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Abstract 
 
 

This paper examines a nonparametric test for Granger-causality for a vector 
covariance stationary linear process under, possibly, the presence of long-range 
dependence. We show that the test converges to a non-distribution free multivariate 
Gaussian process, say vec (B(µ)) indexed by µ Є [0,1]. Because, contrary to the 
scalar situation, it is not possible, except in very specific cases, to find a time 
transformation g(µ) such that vec (B(g(µ))) is a vector with independent Brownian 
motion components, it implies that inferences based on vec (B(µ)) will be difficult to 
implement. To circumvent this problem, we propose  bootstrapping the test by two 
alternative, although similar, algorithms showing their validity and consistency. 
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1. INTRODUCTION

In economics and other areas of social sciences, one subject routinely invoked is the
concept of causality. This is primarily due to the implication and interpretation
that such a concept has on the data. Tests for causality are often performed in
the context of unrestricted vector autoregressive (V AR (P )) models with P a finite
known positive number. See among others, Granger (1969) or Geweke (1982) when
the data is short-range dependent, or for variables showing stochastic-trend behaviour,
see Sims et al. (1990) or Toda and Phillips (1993). Some extensions are in Hosoya
(1991) who analyzes causality for stationary short-range dependent processes which
do not necessarily have a V AR representation or Lütkepohl and Poskitt (1996), and
references therein, who allow for a V AR (∞) model.
More recently, Hidalgo (2000) has proposed and examined a test for causality

which, unlike the aforementioned papers, covers long-range dependence which has
attracted immense attention in recent years. The main attributes of his test are;
1) it is nonparametric, 2) it is consistent, and 3) it has power against T−1/2 local
alternatives. Thus, he extended previous work in two main directions. First, by
allowing a (general) covariance stationary linear process and second, since the test is
nonparametric, he avoided the possible danger that a bad specification of the model
may induce on the outcome of the test.
Now we briefly describe and discuss the main idea of the test. Consider the

p = p1 + p2 dimensional covariance stationary vector wt = (y0t, x0t)
0 admitting the

V AR (∞) representation

A (L)wt =
∞X
j=0

Ajwt−j = ε
(1)
t , t = 1, 2, ..., T , (1)

where ε(1)t is a p−dimensional sequence of random variables and A0 is the identity
matrix. The objective of the paper is to test the null hypothesis H0: yt ; xt (yt does
not cause xt), against the alternative hypothesis H1 : yt ⇒ xt (yt causes xt).
Following Sims (1972) or Hosoya (1977), a test for H0 is equivalent to testing

whether the p1 × p2 matrices c (j) are simultaneously equal to zero for all j < 0 in

yt =
∞X

j=−∞
c (j)xt−j + ut, (2)

where, by construction, E [ut |xs,−∞ < s <∞ ] = 0. Alternatively, we can write the
null hypothesis H0 as

vec

 0X
j=−∞

c (j − 1) cos (πjλ)
 = 0 ∀λ ∈ [0, 1] ,

or equivalently as

S∗ (µ) = Re

Z µ

0

vec

 0X
j=−∞

c (j − 1) e−iπjλ
 dλ

 = 0 ∀µ ∈ [0, 1] ,

where Re (a) denotes the real part of a complex number (or vector) a. So, we may
finally write the hypothesis testing as

H0 : S
∗ (µ) = 0 ∀µ ∈ [0, 1] against H1 : S

∗ (µ) 6= 0 in ∆ ⊂ [0, 1] , (3)



where ∆ has Lebesgue measure greater than zero.
Given estimates of c (j), for example bc (j) in (12), and using Riemann’s discrete

approximation of integrals by sums, S∗ (µ) can be estimated by

ST (µ) = Re

 1

M

[Mµ]X
p=1

vec

 0X
j=2−M

bc (j − 1) e−ijλ2mp

 (4)

where λ� = 2π�/T , for integer �, M = [T/4m] with m = m (T ) a number which
increases slowly with T , that is m−1 +mT−1 → 0 and [z] denoting the integer part
of the number z. The test can thus be based on whether or not ST (µ) is significantly
different than zero for all µ ∈ [0, 1] by the implementation of a functional of ST (µ),
for example a Kolmogorov-Smirnov test.

More specifically, see Theorem 3.2 below, we have that T 1/2ST (µ)
weakly
=⇒ vec

³ eB (µ)´,
where eB (µ) is a p1 × p2 Gaussian process with covariance structure given by

K (µ1, µ2) =
1

4π

Z πmin(µ1,µ2)

0

¡
f−1xx (−λ)⊗ fuu (λ)

¢
dλ. (5)

However, as it can straightforwardly be observed from (5), the components of the

p1p2−dimensional Gaussian process vec
³ eB (µ)´ are not generally independent. This

observation has some consequences regarding the implementation of the test. In
particular, it will imply that it is not possible, except in two very specific situa-
tions, to find a time transformation, say g (µ), for which vec

³ eB (g (µ))´ becomes a
p1p2−dimensional vector with independent Brownian motion components. The two
cases under which it is possible to find g (µ) are a) K (µ1, µ2) is a diagonal matrix
and b) K (µ1, µ2) = min (µ1, µ2)Ω for some positive definite matrix Ω.
The above comments indicate that the results of Theorem 3.2 below may generally

be of limited use in order to implement the test for H0 when p1 and/or p2 are greater
than one. Although it may be possible to simulate the limiting distribution, this
approach can be very demanding and in addition it will require the computation of
new critical values everytime a new model/data is under consideration. Therefore, the
main objective of the paper is to examine how to circumvent this possible drawback
of the test by using a bootstrap algorithm to test H0. This will justify and permit us
to obtain estimates of the critical values of any continuous functional of T 1/2ST (µ)
employed to test H0.
We finish this section giving the motivation of the bootstrap, whose details are

given in Section 4 below, and why we should expect its validity. Suppose for simplicity
that p1 = p2 = 1 and that the model (2) is

yt =

qX
�=−r

c (�)xt−� + ut, t = 1, ..., T , (6)

where both q and r are finite and known a priory. A closer inspection of (6) suggests
that the model can be written as

wy (λj) =

qX
�=−r

c (�)wx,� (λj) +wu (λj) j = 1, ..., T − 1, (7)
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where

wa (λ) =
1

(2πT )1/2

TX
t=1

ate
itλ

is the discrete Fourier transform of (a1, ..., aT )
0 and

wx,� (λ) =
1

(2πT )1/2

TX
t=1

xt−�eitλ,

for integer �, is the discrete Fourier transform of (x1−�, ..., xT−�)
0.

It is well known, see Hannan (1970) or Brillinger (1981) among others, that wu (λj)
is asymptotically uncorrelated although, possibly, heteroscedastic. So, looking at (7),
vu (λj) = wu (λj) / |wu (λj)| can be regarded as a sequence of zero mean and asymp-
totically independent homoscedastic random variables. It is worth noting that it is
precisely this observation about the properties of wu (λj), which motivated Hannan’s
(1963) (semiparametric) generalized least squares estimator of the parameters c (�)
for the model (6) and consequently extended to other useful models in econometrics
by Hannan (1965) and Hannan and Terrell (1973) and more recently by Robinson
(1991), who also allowed for a data-driven bandwidth. So because the properties
of vu (λj), it appears that Efron’s (1979) resampling scheme should be valid in our
framework as it happens to be the case. One consequence of the previous arguments
is that even though the errors of the model may be serially correlated with unknown
structure, possibly long-range, we are able to avoid the choice of the block length of
Künsch’s (1989) Moving Block Bootstrap (MBB) which was introduced to handle
data with unknown dependence structure or Politis and Romano’s (1994) subsam-
pling algorithm. The former was accomplished by writing the model in the frequency
domain and then using Efron’s (1979) original bootstrap algorithm to the discrete
Fourier transform of the errors. Finally, it should be mentioned that the structure
of the model given in (2) or (7) has some resemblance to Mammen’s (1993) model in
the sense that as there, we allow the number of regressors in the model to grow to
infinity with the sample size.
The remainder of the paper is as follows. Section 2 describes the estimation

technique for the matrices c (j). In Section 3, we delimit our statistical framework
and present the asymptotic behaviour of T 1/2ST (µ). In Section 4 we present the
bootstrap algorithms and we examine their asymptotic properties. Finally, Section 5
gives the proofs of our results in Sections 3 and 4.

2. THE ESTIMATION OF c (j)

In this section we describe the estimation of the matrices c (j) in (2) and discuss why it
is more desirable than other approaches, such as least squares estimates (LSE), in the
presence of long-range dependence. In the frequency domain, the lag structure given
in (2) is described by the frequency response function C (λ) =

P∞
j=−∞ c (j) e−ijλ

which equals C (λ) = fyx (λ) f
−1
xx (λ), where fyx (λ) and fxx (λ) are the indicated

elements of the spectral density matrix, fww (λ), of wt defined from the relationship

E
¡
(w1 −Ew1) (wj+1 −Ew1)

0¢ = Z π

−π
fww (λ) e

−ijλdλ j = 0,±1,±2, .... (8)
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So, c (j) may be interpreted as the jth Fourier coefficient of C (λ), that is

c (j) =
1

2π

Z 2π

0

C (λ) eijλdλ. (9)

Due to the interpretation of c (j) in (9), Hannan (1963, 1967), see also Brillinger
(1981), proposed to estimate c (j) by the sample (discrete) analogue of (9),

c̆ (j) =
1

2M

2M−1X
p=0

bC2mpe
ijλ2mp , (10)

where bC2mp = bfyx,2mp
bf−1xx,2mp, and bfyx,2mp and bfxx,2mp are estimates of fyx,2mp and

fxx,2mp respectively given as the indicated elements of (11) below, and where hence-
forth we shall abbreviate g (λp) by gp for a generic function g (λ). The estimator c̆ (j)
in (10) was coined by Sims (1974) as the HI (Hannan’s inefficient) estimator.
Our estimator of fww is given by

bfww (λ) =
1

2m+ 1

mX
j=−m

Iww (λj + λ) , (11)

where Iww (λ) = (2πT )
−1 ³PT

t=1wte
itλ
´³PT

t=1wte
−itλ

´0
is the periodogram of {wt}

and where m is as defined in the Introduction.
When analyzing the HI estimator in (10), and similar to technical problems en-

countered in many other non/semi-parametric estimators, as bfxx (0) tries to estimate
fxx (0) which, see Condition C1 below, may be infinity, proceeding as in Hidalgo
(2000) we modify (10) by

bc (j) = 1

2M

2M−1X
p=1

0 bC2mpe
ijλ2mp , (12)

where
P2M−1

p=1

0
φ2mpe

ijλ2mp denotes
P2M−1

p=1 φ2mpe
ijλ2mp + φ2m. Intuitively, we have

replaced the estimator of C0 by that of C2m, that is bfyx,2m bf−1xx,2m.
The motivation of the estimator in (12) is threefold. First, the statistical properties

hold the same irrespective of the number of lags specified in (2), which have important
consequences when analyzing the properties of ST (µ) defined in (4). Second, since
there is no gain by exploiting the information on the covariance structure of the errors
ut, as Sims (1974) showed, the HI estimator becomes as efficient as the generalized
least squares (GLS) estimator. This motivates the LSE of c (j) given in Robinson
(1979), although under stronger assumptions than those we want to impose in this
paper.
Finally, the third motivation, which makes the estimate in (12) more appealing

when the data may exhibit long-range dependence, is as follows. Assume model (6).
When the data is short-range dependent, it is known that, under suitable conditions,
the LSE is root-T consistent and asymptotically normal. However, under long-range
dependence, as Robinson (1994) observed, when the joint long-range dependence in
the regressor xt and error ut is sufficiently strong, that is the product of the spectral
density functions of xt and ut is not integrable, the LSE is no longer root-T consistent
nor asymptotically normal.
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Motivated by this observation, Robinson and Hidalgo (1997) showed that a class
of frequency-domain weighted LSE, including GLS (with parametric error spectral
density function) as a special case, is root-T consistent, asymptotically normal and
Gauss-Markov efficient in model (6). The intuition why the estimator in Robinson and
Hidalgo (1997) is root-T consistent and asymptotically normal is because the weighted
function possesses a zero sufficiently strong to compensate for the singularity of the
spectral density function induced by the collective long-range dependence of xt and ut.
So, assuming that fxx (λ) has a singularity at the origin, f−1xx (λ) will possess a zero at
λ = 0, and we can expect that bf−1xx,2mp becomes (asymptotically) a weighted function
satisfying the conditions of Robinson and Hidalgo (1997). Indeed, Theorem 3.1 below
indicates that the HI estimator given in (12) achieves the root-T consistency and
asymptotic normality, so that the HI estimator appears to be a desirable estimator.

3. ASYMPTOTIC PROPERTIES OF (4) AND (12)

Let zt = (w0t, u0t)
0 and for g, h = 1, ..., p+p1, denote by fgh (λ) the (g, h) th component

of the spectral density matrix of zt, defined as in (8) but with wt being replaced by
zt. Let us introduce the following regularity conditions:

Condition C1 For all g = 1, ..., p + p1, there exist Cg ∈ (0,∞), dg ∈ [0, 1/2) and
α ∈ (0, 2], such that

fgg (λ) = Cgλ
−2dg (1 +O (λα)) as λ→ 0+

and |fgg (λ)| > 0 for all λ ∈ [0, π].

Defining the coherence between ztg and zth asRgh (λ) = fgh (λ) /
³
f
1/2
gg (λ) f

1/2
hh (λ)

´
,

we have

Condition C2 For all g < h = 2, ..., p+ p1, |Rgh (λ)| is twice continuously differen-
tiable in any open set outside the origin and for some β ∈ (1, 2],

|Rgh (λ)−Rgh (0)| = O
³
λβ
´
as λ→ 0 + .

Condition C3 {wt} = {y0t, x0t}0 and {ut} are covariance stationary linear processes
defined as

wt =
∞X
j=0

Φjε
(1)
t−j,

∞X
j=0

kΦjk2 <∞ and ut =
∞X
j=0

Φuj ε
(2)
t−j,

∞X
j=0

°°Φuj °°2 <∞,
where Φ0 and Φu0 are the identity matrices and kDk denotes the norm of the
matrix D. Finally, kxtk4 and kutk4 are uniformly integrable.

Condition C4
n
ε
(1)
t

o
and

n
ε
(2)
t

o
are two mutually independent ergodic sequences

with finite fourth moments, where, for j = 1, 2, E
³
ε
(j)
t

¯̄̄
F(j)t−1

´
= 0, E

³
ε
(j)
t ε

(j)0
t

¯̄̄
F(j)t−1

´
=

E
³
ε
(j)
t ε

(j)0
t

´
= Ξ(j) a.s., (c)E

³
ε
(j)
t�1
ε
(j)
t�2
ε
(j)
t�3

¯̄̄
F(j)t−1

´
= µ

(j)
3,�1�2�3

such that
¯̄̄
µ
(j)
3,�1�2�3

¯̄̄
<

5



∞ for all �1, �2, �3 where F(j)t is the σ-algebra of events generated by ε(j)s , s ≤ t,
and the joint fourth cumulant of ε(j)ti�k

, �k = 1, ..., pj and i = 1, ..., 4 satisfies

cum
³
ε
(j)
t1�1

, ε
(j)
t2�2

, ε
(j)
t3�3

, ε
(j)
t4�4

´
=

(
κ
(j)
�1,�2,�3,�4,

t1 = t2 = t3 = t4
0, otherwise.

Condition C5 k(∂/∂λ)Φ (λ)k = O (kΦ (λ)k /λ) and
k(∂/∂λ)Φu (λ)k = O (kΦu (λ)k /λ) as λ→ 0+, where

Φ (λ) =
∞X
j=0

Φje
ijλ and Φu (λ) =

∞X
j=0

Φuj e
ijλ,

such that kΦ (λ)k > 0 and kΦu (λ)k > 0 for all λ ∈ [0, π] and twice continuously
differentiable in any open set outside the origin. In addition, for all g = 1, ..., p+
p1, f

−1/2
gg (λ) ηg (λ) is a non-zero finite vector, where ηg (λ) denotes the gth row

of diag (Φ (λ) ,Φu (λ)).

Condition C6 kc (|j|)k = O
³
|j|−3+τ/2

´
for some 0 < τ < 1.

Condition C7 M2T−1 +Mτ−4T → 0 with τ as in C6.

Conditions C1− C2 deal with the behaviour of fzz (λ) and they are the same as
in Robinson (1995), so his comments apply here. Conditions C3−C4 are restrictive
in the linearity they impose, but not otherwise. The requirement of independence
between xt and ut in C3 − C4, as in Robinson and Hidalgo (1997), is necessary for
the proof of the asymptotic normality of (12). We believe that it might be possible to
relax this condition to some extent, but that will enormously complicate the already
technical proof given in Robinson and Hidalgo (1997). Condition C5 is similar to
that in Robinson (1995). The second part of the condition is not strong, see for
instance the comments made after (13) below, once λdg is identified as f−1/2gg up to
constants there. Condition C6 implies that the first derivative of kC (λ)k is Liptchitz
continuous with Liptchitz parameter in the interval (0, 1− τ/2). Condition C7 gives
the admissible values of M . Specifically, the rate of increase of M to infinity cannot
be slower than T δ+1/(4−τ) or faster than T 1/2−δ for arbitrarily small δ > 0.
Examples of processes satisfying C1−C5 are as follows. Let ξt be a p−dimensional

unobservable covariance stationary linear process which possesses a continuous and
bounded away from zero spectral density matrix and consider the filter

wt =
∞X
j=0

G (j) ξt−j. (13)

Let Gg (λ) denote the gth row of the matrix G (λ) =
P∞

j=0G (j) e
ijλ such that

Gg (λ)λ
dg tends to a non-zero finite vector as λ→ 0+, for g = 1, ..., p. For instance, let

ξt be a stationary invertible vector autoregressive moving average (V ARMA) process
with iid innovations and let each wtg be formed by separate fractional integration of
the corresponding ξt element, so that

G (λ) = diag
³¡
1− eiλ

¢−d1
, ...,

¡
1− eiλ

¢−dp
´
.
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Then C1 − C5 hold. This model is an extension to the vector case of the familiar
fractional autoregressive moving average (ARFIMA) model, see for instance Granger
and Joyeux (1980) or Hosking (1981). Another model which exhibits long-range
dependence is the fractional Gaussian noise (fgn) process introduced by Mandelbrot
and Van Ness (1968), whose spectral density function, see Sinai (1976), is

f (λ) =
4σ2wΓ (2d)

(2π)3+2d
cos (πd) sin2 (λ/2)

∞X
j=−∞

¯̄̄̄
j +

λ

2π

¯̄̄̄−2−2d
where σ2w = E (wt −E (wt))

2 <∞ and Γ (·) denotes the gamma function.
Theorem 3.1. Assuming C1-C7, for any finite collection j1 , ..., j q ,

(i) T1/2 (vec (bc (j1 )−c (j1 )) , ..., vec (bc (jq)−c (jq)))0 d→ N
³
0 ,Ω = {Ωjr j�}r ,�=1 ,..,q

´
where

Ωjr j�=(2π)
−1
Z π

−π

¡
f −1xx (−λ)⊗f uu (λ)

¢
ei(jr−j �)λdλ (14)

which corresponds to the asymptotic covariance matrix between vec (bc (jr)) and vec (bc (j�)).
(ii) Let bfuu,2mp=bfyy,2mp−bfyx ,2mpbf −1xx ,2mp

bfxy,−2mp. A consistent estimator of Ωjr j� ,
r , � = 1 , ..., q, is

bΩjr j�= 1

2M

2M−1X
p=1

³bf −1xx,−2mp⊗ bfuu,2mp´ ei(jr−j �)λ2mp .
Proof. The proof of this theorem follows by routine extension of that of Hidalgo’s
(2000) Theorem 1 and so it is omitted. ¤
So, the results of Theorem 3.1 indicate that the asymptotic properties of the

HI estimator given in (12) and established by Hannan (1967) for a finite, possibly of
unknown order, distributed lag model and Brillinger (1981) for the infinite distributed
lag regression model, when both fxx (λ) and fuu (λ) are positive and continuous, they
also hold true under the possible presence of long-range dependence.
Let

ST (µ) = Re

 1

M

[Mµ]X
p=1

vec

 0X
j=2−M

bc (j − 1) e−ijλ2mp

 .
Theorem 3.2. Assuming C1-C7 and bc (j ) given in (12), under H0 ,

T1/2ST (µ)
weakly
=⇒ vec

³eB (µ)´
in Dp1p2 [0 , 1 ] endowed with the Skorohod’s metric, where vec

³eB (µ)´ is a p1p2 -
Gaussian process with covariance structure given in (5 ).

Now we elaborate on the results of Theorem 3.2. When p1 = p2 = 1, and because
the function K (µ,µ) given in (5) is nondecreasing and nonnegative, eB (µ) admits
the representation B (K (µ, µ)) in distribution, where B (µ) is the standard Brownian
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motion in [0, 1]. This observation, Theorem 3.2 and the continuous mapping theorem
yield

sup
µ∈[0,1]

¯̄̄
T 1/2ST (µ)

¯̄̄
d→ sup

µ∈[0,K(1,1)]
|B (µ)| = K1/2 (1, 1) sup

µ∈[0,1]
|B (µ)| .

Let bK (µ, µ) be the consistent estimate of K (µ,µ) defined as
bK (µ, µ) = 1

4M

[Mµ]X
p=1

³ bf−1xx,−2mp ⊗ bfuu,2mp

´
.

Then, for example, the Kolmogorov-Smirnov test based on T 1/2ST (µ) would reject

the null if sup
n bK−1/2 (1, 1) ¯̄T 1/2ST (µ)¯̄ , µ ∈ [0, 1]o exceeded an appropriate critical

value obtained from the boundary crossing probabilities of a Brownian motion, which
are readily available on the unit interval. More generally, as

bK−1/2 (1, 1)T 1/2ST µ³ bK (µ, µ)
´−1

(t)

¶
weakly
=⇒ B (µ)

where
³ bK (µ, µ)´−1 (t) = inf

n
µ ∈ [0, 1] , bK (µ, µ) ≥ t

o
, the limiting distribution of

any continuous functional of bK−1/2 (1, 1)T 1/2ST µ³ bK (µ, µ)´−1 (t)¶ can be obtained
from the distribution of the corresponding functional of B (µ) on [0, 1].
However, when p1 and/or p2 are greater than one, a time transformation g (µ) is

not generally available for which vec
³ eB (µ)´ admits the representation vec (B (g (µ))),

where B (µ) has independent Brownian motion components. Two situations however
where the time transformation g (µ) is possible were described in the introduction.
Namely, 1) when K (µ1, µ2) = min (µ1, µ2)Ω with Ω a positive definite matrix, and
2) when K (µ1, µ2) is a diagonal matrix. For the latter, see for example Karatzas and
Shreve (1991) Theorem 3.4.1 for the construction of such a transformation. Because,
these two aforementioned situations are exceptions rather than the rule, it implies that
the results of Theorem 3.2 are somehow of limited use for the purpose of statistical
inference. In principle the limiting distribution could be simulated, however because it
is non-distribution free, it implies that a practitioner will need to compute new critical
values everytime a new model/data were under consideration. We thus propose to
bootstrap ϕ

¡
T 1/2ST (µ)

¢
for any continuous functional ϕ (z), for example

ϕ (z (µ)) = sup
µ
|z (µ)| or ϕ (z (µ)) =

Z 1

0

z2 (µ) dµ,

to circumvent the potential problem of how to implement the test in empirical exam-
ples.

4. BOOTSTRAP TESTS FOR CAUSALITY

Since Efron’s (1979) seminal paper on the bootstrap, an immense effort has been
devoted to its development. The primary motivation for this effort is that it has
proved to be a very useful statistical tool. We can cite two main reasons. First,
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bootstrap methods are capable of approximating the finite sample distribution of
statistics better than those based on their asymptotic counterparts. Secondly, and
perhaps the most important, it allows computing valid asymptotic quantiles of the
limiting distribution in situations where 1) the limiting distribution is unknown or 2)
even known, the practitioner is unable to compute its quantiles, which is the situation
we have in our framework. So, the aim of this section is to propose two bootstrap
procedures for T 1/2ST (µ), and thus for ϕ

¡
T 1/2ST (µ)

¢
for any continuous functional

ϕ (·).
We now describe the bootstrap approaches. In a time series context, Efron’s

(1979) approach has been proved to be inconsistent, see Singh (1981). Motivated by
the inconsistency of Efron’s (1979) bootstrap, Carlstein (1986) proposed to resample
from (nonoverlapping) blocks of data. Later Künsch (1989) generalized this idea by
using overlapping blocks, known as the Moving Blocks Bootstrap (MBB). Another
approach is based on subsampling, see Politis and Romano (1994). Both methods,
subsampling and moving blocks, are similar in that they utilize blocks of data of size b.
The important difference is that subsampling looks upon these blocks as ”subseries”
whereas moving blocks use the blocks as ”building stones” to construct new pseudo-
time series. It is worth noting that Efron’s (1979) bootstrap is identical to the MBB
if b = 1.
One potential drawback, however, of the MBB or the subsampling bootstrap

is their implementation in empirical examples, and in particular, the choice of the
block-length b. This apparent drawback is motivated by the observation that, more
than anything else, their performance depends rather critically on b, especially for
moderate sample sizes. Although some automatic or semiautomatic procedures have
recently appeared, see Hall et al. (1997) or Loh’s (1987) calibration, these methods
can be extremely expensive in computing time or they are based on considerations
(such as minimum mean squared errors ones), which are not very relevant to the goal
of satisfactorily estimating critical values of ϕ

¡
T 1/2ST (µ)

¢
.

In this paper, however, we are able to circumvent the problem of how to choose the
block-length b even when both xt and ut are serially correlated which is the situation
we have in our setup. The approach is easy to implement and computationally no
more expensive than other bootstrap methods valid in the context of regression models
where the errors are independent and identically or heteroscedasticaly distributed.
The idea is to perform the bootstrap in the frequency domain, by resampling from
the discrete Fourier transform. Bootstrap procedures in the frequency domain is by
all means no new, see for instance Franke and Härdle (1992) or Dahlhaus and Janas
(1996) among others, although instead of resampling from the periodogram ordinates
we do so from the discrete Fourier transform.
The resampling scheme must be such that the conditional distribution of the

bootstrap test, say ϕ
³
S∗T,k (µ)

´
for k = 1, 2, given the data consistently estimates

the distribution of ϕ
³
vec

³ eB (µ)´´ under H0. That is, denoting by Z our data set,

ϕ
³
S∗T,k (µ)

´
d∗→ ϕ

³
vec

³ eB (µ)´´ under H0, where “
d∗→” denotes

lim
n→∞Pr

£
ϕ
¡
S∗T,k (µ)

¢ ≤ z
¯̄Z¤ p→ G (z) ,

at each continuity point z of G (z) = Pr
³
ϕ
³
vec

³ eB (µ)´´ ≤ z
´
as defined in Giné

9



and Zinn (1990). Moreover, under local alternatives Ha,

Ha :
0X

j=−∞
c (j − 1) cos (πjλ) = T−1/2d (πλ) ,

where d (ϑ) is a continuous function in [0,π] such that 0 < |d (ϑ)| in a set ∆ ⊂ [0, π]
with positive Lebesgue measure, ϕ

³
S∗T,k (µ)

´
must also converge in bootstrap distri-

bution to ϕ
³
vec

³ eB (µ)´´, whereas under the alternative H1 ϕ
³
S∗T,k (µ)

´
should be

bounded in probability.
The bootstrap algorithms consist of five steps differing in the second step below.

STEP 1 Obtain the HI estimator of c (�), for � = 1−M, ...,M using (12) and the
residuals

but = yt −
MX

�=1−M
bc (�)xt−�, t = 1, ..., T .

STEP 2 Let evbu (λj) = bf−1/2bubu,j wbu (λj), j = 1, ..., [T/2], where bf bubu,j = bfbubu,2mp for
2mp−m ≤ j < 2mp+m and p = 1, ...,M .

(a) Compute the discrete Fourier transform of the residuals but, denoted wbu (λj),
and compute the standardized vbu (λj) defined as

vbu (λj) = eΞ−1/2
evbu (λj)− [T/2]−1 [T/2]X

�=1

evbu (λ�)
 ,

where

eΞ = 1

[T/2]

[T/2]X
�=1

evbu (λ�)− 1

[T/2]

[T/2]X
�=1

evbu (λ�)
evbu (λ�)− 1

[T/2]

[T/2]X
�=1

evbu (λ�)
0

.

Draw independent bootstrap residuals η∗j,1, j = 1, ..., [T/2], from the empirical
distribution function of vbu (λj). That is, for all j = 1, ..., [T/2],

Pr
©
η∗j,1 = vbu (λk)ª = [T/2]−1 , k = 1, ..., [T/2] .

(b) Let eu∗ = (eu∗1, eu∗2, ..., eu∗T )0 be a random sample with replacement from the
standardized residuals

eut = eΣ−1/2bu
Ãbut − T−1

TX
t=1

but! , eΣbu = 1

T

TX
t=1

Ãbut − 1

T

TX
t=1

but!Ãbut − 1

T

TX
t=1

but!0 ,
and obtain the ”discrete Fourier transform” of eu∗ as

η∗j,2 =
1

T 1/2

TX
t=1

eu∗t e−itλj , j = 1, ..., [T/2] . (15)
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STEP 3 For k = 1, 2, obtain the bootstrap distributed lag regression model

wy∗,k (λj) =
MX
�=0

bc (�)wx,� (λj) + bf1/2bubu (λj) η∗j,k j = 1, ..., [T/2] , (16)

and bf1/2bubu (λj) is obtained using the singular value decomposition of bf bubu (λj), see
for example Brillinger (1981, pp.72-75).

STEP 4 For k = 1, 2 and � = 1−M, ...,M , compute the bootstrap analogue of (12),
that is

bc∗k (�) = 1

2M

2M−1X
p=1

0 bC∗2mp,ke
i�λ2mp , (17)

where bC∗2mp,k = bC∗k (λ2mp) = bf∗y∗x,k (λ2mp) bf−1xx (λ2mp)

with

bf∗y∗x,k (λ2mp) =
1

2m+ 1

mX
j=−m

wy∗,k (λj+2mp)wx (λj+2mp),

and where a denotes the complex combined with transposition of a (complex)
matrix a.

And finally,

STEP 5 For k = 1, 2, compute the bootstrap analogue of ST (µ), S∗T,k (µ), defined
as

S∗T,k (µ) = Re

 1

M

[Mµ]X
p=1

vec

Ã
0X

�=2−M
bc∗k (�− 1) e−i�λ2mp

! , µ ∈ [0, 1] . (18)

So, the two different bootstrap approaches differ on the form to compute η∗j,k for
k = 1, 2 in STEP 2. Namely, in the first bootstrap we compute vbu (λj) for integer j
and resample with replacement obtaining η∗j,1, whereas in the second bootstrap η∗j,2 is
the ”discrete Fourier transform” from the random sample obtained with replacement
from the normalized residuals eut.
The proposed bootstrap procedures described in STEPS 1-5 eliminate the need

to choose the block-length b of Künsch’s (1989)MBB or Politis and Romano’s (1994)
subsampling approach.
Let us introduce the addition condition:

C8
R π
−π
¡
f−1xx (λ)⊗ fuu (λ)

¢ |log (|λ|)| dλ <∞.
We now comment on the mild Condition C8. C8 is satisfied if for example ut is

weakly dependent, say an ARMA model. Moreover, C8 also holds true if ut is a long-
range dependent process whose spectral density f (λ) is bounded by λ−1 |log (λ)|2+δ
for any δ > 0 and λ ∈ (0, π]. Observe that because Eu2t < ∞, it implies that the
spectral density matrix f is upper bounded by Kλ−1 |log (λ)|1+δ for any δ > 0, so
that the former bound on f is not much stronger than the latter bound required for
ut to have finite second moments.

11



Theorem 4.1. Let ϕ (·) be a continuous functional. Assuming C1-C8, under the
maintained hypothesis H = H 0∪H 1 , for k = 1 , 2 ,

ϕ
³
T1/2S∗T ,k (µ)

´
d∗→ ϕ

³
vec

³eB (µ)´´ in probability.
The first conclusion that we can draw from Theorem 4.1 is that the bootstrap

converges in probability to the same process whether or not the null hypothesis holds
true. This was expected as we were able to bootstrap the model from the null hypoth-
esis. One consequence is that the power function will be greater than if the algorithm
chosen had been the MBB or subsampling. In addition, it also indicates that the
bootstrap statistic given in (18) is consistent. So, we can now justify the construction
of confidence intervals to test H0.
To that end, let ϕ (·) denote a continuous functional designed to test H0, and let

cfn,(1−α) and c
a
(1−α) be such that

Pr
n¯̄̄
ϕ
³
T 1/2ST (µ)

´¯̄̄
> cfn,(1−α)

o
= α

and

lim
n→∞Pr

n¯̄̄
ϕ
³
T 1/2ST (µ)

´¯̄̄
> ca(1−α)

o
= α,

respectively. Theorem 3.2 and the continuous mapping theorem imply that cfn,(1−α) →
ca(1−α), whereas Theorem 4.1 indicates that, for k = 1, 2, c∗(1−α),k

p→ ca(1−α) where
c∗(1−α),k is defined as the value which satisfies

Pr
n¯̄̄
ϕ
³
T 1/2S∗T,k (µ)

´¯̄̄
> c∗(1−α),k

o
= α.

Because the finite sample distribution of ϕ
³
T 1/2S∗T,k (µ)

´
is not available or dif-

ficult to obtain, c∗(1−α),k is approximated, as accurately as desired, by a standard

Monte-Carlo simulation algorithm. That is, for k = 1, 2 let η(j)k =
³
η
(j)
1,k, ..., η

(j)
[T/2],k

´
for j = 1, ..., B, and for each j, compute S

∗(j)
T,k as in STEP 5. Then, c∗(1−α),k is

approximated by the value c∗B(1−α),k that satisfies

1

B

BX
j=1

I
³¯̄̄
ϕ
³
T 1/2S

∗(j)
T,k (µ)

´¯̄̄
≥ c∗B(1−α),k

´
= α,

where I (A) denotes the indicator function of the set A.

5. PROOFS

5.1. Proof of Theorem 3.2

Using the change of subindex −j by j, we can write T 1/2ST (µ) as

Re

M−2X
j=0

vec

T 1/2bc (−j − 1) 1
M

[Mµ]X
p=1

e−ijλ2mp

 (19)
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= vec

T 1/2bc (−1)µ+M−2X
j=1

T 1/2bc (−j − 1) sin (πµj)
πj

 (1 + o (1))

since Re
³
M−1

P[Mµ]
p=1 e−ijλ2mp

´
M →∞→ (πj)−1 sin (πµj) uniformly in µ ∈ [0, 1].

For � such that 1−M ≤ � ≤M , writing

a (�)− c (�) =
1

2M

2M−1X
p=1

bfux,2mpf
−1
xx,−2mpe

i�λ2mp ,

let bc (�) = a (�) +H (�). Thus, the right side of (19) is

vec

T 1/2a (−1)µ+M−2X
j=1

T 1/2a (−j − 1) sin (πµj)
πj

 (1 + o (1)) (20)

+vec

T 1/2H (−1)µ+M−2X
j=1

T 1/2H (−j − 1) sin (πµj)
πj

 (1 + o (1)) .

The second term of (20) is op (1) uniformly in µ, as we now show. Proceeding as with
the proof of Theorem 1 of Hidalgo (2000), T 1/2H (j) = Op

¡
M−1/2 logM

¢
uniformly

in j. So, by the triangle inequality

sup
µ∈[0,1]

°°°°°°T 1/2H (−1)µ+
M−2X
j=1

T 1/2H (−j − 1) sin (πµj)
πj

°°°°°° (21)

≤ Op

µ
logM

M1/2

¶
+K

M−2X
j=1

1

j

°°°T 1/2H (−j − 1)°°° = Op

µ
log2M

M1/2

¶
.

So, to complete the proof it suffices to show that the first term of (20) converges

weakly to vec
³ eB (µ)´. Since H0 implies that c (�) = 0 for all � < 0, the proof follows

proceeding as that of Hidalgo’s (2000) Corollary 1, and thus it is omitted. ¤

5.2. Proof of Theorem 4.1

The proof is split into three propositions. In Proposition 5.1 we show that the co-
variance structure of the bootstrap process S∗T,k (µ) converges in probability to (5),
for k = 1, 2. In Proposition 5.2 we show that the finite dimensional distributions
converge to those of vec

³ eB (µ)´ in probability, whereas in Proposition 5.3 we show
the tightness condition. From theses three propositions the conclusion of the theorem
is standard by the continuous mapping theorem.
Henceforth, we shall denote E∗ (·) as the bootstrap expectation, that is, for any

random variable Y , E∗ (Y ) = E (Y |w1, ..., wT ). Moreover, for notational simplicity
we will assume that p1 = p2 = 1 in the proofs of the propositions. Finally, a word
of caution. Since the bootstrap distributed lag regression models given in (16) have
been computed under the null, that is as if bc (�) were equal to 0 for � < 0, in what
follows for � < 0, bc (�) should be understood as being 0.
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Proposition 5.1. Assuming C1-C8, for any �1 and �2 , and k = 1 , 2 , we have that

TE∗
¡
(bc∗k (�1 )−bc (�1 )) (bc∗k (�2 )−bc (�2 ))0¢ P→ Ω�1 �2 (22)

where Ω�1 �2 was defined in (14 ).

Proof. From the definitions of bc∗k (�) in (17), for k = 1, 2, and bc (�) in (12) we have
that

bc∗k (�)− bc (�) = 1

2M

MX
p=1−M

bf−1xx,2mp

Ã
MX
s=0

bc (s) bfxx,2mp (−s)− bC2mp
bfxx,2mp

!
ei�λ2mp

(23)

+
1

2M

MX
p=1−M

bf−1xx,2mp
bf∗xbu,k (λ2mp) e

i�λ2mp

= bξ1,k (�) + bξ2,k (�) .
with bfxx,p (−s) as the estimator of the cross-spectrum between xt and xt−s and for
k = 1, 2

bf∗xbu,k (λ2mp) =
1

2m+ 1

mX
j=−m

bf1/2bubu,2mp+jη
∗
2mp+j,kwx,−2mp−j.

We begin showing that bξ1,k (�) = op
¡
T−1/2

¢
, which does not depend on the resampling

scheme. This will imply that when analysing the behaviour of bc∗k (�) or S∗T,k (µ) in
Propositions 5.2 and 5.3 we only need to examine bξ2,k (�). That is, T 1/2 (bc∗k (�)− bc (�))
can be replaced by T 1/2bξ2,k (�) there. This will be done in the following lemma.
Lemma 5.1 For k = 1 , 2 , bξ1 ,k (�)= Op

¡
T−1/2 log−2M

¢
uniformly in �.

Proof. Denoting ec (s) = bc (s)− c (s) and eC2mp =
PM

�=0 ec (�) e−i�λ2mp , bξ1,k (�) is
1

2M

MX
p=1−M

bf−1xx,2mp

Ã
MX
s=0

c (s) bfxx,2mp (−s)−C2mp
bfxx,2mp

!
ei�λ2mp (24)

+
1

2M

MX
p=1−M

bf−1xx,2mp

Ã
MX
s=0

ec (s) bfxx,2mp (−s)− eC2mp
bfxx,2mp

!
ei�λ2mp .

Proceeding as with the proof of Hidalgo’s (2000) Theorem 1, in particular his expres-
sion (A.6) there, the first term of (24) is Op

¡
T−1/2M (τ−1)/2¢ = Op

¡
T−1/2 log−2M

¢
since C7 implies that τ < 1. So, we are left to show that the second term of (24) is
also Op

¡
T−1/2 log−2M

¢
. That term is

1

2M

MX
p=1−M

 1bfxx,2mp

− 1

E
³ bfxx,2mp

´
Ã MX

s=0

ec (s) bfxx,2mp (−s)− eC2mp
bfxx,2mp

!
ei�λ2mp
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+
1

2M

MX
p=1−M

³
E
³ bfxx,2mp

´´−1Ã MX
s=0

ec (s) bfxx,2mp (−s)− eC2mp
bfxx,2mp

!
ei�λ2mp .

(25)

Because by Hidalgo’s (2000) Proposition 3, supp f
−1
xx,2mp

¯̄̄ bfxx,2mp −E
³ bfxx,2mp

´¯̄̄
=

Op

¡
T−1/2M

¢
= op (1) by C7, it is clear that the order of magnitude of (25) will be

dominated by that of the second term of (25) which we now examine.
For any s = 0, ...,M , writing

fxx,2mp (−s) =
1

2m+ 1

mX
j=−m

fxx,j+2mp (−s) ,

and bfxx,2mp as bfxx,2mp (0), from the definition of eC2mp we obtain that

MX
s=0

ec (s) bfxx,2mp (−s)− eC2mp
bfxx,2mp =

MX
s=0

ec (s) ¡fxx,2mp (−s) eisλ2mp − fxx,2mp (0)
¢
e−isλ2mp

+
MX
s=0

ec (s) efxx,2mp (−s)− eC2mp
efxx,2mp (0) (26)

where efxx,2mp (−s) = bfxx,2mp (−s) − fxx,2mp (−s) for all s = 0, ...,M . Since by
Theorem 3.1 T 1/2ec (s) behaves as a process with spectral density f−1xx (λ) fuu (λ) and
by C3 x4t and u

4
t are uniformly integrable, it implies that E

¡
T 1/2ec (s1)T 1/2ec (s2)¢ =

O
³
|s1 − s2|2(du−dx)−1

´
for T large enough by Lemma 4 of Fox and Taqqu (1986) and

Serfling’s (1980, p.14) Theorem A. So, the contribution of the second moment of the
first term on the right of (26) into the second term of (25) is bounded by

K

TM2

MX
s1,s2=0

|s1 − s2|2(du−dx)−1 (h2mp (−s1)− h2mp (0)) (h2mp (−s2)− h2mp (0))

(27)

where

h2mp (−s) =
MX

p=1−M

³
E
³ bfxx,2mp

´´−1 ¡¡
fxx,2mp (−s)− fxx,2mp (−s)

¢
eisλ2mp

¢
ei(�−s)λ2mp

because by definition fxx,2mp (−s) = fxx,2mp (0) e
−isλ2mp , e.g. fxx,2mp (−s) eisλ2mp −

fxx,2mp (0) = 0. But because by Lemma 1 and Proposition 1 of Hidalgo (2000), we
have that

fxx,2mp (−s)− fxx,2mp (−s) = O
¡
fxx,2mp (−s) p−1

¢
, K−1 < f−1xx,2mpE

bfxx,2mp < K

respectively, we conclude that (27) isO
¡
T−1M2(du−dx)−1 log2M

¢
= O

¡
T−1 log−4M

¢
.

Then, by Markov’s inequality we conclude that the contribution of the first term on
the right of (26) into the second term of (25) is Op

¡
T−1/2 log−2M

¢
for all �.
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To complete the proof of the lemma, we need to prove that the contribution from
the second term on the right of (26) to the second term of (25) is also op

¡
T−1/2

¢
.

But this is the case as we now show. First observe that using expressions (A.14) and
(A.15) in Hidalgo (2000), we obtain that the second term on the right of (26) is

MX
s=0

ec (s) e−isλ2mpϕ2mp (s) (28)

+
MX
s=0

ec (s) e−isλ2mp
1

2m+ 1

mX
j=−m

¡
e−isλj − 1¢ ¡E (Ixx,j+2mp)− fxx,2mp (0)

¢
,

where eIxx,r = (Ixx,r −E (Ixx,r)) and ϕ2mp (s) = (2m+ 1)
−1Pm

j=−m
¡
e−isλj − 1¢ eIxx,j+2mp.

Proceeding as with the second term on the right of (26), the contribution of the sec-
ond term of (28) into the second term of (25) is Op

¡
T−1/2 log−2M

¢
since Hidalgo’s

(2000) Proposition 1 implies that

1

2m+ 1

mX
j=−m

¡
e−isλj − 1¢ ¡E (Ixx,j+2mp)− fxx,2mp (0)

¢
= O

¡
M−1p−1 logM

¢
.

(29)

On the other hand, proceeding as with the proof of (A.9) in Hidalgo (2000),

ec (s) = L1 (s) + L2 (s)

= L1 (s) +Op

³
T−1/2M−1/2 logM +M−2+τ/2

´
(30)

uniformly in s, where

L1 (s) =
1

2M

MX
q=1−M

f−1xx,2mq
bfxu,2mqe

isλ2mq .

In addition, by a routine extension of Hidalgo’s (2000) Proposition 2, we obtain that

E
¯̄
ϕ2mp (s)

¯̄2
= Op

¡
T−1Mf2xx,2mp

¢
. (31)

So, combining (29) to (31) it implies that the contribution from the first term of
(28) to the second term of (25) is

1

2M

MX
p=1−M

1

E
³ bfxx,2mp

´ei�λ2mp

M−1X
s=0

L1 (s) e
−isλ2mp

2mp ϕ2mp (s)

+Op

³
T−1/2

³
T−1/2M−1/2 logM +M (τ−1)/2

´´
=

1

2M

MX
p=1−M

1

E
³ bfxx,2mp

´ei�λ2mp

M−1X
s=0

L1 (s) e
−isλ2mp

2mp ϕ2mp (s)

+Op

³
T−1/2 log−2M

´
16



by C7.
Next, because E

³ bfxx,2mp

´
−fxx,2mp = O

¡
p−1fxx,2mp

¢
by Proposition 1 of Hidalgo

(2000), we have that the stochastic order of magnitude of the first term on the right
of the last displayed equation is bounded by that of

1

2M

MX
p=1−M

f−1xx,2mpe
i�λ2mp

M−1X
s=0

L1 (s) e
−isλ2mp

2mp ϕ2mp (s) . (32)

Since T 1/2L1 (s) converges to a normal random variable and by C3 x2t and u2t are
uniformly integrable, then Serfling’s (1980, p.14) Theorem A implies that E

¡
TL21 (s)

¢
is bounded, and hence that by the Cauchy-Schwarz inequality,

E

¯̄̄̄
¯̄̄ 1
2M

MX
p=1−M

f−1xx,2mpe
i�λ2mp

[M1/2/ log2M]X
s=0

L1 (s) e
−isλ2mpϕ2mp (s)

¯̄̄̄
¯̄̄

≤ 1

2M

MX
p=1−M

f−1xx,2mp

[M1/2/ log2M]X
s=0

³
E
¡
L21 (s)

¢
E
¯̄
ϕ2mp (s)

¯̄2´1/2
= O

³
T−1/2 log−2M

´
by (31) and then C7. Note that the convergence is uniform in �.
So, to complete the proof of the lemma it remains to show that uniformly in �

1

2M

MX
p=1−M

f−1xx,2mpe
i�λ2mp

MX
s=1+[M1/2/ log2M]

L1 (s) e
−isλ2mpϕ2mp (s)

= Op

³
T−1/2 log−2M

´
.

But by summation by parts, the left side of the last displayed equation is

1

2M

MX
p=1−M

f−1xx,2mpe
i�λ2mp

MX
s=1+[M1/2/ log2M]

(2πs)1/22m+ 1

mX
j=−m

e−isλj
¡
e−iλj − 1¢ eIxx,j+2mp

× 1

(2πs)1/2

sX
v=1+[M1/2/ log2M]

L1 (v) e
−ivλ2mp

 .
(33)

Observing that T 1/2L1 (v) behaves as a Gaussian process with spectral density func-
tion g (λ) = f−1xx (λ) fuu (λ) by Theorem 3.1, Theorem 2 of Robinson (1995) implies
that

E

¯̄̄̄
¯ 1

(2πs)1/2

sX
v=1

T 1/2L1 (v) e
−ivλ2mp

¯̄̄̄
¯
2

− g2mp = O
¡
p−1g2mp log (2mp)

¢
.
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So, Markov’s inequality implies that (33) is, uniformly in �, Op

¡
T−1M logM

¢
=

Op

¡
T−1/2 log−2M

¢
by C7 and that

E

¯̄̄̄
¯̄ 1

2m+ 1

mX
j=−m

e−isλj
¡
e−iλj − 1¢ eIxx,j+2mp

¯̄̄̄
¯̄
2

= O
¡
T−1M−1f2xx,2mp

¢
because M

¯̄
e−iλj − 1¯̄ is bounded for |j| ≤ m and

PM
s=1 s

1/2 = O
¡
M3/2

¢
. This

completes the proof that the expression (32) is Op

¡
T−1/2 log−2M

¢
and the lemma.¤

To complete the proof of the proposition, it suffices to prove that

TE∗
³bξ2,k (�1)bξ2,k (�2)0´ P→ Ω�1�2 . (34)

First, from the definition of bξ2,k (�) in (23),
T 1/2bξ2,k (�) = T 1/2

2M

MX
p=1−M

³ bf−1xx,2mp − f−1xx,2mp

´ bf∗xbu,k (λ2mp) e
−i�λ2mp

+
T 1/2

2M

MX
p=1−M

f−1xx,2mp
bf∗xbu,k (λ2mp) e

−i�λ2mp . (35)

Since the first term on the right of (35) is of smaller order of magnitude than the
second term on the right, (34) is shown if

T

4M2
E∗

 MX
p=1−M

f−1xx,2mp
bf∗xbu,k (λ2mp) e

−i�1λ2mp

 MX
p=1−M

f−1xx,2mp
bf∗xbu,k (−λ2mp) e

i�2λ2mp


(36)

converges in probability to Ω�1�2 . The last claim follows because, for k = 1, 2, η
∗
r,k are

iid (0, 1) random variables and T = 4mM , so that the second moment, in bootstrap
sense, of the first term on the right of (35) is

1

2M

MX
p=1−M

³ bf−1xx,2mp − f−1xx,2mp

´2 bfbubu,2mp
1

2m+ 1

mX
j=−m

Ixx,j+2mpe
−i(�1−�2)λ2mp

and Proposition 3 of Hidalgo (2000) implies that both f−1xx,2mp

³ bfxx,2mp − fxx,2mp

´
and f−1uu,2mp

³ bfbubu,2mp − fuu,2mp

´
are op (1) uniformly in p and the integrability of

f−1xx (λ) fuu (λ). Again using the independence of η
∗
r,k for k = 1, 2, (36) is

1

2M

MX
p=1−M

f−2xx,2mp
bfbubu,2mp

1

2m+ 1

mX
j=−m

Ixx,j+2mpe
−i(�1−�2)λ2mp

=
1

2M

MX
p=1−M

f−1xx,2mpfuu,2mp

³h
f−1xx,2mp

bfxx,2mp − 1
i
+ 1
´
e−i(�1−�2)λ2mp (1 + op (1))

18



because uniformly in p, bfbubu,2mp = fuu,2mp + op (fuu,2mp). But by Proposition 3 of
Hidalgo (2000), the right side of the last displayed equation is

1

2M

MX
p=1−M

f−1xx,2mpfuu,2mpe
−i(�1−�2)λ2mp (1 + op (1))

P→ Ω�1�2 ,

which completes the proof of the proposition. ¤

Proposition 5.2. Assuming C1-C8, for any finite collection �1 , ..., �r , for k = 1 , 2

T1/2 (bc∗k (�1 )−bc (�1 ) , ...,bc∗k (�r)−bc (�r )) d∗→ N
³
0 ,Ω =

¡
Ω�h�j

¢
h,j=1 ,...,r

´
where Ω�h�j is defined in (14 ) and denotes the indicated element of Ω, which corre-
sponds to the asymptotic covariance matrix between bc∗k (�h)−bc (�h) and bc∗k (�j )−bc (�j ).
Proof. Following our comment before Lemma 5.1, it suffices to show that

T 1/2
³bξ2,k (�1) , ...,bξ2,k (�r)´ d∗→ N

³
0,Ω =

¡
Ω�h�j

¢
h,j=1,...,r

´
.

Furthermore, from Lemma 5.1 and proceeding as with the proof of (35), it is clear
that we only need to examine the above when bξ2,k (�) is replaced by the second term
on the right of (35), that is

1

2M

MX
p=1−M

f−1xx,2mp
bf∗xbu,k (λ2mp) e

−i�λ2mp .

Next, from the definition of bf∗xbu,k (λ2mp), standard algebra yields that the last dis-
played expression is

bϑ (�) = 1

T

[T/2]X
q=1−[T/2]

h−1xx,qbh1/2bubu,qη∗q,kwx,−qe−i�λq (37)

where haa,q is a step function with jumps at the points 2mp, 1−M ≤ p ≤M .
So, by Wold device it suffices to show that for all set of constants a�, � = 1, ..., r

such that
Pr

�=1 a
2
� = 1,

(a) E∗
¯̄̄̄
¯T 1/2

rX
�=1

a�bϑ (�)
¯̄̄̄
¯
2

P→
rX

�1,�2=1

a�1Ω�1�2a�2 (38)

and denoting ζq,T =
Pr

�=1 a�T
−1/2h−1xx,qbh1/2bubu,qη∗q,kwx,−qe−i�λq ,

(b)

[T/2]X
q=1−[T/2]

E∗
¯̄̄
ζq,TI

³¯̄
ζq,T

¯̄2
> ψ

´¯̄̄2 P→ 0 (39)

for all ψ > 0. (38) indicates that the second bootstrap moments converge in probabil-
ity to those of the asymptotic distribution of the HI estimator given in (12), whereas
(39) is simply the Lindeberg’s condition.
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Part (a) follows by direct application of Proposition 5.1.

We now show part (b). We first examine supq=1,...,[T/2] T
−1
°°°Ixx,qbhbubu,q°°° which is

sup
q=1,...,[T/2]

T−1fxx,qhuu,q
¯̄̄
f−1/2xx,q wx,q

¯̄̄2
h−1uu,qbhbubu,q. (40)

Next, denoting by wξ (λ) the discrete Fourier transform of the innovations ξt in
the Wold decomposition of xt and σ2ξ = Eξ2t , by Robinson’s (1995) Theorem 2 and
an obvious extension to all 1 ≤ j ≤ [T/2], see Giraitis et al.’s (2001) Lemma 4.4,

E

¯̄̄̄
f−1/2xx,q wx,q − (2π)1/2 wξ,q

σξ

¯̄̄̄2
= O

µ
log q

q

¶
(observe that wx,q is normalized by f

−1/2
xx,q instead of its approximation given in C1).

So, using the inequality supt |φt|2 ≤
P

t |φt|2, we have that

E

Ã
sup

q=1,...,[T/2]

¯̄̄̄
f−1/2xx,q wx,q − (2π)1/2 wξ,q

σξ

¯̄̄̄2!

≤
[T/2]X
q=1

E

¯̄̄̄
f−1/2xx,q wx,q − (2π)1/2 wξ,q

σξ

¯̄̄̄2
= O

¡
log2 T

¢
. (41)

On the other hand, by An et al. (1983),

sup
q=1,...,[T/2]

³
(2π)σ−2ξ log−1 T |wξ,q|2

´
≤ 1 a.s.. (42)

Then, combining (41), (42) and that Proposition 3 of Hidalgo (2000) and Theorem
3.1 imply that

h−1uu,qh
−1bubu,q − 1 = Op

¡
MT−1 + q−1 log q

¢
,

we have that (40) is bounded by

K sup
q=1,...,[T/2]

T−1f−1xx,qfuu,q sup
q=1,...,[T/2]

¯̄̄
f−1/2xx,q wx,q

¯̄̄2 ¯̄̄
h−1uu,qh

−1bubu,q
¯̄̄

≤ K sup
q=1,...,[T/2]

T−1f−1xx,qfuu,q log
2 T ≤ D log−δ T

in probability since integrability of
°°f−1xx (λ) fuu (λ)

°° |log (|λ|)| implies that for any ar-
bitrarily small δ > 0,

°°f−1xx,qfuu,q
°° |log λq| ≤ Kλ−1q |log λq|−1−δ, so that

°°f−1xx,qfuu,q
°° ≤

Kλ−1q |logλq|−2−δ. Now, for k = 1, we can conclude that the left side of (39) is
bounded by

K

T

[T/2]X
q=1−[T/2]

f−2xx,qIxx,qfuu,qE
∗ ¯̄η∗q,1¯̄2 I ³¯̄η∗q,1¯̄2 > ψ logδ T

´

= KE∗
³¯̄
η∗1,1

¯̄2 I ³¯̄η∗1,1 ¯̄2 > ψ logδ T
´´ 1

T

[T/2]X
q=1−[T/2]

f−2xx,qIxx,qfuu,q,

20



since η∗q,1 are iid random variables with zero mean and unit variance. On the other
hand, for k = 2, the left side of (39) is bounded by

K

T

[T/2]X
q=1−[T/2]

f−2xx,qIxx,qIuu,qE
∗ ¯̄η∗q,2¯̄2 I ³¯̄η∗q,2¯̄2 > ψ logδ T

´

= K sup
T
sup
q
E∗
³¯̄
η∗q,2

¯̄2 I ³¯̄η∗q,2¯̄2 > ψ logδ T
´´ 1

T

[T/2]X
q=1−[T/2]

f−2xx,qIxx,qfuu,q,

But the second factor on the right of the last displayed equation converges in probabil-
ity to (2π)−1Ω1,1, whereas the first factor on the right of the last equation converges
to zero because ψ > 0 and

E∗
³¯̄
η∗q,2

¯̄2 I ³¯̄η∗q,2¯̄2 > ψ logδ T
´´

≤ D

ψ2 log2δ T
E∗
¯̄
η∗q,2

¯̄4
≤ D

ψ2 log2δ T

 1T
TX
t=1

bu4t +
Ã
1

T

TX
t=1

bu2t
!2 .

But, by Theorem 3.1 the right side of the last displayed inequality is

D

ψ2 log2δ T

 1T
TX
t=1

u4t +

Ã
1

T

TX
t=1

u2t

!2 (1 + op (1)) .

But, by a well-know argument, see Stout’s (1974) Theorem 3.5.8, Condition C4 implies
that ut is also ergodic. So, the last displayed expression converges in probability to
zero because δ > 0. ¤

Proposition 5.3. Assuming C1-C8, for k = 1 , 2

ϕ
¡
S∗T,k (µ)

¢ d∗→ ϕ
³ eB (µ)´

for any continuous functional ϕ (·).
Proof. Because in (16) bc (j) = 0 for all j < 0, we have that T 1/2bc∗k (j) = T 1/2bξ1,k (j)+bξ2,k (j) where

bξ2,k (j) = T 1/2

2M

MX
p=1−M

f−1xx,2mp
bf∗xbu,k (λ2mp) e

ijλ2mp

suppressing reference to T in bξ2,k (j) or bξ1,k (j). Thus, denoting bξ2,k (j) by a∗k (j),
with the change of subindices −j by j

T 1/2S∗T,k (µ) =
M−2X
j=0

³
a∗k (−j − 1) + T 1/2bξ1,k (−j − 1)´ 1

M

[Mµ]X
p=1

eijλ2mp (43)

=
³
a∗k (−1) + T 1/2bξ1,k (−1)´µ+M−2X

j=1

³
a∗k (−j − 1) + T 1/2bξ1,k (−j − 1)´ gj (µ)
21



where gj (µ) =M−1
P[Mµ]

p=1 eijλ2mp , which satisfies that

Re (gj (µ)) =
sin (πjµ)

πj
+O

µ
1

M

¶
(44)

uniformly in µ ∈ [0, 1] by Brillinger (1981, p.15). Now,

sup
µ

¯̄̄̄
¯̄M−2X
j=1

T 1/2bξ1,k (−j − 1)Re (gj (µ))
¯̄̄̄
¯̄ = op∗ (1)

because by Lemma 5.1, E∗
¯̄̄
T 1/2bξ1,k (−j − 1)¯̄̄2 = ¯̄̄T 1/2bξ1,k (−j − 1)¯̄̄2 = Op

¡
log−4M

¢
uniformly in j and

PM−1
j=1 j−1 = O (logM).

So, using (44) the behaviour of the real part of (43) is that of

a∗k (−1)µ+
b−1X
j=1

a∗k (−j − 1)Re (gj (µ)) +
M−2X
j=b

a∗k (−j − 1)Re (gj (µ))

where b is a fixed but large constant. The proof is completed if, for k = 1, 2,

Gb (µ) =
b−1X
j=0

a∗k (−j)Re (gj (µ)) converges to a Gaussian process indexed by µ,

(45)

¯̄̄̄
E∗G2b (µ)−

1

2

Z 2πµ

0

f−1xx (λ) fuu (λ) dλ

¯̄̄̄
= op (υ (b)) , (46)

where υ (b)→ 0 as b→∞, and
M−2X
j=b

a∗k (−j)Re (gj (µ)) is small uniformly in M and µ, (47)

where (a∗k (−j))j=0,...,b−1
d∗→ N (0,Ω) by Proposition 5.2 with the (j1, j2) th element

of Ω denoted by Ω|j1−j2|.
We begin with the assertion (47). Because by C3, E∗ (a∗k (−j))4 < K, Proposition

5.2 and Serfling’s (1980, p.14)Theorem A imply thatE∗ |a∗k (−j1) a∗k (−j2) a∗k (−j3) a∗k (−j4)|
converges to that of the limit distribution of a∗k (−j).
Using that for b large enough (44) implies that |jgj (µ)| < K, for 0 < s1 < s2 ≤

M − 1, we have that¯̄̄̄
¯̄ s2X
j=s1

a∗k (−j) gj (µ)
¯̄̄̄
¯̄
2

≤
¯̄̄̄
¯̄ s2X
j=s1

a∗k (−j)
e2πjµ

j

¯̄̄̄
¯̄
2

≤ 2
s2−s1X
v=1

¯̄̄̄
¯̄s2−vX
j=s1

a∗k (−j) a∗k (−j − v)

j (j + v)

¯̄̄̄
¯̄ .
(48)

Next,

E∗

¯̄̄̄
¯̄s2−vX
j=s1

a∗k (−j) a∗k (−j − v)

j (j + v)

¯̄̄̄
¯̄
2

=
s2−vX

j1,j2=s1

E∗
µ
a∗k (−j1) a∗k (−j2) a∗k (−j3) a∗k (−j4)

j1 (j1 + v) j2 (j2 + v)

¶
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whose expectation is

s2−vX
j1,j2=s1

¯̄̄̄
¯Ω

2
v +Ω

2
|j1−j2| +Ω|j1−j2−v|Ω|j1−j2+v|
j1 (j1 + v) j2 (j2 + v)

¯̄̄̄
¯ (1 + o (1))

because a∗k (−j) d∗→ N (0,Ω) and the uniform integrability of x4t and u
4
t by C3 imply

that by Theorem A of Serfling (1980, p.14), the fourth moments converge to those of
the limit distribution whose fourth cumulant is 0 by normality.
Next, let s1 = 2� and s2 = 2�+1. Then by the Cauchy-Schwarz inequality, the left

side of (48) has expectation bounded by

K
2�X
v=1

¯̄̄̄
¯̄ 2

�+1−vX
j1,j2=2�

Ω2v +Ω
2
|j1−j2| +Ω|j1−j2−v|Ω|j1−j2+v|
j1 (j1 + v) j2 (j2 + v)

¯̄̄̄
¯̄
1/2

≤ K
2�X
v=1

¯̄̄̄
¯̄2

�+1−vX
j1=2�

1

j21 (j1 + v)2

¯̄̄̄
¯̄
1/2

+K
2�X
v=1

¯̄̄̄
¯̄ 2

�+1−vX
2�=j1<j2

Ω2v +Ω
2
|j1−j2| +Ω|j1−j2−v|Ω|j1−j2+v|
j1 (j1 + v) j2 (j2 + v)

¯̄̄̄
¯̄
1/2

,

by the triangle inequality. But Lemma 4.1 of Fox and Taqqu (1986) implies that
Ωv = O

¡
v−1+α

¢
, where α = dx − du < 1, since Ωv is the vth Fourier coefficient of

f−1xx (λ) fuu (λ). So, after standard calculations, we have that the left side of the last
displayed inequality is bounded by

K
2�X
v=1

¯̄̄̄
¯̄2

�+1−vX
j1=2�

1

j21 (j1 + v)2

¯̄̄̄
¯̄
1/2

+K
2�X
v=1

v−1+α

¯̄̄̄
¯̄2

�+1−vX
j1=2�

1

j1 (j1 + v)

¯̄̄̄
¯̄ ≤ K

³
2−�/2 + 2−�(1−α)

´
,

and then, using that Re (gj (µ)) = 2−1 (gj (µ) + gj (−µ)), we conclude that

E

E∗
¯̄̄̄
¯̄ max0≤µ≤1

¯̄̄̄
¯̄2

�+1X
j=2�

a∗k (−j)Re (gj (µ))
¯̄̄̄
¯̄
¯̄̄̄
¯̄


≤ K
2�X
v=1


¯̄̄̄
¯̄2

�+1−vX
j1=2�

1

j21 (j1 + v)
2

¯̄̄̄
¯̄
1/2

+ v−1+α

¯̄̄̄
¯̄2

�+1−vX
j1=2�

1

j1 (j1 + v)

¯̄̄̄
¯̄


≤ K
³
2−�/2 + 2−�(1−α)

´
.

Now choose b = 2n to conclude that with probability greater than 1−K ¡2−�/2 + 2−�(1−α)¢,
Z∗� = max

0≤µ≤1

¯̄̄̄
¯̄2

�+1X
j=2�

a∗k (−j)Re (gj (µ))
¯̄̄̄
¯̄ ≤ K

³
2−�/2 + 2−�(1−α)

´
,

which implies that the expression in (47) is, in absolute value, bounded by

[log(M)]+1X
�=n

Z∗� ≤ K
³
2−n(1−α) + 2−n/2

´
.
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From here we conclude the proof of (47) by choosing n large enough.
Next we prove assertion (45). From Proposition 5.2, the finite dimensional dis-

tributions of Gk (µ) converges to those of a normal random variable. To finish, we
need to check the tightness condition, which by Billingsley’s (1968) Theorem 15.6, it
suffices to check the sufficient moment condition

E∗
h
(Gb (µ)−Gb (µ1))

2 (Gb (µ2)−Gb (µ))
2
i
≤ KHT (µ2, µ1) (µ2 − µ1)

2 .

where HT (µ2, µ1) = K (1 + op (1)) with 0 ≤ µ1 < µ < µ2 ≤ 1. First observe that we
can take M−1 < |µ2 − µ1| since otherwise either µ1 and µ lie in the same subinterval£
M−1q,M−1 (q + 1)

¤
or else µ and µ2 do; in either of these cases the left side of

the last displayed inequality vanishes. But since (µ− µ1) (µ2 − µ) ≤ (µ2 − µ1)
2, it

implies that a sufficient condition for the last displayed inequality to hold true is

E∗
h
(Gb (µ2)−Gb (µ1))

4
i
≤ KHT (µ2, µ1) (µ2 − µ1)

2 , (49)

with HT (µ2, µ1) being bounded in probability. But (49) holds true because for all j,

gj (µ2)− gj (µ1) =
1

M

[Mµ2]X
p=[Mµ1]+1

e−ijλ2mp = ei[Mµ1]λ2mpgj (µ2 − µ1) (50)

and

|Re (gj (υ))|2 ≤ K
sin2 (2πjυ)

j2
≤ K

υ

j

by (44) and Taylor expansion. The last displayed inequality and (50) imply that

E∗ |a∗k (−j)Re (gj (µ2)− gj (µ1))|4

≤ K

 1

T 2

[T/2]X
q=1−[T/2]

¯̄̄
h−1xx,qbh1/2bubu,qwx,q

¯̄̄4
+

 1
T

[T/2]X
q=1−[T/2]

¯̄̄
h−1xx,qbh1/2bubu,qwx,q

¯̄̄22
 (µ2 − µ1)

2 .

Then, denoting by HT (µ2, µ1) the term inside the braces of the last displayed in-
equality, we conclude (49), since proceeding as in the proof of Theorem 1 of Hidalgo
(2000), it is obvious that HT (µ2, µ1) = K (1 + op (1)). That concludes the proof of
(45).
Finally (46). First, observe that

E∗
"

M−2X
q1,q2=0

a∗k (−q1) gq1 (µ) a∗k (−q2) gq2 (υ)
#

=
M−2X

q1,q2=0

 1
T

[T/2]X
s=1−[T/2]

f−1xx,sfuu,s
Ixx,s
fxx,s

e−i(q1−q2)λs

 1

M2

[Mµ]X
j1=1

[Mυ]X
j2=1

eiq1λj1 e−iq2λj2

=
1

T

[T/2]X
s=1−[T/2]

f−1xx,sfuu,s
Ixx,s
fxx,s

1

M2

[Mµ]X
j1=1

[Mυ]X
j2=1

M−2X
q1,q2=0

ei(j1−s)λq1 e−i(j2−s)λq2 , (51)
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whose real part is

1

T

[T/2]X
s=1−[T/2]

f−1xx,sfuu,s
Ixx,s
fxx,s

µ
I (j1 = j2 = s) +O

µ
1

M

¶¶
(52)

because

Re

 1

M2

[Mµ1]X
j1=1

[Mµ2]X
j2=1

M−2X
q1,q2=0

ei(s−j1)λq1e−i(s−j2)λq2

 = I (j1 = j2 = s) +O

µ
1

M

¶
,

observing that the sum in q is from q = 0 to M − 2. Then, since from the proof of
(47), the sum from q = b to M − 2 is negligible for b large enough, it implies that
using (51)− (52), the left side of (46) is

1

T

min{[Mµ],[Mυ]}X
s=1

f−1xx,sfuu,s

µ
Ixx,s
fxx,s

− 1
¶
{1 + o (1)}+ 1

T

min{[Mµ],[Mυ]}X
s=1

f−1xx,sfuu,s

=

Z min{µ,υ}

0

f−1xx (λ) fuu (λ) dλ (1 + op (1)) ,

by Markov’s inequality since Theorem 2 of Robinson (1995) implies thatE
¯̄
f−1xx,sIxx,s − 1

¯̄
=

O
¡
s−1 log s

¢
. This completes the proof that T 1/2S∗T (µ) converges in bootstrap weakly

to the Gaussian process eB (µ). From here the conclusion of the theorem is standard
by the continuous mapping theorem. ¤
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