator achieve the same e¢ciency?

De…ne sj(y) = E (¾4tu
2
t jyt¡j = y) : By the Cauchy-Schwarz inequality

1 =
1X

j=1

®j =
1X

j=1

®1=2j s
1=2
j (y)®1=2j s

¡1=2
j (y) ·

1X

j=1

®jsj(y)
1X

j=1

®js¡1
j (y);

where ®j = Ã2
j(µ)=

P1
j=1 Ã

2
j (µ); which implies that

(
1X

j=1

Ã2j (µ))
¡2

1X

j=1

Ã2j (µ)sj(y) ¸ 1P1
j=1 Ã

2
j (µ)s

¡1
j (y)

with equality only when sj (y) does not depend on j . So our estimate with variance (49) would

achieve the asymptotic e¢ciency bound in case of constant conditional variances sj(y). It is in-
e¢cient in case of heteroscedasticity. Because our estimator is motivated by an unweighted least
squares criterion it could not been expected that it corrects for heteroscedasticity. The asymptotic
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e¢ciency of the estimator for homoscedasticity supports the power of our approach. For the case
of heteroscedasticity we conjecture that one could improve the e¢ciency of our estimator along the
lines of Linton (1996,2000), but we do not pursue this because the likelihood based procedure can
be even more e¢cient.

De…ne analogously to (51) the (infeasible) local likelihoods

`j(¸) =
1
Th

X

t

K
µ
y ¡ yt¡j
h

¶·
log¾2t;j (¸) +

y2t
¾2t;j(¸)

¸
;

and let emj(y) = ȩj = argmax¸ `j (¸): The properties of emj (y) are easy to …nd. We have

p
Th[emj (y) ¡m(y)] =) N

Ã
0;

(·4 + 2)º0(K)
Ã2j (µ)p0(y)E

¡
¾¡4
t jyt¡j = y

¢
!
:

Thus the optimal linear combination of emj(y) has asymptotic variance

(·4 + 2)º0(K)
p0(y)

1P
j Ã

2
j (µ)E

¡
¾¡4
t jyt¡j = y

¢ :

This is precisely the variance achieved by our weighted smooth back…tting estimator. In other words

our estimator embµ(y) appears to be as e¢cient as it can be.8

4.5 Some Practical Issues

There remain some choices to be determined including the truncation parameter ¿ T and the band-
width or bandwidths used in smoothing. For the truncation parameter ¿ T , in practice we use various
selection criteria such as AIC and BIC. If the true model has a …nite ¿ ; the order selection based

on the BIC criterion is consistent and thus might be preferred. However, if the true model is not of
…nite order, AIC may be preferred since it leads to asymptotically e¢cient choice of optimal order
in the class of some projected in…nite order processes. De…ne

RSST (¿ ) =
1

T ¡ ¿
TX

t=¿+1

fy2t ¡ b¾2t g2

8Note that 1X

j=1

Ã2
j (µ)

1
E (¾4

t jyt¡j = y)
·

1X

j=1

Ã2
j(µ)E

¡
¾¡4

t jyt¡j = y
¢

by the Cauchy-Schwarz inequality. It follows that the likelihood based estimator is superior to the least squares one
according to asymptotic variance.
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to be the residual sum of squares. Then the Akaike Information, Bayesian Information, and Hannan-
Quinn model selection criteria are

AIC = logRSST (¿ ) +
2¿
T

BIC = logRSST (¿ ) +
¿ logT
T

HQ = logRSST (¿ ) +
2¿ log logT

T
:

For the bandwidth h; one objective is to choose h to minimize the integrated mean squared error
of bm derived above. This can be done using simulation methods, but requires estimation of second
derivatives of m and other quantities, so may not work well in practice. Instead we develop a rule
of thumb bandwidth using the mean squared error implied by Theorem 4. If we take as pilot model

that the process is GARCH(1,1), then the bias function is just bmod(y) = ¹2(K)°: We propose the
following automatic bandwidth

hROT =

"
c(1 ¡ bµ2)º0(K)m4

¹22(K)b°

#1=5

T¡1=5;

where m4 is the sample fourth moment, and b° is the estimated parameter from a GARCH(1,1)
model. This has no more justi…cation than the Silverman’s rule of thumb, but at least does re‡ect

some aspects of the problem.

5 Numerical Results

5.1 Simulated Data

We report the results of a small simulation experiment on GARCH(1,1) data. Speci…cally, we gener-
ated data from (11), where yt = "t¾t and "t is standard normal. We took the parameter values from

a real dataset, in particular µ = 0:75: We took sample sizes T 2 f50;100;200g and vary both the
truncation parameter ¿ T and the bandwidth h; or rather a bandwidth constant ch that we multiply
against hROT : The results are shown in Table 1. The performance of both eµ and e¾2t improves with
sample size.
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5.2 Investigation of the News Impact Curve in S&P500 Index Returns

We next provide a study of the news impact curve on various stock return series. The purpose here
is to discover the relationship between past return shocks and conditional volatility. We investigate
samples of daily, weekly, and monthly returns on the S&P500 from 1955 to 2002, a total of 11,893,

2464, and 570 observations respectively. Following Engle and Ng (1993) we …tted regressions on
seasonal dummies and lagged values, but, unlike them, found little signi…cant e¤ects other than the
mean. Therefore, we work with the standardized return series. In table 3 we report the results

of Asymmetric GARCH [AGARCH] parametric …ts on these standardized series. There is quite
strong evidence of asymmetry at all frequencies. We computed our estimators using ¿ = 50 for
daily data and ¿ = 20 for weekly and monthly data. Our estimation was on the range [-2.5,2.5] and
bandwidth selected by rule of thumb. In …gures 1-3 we report the estimated news impact curve and

its 95% con…dence envelope along with the implied AGARCH curve for the three dataseries. The
con…dence intervals obviously widen at the edges but it is still clear that the news impact curve from
the AGARCH …ts deviate signi…cantly from the nonparametric …ts at least for the daily and weekly

data. For the monthly data the AGARCH curve provides a reasonable …t.9

9Note that the con…dence intervals get narrower for the larger sample sizes but not so much since the kurtosis in
the daily data is very large.
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6 Conclusions and Extensions

We have established the pointwise distribution theory of our least squares and likelihood-based
nonparametric methods and have discussed the e¢ciency question. It is perhaps a weakness of
our approach that we have relied on the least squares criterion to obtain consistency, as some may
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be concerned about the existence of moments. However, in practice one can avoid least squares
estimations altogether and just apply an iterated version of the likelihood based method. We expect
that the distribution theory for such a method is the same as the distribution of our two-step version
of this procedure. This is to be expected from results of Mammen, Linton, and Nielsen (1999) and

Linton (2000) in other contexts.
Other estimation methods can be used here like series expansion or splines. However, although

one can obtain the distribution theory for parameters µ and rates for estimators ofm in that case, the

pointwise distribution theory for the nonparametric part is elusive. Furthermore, such methods may
be ine¢cient in the sense of section 4.4. One might want to combine the series expansion method
with a likelihood iteration, an approach taken in Horowitz and Mammen (2002). However, one would

still need to either apply our theory or to develop a theory for combining an increasing number of
Horowitz and Mammen (2002) estimators.

In some datasets it may be important to allow some model for the mean of the process so that
for example yt = ¯0xt + "t¾t; where ¾2t is as in (11). In this case one has to apply our procedure

to (parametric) residuals obtained by some preliminary estimation. This will certainly a¤ect the
parametric asymptotics, but should not a¤ect the distributions for the nonparametric part.

We can also treat transformation models of the form

E(Â(yt; ¸) jFt¡1 ) =
1X

j=1

Ãj(µ)m(yt¡j );

where Â is monotonic in y for each ¸; for example the Box-Cox model Â(y;¸) = jyj¸; ¸ ¸ 0: This

would include the logarithmic and standard deviation speci…cations as well as many other cases. We
can apply our estimation procedures to estimate the function m; for given ¸; µ; and then choose ¸; µ
to maximize the implied pro…le likelihood. Under stronger conditions than this paper it is possible
to identify both ¸; µ: To construct the likelihood we would need to obtain ¾t: We can obtain the

conditional variance process itself under some conditions. Suppose that yt = ¾t"t with "t iid. Then,

E(Â(yt; ¸0) jFt¡1 ) =
Z
Â(¾t"; ¸0)f"(")d" = ª(¾t);

where f" is the (known) density of ": The function ª is monotonic and so ¾t = ª¡1(
P1
j=1 Ãj(µ)

m(yt¡j)); which can then be plugged into an estimating equation for the parameters: In practice we
would have to compute ª by numerical methods.
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A Appendix

Proof of (12). It is convenient to break the joint optimization problem down in to two separate
problems: …rst, for each µ 2 £ let mµ be the function that minimizes (10) with respect to m 2 M;
second, let µ¤ be the parameter that minimizes the pro…led criterion E[y2t ¡ P1

j=1 Ãj(µ)mµ(yt¡j)]
2

with respect to µ 2 £: It follows that µ0 = µ¤ and m0 = mµ0 : We next …nd the …rst order conditions
for this sequential population optimization problem. We write m = m0 + ² ¢ f for any function f;
di¤erentiate with respect to ² and, setting ² = 0; we obtain the …rst order condition

E

"
fy2t ¡

1X

j=1

Ãj(µ)m0(yt¡j)gf
1X

l=1

Ãl(µ)f (yt¡l)g
#
= 0;

which can be rewritten as
1X

j=1

Ãj (µ)E
£
y20f (y¡j)

¤
¡

1X

j=1

1X

l=1
j 6=l

Ãj(µ)Ãl(µ)E [m0(y¡j )f (y¡l)] =
1X

j=1

Ã2j (µ)E [m0(y¡j )f (y¡j)] (52)

for all f: Taking f (¢) = ±y(¢); where ±y(¢) is the Dirac delta function, we have

E
£
y20f(y¡j )

¤
=

Z
E[y20jy¡j = y0]f (y0)p0(y 0)dy0

=
Z
E[y20jy¡j = y0]±y(y 0)p0(y0)dy0

= E[y20 jy¡j = y]p0(y);

while
E [m0(y¡j)f (y¡j)] =

Z
m0(y0)±y(y0)p0(y0)dy0 =m0(y)p0(y):

Finally,

E [m0(y¡j)f(y¡l)] = E [E[m0(y¡j )jy¡l ]f (y¡l)]

=
Z
E[m0(y¡j )jy¡l = y0]±y(y 0)p0(y0)dy0

= E[m0(y¡j)jy¡l = y]p0(y):

Next step is to change the variables in the double sum. Note thatE[m0(y¡j)jy¡l = y] = E[m0(y0)jyj¡l =
y] by stationarity: Let t = j ¡ l; then for any function c(:) de…ned on the integers:

1X

j=1

1X

l=1
j 6=l

Ãj(µ)Ãl(µ)c(j ¡ l) =
1X

t=§1

1X

l=1

Ãt+l(µ)Ãl(µ)c(t) =
1X

t=§1

Ã 1X

l=1

Ãt+l(µ)Ãl(µ)

!
c(t): (53)
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Therefore, dividing through by p0(y) and
P1
j=1 Ã

2
j (µ); (52) can be written

1X

j=1

Ãyj(µ)E(y
2
0 jy¡j = y) ¡

§1X

j=§1

Ã¤t (µ)E(m0(y0)jyj = y) = m0(y); (54)

which is the stated answer.

Proof of (26). We write g = g0 + ² ¢ f for any function f; di¤erentiate with respect to ² and,
setting ² = 0; we obtain the …rst order condition

E

"(
1
¾2t

@¾2t
@µ

¡ 1
¾2t

1X

j=1

Ãjg0(yt¡j)

)
1
¾2t

1X

l=1

Ãlf(yt¡l)

#
= 0;

which can be rewritten

0 =
1X

l=1

ÃlE
·
¾¡4
t
@¾2t
@µ

jyt¡l = y
¸

¡ g0(y)
1X

j=1

Ã2jE
£
¾¡4
t jyt¡j = y

¤

¡
1X

j=1

1X

l=1
j 6=l

ÃjÃlE
£
¾¡4
t g0(yt¡j)jyt¡l = y

¤
:

Now use the law of iterated expectations to write

E
£
¾¡4
t g0(yt¡j )jyt¡l = y

¤
= E

£
E[¾¡4

t jyt¡j; yt¡l]g0(yt¡j )jyt¡l = y
¤
:

Then

E
£
¾¡4
t g0(yt¡j)jyt¡l = y

¤
=

Z
qj;l(x; y)

p0;j¡l(x; y)
p0(y)

g0(x)dx;

where qj;l(y; x) = E[¾¡4
t jyt¡j = x; yt¡l = y]: The result follows.

A.1 Proof of Theorem 1

A.1.1 Outline of Asymptotic Approach

We …rst outline the approach to obtaining the asymptotic properties of bmµ(:) for any µ 2 £: We give
some high level conditions A4-A6 below under which we have an expansion for bmµ ¡mµ in terms of
bm¤
µ ¡m¤

µ and bHµ ¡ Hµ: Both terms will contribute a bias and a stochastic term to the expansion.
We then verify the conditions A4-A6 and verify the central limit theorem.

Assumption A4. Suppose that for a sequence ±T ! 0:
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sup
µ2£;kmk2=1;jxj·c

¯̄
¯ bHµm(x) ¡ Hµm(x)

¯̄
¯ = op(±T ):

In particular (A4) gives that

sup
µ2£;kmk2=1

°°°[ bHµ ¡ Hµ]m
°°°
2
= op(±T ):

We now show that by virtue of (A4) that (I¡ bHµ) is invertible for all µ 2 £, with probability tending

to one, and it holds that (see also (19))

sup
µ2£;kmk2=1;jy j·c

¯̄
¯̄
·³
I ¡ bHµ

´¡1
¡ (I ¡ Hµ)¡1

¸
m(y)

¯̄
¯̄ = op(±T ): (55)

In particular,

sup
µ2£;kmk2=1

°°°°
·³
I ¡ bHµ

´¡1
¡ (I ¡ Hµ)¡1

¸
m

°°°°
2
= op(±T ): (56)

For a proof of claim (55) note that for m 2 Mc

m =
³
I ¡ bHµ

´¡1
(I ¡ Hµ)¡1

1X

j=0

h
( bHµ ¡ Hµ) (I ¡ Hµ)¡1

ij
m

because of
1X

j=0

h
( bHµ ¡ Hµ) (I ¡ Hµ)¡1

ij
=

h
I ¡ ( bHµ ¡ Hµ) (I ¡ Hµ)¡1

i¡1

=
h
(I ¡ bHµ) (I ¡ Hµ)¡1

i¡1
:

This gives
³
I ¡ bHµ

´¡1
m ¡ (I ¡ Hµ)¡1m =

1X

j=0

h
( bHµ ¡ Hµ) (I ¡ Hµ)¡1

ij
m:

We suppose that bm¤
µ(y) has an asymptotic expansion where the components have certain prop-

erties.
Assumption A5. Suppose that with ±T as in (A4)

bm¤
µ(y) ¡m¤

µ(y) = bm¤;B
µ (y) + bm¤C

µ (y) + bm¤;D
µ (y); (57)
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where bm¤;B
µ ; bm¤C

µ ; and bm¤;D
µ satisfy:

sup
µ2£;jy j·c

¯̄
bm¤;B(y)

¯̄
= Op(T¡2=5) with bm¤;B deterministic (58)

sup
µ2£;jyj·c

¯̄
¯bm¤;C
µ (y)

¯̄
¯ = Op

¡
T¡2=5±¡1

T

¢
(59)

sup
µ2£;jy j·c

¯̄
¯Hµ (I ¡ Hµ)¡1 bm¤;C

µ (y)
¯̄
¯ = op(T ¡2=5); (60)

sup
µ2£;jyj·c

¯̄
¯bm¤;D
µ (y)

¯̄
¯ = op(T ¡2=5): (61)

Here, bm¤;B
µ is the bias term, bm¤C

µ is the stochastic term and bm¤;D
µ is the remainder term. For local

linear estimates of gj (y) it follows that under standard smoothness conditions, (58)–(59), (61) hold.
The argument is complicated by the fact that bm¤

µ depends on a large number of gj(y)’s, although

it e¤ectively behaves like a single smoother. The intuition behind (60) is based on the fact that
an integral operator applies averaging to a local smoother and transforms it into a global average,
thereby reducing its variance.

De…ne now for j = B;C;D the terms bmjµ as solutions to the integral equations

bmjµ = bm¤;j
µ + bHµ bmjµ

and bmAµ implicitly from writing the solution mµ + bmAµ to the integral equation
¡
mµ + bmAµ

¢
= m¤

µ + bHµ
¡
mµ + bmAµ

¢
: (62)

The existence and uniqueness of bmjµ follows from the invertibility of the operator I ¡ bHµ (at least
with probability tending to one). It now follows that

bmµ = mµ + bmAµ + bmBµ + bmCµ + bmDµ
by linearity of the operator (I ¡ bHµ)¡1. Note that bmjµ = (I ¡ bHµ)¡1 bm¤;j

µ for j = B;C;D; while

mµ + bmAµ = (I ¡ bHµ)¡1m¤
µ: De…ne also mBµ as the solution to the equation

mBµ = bm¤;B
µ + Hµ mBµ : (63)

We now claim that under (A1)–(A5):

sup
µ2£;jyj·c

¯̄
bmBµ (y) ¡mBµ (y)

¯̄
= op(T¡2=5): (64)

sup
µ2£;jy j·c

¯̄
¯ bmCµ (y) ¡ bm¤;C

µ (y)
¯̄
¯ = op(T¡2=5) (65)

sup
µ2£;jyj·c

¯̄
bmDµ (y)

¯̄
= op(T¡2=5) (66)
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Here, claims (64) and (66) immediately follow from (19) and (55). For (65) note that because of
(59)–(60), (55) and (A4)

sup
µ2£;jy j·c

¯̄
¯̄ bHµ

³
I ¡ bHµ

´¡1
bm¤;C
µ (y)

¯̄
¯̄ = op(T¡2=5):

So we arrive at the following expansion of bmµ.

sup
µ2£;jyj·c

¯̄
¯ bmµ(y) ¡mµ(y) ¡ bmAµ (y) ¡mBµ (y) ¡ bm¤;C

µ (y)
¯̄
¯ = op(T ¡2=5): (67)

This gives an approximation to bmµ(y) ¡ mµ(y) in terms of the expansion of bm¤
µ; the population

operator Hµ and the quantity bmAµ (y): This latter quantity depends on the random operator bHµ:
Next we approximate the quantity bmAµ (y) by simpler terms. By subtracting mµ = m¤

µ + Hµmµ
from (62) we get

bmAµ =
³

bHµ ¡ Hµ
´
mµ + bHµ bmAµ : (68)

We next write bHµ as a sum of terms with convenient properties.
Assumption A6. Suppose that for ±T as in (A4)

³
bHµ ¡ Hµ

´
mµ(y) = bm¤;E

µ (y) + bm¤;F
µ (y) + bm¤;G

µ (y); (69)

where bm¤;E
µ ; bm¤F

µ ; and bm¤;G
µ satisfy:

sup
µ2£;jyj·c

¯̄
bm¤;E(y)

¯̄
= Op(T¡2=5) with bm¤;E deterministic,

sup
µ2£;jy j·c

¯̄
¯ bm¤;F
µ (y)

¯̄
¯ = Op

¡
T¡2=5±¡1

T

¢
;

sup
µ2£;jyj·c

¯̄
¯Hµ (I ¡ Hµ)¡1 bm¤;F

µ (y)
¯̄
¯ = op(T¡2=5);

sup
µ2£;jy j·c

¯̄
¯ bm¤;G
µ (y)

¯̄
¯ = op(T¡2=5):

Again, bm¤;E
µ is a bias term, bm¤F

µ is a stochastic term and bm¤;G
µ is a remainder term. For kernel

density estimates of bHµ under standard smoothness conditions, the expansion in A6 follows from
similar arguments to those given for A5. De…ne for j = E;F;G the terms bmjµ as the unique solutions
to the equations

bmjµ = bm¤;j
µ + bHµ bmjµ:

It now follows that bmAµ can be decomposed into

bmAµ = bmEµ + bmFµ + bmGµ :
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De…ne mEµ as the solution to the second kind linear integral equation

mEµ = bm¤;E
µ + HµmEµ : (70)

As above we get that:

sup
µ2£;jy j·c

¯̄
bmEµ (y) ¡mEµ (y)

¯̄
= op(T¡2=5); (71)

sup
µ2£;jyj·c

¯̄
¯bmFµ (y) ¡ bm¤;F

µ (y)
¯̄
¯ = op(T¡2=5); (72)

sup
µ2£;jy j·c

¯̄
bmGµ (y)

¯̄
= op(T¡2=5): (73)

We summarize our discussion in the following Proposition.

Proposition 1. Suppose that conditions (A1)–(A6) hold for some estimators bm¤
µ and bHµ.

De…ne bmµ as any solution of bmµ = bm¤
µ + bHµ bmµ. Then the following expansion holds for bmµ

sup
µ2£;jyj·c

¯̄
¯ bmµ(y) ¡mµ(y) ¡mBµ (y) ¡mEµ (y) ¡ bm¤;C

µ (y) ¡ bm¤;F
µ (y)

¯̄
¯ = op(T ¡2=5): (74)

The terms mBµ and mEµ have been de…ned in (63) and (70), respectively.
Equation (74) gives a uniform expansion for bmµ(y)¡mµ(y) in terms of a deterministic expression

mBµ (y)+mEµ (y) and a random variable bm¤;C
µ (y)+ bm¤;F

µ (y) that is explicitly de…ned. We have hitherto
just made high level assumptions on bm¤

µ and the operator bHµ in A4-A6, so our result applies to any

smoothing method that satis…es these conditions. It remains to prove that A4-A6 hold under our
primitive conditions B1-B7, and that a central limit theorem (and uniform convergence) applies to
bm¤;C
µ (y) + bm¤;F

µ (y):

A.1.2 Proof of High Level Conditions A1,A3-A6 and CLT

Assumptions A1,A3 follow immediately from our conditions on the parameter space and density
functions. We assumed A2 in B7.

We verify A4-A6 with the choice

±T = T¡3=10+» (75)

with » > 0 small enough. This rate is arbitrarily close to the rate of convergence of two dimensional
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nonparametric density or regression estimators. We will verify A5 and A6 with

bm¤;B
µ (y) =

h2

2
¹2(K) £ ¯1µ(y)

bm¤;C
µ (y) =

1
Tp0(y)

T¡¿TX

t=1

Kh (yt ¡ y) ´1µ;t

bm¤;E
µ (y) =

h2

2
¹2(K) £ ¯2µ(y)

bm¤;F
µ (y) =

1
Tp0(y)

T¡¿TX

t=1

Kh (yt ¡ y) ´2µ;t +
1
T

T¡¿TX

t=1

¹µ(y)
p0(y)

[Kh (yt ¡ y) ¡ EKh (yt ¡ y)] ;

where ´1µ;t =
P1
j=1 Ã

y
j (µ)´j;t and ´2µ;t = ¡ P§1

j=§1 Ã
2
j (µ)³j;t(µ), while ´j;t = y2t+j ¡ E(y2t+j jyt) and

³j;t(µ) =mµ(yt+j ) ¡ E[mµ(yt+j)jyt]:
Proof of A4. It su¢ces to show that

sup
jxj;jyj·c
1·j·¿T

jbp0;j(x; y) ¡ p0;j(x;y)j = op(±T ) (76)

sup
jxj·c

jbp0(x) ¡ p0(x)j = op(±T ): (77)

Note that by assumption B4 the density p0 is bounded from below on jxj · c: For the proof of (76)
we make use of an exponential inequality. Using Theorem 1.3 in Bosq (1998) one gets

Pr
¡¯̄
T 3=10¡» [bp0;j(x; y) ¡ Ebp0;j (x; y)]

¯̄
¸ C

¢

· Pr

Ã¯̄
¯̄
¯T

3=10
T¡jX

t=1

Kh(yt ¡ x)Kh(yt+j ¡ y) ¡ EKh(yt ¡ x)Kh(yt+j ¡ y)
¯̄
¯̄
¯ ¸ T

2
T »

!

· 4 exp
µ

¡ T 2»

32v2(q)
q
¶
+ 22

¡
1 + 8T¡»b

¢1=2 q®
µ·
T
2q

¸
¡ j

¶
;

where [x] denotes the largest integer smaller or equal to x; and where

q = T ¯ with
7
10
< ¯ < 1; j2 · T 1¡¯;

b = CT 7=10 for a constant C;

v2(q) = 8
q2

T 2¾
2(q) +

b
4
T » ;

¾2(q) = E

2
4

[T=2q]+1X

t=1

Kh(yt ¡ x)Kh(yt+j ¡ y) ¡ EKh(yt ¡ x)Kh(yt+j ¡ y)

3
5
2

:
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The variance ¾2(q) can be bounded by use of Corollary 1.1. in Bosq (1998). This gives

¾2(q) · C 0T 2¡¯+(2=5)° for 0 < ° < 1

with a constant C 0 depending on °: This gives with constants C1; C2; : : : > 0 for jxj; jyj · c; 1 · j ·
¿T

Pr
¡¯̄
T 3=10 [bp0;j (x; y) ¡ Ebp0;j (x; y)]

¯̄
¸ T »

¢
· C1 exp(¡C2TC3) +C4TC5®(T C6):

De…ne z = (x; y) and let Vj(z) = bp0;j(z) ¡ Ebp0;j(z): Let B(z1; ²T ); : : : ; B(zQ; ²T ) be a cover of
fjxj · c; jyj · cg; where B(zq; ²) is a ball centered at zq of radius ²; while Q(T ) is a su¢ciently large
integer, and Q(T ) = 2c2=²T . By the triangle inequality

Pr

2
64 sup
jxj·c;jyj·c
1·j·¿

jVj (z)j ¸ 2c±T

3
75 · Pr

·
max

1·q·Q;1·j·¿
jVj (zq)j > c±T

¸

+Pr

"
max

1·q·Q;1·j·¿
sup

z2B(zq ;²T )
jVj(zq) ¡ Vj(z)j > c±T

#

for any constant c: By the Bonferroni and Exponential inequalities:

Pr
·

max
1·q·Q;1·j·¿

jVj(zq)j > c±T
¸

·
¿X

j=1

QX

q=1

Pr [jVj(zq)j > c±T ]

· Q(T )¿ (T )
£
C1 exp(¡C2TC3) +C4TC5®(TC6)

¤

= o(1);

provided s0 in B1 is chosen large enough. By the Lipschitz continuity ofK; jKh(yt ¡ x) ¡Kh(yt ¡ xq)j ·
K jx¡ xq j =h; where K is …nite, and so

T 3=10¡» jVj(zq) ¡ Vj(z)j · T 3=10¡» 1
h2

[c1 jx ¡ xqj + c2 jy ¡ yq j] · c²TT 7=10¡»

for some constants c1; c2: This bound is independent of j and uniform over z; so that provided
²TT 7=10¡» ! 0; this term is o(1): This requires that Q(T )=T 7=10¡» ! 1:

We have given the detailed proof of (76) because similar arguments are used in the sequel.
Equation (77) follows by the same type of argument.
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Proof of A5. Claim (58) immediately follows from assumption B4. For the proof of (61) we
use the usual variance+bias+remainder term decomposition of the local linear estimates bgj as in
Masry (1996). Write M(y) = p0(y)diag(1; ¹2(K)) and

MT j(y) =
1
T h

TX

t=1

K
µ
y ¡ yt¡j
h

¶"
1

¡y¡yt¡j
h

¢
¡y¡yt¡j

h

¢ ¡y¡yt¡j
h

¢2
#

.

Then
bgj (y) ¡ gj(y) = bBjy + bVjy;

where bBjy = e01M¡1
Tj (y)BTj(y); and BT j(y) is a vector

BTj (y) =

"
BTj;0(y)
BTj;1(y)

#
; where BTj;l(y) =

1
T h

TX

t=1

µ
y ¡ yt¡j
h

¶l
K

µ
y¡ yt¡j
h

¶
¢tj (y);

where ¢tj(y) = gj(yt¡j )¡g0j (y)(yt¡j¡y) = g00j (y¤t;j)(yt¡j¡y)2=2 for some intermediate point y¤t;j: The
variance e¤ect is bVjy = e01M¡1

T j (y)UTj(y): The stochastic term UTj(y) is

UT j(y) =

"
UTj;0(y)

UTj;1(y)

#
; where UTj;l(y) =

1
T h

TX

t=1

µ
y ¡ yt¡j
h

¶l
K

µ
y¡ yt¡j
h

¶
´j;t¡j:

We have

bm¤
µ(y) ¡m¤

µ(y) =
¿X

j=1

Ãyj(µ)[bgj(y) ¡ gj(y)] ¡
1X

j=¿+1

Ãyj (µ)gj(y);

where supµ2£ supjyj·c j
P1
j=¿+1 Ã

y
j (µ) gj(y)j · c0 P1

j=¿+1 Ã
j¡1= inf µ2£

P1
j=1 Ã

2
j (µ) for some …nite con-

stant c0; and
P1
j=¿+1 Ã

j¡1 · Ã¿=(1 ¡ Ã) = o(T¡1=2): Therefore,

bm¤
µ(y) ¡m¤

µ(y) =
¿X

j=1

Ãyj(µ)bVjy +
¿X

j=1

Ãyj(µ) bBjy + op(T ¡1=2):

De…ning Vjy and Bjy as bVjy and bBjy with MTj (y) replaced byMj (y); we have

bm¤
µ(y) ¡m¤

µ(y) =
¿X

j=1

Ãyj (µ)Vjy +
¿X

j=1

Ãyj(µ)Bjy + RT1(y; µ) + RT 2(y; µ) + op(T
¡1=2);
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where RT1(y; µ) =
P¿
j=1 Ã

y
j(µ) [bVjy ¡ Vjy ] and RT 2(y; µ) =

P¿
j=1 Ã

y
j(µ) [ bBjy ¡Bjy]: We have

¿X

j=1

Ãyj(µ)Vjy =
¿X

j=1

Ãyj(µ)
1
T

TX

t=¿T+1

Kh (y ¡ yt¡j)
´j;t¡j
p0(y)

=
¿X

j=1

Ãyj(µ)
1
T

T¡¿TX

s=1

Kh (y ¡ ys)
´j;s
p0(y)

=
1
T

T¡¿TX

s=1

Kh (y ¡ ys)
P¿
j=1 Ã

y
j(µ)´j;s

p0(y)

=
1

T p0(y)

T¡¿TX

t=1

Kh (yt ¡ y)´1µ;t +
1

Tp0(y)

T¡¿TX

t=1

Kh (yt ¡ y)
1X

j=¿+1

Ãyj(µ)´j;t

by changing variable t 7! t¡ j = s and interchanging summation. We show that

sup
jyj·c;µ2£

jRT1(y; µ)j = op(T¡2=5) (78)

sup
jyj·c;µ2£

jRT2(y; µ)j = op(T¡2=5) (79)

sup
jy j·c;µ2£

¯̄
¯̄
¯

1
Tp0(y)

T¡¿TX

t=1

Kh (yt ¡ y)
1X

j=¿+1

Ãyj(µ)´j;t

¯̄
¯̄
¯ = op(T¡2=5): (80)

It follows that

bm¤
µ(y) ¡m¤

µ(y) =
1

Tp0(y)

T¡¿TX

t=1

Kh (yt ¡ y) ´1µ;t +
¿X

j=1

Ãyj(µ)Bjy + op(T
¡2=5):

First note that E(A) = 0; where A = T¡1 PT¡¿T
t=1 Kh (yt ¡ y)

P1
j=¿+1 Ãj(µ) ´j;t=p0(y) and

var(A) =
1

T 2h2p20(y)

T¡¿TX

t=1

T¡¿TX

s=1

1X

j=¿+1

1X

l=¿+1

Ãyj (µ)Ã
y
l (µ)E

·
K

µ
yt ¡ y
h

¶
K

µ
ys ¡ y
h

¶
´j;t´l;s

¸

= o(T¡1h¡1)

by virtue of the decay conditions.
The uniformity of the bound can be achieved by application of the exponential inequality in

Theorem 1.3 of Bosq (1998) used also in the proof of (76).
For the proof of (59) we apply this exponential inequality to bound

Pr

Ã¯̄
¯̄
¯T

2=5
TX

t=1

Kh(yt ¡ y)
éµ;t
p0(y)

¯̄
¯̄
¯ ¸ T

2
T 3=10+»

!
;
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where

éµ;t =
¿TX

j=1

Ãyj(µ)
£
minfy2t+j ; T 1=½g ¡ E(minfy2t+j ; T 1=½gjyt)

¤
:

The truncated random variables éµ;t can be replaced by ´µ;t using the fact that

1 ¡ Pr
¡
y2t · T 1=½ for 1 · t · T

¢
· T Pr

¡
y2t > T

1=½¢

· E
£
y2½t 1(y2t > T

1=½)
¤

! 0:

It remains to check (60). De…ne the operator Lµ(x; y) by

Hµ(I ¡ Hµ)¡1m(x) =
Z c

¡c
Lµ(x; y)m(y)p0(y)dy:

The Lµ(x; y) can be constructed by use of the eigenfunctions feµ;jg1j=1 of Hµ: Denote as above the
corresponding eigenvalues by ¸µ;j : Then

Hµ(x; y) =
1X

j=1

¸µ;jeµ;j(x)eµ;j (y)

and

Lµ(x; y) =
1X

j=1

¸µ;j
1 ¡ ¸µ;j

eµ;j(x)eµ;j(y):

Note that for a constant 0 < ° < 1 we have supµ2£;j¸1 ¸µ;j < °: This shows that

Z c

¡c
L2
µ(x; y)p0(y)p0(x)dxdy =

1X

j=1

¸2µ;j
(1 ¡ ¸µ;j)2

· 1
(1 ¡ °)2

1X

j=1

¸2µ;j <1:

Furthermore, it can be checked that Lµ(x;y) is continuous in µ; x; y: This follows from A3 and the
continuity of Hµ(x; y):

Therefore, we write

Hµ(I ¡ Hµ)¡1 bm¤;C
µ (x) =

1
T

TX

t=1

ºµ(yt; x)´1µ;t

with
ºµ(z;x) =

Z c

¡c
Lµ(x; y)

1
p0(y)

Kh(z ¡ y)dy:

The function ºµ(z; x) is continuous in µ; z; x: Using this fact, claim (60) can be easily checked, e.g.,
again by application of the exponential inequality in Theorem 1.3 of Bosq (1998).
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Proof of A6. Write
Z

bHµ(y; x)mµ(x)bp0(x)dx ¡
Z

Hµ(y;x)mµ(x)p0(x)dx

= ¡
§¿TX

j=§1

Ã¤j (µ)
Z · bp0;j(y; x)

bp0(y)
¡ p0;j (y; x)
p0(y)

¸
mµ(x)dx

= ¡
§¿TX

j=§1

Ã¤j (µ)
Z · bp0;j(y; x) ¡ p0;j (y; x)

p0(y)

¸
mµ(x)dx

+
§¿TX

j=§1

Ã¤j (µ) (bp0(y) ¡ p0(y))
Z ·
p0;j (y; x)
p20(y)

¸
mµ(x)dx + op(T¡2=5):

Using this expansion one can show that

bm¤;G
µ (y) = ( bHµ ¡ Hµ)mµ(y) ¡ bm¤;E

µ (y) ¡ bm¤;F
µ (y)

is of order op(T ¡2=5): The other conditions of A6 can be checked as in the proof of A5.
Proof of CLT for bm¤;C

µ (y)+ bm¤;F
µ (y): This follows by an application of Masry and Fan (1997,

Theorem 3).

Proof of (43) and (44). The only additionality here is to show that

sup
µ2£;jy j·c

j bm¤;C
µ (y) + bm¤;F

µ (y)j = op(T¡1=4):

This follows from standard arguments for uniform consistency of regression smoothers on mixing
processes.

Finally,

sup
µ2£;1·t

¯̄
b¾2t (µ) ¡ ¾2t (µ)

¯̄
· sup

µ2£

1X

j=1

Ãj(µ) sup
jy j·c

j bmµ(y) ¡mµ(y)j + sup
µ2£

1X

j=¿T+1

Ãj(µ) sup
jyj·c
mµ(y)

= op(T¡1=4):

A.2 Proof of Theorem 2

Consistency. We apply some general results for semiparametric estimators. Write

ST (µ) =
1
T

TX

t=1

©
y2t ¡ ¾2t (µ)

ª2 and S(µ) = EST (µ):
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We have
sup
µ2£

jST (µ) ¡ S(µ)j = op(1) (81)

by standard arguments. Then

bST (µ) ¡ ST (µ) = ¡ 2
T

TX

t=¿T+1

´t(µ)
£
b¾2t (µ) ¡ ¾2t (µ)

¤
+

1
T

TX

t=¿T+1

£
b¾2t (µ) ¡ ¾2t (µ)

¤2 + oP (1);

where ´t(µ) = y2t ¡ ¾2t (µ). Then, because of (44) we have

sup
µ2£

¯̄
¯bST (µ) ¡ ST (µ)

¯̄
¯ ¡!p 0: (82)

Therefore, (81) and (82) we have

sup
µ2£

¯̄
¯bST (µ) ¡S(µ)

¯̄
¯ = op(1): (83)

By assumption B7, S(µ) is uniquely minimized at µ = µ0; which then implies consistency of bµ:
Root-N consistency. Consider the derivatives

@ bST (µ)
@µ

= ¡ 2
T

TX

t=¿T+1

b́t(µ)
@b¾2t (µ)
@µ

@2bST (µ)
@µ2

=
2
T

TX

t=¿T+1

·
@b¾2t (µ)
@µ

¸2
¡ b́t(µ)

@2b¾2t (µ)
@µ2

;

where b́t(µ) = (y2t ¡ b¾2t (µ)). We have shown that bµ ¡!p µ0; where µ0 is an interior point of £: We
make a Taylor expansion about µ0;

op(1) =
p
T
@ bST (bµ)
@µ

=
p
T
@ bST (µ0)
@µ

+
@2bST (µ)
@µ2

p
T (bµ ¡ µ0);

where µ is an intermediate value. We then show that for all sequences ²T ! 0; we have for a constant

C > 0

inf
jµ¡µ0j·²T

¯̄
¯̄
¯
@2bST (µ)
@µ2

¯̄
¯̄
¯ > C + op(1) (84)

p
T
@ bST (µ0)
@µ

= Op(1): (85)

This implies that (46) holds.
To establish the results (84) and (85) we use some expansions given in Lemma 1 below.
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Proof of (84). By straightforward but tedious calculation we show that

sup
jµ¡µ0j·²T ;1·t·T

¯̄
¯̄
¯
@2 bST (µ)
@µ2

¡ @
2ST (µ)
@µ2

¯̄
¯̄
¯ = op(1):

Speci…cally, it su¢ces to show that

sup
jµ¡µ0j·²T ;1·t·T

¯̄
¯̄@
jb¾2t (µ)
@µj

¡ @
j¾2t (µ)
@µj

¯̄
¯̄ = op(1); j = 0; 1;2: (86)

For j = 0;1 this follows from (44)-(45). For j = 2 this follows by similar arguments using Lemma 1.
Note also that by (B4) for a constant c > 0

inf
jµ¡µ0j·²T ;1·t·T

¾2t (µ) > c:

Furthermore,

sup
jµ¡µ0j·²T

¯̄
¯̄
¯
@2ST (µ)
@µ2

¡ E
"µ
@¾2t (µ0)
@µ

¶2
#¯̄
¯̄
¯ = op(1)

by standard arguments. Therefore, by the triangle inequality

sup
jµ¡µ0j·²T

¯̄
¯̄
¯
@2bST (µ)
@µ2

¡ E
"µ
@¾2t (µ0)
@µ

¶2
#¯̄
¯̄
¯ = op(1):

Proof of (85). Write

@ bST (µ0)
@µ

= ¡ 2
T

TX

t=¿T+1

£
y2t ¡ ¾2t (µ0) ¡

£
b¾2t (µ0) ¡ ¾2t (µ0)

¤¤ ·
@¾2t (µ0)
@µ

+
@b¾2t (µ0)
@µ

¡ @¾
2
t (µ0)
@µ

¸

and let with ´t = ´t(µ0)

p
TET (µ0) = ET1 +ET2;

ET1 = ¡ 1p
T

TX

t=¿T+1

´t
@¾2t (µ0)
@µ

;

ET2 =
1p
T

TX

t=¿T+1

£
b¾2t (µ0) ¡ ¾2t(µ0)

¤ @¾2t (µ0)
@µ

¡ 1p
T

TX

t=¿T+1

´t

·
@b¾2t(µ0)
@µ

¡ @¾
2
t (µ0)
@µ

¸
:
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Then
¯̄
¯̄
¯
p
T
@ bST (µ0)
@µ

¡
p
TET (µ0)

¯̄
¯̄
¯ ·

¯̄
¯̄
¯
1p
T

TX

t=¿T+1

£
b¾2t (µ) ¡ ¾2t (µ0)

¤ ·
@b¾2t (µ0)
@µ

¡ @¾
2
t (µ0)
@µ

¸¯̄
¯̄
¯

·
p
T max

1·t·T

¯̄
b¾2t (µ0) ¡ ¾2t (µ0)

¯̄
£ max

1·t·T

¯̄
¯̄@b¾

2
t (µ0)
@µ

¡ @¾
2
t (µ0)
@µ

¯̄
¯̄

= op(1)

by (44)-(45).
The term ET1 is asymptotically normal with mean zero and …nite variance by standard central

limit theorem for mixing processes. Note that

E
·
´t
@¾2t (µ0)
@µ

¸
= 0

by de…nition of µ0.
For the treatment of ET2 we now use that

ET2 =
h2p
T

TX

t=¿T+1

(
¿TX

j=1

Ãj (µ0)b
0(yt¡j)

@¾2t
@µ

(µ0) + ´t
¿TX

j=1

Ã0j (µ0)b
0(yt¡j)

)

+
h2p
T

TX

t=¿T+1

(
´t
¿TX

j=1

Ãj(µ0)b
1(yt¡j )

)
(87)

+
1p
T

TX

t=¿T+1

(
¿TX

j=1

Ãj (µ0)s
0(yt¡j)

@¾2t
@µ

(µ0)

)

+
1p
T

TX

t=¿T+1

(
´t
¿TX

j=1

Ã0j(µ0)s
0(yt¡j )

)

+
1p
T

TX

t=¿T+1

(
´t
¿TX

j=1

Ãj(µ0)s
1(yt¡j )

)
+ oP(1);

where

bµ(y) = h¡2 £
mBµ (y) +m

E
µ (y)

¤
;

sµ(y) = (I ¡ Hµ)¡1(m¤;C
µ +m¤;F

µ )(y);

bj(y) =
@j

(@µ)j
bµ0(y);

sj(y) =
@j

(@µ)j
sµ0(y):
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By tedious calculations it can be shown that the last three terms on the right hand side of (87) are
of order oP (1). For this purpose one has to plug in the de…nitions of s0 and s1 as local weighted
sums of mixing mean zero variables. For the …rst two terms on the right hand side of (87) note that
b0 and b1 are deterministic functions. Furthermore, we will show that

E

" 1X

j=1

Ãj (µ0)b
0(yt¡j)

@¾2t
@µ

(µ0) + ´tÃ
0
j(µ0)b

0(yt¡j )

#
= 0; (88)

E

"
´t

1X

j=1

Ãj(µ0)b
1(yt¡j )

#
= 0: (89)

Note that in (88)-(89) we have replaced the upper index of the sum by 1. Thus, with (88)-(89) we see
that the …rst two terms on the right hand side of (87) are sums of variables with mean geometrically

tending to zero. The sums are multiplied by factors h2T¡1=2. By using mixing properties it can be
shown that these sums are of order OP (h2) = op(1): It remains to check (88)-(89). By de…nition for
each function g

E

2
4

(
y2t ¡

1X

j=1

Ãj(µ)±g(yt¡j )

)2
3
5

is minimized for ± = 0. By taking derivatives with respect to ± we get that

E

(
£
y2t ¡ ¾2t (µ)

¤ 1X

j=1

Ãj(µ)g(yt¡j)

)
= 0: (90)

With g = b0 and µ0 this gives (89). For the proof of (88) we now take the di¤erence of (90) for µ and

µ0. This gives

E
£
y2t ¡ ¾2t (µ0)

¤ 1X

j=1

£
Ãj(µ) ¡ Ãj(µ0)

¤
g(yt¡j) ¡ E

£
¾2t (µ) ¡ ¾2t (µ0)

¤ 1X

j=1

Ãj(µ)g(yt¡j) = 0:

Taking derivatives with respect to µ gives

E

(
ut

1X

j=1

Ã0j(µ0)g(yt¡j ) ¡ @¾
2
t

@µ
(µ0)

1X

j=1

Ãj(µ0)g(yt¡j )

)
= 0:

With g = b0 this gives (88).
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A.3 Proof of Theorems 3 and 4

We only give a proof of Theorem 3. Theorem 4 follows along the same lines. For a proof of (47) one
shows that for C > 0

sup
jµ¡µ0j·CT¡1=2

j bmµ(y) ¡ bmµ0(y)j = oP [(Th)¡1=2]:

This claim follows by using appropriate bounds on bHµ ¡ bHµ0 and bm¤
µ ¡ bm¤

µ0 .
Because of (47) for a proof of (48) it su¢ces to show

p
T h

£
bmµ0(y) ¡mµ0(y) ¡ h2b(y)

¤
=) N (0;!(y)) : (91)

So it remains to show (91). Put

bp10(y) =
1
T

TX

t=1

(yt ¡ y)Kh(yt ¡ y);

bp20(y) =
1
T

TX

t=1

(yt ¡ y)2Kh(yt ¡ y):

Then, by using similar arguments as in the proof of Theorem 1, we have for ° > 0

sup
jyj·c

¯̄
bp10(y) ¡ h2 ¹2(K) p00(y)

¯̄
= Op(h1=2 T¡1=2+° + h3);

sup
jy j·c

¯̄
bp20(y) ¡ h2 ¹2(K)p0(y)

¯̄
= Op(h

3=2
T¡1=2+° + h3):

Furthermore,

sup
jyj·c

jbp0(y) ¡ p0(y)j = Op(h2 + h¡1=2T¡1=2+°):
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These results can be applied to show that uniformly in jyj · c and j · ¿T

ĝj (y) =
1
T

TX

t=1

Kh(yt¡j ¡ y)¾2tut
p0(y)(y)

+ ¹+
1
T

TX

t=1

Kh(yt¡j ¡ y)
p0(y)

1X

`=1

Ã`(µ0)m(yt¡`)

+
bp10(y)2

bp0(y)2bp20(y)
1
T

TX

t=1

Kh(yt¡j ¡ y)
1X

`=1

Ã`(µ0)m(yt¡`)

¡ bp10(y)2
bp0(y)bp20(y)

1
T

TX

t=1

(yt¡j ¡ y)Kh(yt¡j ¡ y)
1X

`=1

Ã`(µ0)m(yt¡`) + op(T
¡1=2)

=
1
T

TX

t=1

Kh(yt¡j ¡ y)
p0(y)

¾2tut + ¹+
1
T

TX

t=1

Kh(yt¡j ¡ y)
bp0(y)

1X

`=1

Ã`(µ0)m(yt¡`)

+h2
(
¹2(K)

p00(y)2

p0(y)3

1X

`=1; 6̀=j
Ã`(µ0)

Z
m(u)pj;`(y; u)du

¡¹2(K)
p00(y)
p0(y)2

1X

`=1 ;̀ 6=j
Ã`(µ0)

Z
m(u)

@
@y
pj;`(y;u)du

¡ ¹2(K)Ãj (µ)
p00(y)m

0(y)
p0(y)

¾
+ op(T¡1=2):

By plugging this into

bm¤
µ0(y) ¡ (I ¡ bHµ0)m0(y) =

¿TX

j=1

Ãyj(µ0) [bgj(y) ¡ ¹] ¡m0(y) ¡
X

0<jjj<¿T

Ã¤j (µ0)
Z bp0;j(y; x)

bp0(y)
m0(x)dx;

we get

bm¤
µ0(y) ¡ (I ¡ bHµ0)m0(y) =

1
T

TX

t=1

1X

j=1

Ãyj(µ0)
Kh(yt¡j ¡ y)
p0(y)

¾2tut

+
1
T

TX

t=1

1X

j=1

1X

`=1

Ãyj(µ0)Ã`(µ0)
Kh(yt¡j ¡ y)

bp0(y)
m0(yt¡`)

+h2¹2(K)
p10(y)
p0(y)

[
@
@y

(Hµ0m0(y) ¡m0(y))]

¡m0(y) ¡
X

j 6=0

Ã¤j(µ0)
Z bp0;j(y;x)

bp0(y)
m(x)dx + op(T¡1=2)

= S1 + S2 + S3 ¡m(y) + S4 + op(T¡1=2):

We have
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S2 + S4 ¡m0(y) =
1
T

TX

t=1

¿TX

j=1

Ãj (µ0)Ã
y
j(µ0)

Kh(yt¡j ¡ y)
bp0(y)

[m0(yt¡j ) ¡m0(y)]

+
1
T

TX

t=1

¿TX

j 6=0

Ã¤j (µ0)
Kh(yt¡j ¡ y)

bp0(y)
m0(yt¡j ) ¡

¿TX

j 6=0

Z
Ã¤j (µ0)

bp0;j(y; x)
bp0(y)

m0(x)dx

= h2¹2(K)[
p00(y)
p0(y)

m0
0(y) +

1
2
m00

0(y)]

+
X

j 6=0

Ã¤j (µ0)
1
T

TX

t=1

Kh(yt ¡ y)
bp0(y)

fm0(yt+j ) ¡
Z
Kh(yt+j ¡ x)m0(x)dxg + op(T¡1=2)

= h2¹2(K)[
p00(y)
p0(y)

m0
0(y) +

1
2
m00

0(y) +
1
2

X

j 6=0

Ã¤j (µ0)
Z
m00

0(u)p0;j(y; u)du
1
p0(y)

] + op(T¡1=2

= h2¹2(K)[
p00(y)
p0(y)

m0
0(y) +

1
2
m00

0(y) ¡ 1
2
Hµ0m00

0(y)] + op(T
¡1=2):

Therefore we get uniformly in j y j· c

bmµ0(y) ¡mµ0(y) = (I ¡ bHµ0)¡1[bm¤
µ0(y) ¡ (I ¡ bHµ0)mµ0(y)]

= (I ¡ Hµ0)¡1[bm¤
µ0(y) ¡ (I ¡ bHµ0)mµ0(y)] + op(T¡1=2)

=
1
T

TX

t=1

(I ¡ Hµ0)¡1[
¿TX

j=1

Ãyj(µ0)
Kh(yt¡j ¡ y)
p0(y)

]¾2tut + h
2¹2(K)(I ¡ Hµ0)¡1

fp
0
0(y)
p0(y)

[
@
@y

Hµ0m0(y) ¡m0
0(y) + Hµ0m0

0(y)] +
1
2
m00

0(y) ¡ 1
2
Hµ0m00

0(y)g + op(T¡1=2)

=
1
T

TX

t=1

wt(y)¾2tut + h
2¹2(K)f1

2
m00

0(y) + (I ¡ Hµ0)¡1[
p00(y)
p0(y)

(Hµ0m0)](y)g+ op(T ¡1=2)

with

wt(y) =
¿TX

j=1

Ãyj(µ0)
Kh(yt¡j ¡ y)
p0(y)

:

From this stochastic expansion we immediately get an expansion for the asymptotic bias. For the
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calculation of the asymptotic variance note that

hEwt(y)2 = h
1
p20(y)

f
X

j 6=`
Ãyj(µ0)Ã

y
`(µ0)E

©
Kh(yt¡j ¡ y)Kh(yt¡` ¡ y)E[¾4tu2t jyt¡j ; yt¡`]

ª

+
1X

j=1

Ãyj(µ0)
2E

©
K2
h(yt¡j ¡ y)E[¾4tu2t jyt¡j = y]

ª

=
1
p0(y)

º0(K)
1X

j=1

Ãyj(µ0)
2E(¾4tu

2
t jyt¡j = y)] + o(1)

=
1
p0(y)

" 1X

l=1

Ã l(µ0)
2

#¡1

º0(K)
1X

j=1

Ãj(µ0)
2E[¾4tu

2
t jyt¡j = y] + o(1):

A.4 Proofs of Theorems 5 and 6

The proof make use of similar arguments as in Theorems 1-4. For this reason we only give a short
outline. We …rst discuss emµ0 . Below we will show that eµ ¡ µ0 = OP (T¡1=2). This can be used to
show that supjyj·c

¯̄
emµ0 ¡ emeµ

¯̄
= oP (T ¡2=5). Thus, up to …rst order the asymptotics of both estimates

coincide. We compare emµ0 with the following theoretical estimate emµ. This estimate is de…ned by
the following integral equation.

emµ = em¤
µ +

eHµ emµ;

where
em¤
µ =

P¿T
j=1 Ãj(µ)egaj (y)P¿T
j=1 Ã

2
j (µ)egbj (y)

; eHµ(x;y) = ¡
¿TX

j=1

¿TX

l=1
l 6=j

Ãj (µ)Ã l(µ) ewµj;l(x; y)
bp0;l¡j(x; y)
bp0(y)bp0(y)

ewµj;l(x;y) =
egcl:j(x; y)P¿T
j=1 Ã

2
j (µ)egbj (y)

:

Here egaj is the local linear smooth of ¾¡4
t y2t on yt¡j, egbj is the local linear …t of ¾¡4

t on yt¡j , and egcl;j is

the bivariate local linear …t of ¾¡4
t on (yt¡l; yt¡j ). Note that egaj ; egbj ;egcl;j are de…ned as bgaj ; bgbj ; bgcl;j , but

with b¾2t replaced by ¾2t . Furthermore, emµ is de…ned as emµ but with bgaj ; bgbj; bgcl;j replaced by egaj ; egbj ; egcl;j .
By tedious calculations one can verify for a constant C > 0 that there exist a bounded function

b such that uniformly for jyj · c; jµ ¡ µ0j · CT¡1=2

emµ(y) ¡ emµ(y) ¡ h2b(y) = oP (T ¡1=2):
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The bias term b is caused by bias terms of b¾2t ¡ ¾2t . So up to bias terms the asymptotics of emµ(y)
and emµ(y) coincide.

The estimate emµ0(y) can be treated as bmµ0(y) in the proof of Theorem 3. As stochastic term of
emµ0(y) we get

1
T

TX

t=1

wt(y)¾¡4
t (y2t ¡ ¾2t ) =

1
T

TX

t=1

wt(y)¾¡2
t ut;

where

wt(y) =
P¿T
j=1 Ãj(µ0)Kh(yt¡j ¡ y)

p0(y)
P¿T
j=1 Ã

2
j (µ0)E[¾¡4

t jyt¡j = y]
:

Asymptotic normality of this term can be shown by use of central limit theorems as in the proof of
Theorem 1. For the calculation of the asymptotic variance it can be easily checked that

hEwt(y)2¾¡4
t u

2
t

=
1
p0(y)

" 1X

j=1

Ã2j (µ0)E(¾
¡4
j jy0 = y)

#¡2

º0(K )
1X

j=1

Ã2j (µ0)E(¾¡4
j u

2
j jy0 = y) + o(1)

=
1
p0(y)

" 1X

j=1

Ã2j (µ0)E(¾
¡4
j jy0 = y)

#¡1

º0(K)(2 + ·4 + o(1):

Use of the above arguments give the statement of Theorem 5. For the proof of Theorem 6 one shows

@el
@µ

(µ0) = ¡ 1
T

TX

t=1

¾¡2t ut
@¾2t
@µ

(µ0) + oP(T¡1=2); (92)

@2el
@µ2

(µ) = ¡E¾¡4
t

·
@¾2t
@µ

(µ0)
¸2

+ oP (1); (93)

uniformly for jµ¡µ0j < CT¡1=2 for all C > 0. This shows that for cT ! 1 slowly enough there exist

a unique local minimizer eµ of el(µ) in a cTT¡1=2 neighborhood of µ0 with

eµ = µ0 ¡
(

E¾¡4
t

·
@¾2t
@µ

(µ0)
¸2

)¡1
1
T

TX

t=1

¾¡2
t ut
@¾2t
@µ

(µ0) + oP (T¡1=2): (94)

This expansion can be used to show the desired asymptotic normal limit for eµ. It remains to show
(92)-(93). This can be done by using similar arguments as for the proof of (84) and (85).
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A.5 Lemmas

Lemma 1. We have for j = 0; 1;2

sup
jy j·c;µ2£

¯̄
¯̄ @
j

@µj
h
bmµ(y) ¡mBµ (y) ¡mEµ (y) ¡ (I ¡ Hµ)¡1

³
bm¤;C
µ + bm¤;F

µ

´
(y)

i¯̄
¯̄ = op(T¡1=2):

Proof of Lemma 1. For j = 0 the claim follows along the lines of the proof of Theorem 1. Note

that in the expansions of the theorem now
³

bm¤;C
µ + bm¤;F

µ

´
(y) is replaced by (I ¡ Hµ)¡1

³
bm¤;C
µ + bm¤;F

µ

´
(y).

The di¤erence of these terms is of order OP (T¡1=2). For the proof for j = 1 we make use of the
following integral equation for bm1

µ =
@
@µ bmµ

bm1
µ =

@
@µ

bm¤
µ +

·
@
@µ

bHµ
¸

bmµ + bHµ bm1
µ:

Thus with
bm¤;1
µ =

@
@µ

bm¤
µ +

·
@
@µ

bHµ
¸

bmµ

the derivative bm1
µ ful…lls

bm1
µ = bm¤;1

µ + bHµ bm1
µ:

This is an integral equation with the same integral kernel bHµ but with another intercept. An ex-
pansion for the solution can be achieved by the same approach as for bm. Similarly, one proceeds for
j = 2. These arguments use condition B10.
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B Tables and Figures

n tau/ch Ebµ stdc(bµ) med(bµ) iqr(bµ)
R
(Eb¾ ¡ ¾)2

R
var(b¾)

R
jb¾ ¡ ¾j

3/0.5 0.6420 0.1566 0.5700 0.2900 0.0087 0.0858 0.2395
3/1 0.6871 0.1757 0.6550 0.3900 0.0110 0.1046 0.2546
3/2 0.6715 0.1649 0.6400 0.3600 0.0090 0.1350 0.2883

8/0.5 0.6225 0.1436 0.5000 0.2500 0.0050 0.2051 0.2894

50 8/1 0.6731 0.1584 0.6700 0.3300 0.0113 0.1105 0.2668
8/2 0.6679 0.1611 0.6800 0.3300 0.0120 0.1099 0.2811

12/0.5 0.6334 0.1390 0.6100 0.2400 0.0087 0.1352 0.2636

12/1 0.6566 0.1582 0.6200 0.3200 0.0109 0.1481 0.2822
12/2 0.6590 0.1654 0.5950 0.3400 0.0082 0.1319 0.2836

6/0.5 0.6355 0.1202 0.6300 0.2200 0.0013 0.1679 0.2479
6/1 0.7010 0.1373 0.7300 0.2600 0.0022 0.1171 0.2554

6/2 0.7341 0.1585 0.7900 0.3500 0.0052 0.1527 0.2861
10/0.5 0.6155 0.1129 0.6100 0.1900 0.0098 0.0630 0.2100

100 10/1 0.7365 0.1380 0.7900 0.2200 0.0052 0.1337 0.2549
10/2 0.7341 0.1615 0.7900 0.3900 0.0073 0.1114 0.2642

15/0.5 0.6308 0.1102 0.6300 0.2000 0.0011 0.1760 0.2459
15/1 0.7109 0.1411 0.7400 0.2500 0.0060 0.1353 0.2728
15/2 0.7512 0.1468 0.8000 0.2200 0.0070 0.1622 0.2766

10/0.5 0.6177 0.0945 0.6100 0.1500 0.0030 0.0648 0.1891

10/1 0.7248 0.0957 0.7400 0.1100 0.0059 0.1111 0.2288
10/2 0.7904 0.1178 0.8300 0.1800 0.0052 0.1534 0.2764

15/0.5 0.5989 0.0873 0.5950 0.1600 0.0036 0.0542 0.1835
200 15/1 0.7336 0.0955 0.7500 0.1000 0.0069 0.0766 0.2267

15/2 0.7777 0.1281 0.8350 0.1900 0.0040 0.1582 0.2777
25/0.5 0.6138 0.0980 0.6150 0.1900 0.0038 0.0595 0.1875
25/1 0.7374 0.1008 0.7650 0.1200 0.0073 0.0756 0.2191

25/2 0.7994 0.1206 0.8500 0.1100 0.0083 0.1143 0.2666

Table 1: µ = 0:75
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Table 2. Cumulants by Frequency

Daily Weekly Monthly

Mean (£100) 0.0293 0.1406 0.6064

St. Deviation (£100) 0.0381 0.1999 0.9034
Skewness -1.5458 -0.3746 -0.5886
Excess Kurtosis 43.3342 6.5215 5.5876

Note: Descriptive statistics for the returns on the S&P500 index for the period 1955-2002 for three di¤erent

data frequencies.

Table 3. Parametric Estimation
Daily Weekly Monthly

! 0:009183
(0:000798)

0:032703
(0:006052)

0:463794
(0:121070)

µ 0:921486
(0:002349)

0:848581
(0:015381)

0:466191
(0:156040)

° 0:035695
(0:002892)

0:054402
(0:013415)

¡0:076207
(0:039192)

± 0:071410
(0:003100)

0:130121
(0:018849)

0:266446
(0:092070)

Note: Standard errors in parentheses. These estimates are for the standardized data series and refer to the

AGARCH model

¾2t = ! + µ¾2t¡1 + °y2t¡1 + ±y2t¡11(yt¡1 < 0)
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