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Abstract 

 
 
The semiparametric local Whittle or Gaussian estimate of the long memory 
parameter is known to have especially nice limiting distributional properties, being 
asymptotically normal with a limiting variance that is completely known. However in 
moderate samples the normal approximation may not be very good, so we consider 
a refined, Edgeworth, approximation, for both a tapered estimate, and the original 
untapered one. For the tapered estimate, our higher-order correction involves two 
terms, one of order 1/√m (where m is the bandwidth number in the estimation), the 
other a bias term, which increases in m; depending on the  relative  magnitude of the 
terms, one or the other may dominate, or they may balance. For the untapered 
estimate we obtain an expansion in which, for m increasing fast enough, the 
correction  consists only of  a bias  term. We discuss applications of our expansions 
to improved statistical inference and bandwidth choice. We assume Gaussianity, but 
in other respects our assumptions seem mild. 
 
 
Keywords: Edgeworth expansion; long memory; semiparametric estimation 
 
JEL No.: C21 
 
 
 
 
 
 
 
 
 
 
© by the authors. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source. 
 
 

 

 

 

Contact address: Professor Peter M Robinson, Department of Economics, London 
School of Economics and Political Science, Houghton Street, London WC2A 2AE. 
Email: p.m.robinson@lse.ac.uk 
 
 
 
 
 
 

mailto:p.m.robinson@lse.ac.uk


1 Introduction

First-order asymptotic statistical theory for certain semiparametric estimates of long memory is now

well established, and convenient for use in statistical inference. Let a stationary Gaussian process

Xt, t = 0;�1; : : :, have spectral density f(�), satisfying

Cov (X0; Xj) =

Z �

��

f(�) cos(j�)d�; j = 0;�1; : : : ;

and for some � 2 (�1; 1), G 2 (0;1);

f(�) � G���; as �! 0+ (1.1)

where "�" means that the ratio of left and right sides tends to 1. Then (1.1) is referred to as a

semiparametric model for f(�), specifying its form only near zero frequency, where Xt can be said

to have short memory when � = 0, long memory when � 2 (0; 1), and negative memory when

� 2 (�1; 0). The memory parameter � (like the scale parameter G), is typically unknown, and is of

primary interest, being related to the fractional di�erencing parameter d by � = 2d and to the self-

similarity parameterH by � = 2H�1. (1.1) is satis�ed by leading models for long/negative memory
such as fractional autoregressive integrated moving averages (FARIMA) and fractional noise. The

latter, however, are parametric, specifying f(�) up to �nitely many unknown parameters over all

frequencies (��; �]. When f(�) is thus correctly parameterized, � (and other parameters) can then

be precisely estimated, with rate n
1
2 , where n is sample size. However, if the model is misspeci�ed,

inconsistent parameter estimates typically result. This is the case even for estimates of the long-

run parameter � when (1.1) holds but the parameterization of higher frequencies is incorrect, in

particular in a FARIMA model, if either or both the autoregressive or moving average orders are

under-speci�ed or both are over-speci�ed.

Nevertheless, it is possible to �nd estimates of � and G that can be shown to be consistent

under (1.1), with f(�) unspeci�ed away from zero frequency. Two classes of such, `semiparametric',

estimates are based on the very well-established statistical principle of `whitening' the data and,

as a consequence, have particularly neat asymptotic statistical properties which place them in the

forefront for use in statistical inference on memory. This whitening occurs in the frequency domain.

Let w(�) and I(�) be respectively the discrete Fourier transform and the periodogram of Xt based

on n observations,

w(�) = (2�n)�1=2

nX
t=1

Xte
it�; I(�) = jw(�)j2: (1.2)

Denote by �j = 2�j=n, for integer j, the Fourier frequencies. Then for certain sequences l = ln � 1

and m = mn which increase slowly with n, under regularity conditions the ratios rj = I(�j)=f(�j),

l � j � m, can be regarded as approximately independent and identically distributed (iid), in a

sense that can be rigorously characterized. We call l the trimming number and m the bandwidth

number.

A popular semiparametric estimate of � is the log-periodogram estimate of Geweke and Porter-

Hudak (1983), de�ned here (in the manner of Robinson (1995a) that relates more directly to the

form (1.1)) as the least squares estimate in the \linear regression model"

log I(�j) = logG� � log�j + uj ; j = l; :::;m; (1.3)

where the uj are \approximately" log rj , following (1.1). Denoting this estimate of � by e�, Robinson
(1995a) showed that under suitable conditions

m
1
2 (e�� �)!d N

�
0;
�2

6

�
; as n!1: (1.4)
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This is an extremely simple result to use in statistical inference, especially as the asymptotic

variance �2=6 is independent of �. Hurvich and Brodsky (1998) showed that under slightly stronger

conditions we can take l = 1 in the estimation, while Velasco (1999a) has shown that (1.4) can

also hold, for a modi�ed estimate, when Xt is non-Gaussian but linear. In the asymptotic theory

of Robinson (1995a), Velasco (1999a), the conditions on f(�) away from zero frequency extend

(1.1) only mildly, not requiring f(�) to be smooth or even bounded or bounded away from zero.

However, under a global smoothness condition on f(�)=G��� similar results have been obtained

by Moulines and Soulier (1999) for an alternative estimate originally proposed by Janacek (1982),

in which increasingly many, p, trigonometric regressors are included in (1.3), and the regression is

carried out over frequencies up to j = n� 1; the rate of convergence in (1.4) is then p
1
2 , rather than

m
1
2 .

An e�ciency improvement to e� was proposed by Robinson (1995a), in which groups of �nitely

many, J , consecutive I(�j) are pooled prior to logging. Asymptotic e�ciency increases with J , but

it turns out that the e�ciency bound, as J ! 1, can be achieved by an alternative estimate of �,

the Gaussian semiparametric or local Whittle estimate originally proposed by K�unsch (1987). This

is also based on periodogram ratios and as it is implicitly de�ned extremum estimate, we henceforth

distinguish between the true value, now denoted �0, and any admissible value, denoted �. After

eliminating G from a narrow-band Whittle objective function, as in Robinson (1995b), we consider

b� = arg min
�2I

R(�) (1.5)

where

R(�) = log
h 1
m

mX
j=1

j�I(�j)
i
� �

m

mX
j=1

log j (1.6)

and I is a compact subset of [�1; 1]. Under regularity conditions, Robinson (1995b) showed that

m
1
2 (b�� �0)!d N(0; 1); as n!1: (1.7)

These conditions are very similar to those employed by Robinson (1995a) for e�, except that Xt

need not be Gaussian, but only a linear process in martingale di�erence innovations, whose squares,

centred at their expectation, are also martingale di�erences. Robinson and Henry (1999) showed that

(1.7) can still hold when the innovations have autoregressive conditional heteroscedasticity. As in

(1.4), the asymptotic variance in (1.7) is desirably constant over �0, while b� is clearly asymptotically

more e�cient than e� for all �0 and the same m sequence.

Semiparametric estimates have drawbacks, however. Due to the merely local speci�cation (1.1),

m must increase more slowly than n, so that e� and b� converge more slowly than (n
1
2 -consistent)

estimates based on a fully parametric model. Indeed, too large a choice of m entails an element of

non-local averaging and is a source of bias. If n is extremely large, as is possible in many �nancial

time series, for example, then we may feel able to choose m large enough to achieve acceptable

precision without incurring signi�cant bias. However, in series of moderate length, we have to think

in terms of m which may be small enough to prompt concern about the goodness of the normal

approximation in (1.4) and (1.7).

Higher-order asymptotic theory is a means of improving on the accuracy of the normal approxima-

tion in many statistical models. This has been most extensively developed for parametric statistics,

where in particular Edgeworth expansions of the distribution function and density function have been

derived, such that the �rst term in the expansion corresponds to the normal approximation while

later terms are of increasingly smaller order (in powers of n�
1
2 ) but improve on the approximation

for moderate n. Taniguchi (1991, for example) has extensively and rigorously analysed Edgeworth

expansions for Whittle estimates of parametric short memory Gaussian processes. Given this work,
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and Fox and Taqqu's (1986) extension to long memory of the central limit theorem (CLT) for Whit-

tle estimates of Hannan (1973) under short memory, the existence and basic structure of Edgeworth

expansions for Whittle estimates of parametric long memory models can be anticipated. Indeed,

Liebermann, Rousseau and Zucker (2001) have developed valid Edgeworth expansions (of arbitrary

order) for quadratic forms of Gaussian long memory series, with application to sample autoco-

variances and sample autocorrelations. Edgeworth expansions have also been developed for some

statistics, which, like e� and b�, converge at slower, `nonparametric', rates. We note for example the

work of Bentkus and Rudzkis (1982) on smoothed nonparametric spectral density estimates for short

memory Gaussian time series, later developed by Velasco and Robinson (2001), while related results

have also been obtained for smoothed nonparametric probability density estimates by Hall (1991)

and for Nadaraya-Watson nonparametric regression estimates by Robinson (1995c). However, this

literature seems small compared to the parametric one, and the development and study of Edgeworth

expansions for semiparametric estimates of the memory parameter seems an especially distinctive

problem, especially in view of the current interest in such estimates due to their 
exibility discussed

above, the notational and expositional advantage of being able to focus on a single parameter �0, the

simple parameter-estimate-free studentization a�orded by (1.4) and (1.7), and the interesting role

played by the bandwidth m in a semiparametric set-up, in which terms due to the bias can compete

with Edgeworth terms of a more standard character; indeed, our Edgeworth expansion provides a

method of choosingm, proposed by Nishiyama and Robinson (2000) in another context, which seems

more appropriate in the context of statistical inference than the usual minimum-mean-squared-error

rules.

We study here only b�, and trimmed and tapered versions of it, not so much because of its

greater �rst-order e�ciency than e�, as its greater mathematical tractability. Though, unlike e�, it
is not de�ned in closed form, its higher-order properties can nevertheless be analysed by making

use of general results for implicitly-de�ned extremum estimates of Bhattacharya and Ghosh (1978),

whereas the logged periodograms appearing in e� are technically di�cult to handle. Our theory

also requires development of Edgeworth expansions for quadratic forms of a type not covered by

Lieberman, Rousseau and Zucker (2001) (due principally to the narrow-band nature of ours, in the

frequency domain). Various other estimates of �0 that are also semiparametric in character have

been studied, such as versions of the R/S statistic, the averaged periodogram estimate, and the

variance type estimate. However, not only do these also converge more slowly than n
1
2 under the

semiparametric speci�cation, but unlike e� and b� they are not necessarily asymptotically normal, or

they may be asymptotically normal only over a subset of � values, where they can have a compli-

cated �-dependent asymptotic variance; they have a nonstandard limit distribution elsewhere. Such

estimates are thus much less convenient for use in statistical inference than e� and b�, and moreover

do not lend themselves so readily to higher-order analysis. Though higher-order approximations to

the distribution of b� are of course more complicated than (1.7), they are, as we show, still usable,

and indeed can be approximated by a normal distribution with a corrected mean and variance, so

that normal-based inference is still possible.

We give greater stress to a (cosine bell) tapered version of b�, where the m frequencies employed

are not the adjacent Fourier ones, at 2�=n intervals, as used in (1.6), but are separated by 6�=n in-

tervals, so that two �j are "skipped". The skipping avoids the correlation across nearby frequencies

that is induced by tapering, which otherwise improves the iid approximation of the periodogram ra-

tios rj , to enable a valid Edgeworth expansion with a correction term of orderm�1=2 (with desirably

a completely known coe�cient), along with a higher order "bias" term, which is increasing inm. The

m�1=2 correction term is what we would expect from the classical Edgeworth literature, obtaining

in case of weighted periodogram spectral density estimates for short memory series. Without the

tapering and skipping, the m�1=2 term appears to be dominated by something which we estimate

as of order m�1=2 log4m, but if m increases su�ciently fast this term is in any case dominated by
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the bias term. Tapering was originally used in nonparametric spectral analysis of short memory

time series to reduce bias. More recently, to cope with possible nonstationarity, it has been used in

the context of e� by Hurvich and Ray (1998) and in �rst order asymptotic theory for both e� andb� by Velasco (1999a,b); tapering has also been used in a stationary setting by Giraitis, Robinson

and Samarov (2000) to improve the convergence rate of e� based on a data-dependent bandwidth.

Trimming also plays a role in our Edgeworth expansion for the tapered estimate. This was used in

�rst-order asymptotic theory for e� of Robinson (1995a), but not for b� (Robinson, 1995b).

The following section describes our main results, with detailed de�nition of our estimates of

�0, regularity conditions and Edgeworth expansions, including implications for improved inference

and bandwidth choice. Section 3 developes our expansion to provide feasible improved inference,

entailing data dependent estimation of the "higher-order bias". Section 4 presents the main steps

of the proof, which depends on technical details developed in Sections 5-7, some of which may be of

more general interest.

2 Edgeworth expansions

We de�ne the statistics

wh(�) = (2�

nX
t=1

h2t )
�1=2

nX
t=1

htXte
it�; Ih(�) = jwh(�)j2; (2.1)

where ht = h(t=n), with

h(x) =
1

2
(1� cos 2�x); 0 � x � 1: (2.2)

The function h(x) is a cosine bell taper. We could establish results like those below with (2.2)

replaced in (2.1) by alternative tapers h(�), which like (2.2), have the property of tending smoothly

to zero as x! 0; x! 1. Tapers increase asymptotic variance unless a suitable degree, `, of skipping

is implemented, such that only frequencies of form �`j are included (so ` = 1 in case of no skipping).

We prefer not to incur this greater imprecision, but higher-order bias is seen to increase in `. For

the cosine bell taper we have ` = 3, while larger ` are needed for many members of the Kolmogorov

class of tapers (see Velasco (1999a)), and on the other hand it seems ` = 2 is possible in the

complex-valued taper of Hurvich and Chen (2000). However we in any case incorporate a method

of bias-correction, and since tapering is in our context just an (apparently) necessary nuisance, we

�x on the familiar cosine bell (2.2). We call wh(�) the tapered discrete Fourier transform and Ih(�)

the tapered periodogram. Of course for h(x) � 1, 0 � x � 1; wh(�) and Ih(�) reduce, respectively,

to w(�) and I(�) in (1.2).

We consider alongside b� (1.5) the tapered (and possibly trimmed) version

b�h = argmin
�2I

R(�) (2.3)

where

Rh(�) = log
h
m�1

mX
j=l

j�Ih(�3j)
i
� �

m� l + 1

mX
j=l

log j; (2.4)

the argument �3j indicating that two �j are successively skipped, and the lower limit of summation

indicating trimming for l > 1. Notice that b� (1.5) is given by replacing Ih(�3j) by I(�j), and l by

1; we could allow for trimming also in (1.5), (1.6) but it plays no useful role in our expansion for b�,
unlike that for b�h.
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We now describe our regularity conditions. The �rst is standard.

Assumption �. �0 is an interior point of I = [a; b], where a � �1; b � 1.

In the CLTs of Robinson (1995a,b) (1.1) was re�ned in order to describe the error in approximat-

ing the left side by the right. This error plays an even more prominent role in higher-order theory,

and we introduce:

Assumption f .

f(�) = j�j��0g(�); � 2 [��; �]; (2.5)

where for constants c0 6= 0; c1 and � 2 (0; 2],

g(�) = c0 + c1j�j� + o(j�j�) as �! 0: (2.6)

In addition f(�) is di�erentiable in the neighbourhood of the origin and

(@=@�) log f(�) = O(j�j�1) as �! 0: (2.7)

Under Assumption f , we have the following properties of the

v(�j) = ��0j w(�j); vh(�j) = ��0j wh(�j); (2.8)

which are so important to the sequel that we present them here, without proof.

Lemma 2.1 (Robinson (1995a)). Let Assumption f be satis�ed. Then uniformly in 1 � k < j =

o(n), as n!1,

(a) Ev(�j)v(�j) = g(�j) +O(j�1 log j);

(b) Ev(�j)v(�j) = O(j�1 log j);

(c) Ev(�j)v(�k) = O(k�j�0j=2jjj�1+j�0j=2 log j);

(d) Ev(�j)v(�k) = O(k�j�0j=2jjj�1+j�0j=2 log j).

This result was derived by Robinson (1995a), but in the actual statement of his Theorem 2, (c)

and (d) were replaced by the weaker bound k�j�0j=2jjj�1+j�0j=2 log j � k�1 log j:

Lemma 2.2 (Giraitis, Robinson and Samarov (2000)). Let Assumption f be satis�ed. Then uni-

formly in 1 � k � j � 3 = o(n), as n!1
(a) Evh(�j)vh(�j) = g(�j) +O(j�2);

(b) Evh(�j)vh(�j) = O(j�2);

(c) Evh(�j)vh(�k) = O((j=n)� jj � kj�2 + k�1jj � kj�3=2);

(d) Evh(�j)vh(�k) = O((j=n)� jj � kj�2 + k�1jj � kj�3=2).

Note the requirement k � j � 3 in Lemma 2.2, which corresponds to the skipping in b�h.
In order to use our asymptotic expansions to improve statistical inference it is generally necessary

to specify �. Estimation of � is discussed by Giraitis, Robinson and Samarov (2000). On the other

hand, when f(�) is additive in a long memory spectrum and a short memory one, as can happen

in case of measurement error or as a consequence of a stochastic volatility model, we typically have

� � �. However setting aside such structure, the leading parametric special cases of (1.1), such

as FARIMA spectral densities, entail � = 2, and as this corresponds to the twice-di�erentiability
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condition stressed in much of the literature on smoothed nonparametric estimation of spectral and

probability densities and regression functions, we explore this case in more detail, with a further

re�nement which also holds in the FARIMA case:

Assumption f 0. Assumption f holds with (2.6) replaced by

g(�) = c0 + c1j�j2 + c2j�j4 + o(j�j4); as �! 0. (2.9)

The main assumption on the bandwidth m also involves �:

Assumption m. For some � > 0,

n� � m = O(n2�=(2�+1)): (2.10)

Note that the CLT for b�, centred at �0, holds only for m = o(n2�=(2�+1)) (Robinson, 1995b). We

allow the upper bound rate n2�=(2�+1) in (2.10) because we will also consider re-centred estimation.

The rate n2�=(2�+1) is the minimum mean squared error (MSE) one, and K 2 (0;1) in m �
Kn2�=(2�+1) can be optimally chosen, in a data dependent fashion, on this basis (see Henry and

Robinson, 1996).

For the trimming number l we introduce

Assumption l. If jI j � 1, log5m � l � m1=3: If jI j > 1 m� � l � m1=3 for some � > 0.

Assumption l implies that "less" trimming in b�h is needed when jI j � 1, as is the case if we know

Xt has long memory and take I � [0; 1]. (In view of Assumption �, this would not permit inference

on short memory, �0 = 0, but I = [�"; 1� "] would.) Strictly speaking, (see the proof of Lemma

5.7 below), this requirement jI j � 1 can be relaxed to I = [�0 � 1 + �; 1] for any � > 0, so that for

�0 < 0; I = [�1; 1] is possible, but of course �0 is unknown.

We establish Edgeworth expansions for the quantities

Um = m1=2(b�� �0); Uh
m = m1=2(b�h � �0):

These involve the parameter

�` =
c1

c0

�

(� + 1)2
(
`

2�
)� ; (2.11)

for ` = 1 and ` = 3, respectively, and the sequence

qm = m1=2(
m

n
)� ; (2.12)

where (2.11) and (2.12) represent respectively the coe�cient and rate of a bias term. In connection

with Assumption m and the subsequent discussion, note that qm ! 0 if m = o(n2�=(2�+1)) whereas

qm � K�+2 if m � Kn2�=(2�+1). We also introduce the standard normal distribution and density

functions:

�(y) =

Z y

�1

�(y)dy; �(y) =
1p
2�

e�y
2=2:

Theorem 2.1 Let Assumptions �; f;m; l; hold.

(i) If m = o(n2�=(2�+1)) then as n!1,

sup
y2R

���PfUh
m � yg � �(y)� �(y)(�3qm +m�1=2p(y))

��� = o(qm +m�1=2) (2.13)
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where

p(y) =
2 + y2

3
: (2.14)

If m � Kn2�=(2�+1), K 2 (0;1), then as n!1

sup
y2R

���PfUh
m � yg ��(y + �3K

�+1=2)
��� = o(1): (2.15)

(ii) If log4m=(m1=2qm)! 0

sup
y2R

���PfUm � yg � �(y)� �(y)�1qm

��� = o(qm): (2.16)

There is no m�1=2 term in the expansion (2.16) for the untapered estimate b� because it is, in

e�ect, dominated by a remainder term whose order of magnitude depends on the approximation

errors in Lemma 2.1, so we are only able to obtain a useful asymptotic expansion by making m

increase faster than n�=(�+1) such that qm dominates. Our conditions are only su�cient, but we are

unable to see a way of improving Lemma 2.1 to the extent of obtaining an expansion for Um involving

both m�1=2 and qm, like in (2.13), explaining our resort to tapering. To conserve on space we focus

the discussion which follows on the tapered results (2.13) and (2.15), though some consequences for

the untapered case (2.16) can be inferred, dropping the m�1=2 term and replacing �3 by �1.

There are three cases of interest in (2.13), which can be isolated and discussed similarly as in

Robinson (1995) and Nishiyama and Robinson (2000), for di�erent nonparametric/semiparametric

statistics.

(i) When

m=n�=(�+1) ! 0 (2.17)

we deduce

P (Uh
m � y) = �(y) + p(y)�(y)m�1=2 + o(m�1=2):

(ii) When

m � Kn�=(�+1); K 2 (0;1); (2.18)

we deduce

P (Uh
m � y) � �(y) + n��=2(�+1)�(y)

�
�3K

�+1=2 +K�1=2p(y)
�
+ o(n��=2(�+1)): (2.19)

(iii) When

m=n�=(�+1) !1 (2.20)

we deduce

P (Uh
m � y) = �(y) + �3�(y)qm + o(qm): (2.21)

In case (i) m is chosen so small that the bias does not enter. If we believe in (2.17) there is

the bene�t that �3, which will be unknown in practice, is not involved in the re�ned approximation,

only the known polynomial p(y). In case (iii), on the other hand, m is so large that the bias

dominates; as in (2.16) for b�, (2.20) permitting only a slightly slower rate for m (2.20) is the region

of m = o(n2�=(2�+1)) that approaches the minimal MSE case

m � Kn2�=(2�+1): (2.22)
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Case (ii) is the one in which m is chosen to minimize the error in the normal approximation.

Note the di�erence between (2.22) and (2.18). Case (iii) has the advantage of entailing a smaller

con�dence interval. However, this is little comfort if the interval is not suitably centred and the

normal interpretation appropriate, and Robinson (1995c), Nishiyama and Robinson (2000) suggested

that it is m that minimizes the deviation from the normal approximation that is most relevant in

normal-based inference on �0, not minimizing the MSE, making (2.18) more relevant than (2.22).

We can go further and optimally estimate K in (2.18). As in Nishiyama and Robinson (2000),

consider, in view of (2.19),

Kopt = argmin
K

max
y2R

����(y)(�3K�+1=2 +K�1=2p(y))
��� ;

choosing Kopt to minimize the maximal deviation from the usual normal approximation. We obtain

the simple solution

Kopt = (3�3(� + 1=2))�1=(�+1):

An alternative to carrying out inference using the Edgeworth approximation is to invert the Edge-

worth expansion to get a new statistic whose distribution is closely approximated by the standard

normal. From (2.13), uniformly in y,

P (Uh
m � y) = �(y + �3qm +m�1=2p(y)) + o(qm +m�1=2) (2.23)

and hence

P (Uh
m + �3qm + p(y)m�1=2 � y) � �(y):

It may be shown that (2.23) implies

P (Uh
m + �3qm + p(y)m�1=2 � y) = �(y) + o(qm +m�1=2)

uniformly in y = o(m1=6). Indeed, by (2.13)

PfUh
m � yg ��

�
y + �3qm +m�1=2p(y)

�
= o(qm +m�1=2):

Set z = y + �3qm +m�1=2p(y) = y +m�1=2y2=3 + a where a = �3qm + 2m�1=2=3. Then

y =
�1 +

p
1 + 4m�1=2(z � a)=3

2m�1=2=3
:

Assuming that z = o(m1=6), by Taylor expansion it follows that

y = z = a�m�1=2(z � a)2=3 + o(m�1=2) = z � �3qm �m�1=2p(z) + o(m�1=2):

The CLT (1.7) of Robinson (1995c) was established without Gaussianity, and with only �nite

moments of order four assumed. The asymptotic variance in (1.7) is una�ected by cumulants of

order three and more, and thus hypothesis tests and interval estimates based on (1.7) are broadly

applicable. Looking only at our formal higher-order expansion, it is immediately appearent that

the bias term (in qm) will not be a�ected by non-Gaussianity, so nor will be the expansion when

m increases so fast that qm dominates (see (2.16), (2.21)). Moreover, preliminary investigations

suggest that when Xt is a linear process in iid innovations satisfying suitable moment conditions,

the m�1=2 term in the formal expansion is also generally una�ected. (Speci�cally, the leading terms

in Corollary 7.1 are unchanged.) However as proof of validity of our expansions even in the linear

case seems considerably harder and lengthier, we do not pursue the details here, adding that the

estimates b�; b�h optimise narrow-band forms of Gaussian likelihoods, and are thus in part motivated

by Gaussianity, which in any case is frequently assumed in higher-order asymptotic theory.
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3 Empirical expansions and bias correction

The present section develops our results to provide feasible improved statistical inference on �0. An

approximate 100
% con�dence interval for �0 based on the CLT is given by

(b�h � z
=2m
�1=2; b�h + z
=2m

�1=2); (3.1)

where 1� �(z
) = 
. From (2.23) a more accurate con�dence interval is

(b�h + �3qmm
�1=2 + p(z
=2)m

�1 � z
=2m
�1=2; b�h + �3qmm

�1=2 + p(z
=2)m
�1 + z
=2m

�1=2): (3.2)

Of course (3.1) and (3.2) correspond to level-
 hypothesis tests on �0. We reject the null hypothesis

�0 = �0
0, for given �

0
0 (e.g. �

0
0 = 0, corresponding to a test of short memory) if �0

0 falls outside (3.1)

or, more accurately, (3.2).

An obvious 
aw in the preceding discussion is that �3 is unknown in practice. However, given

an estimate b�3 such that b�3 ! �3 a.s; (3.3)

we deduce from (2.13) the empirical Edgeworth expansion

sup
y2R

���PfUh
m � yg ��(y)� �(y)(b�3qm +m�1=2p(y))

��� = o(qm +m�1=2); a:s: (3.4)

We can likewise replace �3 by b�3 in (2.15), (2.19), (2.21), (2.23) and (3.2).

We discuss two alternative estimates of �3. Our �rst isb�3;1 = (
n

m0
)�R

(1)

m0 (b�h); (3.5)

where

R
(1)

m0 (�) =
S1;m0(�)

S0;m0(�)
; (3.6)

in which

Sk;m0(�) =
1

c0m0

m0X
j=l

�kj;m0��3jIh(�3j); k � 0; (3.7)

and

�j;m0 = log j � (m0 � l + 1)�1

m0X
j=l

log j; (3.8)

where m0 is another bandwidth, increasing faster than m. Note that R
(1)
m (�) = (d=d�)Rm(�) (see

(2.4)), and so R
(1)
m (b�h) = 0. Our second estimate of �3 is

b�3;2 = bc1bc0 �

(� + 1)2
(
3

2�
)� ; (3.9)

where, as in Henry and Robinson (1996), bc0 and bc1 are given by least squares regression based on

(2.6), i.e. � bc0bc1
�
=

24 m0X
j=l

 
1 ��3j
�
�
3j �

2�
3j

!35�1
m0X
j=l

�
1

�
�
3j

�
�b�h3j Ih(�3j): (3.10)

Estimation of �1 is relevant in connection with (2.16). We de�ne b�1;1 by replacing �3j by �1j ,

Ih by I and 3 by 1 in (3.7), and then b�h by b� in (3.5). Likewise we can de�ne b�1;2 by (3.9) with 3

replaced by 1 in (3.9) and 3; �3j ; Ih and b�h by 1; �j ; I and b� in (3.10).
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Lemma 3.1 Let Assumptions �; f; l;m hold, and let

nm�
1
2�

+� � m0 � n1�� (3.11)

hold for some � > 0. Then for ` = 1; 3b�`;i ! �`; a:s:; i = 1; 2:

Note that (3.11) implies that n2�=(2�+1)=m0 ! 0 so that m = o(m0).

As discussed in the previous section, we now focus on the case � = 2. We �rst modify Theorem

2.1, noting that for � = 2,

qm = m1=2(
m

n
)2; �` =

c1

c0

2

9
(
`

2�
)2; ` = 1; 3: (3.12)

Theorem 3.1 Let � = 2 and Assumptions �; f 0; l;m hold.

(i) If m = o(n4=5) then as n!1,

sup
y2R

���PfUh
m � yg � �(y + �3qm +m�1=2p(y))

��� = o(m�1=2): (3.13)

If m � Kn4=5, K 2 (0;1) then as n!1

sup
y2R

���PfUh
m � yg ��(y + �3K

5=2)
��� = O(m�1=2); (3.14)

indeed, more precisely,

sup
y2R

���PfUh
m + �3K

5=2 � yg ��
�
y +m�1=2p(y) +m�1=2K5


���� = o(m�1=2)) (3.15)

where


 =
�c2
c0

4

25
� (

c1

c0
)2

22

243

�
(
3

2�
)4:

(ii)

sup
y2R

���PfUm + �1K
5=2 � yg � �(y)

��� = o
�
m�1=2 log4m

�
:

Prompted by (2.23) and (3.4) we now consider expansions for bias-corrected estimates,

��h = b�h + (m=n)2b��3 ; �� = b�+ (m=n)2b��1 ; (3.16)

where b��` = b�`;1
1� (m=m0)2

: (3.17)

(To conserve on space we consider only b�`;1 here, and not b�`;2.) De�ne
U�h
m =

p
m(��h � �0) =

p
m(b�h � �0) + qm b�3�; U�

m =
p
m(�� � �0) =

p
m(b� � �0) + qmb��1 :

The following Theorem shows that the distributions of U�h
m ; U�

m converge to the normal limit faster

than those of Uh
m; Um (albeit slower than the optimal rate pertaining to the infeasible statistics

Uh
m + qm�3; Um + qm�1): Set km =

p
m(m=n)2(m0=n)2, vm = (m=m0)2, rm = km + vm +m�1=2.

10



Theorem 3.2 Let � = 2 and Assumptions �; f 0; l hold. Let

l � m � n
8
9
��; m1+� � m0 = o(min(n1��; n2m�5=4)) (3.18)

for some � > 0. Then as n!1,

sup
y2R

���PfU�h
m � yg � �(y)

��� = O(rm)! 0 (3.19)

and, more precisely,

sup
y2R

���PfU�h
m � yg ��

�
y + (�3a3 � b3)km +m�1=2p(y)� vmy

���� = o(rm)! 0 (3.20)

where

a` =
c1

c0

1

3
(
`

2�
)2; b` =

c2

c0

4

25
(
`

2�
)2: (3.21)

Also,

sup
y2R

���PfU�

m � yg � �(y)
��� = O(rm +m�1=2 log4m)! 0: (3.22)

On choosingm � Kn8=11;m
0 � K

0

n10=11; forK;K 0 2 (0;1); it follows that km; vm both increase

like m�1=2 and so the term rm in the error bounds of (3.19) and (3.20) is minimized by the rate

rm = n�4=11: Moreover, it may be shown that we can then invert (3.20) to get

sup
fy:jyj=o(m1=6)g

���P nU�

m +m�1=2(K5=2K
02(�a� v) + p(y)� (K=K

0

)2y) � y
o
� �(y)

��� = o(m�1=2):

On the other hand if m=n8=11 +m=m04=5 + m0m3=2=n2 ! 0 (as is true if m0 increases either like

nm�1=8 or n10=11) then again we have rm = m�1=2 in (3.19), (3.20), but this converges more slowly

than n�4=11; note that here km; vm = o(m�1=2) so the correction terms of orders km; vm on the

left side of (3.20) can be omitted. On the other hand, if m0 = o(n8=11) then for any choice of

m satisfying our conditions we have km = o(rm), so the correction term in km can be omitted.

Finally, if n8=11=m ! 0 and m = O(n8=9�") then rm in (3.19), (3.20) converges more slowly than

m�1=2 = o(max(km; vm)); indeed on equating the rates of km; vm (so m0 increases like nm�1=8) we

obtain rm = m9=4=n2; which decreases more slowly than n�4=11 but no more slowly than n�9"=4; of

course in this case the correction term of order m�1=2 on the right side of (3.20) can be omitted.

For example, in the case m � Kn4=5 discussed in Theorem 3.1 (where there is not even a central

limit theorem for b�h centred at �0), we must have m
0 � K

0

n9=10; and hence rm = n�1=5 in (3.19),

(3.20), while we can invert (3.20) to get

sup
y

���P nU�

m(1� (K=K
0

)2n�1=5) +K5=2K
02n�1=5(�a� v) � y

o
��(y)

��� = o(n�1=5):

With regard to (3.22) for the untapered estimate, the error rm +m�1 log4m is minimized, for large

n, by m = K(n log2 n)8=11;m0 = K 0n10=11 log2=11 n, whence it decays like n�4=11 log36=11 n. However

it must be stressed that the m�1=2 log4m component of (3.22) is just an upper bound.

We stress that the choices of m;m0 discussed above are designed to minimize the error in the

normal approximation, but the upper bound choice m = n8=9�� in (3.18) entails an asymptotically

smaller con�dence interval. Moreover, from the stand-point of minimum mean-squared error esti-

mation, the methods of Andrews and Guggenberger (2000), Andrews and Sun (2001), Robinson and

Henry (2001) provide optimal choices of m of order n1=2�� for arbitrary small � > 0, while those

of Moulines and Soulier (1999), Hurvich and Brodsky (2001) provide an optimal choice of order

(n= logn)1=2.
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4 Proofs for Sections 2 and 3

To avoid repetition we attempt to cover both the tapered estimate, b�h, and the untapered one,b�, simultaneously in the proofs, for brevity denoting both b�; likewise, except in Section 7, we

use R(�); Um; I(�); `; �; l, to denote, respectively Rh(�); U
h
m; Ih(�); 3; �3; l in the tapered case, and

R(�); Um; I(�); 1; �1; 1 in the untapered case. We also introduce

�m;l = log4m1f`=1g + l�1=2 log2m1f`=3g (4.1)

meaning that we have �m;l = l�1=2 log2m with tapering and �m;l = log4m without tapering, and

the remainder terms

�m = max(m�1=2; (m=n)�); e�m = (m=n)� +m�1=2 +m�1=2�m;l; (4.2)

e�m being the remainder in our �nal expansions and �m (= O(e�m)) that in auxiliary expansion.

Note that �m = m�1=2 when m = O(n2�=(2�+1)) (as in Theorem 2.1) and �m = (m=n)� otherwise.

Throughout, C denotes a generic, arbitrarily large constant.

By the mean value theorem

R(1)(b�) = R(1)(�0) + (b�� �0)R
(2)(�0) +

(b�� �0)
2

2
R(3)(�0) +

(b�� �0)
3

3!
R(4)(��); (4.3)

where

R(j)(�) =
dj

d�j
R(�):

Writing Sk(�) =
1

c0m

Pm

j=l �
k
j �

�
`jI(�`j) (cf (3.7)), with �j = �j;m (see (3.8))

R(1)(�) =
(d=d�)S0(�)

S0(�)
� em =

Pm

j=l �jj
�I(�`j)Pm

j=l j
�I(�`j)

;

where em = (m� l + 1)�1
Pm

j=l log j. Then with Sk = Sk(�0); R
(k) = R(k)(�0); we have

R(1) =
S1

S0
; R(2) =

S2S0 � S2
1

S2
0

; R(3) =
S3S

2
0 � 3S2S1S0 + 2S3

1

S3
0

:

Note that under the above assumptions P (S0 > 0) = 1.

Remark 4.1 R(1), R(2), R(3) are invariant with respect to the scaling constant in Sk. Therefore,

without loss of generality we can replace (2.6) in the proofs below by

g(�) = 1 +
c1

c0
j�j� + o(j�j�): (4.4)

and (2.9) by

g(�) = 1 +
c1

c0
j�j2 + c2

c0
j�j4 + o(j�j4): (4.5)

Proof of Theorem 2.1. De�ne

Zj = m1=2(Sj �ESj); j = 0; 1; 2; : : : : (4.6)
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By Lemma 5.6 we have

Um = �Bm + Vm + e�1+�
m �m;

where

Bm = m1=2ES1(2�ES2)�m1=2(ES1)
2 (4.7)

and

Vm = �Z1(2�ES2) +
Z1Z2 + Z2

1

m1=2
+ (2Z1 + Z2)ES1; (4.8)

where � > 0 and �m denotes a remainder term. Set V 0

m = Vm + e�1+�
m . Thus

P (Um � y) = P (V 0

m � y +Bm): (4.9)

By Lemma 6.3,

sup
y2R

���P (V 0

m � y)� �(y)�m�1=2�(y)p(y)
��� = o(e�m): (4.10)

It remains to derive an expansion for Bm. By Lemma 7.1, bearing in mind that (m=n)� = O(m�1=2),

we have ES1 = �(m=n)� + o(m�1) +O(m�1�m;l); ES2 = 1 + o(m�1=2); so that

m1=2ES1 = �qm + o(qm +m�1=2) +O(m�1=2�m;l); m1=2ES1(2�ES2) = �qm + o(qm):

If m = o(n2�=(2�+1)), then qm ! 0, and

Bm = �qm + o(qm +m�1=2) +O(m�1=2�m;l): (4.11)

If m � Kn2�=(2�+1), then qm � K�+1=2, and we obtain

Bm = K�+1=2� + o(1): (4.12)

(4.9) - (4.12) imply (2.13), (2.15) of Theorem 2.1.

Proof of Theorem 3.1. This follows the lines of that of Theorem 2.1. Relations (4.9), (4.10) remain

valid. Recall that qm = (m=n)2m1=2, and under Assumption m, qm = O(1). To expand Bm we use

(7.15) and (7.16) with k = 2 to deduce

Bm = �qm + 
qm(m=n)2 + o(m�1=2) +O(m�1=2�m;l); (4.13)

� = e(1; `; 2) = (
c1

c0
)2
2

9
(
`

2�
)2; 
 = d(1; `; 4)�e(1; `; 2)e(2; `; 2)�e2(1; `; 2) =

�c2
c0

4

25
�(c1

c0
)2

22

243

�
(
`

2�
)4

where e(k; `; �) and d(k; `; �) are de�ned in (7.5) and (7.17). If m = o(n4=5), then qm = o(1) so that

Bm = �qm + o(m�1=2) + O(m�1=2�m;l), and (3.13) follows from (4.9), (4.10). If m � Kn4=5, then

(m=n)2 � K5=2m�1=2 and thus Bm = �K5=2 +m�1=2K5
 + o(m�1=2) + O(m�1=2�m;l): Therefore

from (4.9), (4.10) it follows that

sup
y2R

���P (Um � y)��
�
y + �K5=2 +m�1=2K5


�
�m�1=2�(y + �K5=2)p(y + �K5=2)

���
= o(m�1=2) +O(m�1=2�m;l)

which implies (3.15).

13



Denote by X the set of all sequences �m satisfying

P (j�mj � m�) = o(m�p); all � > 0, all p � 1. (4.14)

Note that �m 2 X , �m 2 X implies �m�m 2 X . For ease of exposition we denote by �m a generic

member of X .

Proof of Lemma 3.1. Set pm = b�`;1 � � = (n=m0)�R1;m0(b�) � �. (Here and below we index some

quantities by m even if they depend on m0 also, noting from (3.11) that m0 depends on m.)

By the Borel-Cantelli lemma it su�ces to show that, for all � > 0,

1X
m=1

Pfjpmj � �g <1: (4.15)

We show that

pm = o(1) +m���m; a:s:; (4.16)

for some � > 0 where �m 2 X . Then

Pfjpmj � �g � Pfo(1) � �=2g+ Pfm���m � �=2g = o(m�2)

by (4.14), and thus (4.15) holds. By the mean value theorem we have:

R
(1)

m0 (b�) = R
(1)

m0 (�0) + (b�� �0)
d

d�
R
(1)

m0 (��)

where j��� �0j � jb�� �0j. We show that

p1;m := j(n=m0)�R
(1)

m0 (�0)� �j = o(1) +m���m; (4.17)

p2;m := (n=m0)� j(b�� �0)
d

d�
R
(1)

m0 (��)j = m���m; (4.18)

which yields (4.16). To prove (4.17), note that, writing Zi;m0(�) = m01=2(Si;m0(�) �ESi;m0(�)),

S1;m0(�0) = ES1;m0(�0) +m0�1=2
Z1;m0(�0) = �(m0=n)� + o((m0=n)�) +m0�1=2

�m

by Lemmas 5.3 and 7.1. Observe that (3.11) implies

(n=m0)�m�1=2 � m�� (4.19)

for some � > 0. Thus

(n=m0)�S1;m0(�0) = � + o(1) +m���m:

Applying Lemma 5.4 to S0;m0(�0)
�1, we get

S0;m0(�0)
�1 = 1 +O((m0=n)�) +m0�1=2

�m0 = 1 +O((m0=n)�) +m0�1=2
�m:

Thus

(n=m0)�R
(1)

m0 (�0) = (n=m0)�S1;m0(�0)S0;m0(�0)
�1

= (� + o(1) +m���m)(1 +O(m0=n)� +m0���m) = � + o(1) +m���m:

Hence p1;m = o(1) +m���m and (4.17) holds.
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To prove (4.18), note that j d
d�
R
(1)

m0 (��)j � C log2m0 (see the proof of (5.12)). Then, by (4.19)

p2;m � C(n=m0)�m�1=2jUmj log2m0 � Cm���m

since by Lemma 5.7, Um log2m0 = m1=2�m�m log2m0 = �m log2m0 2 X , bearing in mind that under
Assumption m, �m = O(m�1=2). Thus (4.18) holds and the proof for b�`;1 is completed.

The proof for b�`;2 follows on showing that di;m(b�) = bci � ci ! 0, a.s. i = 1; 2. As before it

su�ces to show that, for all � > 0

1X
m=1

Pfjdi;m(b�)j � �g <1; i = 0; 1: (4.20)

By Lemma 5.8 with k = p = 2, Pfjb���0j � (logn)�2g = o(m�2); it su�ces to prove (4.20) in case

jb�� �0j � (logn)�2. Similarly to the proof of Lemma 3.1 it remains to show that

jdi;m(b�)j = o(1) +m���m; i = 1; 2 (4.21)

for some � > 0 where �m 2 X . By the mean value theorem:

di;m(b�) = di;m(�0) + (b�� �0)
d

d�
di;m(��)

where j��� �0j � jb�� �0] � (logm)�2. We show that as n!1 for i = 1; 2,

Edi;m(�0) = o(1); (4.22)

p0i;m := di;m(�0)�Edi;m(�0) = m���m; (4.23)

p00i;m := jb�� �0jj
d

d�
di;m(��)j = m���m; (4.24)

which yield (4.21).

First, (4.22) follows approximating sums by integrals and Lemma 7.1. We have

jp01;mj � C
�
m0�1=2jZ0;m0(�0)j+ (m0=n)��m0�1=2jZ0;m0(�0 + �)j

�
;

p02;m � C
�
(m0=n)��m0�1=2jZ0;m0(�0)j+ (m0=n)�2�m0�1=2jZ0;m0(�0 + �)j

�
:

By (3.11), (m0=n)��m0�1=2 � m��, and by Lemma 5.3, Z0;m0(�0) 2 X . Using Lemma 7.3 it is easy to
show that Ej(m0=n)��Z0;m0(�0+�)jk <1 as n!1 for any k � 1, so (m0=n)��Z0;m0(�0+�) 2 X ,
to imply (4.23). It remains to show (4.24). Since j��� �0j � log�2m, it is easy to see that

j d
d�

S0;m0(��)j � C(logm)S0;m0(�0);
���(m0=n)��

d

d�
S0;m0(��+ �)

��� � C(logm)S0;m0(�0):

Thus

p00i;m � Cjb�m � �0j(m0=n)�� logmS0;m0(�0) � C(m0=n)��m�1=2jUmj logmS0;m0(�0):

Since under Assumption m, �m = O(m�1=2), from (4.19) and Lemma 5.7 it follows that

(m0=n)��m�1=2jUmj logm = m���m logm 2 X :

This and S0;m0(�0) 2 X imply that p00i;m = m���m.
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Proof of Theorem 3.2. By Lemma 5.6,

Um = �Bm + Vm + e�1+�
m �m: (4.25)

By (4.13)

Bm = �qm + o(km +m�1=2) +O(m�1=2�m;l); (4.26)

since qm(m=n)2 = kmvm = o(km). This and Lemma 4.1 give

m1=2(�� � �0) � Um + qmb�� = �(�a� b)km + Vm � vmZ1

+o(rm) +O(m�1=2�m;l) + (e�m + vm)
1+��m;

where � > 0, writing b�� = b��3 . This and Lemma 6.4 imply (3.20).

Lemma 4.1 Suppose that the assumptions of Theorem 3.2 hold. Then

b��qm = �qm � (�a� b)km � Z1vm + o(rm) + v1+�m �m (4.27)

for some � > 0, �m 2 X .

Proof. Set jm := (1� vm)qm b�� and tm = (m=n)2. Then qm = m1=2tm. We show that

jm = �qm(1� vm)� (�a� b)km � Z1vm + o(km + vm +m�1=2) + v1+�m �m (4.28)

where �`; a`; b` are give in (3.12) and (3.21). Dividing both sides of (4.28) by 1� vm and taking into

account that vm ! 0 gives (4.27). By Taylor expansion

jm =
p
mvmR

(1)

m0 (b�) = p
mvm

�
R
(1)

m0 (�0) + (b�� �0)R
(2)

m0 (�0) +
(b�� �0)

2

2!
R
(3)

m0 (��)
�
:

Thus

jm = d1;m + d2;m + d3;m;

where

d1;m = m1=2vmR
(1)

m0 (�0); d2;m = m1=2vm(b� � �0)R
(2)

m0 (�0);

d3;m = m1=2vm
(b�� �0)

2

2!
R
(3)

m0 (��):

We shall show that

d1;m = �
p
mtm + (v � �a)km + o(rm) + v1+�m �m; (4.29)

d2;m = ��pmtmvm � Z1vm + o(rm) + v1+�m �m; (4.30)

d3;m = v1+�m �m (4.31)

for some � > 0 where � = e(1; `; 2); v = d(1; `; 4); a = e(0; `; 2) are given by (7.5) and (7.17); then

(4.27) follows.

Note that d1;m = m1=2(m=m0)2S1;m0(�0)S0;m0(�0)
�1: We have

S1;m0(�0) = ES1;m0(�0) +m0�1=2
Z1;m0(�0) = �tm0 + vt2m0 + o(t2m0) +m0�1=2

�m

since Z1;m0(�0) 2 X by Lemma 5.3, and Lemma 7.2 implies that

ES1;m0(�0) = �tm0 + vt2m0 + o(t2m0 +m0�1=2
): (4.32)
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Lemma 5.4 applied to S0;m0(�0)
�1 implies that

S0;m0(�0)
�1 = 2� S0;m0(�0) + o(tm0) +m0�1=2

�m;

whereas by Lemma 7.2 and Lemma 5.3

S0;m0(�0) = ES0;m0(�0) +m0�1=2
Z0;m0(�0) = 1 + atm0 + o(tm0) +m0�1=2

�m:

Since (m=m0)2tm0 = tm we get

d1;m = m1=2(m=m0)2
�
�tm0 + vt2m0 + o(t2m0) +m0�1=2

�m

��
1� atm0 + o(tm0) +m0�1=2

�m

�
= �

p
mtm + (v � �a)

p
mtmtm0 + o(km) + v1+�m �m

for some � > 0. Thus (4.29) holds.

We now estimate d2;m: By Lemma 5.4 and Lemma 7.2,

R
(2)

m0 (�0) � (S2;m0(�0)S0;m0(�0)� S1;m0(�0)
2)S0;m0(�0)

�2 = 1 +O((m0=n)� +m0�1=2
)�m;

and by (4.25)-(4.26),

Um =
p
m(b� � �0) = ��pmtm + Vm + o(rm) +O(m�1=2�m;l) + �1+�

m �m:

From (4.8), Lemma 5.3 and (4.32) it follows that Vm = �Z1+ e�m�m. Thus Um = ��pmtm�Z1+

o(rm) +O(m�1=2�m;l) + e�m�m; and

d2;m = vm(��
p
mtm � Z1 + o(rm) +O(m�1=2�m;l) + e�m�m)(1 + e�m�m)

= ��pmtmvm � vmZ1 + o(km + vm) + v1+�m �m

since e�m � v�m for some � > 0. This proves (4.30).

Finally, note that

jd3;mj � vmm
�1=2U2

mjR(3)

m0 (��)j = vmm
1=2�2

m�
2
mjR(3)

m0 (��)j

by Lemma 5.7. Similarly to (5.12) we can show that jR(3)

m0 (��)j � C(logm0)4: Since under (3.18)

m1=2�2
m � v�m for some � > 0 we get jd3;mj � v1+�m �m: Thus (4.31) holds.

5 Approximation lemmas

To characterize negligible terms of our the expansions we shall use the following version of Chibisov's

(1972) Theorem 2, which we present without proof.

Lemma 5.1 Let Ym = Vm + �2m�m, where �m ! 0 as m! 0,

P (j�mj � ���m ) = o(�m); some 0 < � < 1; (5.1)

and Vm has the asymptotic expansion

P (Vm � y) = �(y)� �(y)(�m;1p1(y) + �m;2p2(y)) + o(�m) (5.2)

uniformly in y 2 R where p1(y); p2(y) are polynomials and �m;i = O(�m); i = 1; 2. Then

P (Ym � y) = �(y)� �(y)(�m;1p1(y) + �m;2p2(y)) + o(�m) (5.3)

uniformly in y 2 R.
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We shall use the following corollary of Lemma 5.1 for the remainder terms �m 2 X de�ned in

Section 4.

Lemma 5.2 Suppose that ��1
m � m� and Ym = Vm + �1+�

0

m �m for some � > 0; �0 > 0 as m! 0, and

�m 2 X . Then (5.2) implies (5.3).

We �rst discuss properties of the sums Si, Zi for a wider range of m than in Assumption m.

Assumption m�. m � l is such that n� � m � n1�� for some � > 0.

Lemma 5.3 Suppose that Assumptions f; l;m� hold. Then for Zj given by (4.6) and any j =

0; 1; 2; : : :

Zj 2 X : (5.4)

Proof. By Lemma 7.4, for any k � 1, EjZj jk < 1 uniformly in m ! 1. Thus (5.4) follows by

Chebyshev inequality.

We consider in the following lemma which is related to the Lemma of Robinson (1995c), properties

of general functions Ym = fm(S0; S1; : : : ; S3) of the variables Sk (3.7).

Lemma 5.4 Let (4.4) and Assumptions f; l;m� hold. Let Ym = fm(S0; S1; : : : ; S3) for a function

fm such that for some � > 0 the partial derivatives (@2=@xixj)fm(x0; : : : ; x3); i; j = 0; : : : ; 3 are

bounded in jxj � ej j � �; j = 0; : : : ; 3. Then as n!1;

Ym = fm(e0; e1; : : : ; e3) +

3X
j=0

@

@xj
fm(e0; e1; : : : ; e3)(Sj � ej) +O((m=n)2�) +m�1�m; (5.5)

Ym = fm(e0; e1; : : : ; e3) +O((m=n)�) +m�1=2�m (5.6)

and

Ym 2 X ; (5.7)

where �m 2 X .

Proof. Observe that for any j = 0; : : : ; 3, we can write Ym1(m
�1=2jZj j > �=2) � m�1�m where

�m 2 X . Indeed, for all p � 1

Pfj�mj � m�g � Pfm�1=2jZj j > �=2g = o(m�p);

since Zi 2 X . Therefore

Ym = fm(S0; S1; : : : ; S3)1(m
�1=2jZj j � �=2; j = 0; : : : ; 3) +m�1�m:

We have by Lemma 7.1 below that

E(Si) = ei +O((m=n)� +m�1=2); i = 0; 1; 2; 3; (5.8)

where by (7.5), e0 = 1; e1 = 0; e2 = 1; e3 = �2: By (5.8),

Sj = ESj +m�1=2Zj = ej +O((m=n)� +m�1=2) +m�1=2Zj :
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Thus if jm�1=2Zj j � �=2 for any j = 0; : : : ; 3 then jSj�ej j � � for large m, and by Taylor expansion

we get

Ym = fm(e0; e1; : : : ; e3) +

3X
j=0

@

@xj
fm(e0; e1; : : : ; e3)(Sj � ej)

+O(

3X
j=0

(Sj � ej)
2) +O((m=n)2�) +m�1�m:

In view of (5.8), (5.4),

(Sj � ej)
2 � 2

�
(ESj � ej)

2 +m�1Z2
j

�
= O((m=n)2�) + 2m�1Z2

1

= O((m=n)2�) + 2m�1�m (5.9)

since Z1 2 X . This proves (5.5). (5.9) implies that jSj � ej j = O((m=n)�)+m�1=2�m, and therefore

from (5.5) it follows that (5.6) holds. (5.6) implies (5.7).

Lemma 5.5 Let (4.4) and Assumptions �; f; l; m� hold, and let

m � n
4�

4�+1
��; some � > 0: (5.10)

Then

m1=2R(1)(�0) + UmR
(2)(�0) +

U2
m

2m1=2
R(3)(�0) = �1+�

m �m (5.11)

for some � > 0 and �m 2 X .

Proof. Multiplying both sides of (4:3) by m1=2, the left hand side of (5.11) can be written as

�1+�
m �m with

�m = O(m1=2��1��
m jR(1)(b�)j+m�1��1��

m jUmj3jR(4)(��)j)
where j��� �0j � jb�� �0j. It remains to show that �m 2 X . We show �rst that

jR(4)(��)j � C log4m: (5.12)

Now R(4)(��) is a linear combination of terms

F l0
0 (��)F l1

1 (��) : : : F l4
4 (��)

F 4
0 (��)

; l0 + : : :+ l4 = 4; 0 � l0; : : : ; l4 � 4; (5.13)

where

Fk(�) =
dk

d�k
F0(�); F0(�) =

mX
j=l

j�I(�`j); k � 0:

Now

jFk(�)j � logkm

mX
j=1

j�I(�`j) = (logm)kF0(�):

Therefore the terms (5.13) are bounded by log4m and (5.12) holds. By Lemma 5.7, Um = m1=2�m
e�m

where e�m 2 X . Assumption (5.10) implies that

m1=2�2
m � ��

m; some � > 0: (5.14)
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Therefore

�m � C(m1=2��1��
m jR(1)(b�)j+m1=2�2��

m
e�3m(logm)4) � C(m1=2��1��

m jR(1)(b�)j+ e�3m(logm)4):

Thus, for large m,

Pfj�mj � m�g � PfjR(1)(b�)j > 0g+ Pfe�m � m�=8g
� Pfb� = �1g+ Pfe�m � m�=8g = o(m�p)

for all p � 1, since Pfb� = �1g = o(m�p) by Lemma 5.8 below, using the fact that R(1)(b�) = 0 ifb� 2 (�1; 1); and Pfe�m � m�=8g = o(m�p) by �m 2 X .

Lemma 5.6 Let (4.4), (5.10) and Assumptions �; f; l; m� hold. Then for some � > 0,

Um = �Bm + Vm +�1+�
m �m (5.15)

where Bm and Vm are given by (4.7) and (4.8) and �m 2 X .

Proof. We deduce from (5.11) that

Um = �m1=2R(1) � Um(R
(2) � 1)�m�1=2U2

mR
(3)=2 +�1+�

m �m:

By de�nition of R(1); R(2); R(3), we can write

Um = �m1=2S1h(S0)� Umf(S0; S1; S2)�m�1=2U2
mg(S0; S1; S2; S3) + �1+�

m �m;

where

h(x0) = x�1
0 ; f(x0; x1; x2) =

x2x0 � x21
x20

� 1; g(x0; x1; x2; x3) =
x3x

2
0 � 3x0x1x2 + 2x31

2x30
:

We apply now Lemma 5.4. Since h(e0) = h(1) = 1; (@=@x0)h(e0) = �1; we get by (5.5)

h(S0) = 1� (S0 � 1) +m�1�m = 2� S0 +�2
m�m:

Similarly, since

f(e0; e1; e2) = f(1; 0; 1) = 0;
@

@x0
f(1; 0; 1) = �1; @

@x1
f(1; 0; 1) = 0;

@

@x2
f(1; 0; 1) = 1;

by (5.5) of Lemma 5.4,

f(S0; S1; S2) = (S0 � 1)� (S2 � 1) +m�1�m = S2 � S0 +�2
m�m;

Finally since g(e0; e1; e2; e3) = g(1; 0; 1;�2) = �1 and g(e0; e1; e2; e4) = 1, by (5.6) of Lemma 5.4,

we have g(S0; S1; S2; S3) = �1 +�m�m: Thus

Um = �pmS1(2� S0)� Um(S2 � S0) +m�1=2U2
m + ym +�1+�

m �m (5.16)

where jymj � �2
m�m(

p
mjS1j+ jUmj+m�1=2jU2

mj): (5.8) and (5.4) imply that

jS1j � C�m +m�1=2jZ1j = �m�m (5.17)

where �m 2 X : By Lemma 5.7, Um = m1=2�m�m. Thus jymj = m1=2�3
m�m and, using (5.14),

jymj = �1+�
m �m: Next, by (5.8) and Lemma 5.3,

S2 � S0 = (ES2 �ES0) +m�1=2(Z2 � Z0) = O(�m) +m�1=2(Z2 � Z0) = �m�m;
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and S1(2 � S0) = �m�m; S1(1 � S0) = �2
m�m where �m 2 X . Thus, repeatedly applying the

recurrence relation (5.16) and taking into account (5.14) we get

Um = �pmS1(2� S0) +
p
mS1(S2 � S0) +m�1=2(

p
mS1)

2 +�1+�
m �m

= �pmS1(2� S2) +m�1=2(
p
mS1)

2 +�1+�
m �m

= �pmES1(2�ES2)� Z1(2�ES2) + Z2ES1 +m�1=2Z1Z2

+
�
m1=2(ES1)

2 + 2Z1ES1 +m�1=2Z2
1

�
+�1+�

m �m

= �Bm + Vm +�1+�
m �m:

This completes the proof of (5.15).

Lemma 5.7 Let (4.4) and Assumptions �; f; l, m� hold. Then

Um = m1=2�m�m (5.18)

where �m 2 X :

Proof. By Lemma 5.8, Um1(jb���0j > log�4 n) = �m 2 X . It remains to show that Um(jb���0j �
log�4 n) = �m 2 X . Let jb� � �0j � log�4 n. Then as n ! 1, b� 2 (�1; 1) and, consequently,
R(1)(b�) = 0, so that

0 = m1=2R(1) + UmR
(2) +

Um(b� � �0)

2
R(3)(��)

for j��� �0j � jb�� �0j. Similarly to the proof of (5.12) it can be shown that jR(3)(��)j � C(logn)3;

so that jb�� �0jjR(3)(��)j � log�1 n and

0 = m1=2R(1) + UmfR(2) +O(log�1 n)g:

Thus

Um = �m1=2R(1)fR(2) +O(log�1 n)g�1 = �m1=2S1fn(S0; S1; S2)

where, by de�nition of R(1); R(2),

fn(x0; x1; x1) = x�1
0

�x2x0 � x21
x20

+O(log�1 n)
�
�1

:

Since

fn(e0; e1; e2) = fn(1; 0; 1) = (1 +O(log�1 n))�1 <1;

Lemma 5.4 implies that fn(S0; S1; S2) = �m 2 X , whereas by (5.17) S1 = �m�m, to give (5.18).

Lemma 5.8 Let (4.4) and Assumptions �; f; l;m� hold. Then for any s � 1,

Pfjb�� �0j � (logn)�sg = o(m�p);

for all p � 1.

Proof. Let � > 0 be arbitrarily small. Set F1 = f� 2 [�1; 1] : (logn)�s � j���0j; �0�� � 1� �g;
F2 = f1 � � � �0 � � � 1 + �g F3 = f� 2 [�1; 1] : �0 � � � 1 + �g. If jI j � 1 then I � F1 when

� > 0 is small enough. In that case F2 = F3 = ;. Hence we shall consider F2; F3 only for jI j > 1

when l � n� holds for some � > 0 by Assumption l.

21



It su�ces to show that

di := Pfb� 2 Fig = o(m�p); i = 1; 2; 3: (5.19)

We have

di � PfR(b�) � R(�0); b� 2 Fig = Pflog( F0(b�)
F0(�0)

) � (b�� �0)em; b� 2 Fig

= Pf F0(b�)
F0(�0)

� e(b���0)em; b� 2 Fig:

Set

fm(�) = m�1��0` F0(�)e
�(���0)em

and de�ne sm(�) = fm(�)�Efm(�), em(�) = Efm(�)�Efm(�0): Then

di � Pffm(b�) � fm(�0) : b� 2 Fig � Pfem(b�) � jsm(b�)j+ jsm(�0)j : b� 2 Fig:

We show below that

em(�) � pi;� (5.20)

uniformly in � 2 Fi, i = 1; 2; 3 where p1;� = c log�2s n; p2;� = c, p3;� = c(m=l)�0���1 for some

c > 0. Using (5.20) we get

di � Pf1 < sup
�2Fi

p�1
i;�(jsm(�)j+ jsm(�0)j)g � CEf sup

�2Fi

p�2k
i;� (jsm(�)j2k + jsm(�0)j2k)g; (5.21)

k � 1. If we show that for large enough k

E sup
�2Fi

jp�1
i;�sm(�)j2k = o(m�p); i = 1; 2; 3; (5.22)

and

Ejsm(�0)j2k = o(m�p); (5.23)

then (5.19) follows from (5.21). Since sm(�0) = m�1=2Z0 and EjZ0jk <1 for any k � 1 by Lemma

7.4, (5.23) follows by the Chebyshev inequality.

Before proving (5.22) we show (5.20). With

dj(�) = j���0e�(���0)em (5.24)

we can write

em(�) = m�1

mX
j=l

(dj(�)� 1)E[��0`j I(�`j)]:

By (4.4) and (a) of Lemma 2.1 or Lemma 2.2

E[��0`j I(�`j)] = 1 +O(j=n)� +O(j�1 log j)

so that

em(�) = m�1

mX
j=l

(dj(�)� 1)f1 +O(j=n)� +O(j�1 log j)g: (5.25)

Since em = logm� 1 + o(m�1=2) (5.26)
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by
Pm

j=1 log j = m logm�m+O(logm), from (5.24) it follows that

dj(�) = (ej=m)���0(1 + o(m�1=2)): (5.27)

Case a). Let � 2 F1. Then (5.25), (5.27) imply

em(�) = m�1

mX
j=l

dj(�) � 1 +m�1

mX
j=l

(m=j)1��O((m=n)� + j�1 log j)

= m�1

mX
j=l

dj(�)� 1 +O(m��0

)

for some �0 > 0 when � > 0 is chosen small enough. Hence for large m

em(�) = m�1

mX
j=l

(
m

ej
)�0�� � 1 +O(m��0

)

=
e���0

�� �0 + 1
� 1 +O(m��0

) � cj�� �0j2 +O(m��0

) � c(log n)�2s=2

using the inequality ey � (1 + y) � cy2 for y � �1+ �, c > 0, and j�0 � �j � (logn)�s. This proves

(5.20) in case i = 1.

Case b). Let � 2 F2. Then 1� � � �0 � � � 1 + � Then

m�1

mX
j=l

dj(�) � C�1m�1

mX
j=l

(j=m)���0 = C�1m�1

mX
j=l

(m=j)�0��

� C�1m�1

mX
j=l

(m=j)1�� � (C�)�1:

Choosing � > 0 small, (5.25) and assumption l � n� imply (5.20) for i = 2.

Case c). Let � 2 F3. Then �0 � � � 1 + �, and thus

m�1

mX
j=l

dj(�) � C�1m�1

mX
j=l

(j=m)���0 � C�1(m=l)�0���1;

which together with (5.25) and assumption l � n� imply (5.20) for i = 3.

To prove (5.22), set

�i(�) = p�1
i;�sm(�) = m�1

mX
j=l

p�1
i;�dj(�)�

�0
`j (I(�`j)�EI(�`j)); i = 1; 2; 3:

By Lemma 7.3,

Ej�i(�)� �i(�
0)j2k � CDm(�; �

0)k; Ej�i(�)j2k � CDm(�)
k ; (5.28)
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where

Dm(�; �
0) = m�2

mX
j=l

jp�1
i;�dj(�) � p�1

i;�0dj(�
0)j2; Dm(�) = m�2

mX
j=l

jp�1
i;�dj(�)j2:

We show that

Dm(�; �
0) � j�� �0j2h; (5.29)

Dm(�) � h; (5.30)

uniformly in �; �0 2 Fi; i = 1; 2; 3 with some h = cn�
 where 
 > 0, c > 0 do not depend on m.

Then from (5.31) of Lemma 5.9 by (5.28)-(5.30) it follows that

Efsup
t2Fi

j�i(t)j2kg � B0h
k = O(n�k
) = O(n�p);

choosing k such that k
 > p to prove (5.22).

We prove �rst (5.29). Let �; �0 2 Fi, i = 1; 2: Setting hj = je�em we can write dj(�) = h���0j :

By the mean value theorem,

jdj(�)� dj(�
0)j = jh���0j � h�

0
��0

j j � Cj log(hj)jh����0
j j�� �0j;

where �� 2 [�; �0] � Fi. By (5.26) hj = C(j=m)(1 +O(m�1=2)) and j loghj j � C logn; uniformly in

l � j � m. If �; �0 2 F1 then

jhj j����0 � C(m=j)�0��� � C(m=j)1��;

and since p1;� = c(log n)�2k;

Dm(�; �
0) � C(log n)4k+2m�2

mX
j=l

(m=j)2(1��)j�� �0j2 � Cm��j�� �0j2:

If �; �0 2 F2 then jhj j����0 � C(m=j)1+� and, since l � n�, ps;� = c,

Dm(�; �
0) � C(logn)2m�2

mX
j=l

(m=j)2(1+�)j�� �0j2 � Cm��=2j�� �0j2

when � is small enough.

If �; �0 2 F3 then

p�1
3;�dj(�) = C(m=l)(

eeml
jm

)�0�� = (m=l)(
l

ej
(1 + o(1)))�0��;

so that

jp�1
3;�dj(�) � p�1

3;�0dj(�
0)j � C(m=l)(log(

eeml
jm

))(
eeml
jm

)�0���j�� �0j

� C(m=l)(logm)(l=j)�0���j�� �0j:
Since �� 2 F3 implies �0 � �� � 1 + �, we obtain

Dm(�; �
0) � Cj�� �0j2l�2 log2m

mX
j=l

(l=j)2(1+�) � Cj� � �0j2l�1 log2m � Cn��=2j�� �0j2

since l � n�. This proves (5.29). The proof of (5.30) in cases i = 1; 2; 3 is similar.

The following lemma is a modi�ed version of Theorem 19 of Ibragimov and Has0minskii (1981,

p. 372) which follows by the same argument.
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Lemma 5.9 Let the random process �(t) be de�ned and continuous with probability 1 on the closed

set F . Assume that there exist integers m � r � 2 and a number H such that for all t; s 2 F

Ej�(t)� �(s)jm � hjt� sjr; Ej�(t)jm � h:

Then

Efsup
t2F

j�(t)jmg � B0h; (5.31)

where B0 depends on m; r and does not depend on �.

6 Second order expansions.

Since by Lemma 5.6 Um = �Bm + Vm +�1+�
m �m, the expansion for Um requires one for Vm (4.8).

This in turn requires one for Z = (Z1; Z2)
0, where Zi are given in (4.6) and de�ned with ` = 3 in case

of tapering and ` = 1 in case of no tapering. We assume in this section that (4.4) and Assumption

m� are satis�ed. We shall derive the expansion of Vm in terms of e�m(� �m).

We shall approximate the distribution function P (Z � x); x = (x1; x2) 2 R2, by

F (x) =

Z
y�x

�(y : 
)K(y)dy; (6.1)

where

�(y : 
) = (2�)�1j
j�1=2 exp(�1

2
y0
�1y); y 2 R2;

is the density of a zero-mean bivariate Gaussian vector with covariance matrix


 =

�
e1+1 e1+2

e2+1 e2+2

�
=

�
1 � 2

�2 9

�
;

where the elements of 
 are de�ned by (7.5) and related to Z1; Z2 by

E[ZpZv] = ep+v + 2(m=n)�e(p+ v; `; �) + o(�m) (6.2)

(see Lemma 7.5). The polynomial K(y) is given by

K(y) = 1 + (
m

n
)�

1

2!
P (2)(y) +m�1=2 1

3!
P (3)(y); (6.3)

where P (2)(y), P (3)(y) are polynomials de�ned by

P (2)(y) = 2

2X
i;j=1

e(i+ j; `; �)Hij(y); P (3)(y) = 2

2X
i;j;k=1

ei+j+kHijk(y);

Hij(y) = �(y : 
)�1 @2

@yi@yj
�(y : 
); Hijk(y) = ��(y : 
)�1 @3

@yi@yj@yk
�(y : 
); i; j; k = 1; 2:

Theorem 6.1 Suppose that (4.4) and Assumptions �; f; l;m� hold. Then

sup
B

jP (Z 2 B)� F (B)j = 4

3
sup
B

F ((@B)2�) + o(e�m); (6.4)

for any � = m�1�� (0 � � < 1=2), where supB is taken over all Borel sets B in R2, F (B) =
R
B
�(y :


)K(y)dy and (@B)� is � neighbourhood of B. In particular,

sup
x2R2

jP (Z � x)� F (x)j = o(e�m): (6.5)
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Proof. Set

F �(B) =

Z
B

�(y : 
)Km(y)dy; (6.6)

where

Km(y) = 1 +
1

2!
P (2)
m (y) +m�1=2 1

3!
P (3)(y); P (2)

m (y) =

2X
i;j=1

(E[ZiZj ]� ei+j)Hij(y):

We show below that

sup
B

jP (Z 2 B)� F �(B)j = (4=3) sup
B

F ((@B)2�) + o(e�m): (6.7)

By (6.2) it follows that

P (2)
m (y) = (m=n)�P (2)(y) + o(�m)jjyjj2;

where �m = max((m=n)�;m�1=2) � e�m: Therefore

sup
B

jF �(B)� F (B)j = o(e�m) (6.8)

and (6.4) follows from (6.8), (6.7).

When supB is taken over the sets B = fz : z � xg, x 2 R2, (6.5) follows from (6.4), noting that

supB F ((@B)2�) = o(�m):

To prove (6.7) we obtain �rst an asymptotic expansion for the characteristic function

�(t) = �(t1; t2) = exp(itZ) t = (t1; t2); t1; t2 � 0:

Set Q = tZ = t1Z1 + t2Z2: We shall show that

log �(t) =
i2

2!
Cum2(Q) +

i3

3!
Cum3(Q) +O(Cum4(Q)); (6.9)

where Cumj(Q) denotes the j th cumulant of Q. Since

tZ = t1Z1 + t2Z2 = m�1=2

mX
j=l

(t1�j + t2�
2
j )�

�0
`j (I(�`j)�EI(�`j))

we can write tZ = X 0BnX � E[X 0BnX ] where X = (X1; : : : ; Xn) and Bn = (bi;j)i;j=1;:::;n is a

symmetric matrix de�ned by

m�1=2

mX
j=l

(t1�j + t2�
2
j )�

�0
`j I(�`j) = X 0BnX:

Then (see (3.2.36) of Taniguchi (1991)) �(t) = jI�2iSj�1=2 exp(�i T r(S)); where S = R
1=2
n BnR

1=2
n ,

Rn = (r(i� j))i;j=1;:::;n being the covariance matrix of X , with r(t) = Cov(Xt; X0).

Since S is symmetric, it has real eigenvalues, denoted �j ; j = 1; : : : ; n. Therefore as in (3.2.36)

of Taniguchi (1991) we can write

log �(t) = �(1=2)
nX

j=1

log(1� 2i�j)� i

nX
j=1

�j :
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Using Lemma 8.1 of Bhattacharya and Rao (1976, p.57), we get

log(1� ih) = �ih+ h2

2
+
ih3

3
+ (ih)4

Z 1

0

(1� v)3

(1� ivh)4
dv

where ���Z 1

0

(1� v)3

(1� ivh)4
dv
��� � Z 1

0

1

(j1 + jvhj2)2 dv �
Z 1

0

1dv = 1:

Thus

log �(t) =

nX
j=1

i2�2j +
4

3

nX
j=1

i3�3j +O(

nX
j=1

�4j ) = i2Tr(S2) +
4

3
i3Tr(S3) +O(Tr(S4)): (6.10)

Since

Cum2(Q) = 2Tr([BnRn]
2); Cum3(Q) = 8Tr([BnRn]

3); Cum4(Q) = 48Tr([BnRn]
4) (6.11)

(6.10) implies (6.9). Note now that

Cum2(Q) =

2X
p;v=1

tptvE[ZpZv] = t0
t+ p(2)m (t);

by (6.2), where

p(2)m (t) =

2X
p;v=1

tptv(E[ZpZv]� ep+v):

Since 
 is positive de�nite, such that t0
t � jjtjj2=4, in view of (6.2)

jp(2)m (t)j � C�mjjtjj2;

so it follows that for large enough m

V ar(Q) = Cum2(Q) � jjtjj2=8: (6.12)

By Lemma 7.5,

Cum3(Q) =

2X
i;j;k=1

E[ZiZjZk]titjtk = m�1=2p(3)(t) +O(e�2
m)jjtjj3

where

p(3)(t) = 2

2X
i;j;k=1

ei+j+ktitjtk:

Finally, since EQ = 0,

Cum4(Q) = EQ4 � 3(EQ2)2 = O(e�2
mjjtjj4); (6.13)

using Lemma 7.5. Hence by (6.9),

log �(t) = �1

2
t0
t+

p
(2)
m (it)

2!
+
m�1=2p(3)(it)

3!
+ O(e�2

mjjtjj4+) (6.14)

27



where jjtjj+ = max(jjtjj; 1). Set

��(t) = exp(�1

2
t0
t)

�
1 +

p
(2)
m (it)

2!
+m�1=2 p

(3)(it)

3!

�
;

which corresponds to the Fourier transform of the measure F � in R2 given by (6.6) (see e.g. Taniguchi

(1991), page 14). (6.7) now follows from Lemma 6.1 below using the same argument as in the proof

of Lemma 3.2.8 in Taniguchi (1991).

Lemma 6.1 corresponds to Lemmas 3.2.5 and 3.2.6 of Taniguchi (1991).

Lemma 6.1 There exists � > 0 such that, as n!1, for all t satisfying jjtjj � � e��1
m ,

j�(t)� ��(t)j � m�1 exp(�ajjtjj2)P (t); (6.15)

where a > 0 and P (t) is a polynomial, and for all jjtjj > � e��1
m

j�(t)j � exp(�a1m�); (6.16)

where a1 > 0, � > 0.

Proof. By (6.14), log �(t) = � 1
2
t0
t+ k(t); where

jk(t)j � C(e�mjjtjj3+ + e�2
mjjtjj4+) � jjtjj2+=16 (6.17)

for jjtjj � � e��1
m where � > 0 is chosen su�ciently small.

Using (6.14) and the inequality jez � 1� zj � 1
2
jzj2ejzj; we see that

j�(t) � ��(t)j = exp(�1

2
t0
t)

���exp(k(t))� f1 + k(t) +O(e�2
mjjtjj4+)g

���
� C exp(�1

8
jjtjj2) exp(jk(t)j)(jk(t)j2 +O(e�2

mjjtjj4+))

� C exp(�1

8
jjtjj2) exp(jjtjj2=16)jjtjj4+:

This proves (6.15). To show (6.16) note that

j�(t)j �
nY

j=1

(1 + 4�2j )
�1=4:

By the inequality log(1 + x) � x=(1 + x); x > 0; we get

log j�(t)j � �1

4

nX
j=1

log(1 + 4�2j ) � �1

4

nX
j=1

4�2j

1 + 4�2j
� � 1

4(1 + �2
�
)

nX
j=1

�2j = � Tr(S2)

4(1 + �2
�
)
;

where �2
�
= maxj �

2
j . Note that

�2
�
� [Tr(S4)]1=2 = (Cum4(Q)=48)

1=2 � C e�mjjtjj2+
by (6.11) and (6.13). The assumption jjtjj � � e��1

m > 1 implies that

(1 + �2
�
)�1 � (2�2

�
)�1 � 1

C e�mjjtjj2+
:
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For large m, by (6.12), Tr(S2) = V ar(Q)=2 � jjtjj2=16: Thus, since e��1
m � m� for some � > 0,

log j�(t)j � �C�1(e�mjjtjj2)�1jjtjj2=16 = �C�1m�=16;

to prove (6.16).

Lemma 6.2 Let (4.4), Assumptions �; f; l;m� hold. Then, with Vm given by (4.8),

sup
y2R

���P (Vm � y)� �(y)�m�1=2�(y)p(y)
��� = o(e�m)

where p(y) is given by (2.14).

Proof. We shall derive the second order expansion

P (Vm � y) = �(y)�m�1=2�(y)ep(y) + o(e�m) (6.18)

uniformly in y 2 R where ep(y) = a1 + a2
y

2!
+ a3

y2 � 1

3!
(6.19)

and the coe�cients a1; a2; a3 are de�ned (c.f. (2.1.16), p. 15 of Taniguchi (1991)) by

Cumj(Vm) = 1fj=2g +m�1=2aj + o(e�m); j = 1; 2; 3: (6.20)

In fact we shall show that (6.20) holds with �m(� e�m) instead of e�m. We �rst show that

a1 = �1; a2 = 0; a3 = �2: (6.21)

Write Vm = �P +m�1=2Q+R, where P = Z1(2�ES2); Q = Z1Z2 + Z2
1 ; R = (2Z1 + Z2)ES1:

Since EP = ER = 0 and by (7.39), (7.38), EQ = EZ1Z2 +EZ2
1 = �1 + o(1) we obtain

Cum1(Vm) � EVm = m�1=2EQ = �m�1=2 + o(m�1=2) (6.22)

and therefore a1 = �1. Now, by (6.22),

Cum2(Vm) = E(Vm �EVm)
2 = EV 2

m + o(m�1=2)

= EP 2 � 2EP (m�1=2Q+R) +E(m�1=2Q+R)2 + o(m�1=2): (6.23)

We show that

EP 2 = 1+ o(�m); EPQ = O(�m); EPR = o(�m) (6.24)

and

Ejm�1=2Q+Rji = O(�i
m) i = 2; 3; 4 (6.25)

which with (6.23) implies

Cum2(Vm) = 1 + o(�m) (6.26)

and thus a2 = 0.

By Lemma 7.1,

ES1 = O(�m); ES2 = 1 + �(m=n)� + o(�m) (6.27)

where � = e(2; `; �), and (7.38) implies

EP 2 = EZ2
1(2�ES2)

2 = (1 + 2�(m=n)�)(1� �(m=n)�)2 + o(�m)
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= (1 + 2�(m=n)�)(1� 2�(m=n)�) + o(�m) = 1 + o(�m);

while from (6.27), (7.38) and (7.39) it follows that

EPQ = (2�ES2)(E[Z
2
1Z2] +EZ3

1 ) = (1 + o(1))O(�m) = O(�m);

and

EPR = (2�ES2)ES1(2EZ
2
1 +EZ1Z2) = (1 + o(1))O(�m)o(1) = o(�m):

Thus (6.24) holds. (6.25) follows using (6.27) and EjZj jk <1, shown in Lemma 7.4.

Next, from EV 3
m = Cum3(Vm) + 3Cum2(Vm)Cum1(Vm) + Cum1(Vm)

3, by (6.22) and (6.26) it

follows that

Cum3(Vm) = EV 3
m + 3m�1=2 + o(�m);

where

EV 3
m = E(�P + [m�1=2Q+R])3

= �EP 3 + 3EP 2(m�1=2Q+R)� 3EP (m�1=2Q+R)2 +E(m�1=2Q+R)3

= �EP 3 + 3EP 2(m�1=2Q+R) + o(�m);

in view of (6.25) and (6.24). From (6.27), (7.38) and (7.39) it follows that

EP 3 = EZ3
1 (2�ES2)

3 = (�4m�1=2 + o(�m))(1 + o(1)) = �4m�1=2 + o(�m);

EP 2Q = (2�ES2)
2fEZ3

1Z2 +EZ4
1g = (1 + o(1))(�6 + 3 + o(1)) = �3 + o(1);

EP 2R = (2�ES2)
2ES1fEZ2

1Z2 + 2EZ3
1g = (1 + o(1))O(�m)fO(�m)g = o(�m)

which yields EV 3
m = �5m�1=2 + o(�m). Thus Cum3(Vm) = �2m�1=2 + o(�m) and a3 = �2:

It remains to establish the validity of the expansion (6.18). The proof is based on the expansion

for (Z1; Z2) of Lemma 6.2 and follows by a similar argument to in the proof of Lemma 3.2.9 of

Taniguchi (1991) or the proof of Bhattacharya and Ghosh (1978). Denote by

f(z1; z2) = (@2=@z1@z2)F (z1; z2) = �(z1; z2 : 
)K(z1; z2)

the density of (Z1; Z2)
0, where F is de�ned in (6.1) and K is de�ned in (6.3). Set By = fv(z1; z2) �

yg. Then by (6.4) of Theorem 6.1,

sup
y

jPfVm � yg � F (By)j = (4=3) sup
y

F ((@By)
�) + o(e�m);

where � = m�1�� for some 0 < � < 1=2: We will show that

F (By) =

Z
x�y

�(x)(1 + p(x))dx + o(e�m); (6.28)

F ((@By)
�) = o(e�m) (6.29)

uniformly in y, to prove (6.18). Setting

v(x1; x2) = �x1[(2�ES2)�ES1] +m�1=2x1x2 + x2ES1: (6.30)

and f�(x1; x2) = f(x1; x2 � x1), we can write Vm (4.8) as Vm = v(Z1; Z1 + Z2); and

F (By) =

Z
v(x1;x2)�y

f�(x1; x2)dx1dx2:
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Denote v = v(x1; x2). Then x1 = (�v+ x2ES1)D
�1 where D = (2�ES1 �ES2)�m�1=2x2. Since

jf�(x1; x2)j � C exp(�c(x21 + x22)) with some c > 0, then for any � > 0,

P (Vm � y) =

Z
v�y:jx1j;jx2j�m�

f�((�v + x2ES1)D
�1; x2)(�D�1)dvdx2 + o(e�m):

When jx1j; jx2j � m� , and � > 0 is small, Lemma 7.1 implies

D�1 = 1 + hm(x2) + o(e�m); hm(x2) = (e(1; `; �) + e(2; `; �))(m=n)� +m�1=2x2;

x1 = �v � vhm(x2) + e(1; `; �)x2(m=n)� + o(e�m)(jvj + jx2j) = �v + o(1): (6.31)

This and Taylor expansion imply

P (Vm � y) =

Z
v�y:jvj;jx2j�m��

f�(�v; x2) + (vhm(x2)� e(1; `; �)x2(m=n)�)
@

@v
f�(�v; x2)

�
dvdx2 + o(e�m);

and integrating out x2, we arrive at the second order expansion:

F (Vm � v) =

Z
v�y

�(v)Pm(v)dv + o(e�m);

where Pm(y), is quadratic in y. Comparing this expansion with (6.18) we conclude that Pm(x) �
1 � m�1=2ep(x); where ep (6.19), as already shown, has coe�cients (6.21), so that Pm(x) = 1 +

m�1=2(2 + x2)=3; to prove (6.28).

To show (6.29) note that

F ((@By)
�) =

Z
(@By)�:jxij�m�

f�(x1; x2)dx1dx2 + o(m�1=2)

for any � > 0. By (6.30), from y = v(x1; x2) we can solve for x2 = h(y; x1). Thus

F ((@By)
�) � C

Z
(@By)�:jxij�m�

dx1dx2 + o(m�1=2)

� C

Z
jx1j�m�

Z
x22[h(y;x1)��;h(y;x1)+�]

dx2dx1 + o(m�1=2) � C2�m� + o(m�1=2) = o(m�1=2)

when � = m�1�� and � > �:

Lemma 6.3 Let

V 0

m = Vm + e�1+�
m �m;

where Vm is given by (4.8), �m 2 X and 0 < � < 1. Then under the assumptions of Lemma 6.2,

sup
y2R

���P (V 0

m � y)� �(y)�m�1=2�(y)p(y)
��� = o(e�m): (6.32)

Proof. By Chibisov's Lemma 5.2 and Lemma 6.2,

P (V 0

m � y) = P (Vm � y) + o(e�m);

implying (6.32).

31



Lemma 6.4 Let the assumptions of Lemma 6.2 hold and V �

m = Vm � vmZ1 where Vm is as in

Lemma 6.2, and vm is a sequence of real numbers such that vm = o(m��) for some � > 0. Then as

n!1,

sup
y2R

���P (V �

m � y)��(y)� �(y)fm�1=2p(y)� vmyg
��� = o(e�m + vm): (6.33)

Proof. Similarly to the proof of relations (6.20) in Lemma 6.2, it can be shown that

Cum1(V
�

m) = �m�1=2 + o(�m); Cum2(V
�

m) = 1 + 2vm + o(�m + vm);

Cum3(V
�

m) = �2m�1=2 + o(�m + vm);

whence (6.33) follows using the same argument as in the proof of (6.18) of Lemma 6.2.

7 Technical Lemmas

The present section provides approximations for the

Sk;1 =
1

m

mX
j=1

�kj �
�0
j I(�`j); (7.1)

Sk;3 =
1

m

mX
j=l

�kj �
�0
3j Ih(�3j); (7.2)

and related quantities. Note that Sk;3 is Sk;m(�0) (3.7) and is relevant in case of tapering, but to

discuss the untapered estimate of �0 we need to study (7.1) also. Recall the de�nition (4.1) �m;l,

which likewise di�ers between tapering (synonymous with ` = 3 in our set-up) and no tapering

(synonymous with ` = 1).

Put

t(k; �) =

Z 1

0

(log x+ 1)kx�dx; k � 1; � � 0:

Lemma 7.1 Let Assumptions �; f; l;m� and (4.4) hold. Then as m!1, for ` = 1; 3,

ES1;` = (m=n)�e(1; `; �) + o((m=n)�) +O(m�1�m;l) (7.3)

and

ESk;` = ek + (m=n)�e(k; `; �) + o((m=n)� +m�1=2) k = 0; 2; 3; 4; : : : : (7.4)

where

ek = t(k; 0); e(k; `; �) =
c1

c0
(
`

2�
)�t(k; �); k = 0; 1; : : : : (7.5)

Remark 7.1 In Lemma 7.1, e0 = 1; e1 = 0; e2 = 1; e3 = �2; e4 = 9;

t(0; �) =
1

� + 1
; t(1; �) =

�

(� + 1)2
; t(2; �) =

�2 + 1

(� + 1)3
;

t(3; �) =
�3 + 3� � 2

(� + 1)4
; t(4; �) =

�4 + 6�2 � 8� + 9

(� + 1)5
:
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Proof of Lemma 7.1. We show that

ESk;` = ek + �
�
`mc1t(k; �) + o((m=n)�) +O(m�1�m;l(logm)k�1)

+O(m�1l logkm)1fk�2g; k = 0; 1; : : : (7.6)

which implies (7.3). (7.4) follows from (7.6) and Assumption l. To prove (7.6) note that (4.4) and

assumption (a) or Lemma 2.2 or Lemma 2.1 imply

E[��0j I(�j)] = 1 + (c1=c0)�
�
j + rj(1); (7.7)

E[��03j I(�3j)] = 1 + (c1=c0)�
�
3j + rj(3) (7.8)

where rj(1) = o((j=n)�) + O(j�2) (without tapering), and rj(3) = o((j=n)�) + O(j�1 log j) (with

tapering). Setting

tm(k; �) = m�1

mX
j=l

�kj (j=m)� ; Rm(k; `; �) = m�1

mX
j=l

�kj rj(`); (7.9)

we can write

ESk;` = tm(k; 0) + (c1=c0)�
�
`mtm(k; �) + Rm(k; `; �): (7.10)

Note that

tm(k; �) = t(k; �) +O(l logkm=m); k � 0; � � 0; (7.11)

and

Rm(k; `; �) = o((m=n)�) +O(m�1�m;l(logm)k�1); k � 0: (7.12)

(7.10)-(7.12) and tm(1; 0) = 0 imply (7.6).

To prove (7.11) note that
Pm

j=1 log j = m logm�m+O(logm) implies

�j = log(j=m) + 1 +O(l logm=m) (7.13)

and therefore

tm(k; �) = m�1

mX
j=l

(log(j=m) + 1)k(j=m)� +O(l logkm=m)

= t(k; �) + o(m�1=2); k � 0; � � 0

under Assumption l. To show (7.12) note that (7.13) and (7.11) imply

j�j j � C logm;

mX
j=l

j�kj j � m1=2(

mX
j=l

�2kj )1=2 � Cm; k � 1: (7.14)

Therefore

jRm(k; `; �)j � o((m=n)�)m�1

mX
j=l

j�kj j+ Cm�1 logkm

mX
j=l

jrj(`)j

= o((m=n)�) +O(m�1�m;l(logm)k�1); k � 1:
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Lemma 7.2 Let (4.5) and Assumption �; f 0;m� hold. Then

ES1;` = e(1; `; 2)(m=n)2 + d(1; `; 4)(m=n)4 + o((m=n)4 +m�1) +O(m�1�m;l); (7.15)

ESk;` = ek + e(k; `; 2)(m=n)2 + o((m=n)2 +m�1=2); k = 0; 2; 3; : : : (7.16)

where

d(k; `; �) = (c2=c0)(`=2�)
�t(k; �); k � 0: (7.17)

Proof. Similarly to (7.10), under (4.5) we get

ESk;` = tm(k; 0) + (c1=c0)�
2
`mtm(k; 2) + (c2=c0)�

4
`mtm(k; 4) +Rm(k; `; 4); k � 0: (7.18)

Since tm(1; 0) = 0 this and (7.11), (7.12) imply that

ES1;` = (c1=c0)�
2
`mt(k; 2) + (c2=c0)�

4
`mt(k; 4) + o((m=n)4) +O

�
(m=n)2l logm=m+m�1�m;l

�
where

(m=n)2l logm=m � (m=n)4= log2m+ (l log2m=m)2 = o((m=n)4 +m�1)

by Assumption l, and thus (7.15) holds. (7.16) repeats (7.4).

Lemma 7.3 Let Assumptions �; f; l;m� hold. For p = 1; :::; k, let

S(p)
m =

mX
j=l

a
(p)

j jv(`)(�`j)j2; p = 1; : : : ;m;

where (a
(p)
j )l=l;:::;m; p = 1; : : : ; k are real numbers, and v(`)(�`j) = vh(�3j) with tapering, v(`)(�`j) =

v(�j) without tapering, where v(�j); vh(�3j) are given in (2.8). Then for any k � 1 ,

jE
kY

p=1

[S(p)
m � ES(p)

m ]j � C

kY
p=1

jja(p)jj2; (7.19)

where jja(p)jj2 = fPm

j=l(a
(p)
j )2g1=2 and C <1 does not depend on m or a(p), but depends on k.

Proof. We have

�m := E

kY
p=1

[S(p)
m �ES(p)

m ] =

mX
j1;:::;jp=l

kY
p=1

a
(p)
jp
E

kY
p=1

[jv(`)(�`jp)j2 �Ejv(`)(�`jp)j2]:

We introduce the table

T =

0@ (1; 1) (1; 2)

: : : : : :

(k; 1) (k; 2)

1A ; (7.20)

and de�ne �p;1(j) = v(`)(�`j), �p;2(j) = v(`)(�`j), for p = 1; : : : ; k: We denote by 
 = (V1; : : : ; Vk)

partitions of T into nonintersecting sets Vs of the form Vs = f(p; v); (p0; v0)g (p 6= p0); and write

Vs 2 V0 if v 6= v0 and Vs 2 V1 if v = v0: Denote by � = f
g the set of all partitions 
 and by �0 the
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set of 
 = (V1; : : : ; Vk) such that Vs 2 V0, s = 1; : : : ; k. By Gaussianity, we can write, using diagram

formalism (see e.g. Brillinger (1975), p.21),

E�m =
X

2�

Q
 (7.21)

where

Q
 =

mX
j1;:::;jk=l

(

kY
p=1

a
(p)

jp
)qV1 : : : qVk ; (7.22)

where, for Vs = ((p; v); (p0; v0)), qVs � qVs(jp; jp0) = E[�p;v(jp)�p0;v0(jp0 )]: Set

q�Vs � ja(p)jp
a
(p0)
jp0
j1=2jqVs(jp; jp0)j:

Clearly

jQ
 j �
mX

j1;:::;jk=l

q�V1 : : : q
�

Vk
: (7.23)

Each argument j1; : : : ; jk in (7.23) belongs to exactly two functions q�Vs . Therefore, by the Cauchy

inequality, we get

jQ
 j �
mX

j1;:::;jk=l

q�V1 : : : q
�

Vk
� jjq�V1 jj2 : : : jjq�Vk jj2 (7.24)

where

jjq�Vs jj2 = (

mX
j;k=l

fq�Vs(j; k)g2)1=2; s = 1; : : : ; k:

We now show that

jjq�Vs jj2 � C(jja(p)jj2jja(p
0)jj2)1=2 (7.25)

which together with (7.24), (7.21) implies (7.19).

We estimate

jjq�Vs jj22 �
mX
j=l

ja(p)j a
(p0)
j j jqVs(j; j)j2 +

X
l�k;j�m:k 6=j

ja(p)k a
(p0)
j j jqVs(j; k)j2

=: jjq�Vs;1jj22 + jjq�Vs;2jj22: (7.26)

From (a), (b) of Lemma 2.2 or Lemma 2.1 it follows that jqVs(j; j)j � C. Thus

jjq�Vs;1jj22 � C

mX
j=l

ja(p)j a
(p0)
j j � Cjja(p)jj2jja(p

0)jj2: (7.27)

With tapering, from (c) and (d) of Lemma 2.2 it follows that

jqVs(k; j)j � C((m=n)� jj � kj�2 + (min(k; j))�1jj � kj)�3=2); l � k 6= j � m:

Therefore

jjq�Vs;2jj22 � C
� X
l�k;j�m:k 6=j

ja(p)j a
(p0)

k j
�
(m=n)2� jj � kj�4 + (min(k; j))�2jj � kj)�3

��
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� C
�
(m=n)2�jja(p)jj2jja(p

0)jj2 + max
l�j;k�m

ja(p)j a
(p0)

k jl�1
�

(7.28)

� Cjja(p)jj2jja(p
0)jj2:

Without tapering, by (c) and (d) of Lemma 2.1,

jqVs(k; j)j � Ck�j�j=2jjj�1+j�j=2 log j; 1 � k < j � m

and

jjq�Vs;2jj22 � C
X

l�k;j�m:k 6=j

ja(p)j a
(p0)

k jjqVs(k; j)j2

� Cjja(p)jj2jja(p
0)jj2(

X
l�k<j�m

jqVs(k; j)j4)1=2 � Cjja(p)jj2jja(p
0)jj2: (7.29)

The proof of (7.29) implies also the relation

jjq�Vs;2jj22 � max
l�j;k�m

ja(p)j a
(p0)

k j
X

l�k<j�m

k�j�jjjj�2+j�j log2 j � C max
l�j;k�m

ja(p)j a
(p0)

k j log3m; (7.30)

which we shall use in the proof of Lemma 7.5 below. (7.26)-(7.30) imply (7.25).

Lemma 7.4 Let Assumptions �; f; l;m� hold and Zq is given by (4.6) with ` = 3 under tapering

and ` = 1 without tapering. Then for any �xed q � 0 and k � 1,

EjZq j2k <1

uniformly in m.

Proof. Applying Lemma 7.3 to (4.6) with a
(q)

j = m�1=2�qj , p = 1; : : : ; 2k we get

EjZq j2k � C
�
m�1

mX
j=l

�
2q
j

�k
� C

in view of (7.11).

Lemma 7.5 Let (4.4) and Assumptions �; f; l;m� hold. Then for any 1 � q1; q2; q3; q4 � 2

E[Zq1Zq2 ] = eq1+q2 + e(q1 + q2; `; �)(m=n)� + o(�m); (7.31)

E[Zq1Zq2Zq3 ] = 2m�1=2eq1+q2+q3 +O(e�2
m); (7.32)

Cum(Zq1 ; Zq2 ; Zq3 ; Zq4) = O(e�2
m); (7.33)

E[Zq1Zq2Zq3Zq4 ] = eq1+q2eq3+q4 + eq1+q3eq2+q4

+eq1+q4eq2+q3 + o(�m); (7.34)

where �m; e�m are given by (4.2).
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Proof. Note �rst that Cum(Zq1 ; Zq2) = E[Zq1Zq2 ] and Cum(Zq1 ; Zq2 ; Zq3) = E[Zq1Zq2Zq3 ]: Let

a
(p)
j = m�1=2�

qp
j , p = 1; : : : ; k: Then Zqp = S

(p)
m �ES

(p)
m . From (7.14) and (7.11)

max
l�j�m

ja(p)j j � Cm�1=2 log2m; jja(p)jj2 � C; p = 1; : : : ; k: (7.35)

By diagram formalism (see e.g. Brillinger (1975), p.21), we can write

ck := Cum(Zq1 ; :::; Zqk ) =
X

2�c

Q


where �c � � denotes a subset of connected partitions 
 = (V1; :::; Vk) of the table (7.20), T , and

Q
 is given in (7.22). We show that

ck =
X

2�c

0

Q0


 +O(e�2
m); (7.36)

where �c0 � �0 denotes the subset of connected partitions and

Q0


 =

mX
j1;:::;jk=l

(

kY
p=1

a
(p)

jp
)q0V1 : : : q

0

Vk

with q0Vs(jp1 ; jp2) = 1fjp1=jp2gqVs(jp1 ; jp2) for Vs = ((p1; v2); (p2; v2)).

The derivations (7.26)-(7.30) imply that for any connected partition 
 2 �c, Q
 = Q0


+r
 ; where

jr
 j �
kX

p;v=1:p6=v

jjq�Vp;2jj2jjq�Vv ;2jj2
kY

j=1:j 6=p;v

jjq�Vp jj2:

By (7.25), jjq�Vp jj2 � C: With tapering, (7.28) and (7.35) imply

jjq�Vp;2jj22 � C((m=n)2� +m�1 log4m=l�1) � C e�2
m:

Without tapering, from (7.30) it follows that

jjq�Vp;2jj22 � C((m=n)2� +m�1 log7m) � C e�2
m:

Thus r
 = O(e�2
m): Then (7.36) follows if we show that Q0


 = O(e�2
m) for 
 2 �cn�c0.

In that case 
 has at least two di�erent Vp; Vs 2 V1. By the Cauchy inequality,

jQ0


 j � jjq�Vp;1jj2jjq�Vs;1jj2
kY

j=1:j 6=p;l

jjq�Vp jj2 = O(e�2
m)

since jjq�Vp jj2 � C; j = 1; : : : ; k and, for Vp 2 V1, jjq�Vp;1jj22 = O(e�2
m): Indeed, if Vs 2 V1 then

jjq�Vs;1jj22 = max
1�i;j�m

ja(p)i a
(p0)
j j

mX
j=l

jqVs(j; j)j � Cm�1(logm)4
mX
j=l

jqVs(j; j)j:

With tapering, from (b) of Lemma 2.2 it follows that jqVs(j; j)j � Cj�2, so jjq�Vs;1jj22 � Cm�1 log4m=l�1 �
C e�2

m:
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Without tapering, by (b) of Lemma 2.1 jqVs(j; j)j � Cj�1 log j, and jjq�Vs;1jj22 � Cm�1 log6m �
C e�2

m: This proves (7.36).

We derive now (7.31)-(7.33) using (7:36).

Let k = 2. Then �c0 consists of one 
 = (V1; V2) such that V1 = ((1; 1); (2; 2)); V2 = ((1; 2); (2; 1)).

By (a) Lemma 2.2 or Lemma 2.1, under (4.4),

qV1;1(j; j) = 1 + (c1=c0)�
�
`j + rj(`); (7.37)

where rj(`) are as in the proof of Lemma 7.1. Hence

Q0


 = m�1

mX
j=l

�
q1+q2
j (qV1;1(j; j))

2 = m�1

mX
j=l

�
q1+q2
j [1 + 2(c1=c0)�

�

`j ] + o(�m)

= eq1+q2 + e(q1 + q2; `; �)(m=n)� + o(�m)

by (7.11). This and (7.36) imply (7.31), since e�2
m = o(�m).

Let k = 3. Then �c0 consists of two partitions


 = (V1; V2; V3); V1 = ((1; 1); (2; 2)); V2 = ((2; 1); (3; 2)); V3 = ((3; 1); (1; 2))

and


 = (V1; V2; V3); V1 = ((1; 1); (3; 2)); V2 = ((2; 1); (1; 2)); V3 = ((3; 1); (2; 2)):

For each of these 
, by (7.37), (7.11),

Q0


 = m�3=2

mX
j=1

�
q1+q2+q3
j (qV1;1(j; j))

3 = m�3=2

mX
j=1

�
q1+q2+q3
j (1 + (c1=c0)�

�

`j + rj(`))
3

= m�3=2

mX
j=1

�
q1+q2+q3
j +O((m=n)2� +m�1) = eq1+q2+q3 +O(e�2

m):

This and (7.36) proves (7.32).

Let k = 4. Then

Q0


 � Cm�4=2

mX
j=1

�
q1+q2+q3+q4
j (qV1;1(j; j))

4 � Cm�1 = O(e�2
m)

by (7.14) since jqV1;1(j; j)j � C.

Finally, by Isserlis' formula

E[Zq1 : : : Zq4 ] = E[Zq1Zq2 ]E[Zq3Zq4 ] + E[Zq1Zq3 ]E[Zq2Zq4 ]

+ E[Zq1Zq4 ]E[Zq2Zq3 ] + Cum(Zq1 ; Zq2 ; Zq3 ; Zq4);

and (7.31), (7.33) imply (7.34).

From Lemma 7.5 and Remark 7.1 we have:

Corollary 7.1 Let (4.4) and Assumptions �; f; l;m� hold. Then as n!1

EZ2
1 = 1 + 2e(2; `; �)(

m

n
)� + o(�m); EZ3

1 = �4m�1=2 + o(�m); EZ2
1Z2 = 9m�1=2 + o(�m);

(7.38)

EZ1Z2 ! �2; EZ3
1Z2 ! �6; EZ4

1 ! 3: (7.39)
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