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Abstract

The paper considers tests for the presence of a random walk component
in a stationary or trend stationary time series and extends them to series
which contain structural breaks. The locally best invariant (LBI) test is
derived and the asymptotic distribution obtained. Then a modified test
statistic is proposed. The advantage of this statistic is that its asymptotic
distribution is not dependent on the location of the breakpoint and its
form is that of the generalised Cramér-von Mises distribution, with
degrees of freedom depending on the number of breakpoints. The
performance of this modified test is shown, via some simulation
experiments, to be comparable to that of the LBI test. An unconditional
test, based on the assumption that there is a single break at an unknown
point is also examined. The use of the tests is illustrated with data on the
flow of the Nile and US Gross National Product.
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1 Introduction

A test for the presence of a random walk component in series which would
otherwise be white noise about a constant level was developed by Nyblom
and Mékeldinen (1983) and MacNeill (1978). In a Gaussian model this
test is locally best invariant (LBI) and under the null hypothesis it has a
known asymptotic distribution, namely the Cramér-von Mises distribution.
The tests may also be applied when the model contains a deterministic time
trend, but with a different asymptotic distribution under the null hypothesis.

If the model is extended so that the underlying series is generated by any
indeterministic stationary stochastic process, a nonparametric correction can
be made so that a statistic with the same asymptotic distribution is obtained.
This is known as the KPSS test after Kwiatkowski, Phillips, Schmidt and
Shin (1992). Parametric procedures have been proposed by Leybourne and
McCabe (1994) and Harvey and Streibel (1997).

The above tests have high power against alternative hypotheses in which
the level or trend contains a small number of breaks but is otherwise de-
terministic. Indeed Gardner (1969) and Nyblom (1989) provide a formal
justification for their use against such alternatives. Thus if structural breaks
are known to be present it is vital to take account of them if a test against
a random walk component is to be carried out. This article develops LBI
tests when there are breaks in the level and/or the slope at known points
in time and the asymptotic distributions of the test statistics are derived
under the null hypothesis. When there are no restrictions on the form of
the breaks, for example the requirement that the deterministic trend be
piecewise continuous, and they are equally spaced, it is shown that the as-
ymptotic distributions belong to the Cramér-von Mises family. Of course
breaks are not equally spaced in general but a slight modification gives test
statistics with the same asymptotic distributions as in the equally spaced
case. Thus the critical values depend only on the number of breaks and on
whether or not a time trend is included. This is important, since although
it may be feasible to tabulate critical values for a single break at different
points in the sample, constructing tables when there are two or more breaks
is impractical.

The tests here are for situations in which the model is (trend) stationary
under the null and nonstationary under the alternative. Such tests are to
be contrasted with those in the unit root literature where the null of non-
stationarity is tested against an alternative of stationarity. The unit root
tests are normally carried out within an autoregressive framework, with the
augmented Dickey-Fuller (ADE) test being, in some sense, analogous to
KPSS. Perron (1989) modified the Dickey-Fuller test for models containing

exogenous structural breaks and derived the relevant asymptotic distribu-



tions. Although our tests are not directly comparable with those of Perron,
because of the reversal of the null and alternative hypotheses, it is worth
noting that there is no modified version of his tests for which the asymptotic
distribution depends only on the number of break points.

All the tests mentioned so far assume that the locations of the break
points are known. This may well be the case if there are known interven-
tions or policy changes. However, if possible breaks are detected from a
statistical analysis or a visual inspection of the data, the tests are no longer
valid. Proceeding in this way biases the tests in favour of the stationar-
ity hypothesis. If, on the other hand, it is known a priori, that there is a
break, but at an unknown location, Zivot and Andrews (1992) showed that
Perron’s testing procedure could be legitimately applied by endogenously
selecting the breakpoint so as to give the least favourable result for the null
hypothesis of a unit root. A similar idea can be applied for testing the null
of stationarity.

The plan of the paper is as follows. After reviewing the LBI tests for a
random walk component in section 2, we derive the tests when structural
breaks are present in section 3. Section 4 looks at the modified tests and re-
ports some simulation experiments which show that their size and power are
comparable to those of the corresponding L.BI tests. Section 5 looks at tests
when the there is a single break at an unknown point and section 6 discusses
how serial correlation may be handled. Section 7 illustrates the tests with
two data sets, the flow of the Nile and US GNP. Section 8 discusses how
the tests can be carried out in the presence of seasonality and then investi-
gates the effects of breaks on the Canova-Hansen test against nonstationary
stochastic seasonality. Conclusions and extensions are in section 9.

2 Testing against the presence of a random walk com-
ponent

Consider a model containing a time trend, a set of strictly exogenous regres-
sors, X¢, and a random walk, that is

I
—

y = py+ Ot + x84z, gy ~ NID (0, 02) t
My = e T 7y, 1y ~ NID (07 (7727)

where p, is fixed and &, and 7, are mutually independent. The notation
NID(0, 0?) denotes normally and independently distributed with mean zero
and variance o2. The locally best invariant (LBI) test for Hy : 0727 =0



against H 4 : 0727 > () can be written as

T t
t;<52::1 65)2

$= T e 2
where c is a critical value and 62 = T~' 327 | €? with the e,’s being residuals
from regressing 1; on a constant, time trend and explanatory variables. The
test is invariant to 3,0 and g and it is best in the sense that the power
function has maximum slope at the origin among all invariant tests of the
same hypothesis. The test can also be interpreted as a one-sided Lagrange
multiplier (LM) test.

The distribution of £ depends on whether or not a time trend is included
and on the form of the explanatory variables in the vector x;. If the obser-
vations consist simply of a random walk plus noise then ¢, =y — 7, ¢ =
1,...,T, where 7 is the sample mean. The asymptotic distribution of the
statistic is found by first observing that the partial sum of deviations from
the mean converges weakly to a standard Brownian bridge, that is

(1]

o T 265 = B(-), (3)

where B(r) = W(r)—rW (1), r € [0,1], with W(-) being a standard Wiener

process or Brownian motion. Hence

€= /01 B(r)*dr (4)

since 6> = T 'YL | (y; — ) 2 o2, This is the Cramér-von Mises distribu-
tion; see Nyblom and Mékeldinen (1983). We will denote it as CvM. Note
that it is sufficient for the observations to be independent and identically
distributed to yield this asymptotic distribution; see Nabeya and Tanaka
(1988).

When a time trend is included in the model we have the analogous result
that the partial sum of residuals from a first order polynomial regression
weakly converges to a second level Brownian bridge denoted By(+) where, as

in McNeill (1978),

Blr) = W(r) = (1) + 6 (1 — 1) { W (1) - /01 Wsds). ()
Then .
§:>/0 By(r)2dr . (6)

We will refer to this asymptotic distribution as a second level Cramér-von
Mises distribution, and denote it as CvMy In the case of any ambiguity we
will refer to the distribution in (4) as CvM;.
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Percentage points for the Cramér-von Mises distribution have been tab-
ulated by and Anderson and Darling (1952), MacNeill (1978), Nyblom and
Mikeldinen (1983), Nyblom (1986) and Kwiatkowski et al. (1992).

Kwiatkowski et al. (1992) extended the above tests to allow £, to follow
a stationary indeterministic process. In fact £, can be even more general,
satisfying the assumptions in Phillips and Perron (1988) or Phillips and Solo
(1992). The test statistic, which has the same asymptotic distribution as
the corresponding LBI statistic for white noise disturbances, is

T t

t;<52::1 65)2
£(0) = ) (7)
where
T ! T
SO =T el +2I" "> w5, 0) > eery, (8)
) =1 t—j 11

is a comnsistent estimator of the long run variance

1 T
o2 = jlim TVar (; 5t> .
The weighting function can be chosen in a variety of ways, as long as [ — oo
as T — oo. A simple option, which guarantees the non-negativity of s?(#),
is to let w(j,¢) = 1—j/(¢+1). Other possibilities are examined in Andrews
(1991).

3 LBl tests when breaks are present

The asymptotic distribution of the £ statistic is still Cramér-von Mises if
the explanatory variables in (1) satisfy certain conditions, for example weak
dependence conditions if they are stochastic. However, the dummy variables
needed to account for structural breaks do change the distribution.

Assume there is a structural break in the trend at time 7 + 1, and let
A = 7/T denote the fraction of the sample before the break occurs. We
consider the following models:

1]y = pet+ow +e (9)
2]y = ptBt+ 6w+ Op(wit) + = (10)
2a] vy = p+ P+ 6w +ey (11)
20] ye = p,+ Bt + sz + =, (12)



where g, is a random walk as in (1), £, is white noise and

0 fort <7 d B 0 fort <7t
Yt=Y ] fort > T WL A=Vt fort>T

There is no slope in model [1] and so the only break is in the level. The
other models all contain a time trend. In model [2] there is a structural
change in both the level and the slope. Models [2a] and [2b] contain respec-
tively a break in the level only and in the slope only. The second of these
corresponds to a piecewise linear trend.

Under Gaussianity the LBI (and one-sided LM) test statistic for Hy :
2 _

o, =0 against Hy : 0727 > 0 is of the same form as (2), that is
T /t 2
n(5e)

where the e;’s are the residuals from regressing the observations on the
appropriate set of regressors. The subscript 7 in &;(\) indicates that the
residuals depend on the model, 1,2, 2a or 2b, while A denotes that the
statistic has been constructed for a specific value of the breakpoint location
parameter and that its asymptotic distribution depends on it.

As in the previous section, the limiting distribution can be derived by
looking at the asymptotic properties of the process followed by the partial
sum of residuals S;(-,A) = o "2 e, r € [0,1], 7 = 1,2, 2a,2b. This
will converge to a limiting process -defined on an underlying Wiener process-
that will depend on A and collapse to a (second level) Brownian bridge when
A =0or A =1. The asymptotic distribution of §,()\) is then the integral on
the unit interval of the square of this process.

The following proposition states the asymptotic distributions of the &,(\)
statistics under the null hypothesis Hy : 0727 = (. The proof is given in the
appendix’.

Proposition 1. Let {y;} be generated under the null hypothesis of model i,
i=1,2 2a,2b, with g, ~ [1D(0,0?). Then

0 = [ 1B NP,
where

W(r) — $W(}\) forr < A
B1<7", )\) =

W(r)—=WA) == W(1)—=W()  forr> A

'Hao (1996) gives a related result for a structural break in the level only in the context
of co-integration. Integrated regressors are included in a model which would otherwise
be of the form 1. His results do not specialise to the ones presented here.



—Lr(r = ) [fg rdW (r) = 3W(3)] forr <A
By(r,\) =
(W(r) = W) - =2 (W(A) = W(H)
EESNE (r—1(r—X) [f/\l rdW (r) — %A(W(l) — W()\))} forr > X\
W(r) = sW()
1 3>\6+3>\2T<T A)
Jo rdW (r) = 3W () = H2W(1) W) Jorr <A
Baa(r, N) =
(W(r) - ZV(A))<— 3’5) (W(1) —=Ww(Q)
Jo rdW (r) = 3W(\) = Z2W (1) W) forr> A
W(r)—rW (1) — ﬁ
-{a%—aAr%—f(a)\Q—b( )\2))
+ (b5 = bAr 45 (bX* — ¢(1 = A)?)) JQ} Jorr < A
Bap(r, A) =
W(r) —TW( ) = ﬁ
(o + 052 = A = A) + 5 (aN = b(1 = N)?)) Sy
+ (- bX“ + 7‘"; — A=A+ 5 (DN = (1= N)?)) Jo}  forr > A
with

=(1- )\)3(1 + 3X),
b=—3\(1 - \)?,
c=X\*(4—3)\),

Ji= Jo rdW (r) = AW (N) + £ W (1),
Ty = [LrdW (r) = A (W(1) = W () — S2Ew (1),

The upper tail percentage points of the above asymptotic distributions
are reported in table 1 for different values of A. As in Kwiatkowski et al
(1992), they are obtained by simulating empirical approximations to Brown-
ian motions with samples size of 1000 and 10000 replications. We use the
random numbers generator of the matrix programming language OX; see
Doornik (1996). The figures for A — 0 or A — 1 correspond to the critical
values for the Cramér-von Mises distributions of the previous section. As
expected, the percentage points -as functions of M- are symmetric around
A = 1/2, which is also the minimum for models 1,2 and 2b.



For models [1] and [2] the asymptotic distributions can be characterized
in terms of two independent Cramér-von Mises distribution. To see that this
is the case, first notice that we can rewrite the statistic as

ZTXZt:GS)Q i ( Zt: 65)2
&(A) = AQ% +(1- A)”?*Tl j;)*;&Q L i=1,2,  (14)

since from the OLS orthogonality conditions "7 e, = 37 1165 =0, and
this implies >.7_; e; = 0. Then it is easy to see that for model [1]

o Ys — 7y fors <7
Tl ys—T7, fors>T

where g, =7 ']y, and g, = (T — 1) ! ZZ:TH 1y, are the averages in the
first and second subsamples respectively. A similar result holds for model [2]
where the two sets of residuals are obtained from regressing on a constant
and a time trend. Thus the residuals are independent across subsamples
and the following proposition holds.

Proposition 2. Let {y;} be generated under the null hypothesis of model i,
i=1,2 with e ~ I11D(0,0%). Then

&)= [ BEPar+ (-0 [ B =12 ()

0

where Byi(+) and Bi(-) are independent Brownian bridges and Bo(-) and
B4(+) are independent second level Brownian bridges. Hence the statistics
are weighted averages of two independent Cramér-von Mises distributions.

This is a very simple way to characterize the asymptotic distribution and
it is trivially generalizable to the case of more than one break. Note that if
the breaks are equispaced the distribution of the statistic (when multiplied
by four) converges to the sum of two random variables with independent
Cramér-von Mises distributions. Of course assuming equispaced breaks is
not appropriate in general. However, the same additivity property can be
obtained after a slight modification of the test statistic, as suggested in the
following section. By doing this we can eliminate the dependence on the
parameter A in the asymptotic distribution.

4 A simplified test

The Cramér-von Mises distribution can be represented by a series expansion
of independent x?(1) variables, that is

o0

CoM = /01 B(r)dr = (7j) *x3(1). (16)

=1



The proof follows from the argument in Gihman-Skorohod (1974, p. 229-
230); see also Nyblom (1989). This allows us to characterise the generalised
Cramér-von Mises distribution with k degrees of freedom as

o0

CoM(k) = () *x;(k), (17)

J=1

with the interesting corrolary that, because of the additive property of
chi-square distributions, the sum of k£ independent random variables with
CvM (1) distributions is CvM (k). The same additivity property holds for a
second level Cramér-von Mises distribution, Cv M, (k). The series expansion
is

1 [o@)
/0 By(r)?dr = %x5(1),
j=1

where Bs(+) is a second level Brownian bridge as in (9), and ¢, is defined by
Q95 1 = 2mj and y; being the root of tan(p/2) = ¢/2 on (27],27(j + 1)),
j=1,2,...; see Nyblom (1986).

Bearing the above in mind, we propose the following test statistics for

models [1] and [2]:

T ot T t
tZ:1< 165>2 t*Z;J( *Z+1 65)2
>?< — =1 s= =T S=T - 1 2 18
Sz 7_25_2 + (T o 7_)25_2 ’ t ’ ( >

Thus we eliminate the weights in (15). The statistics still depend on the
location of the breakpoint, but their asymptotic distributions do not since

T { CvM(2) fori=1 (19)

i CvM,(2)  fori=2.

Not having to consult a table giving the distribution of the test statistic
for all the possible values of A\ is a big advantage; compare the unit root
tests in Perron (1989). Furthermore the test immediately generalises to
cases where there are several structural breaks. If there are k breaks at
times 71 = MT < ... < 7 = AT the test statistic is

T t 2
(k)
k+1
t=7;_1+1 \s=7;_1+1 .
£ (k) = 2 T . i=1,2, (20)
; (rj—7151)" 8

where 79 = 0 and 7,1 = T The distribution of this statistic converges to a
(second-level) generalised Cramér-von Mises distribution with k + 1 degrees
of freedom. The advantage is now even greater since constructing tables for
all patterns of k£ breakpoints would be extremely cumbersome.

8



The upper tail percentage points for generalised Cramér-von Mises dis-
tributions are tabulated in Nyblom (1989), Canova and Hansen (1995) and
Nyblom and Harvey (1997), and reported in table 2.

How good is this simplified test? Table 3 compares the LBI test, based
on (13), and the simplified test, (18), in terms of size and power by a Monte
Carlo experiment. The model with a break in level and slope, model 2,
was simulated 5000 times for different values of A and ¢ = 0727 /%, the test
statistics were computed and the number of rejections was counted for 5%
asymptotic critical values obtained from table 1b for the LBI test and from
table 2b for the simplified test. For A = 0.5 the two tests are the same,
except that the critical value of the LBI test is one quarter of the critical
value of the modified test. For other values of A the size and power are
comparable, with the LBI being clearly superior only in the region close to
the null hypothesis and for the break point near the beginning or end of the
sample. The conclusions are similar for samples of 100 and 200.

The above experiment was repeated for a data generating process with
two structural breaks, and no slope, with the breaks located in a variety of
positions. The 5% asymptotic critical values for the LBI statistic, £;(A1, Ag),
are reported in table 4 and then the performance of the simplified test, &, (2),
is compared with the LLBI test in table 5. The conclusions are similar to those
reached for the case of a single break, with the simplified test having a size
close to the nominal and power comparable with the LBI test.

5 Unknown breakpoint

The tests of the last two sections depend on knowing the location of the
breakpoints. In some instances one would like to test for trend stationarity
under the assumption that there may be a single break in an unknown
position.

For a single structural break at an unknown point, we consider a set
of unconditional tests, obtained by following the argument in Zivot and
Andrews (1992). The idea is to choose the breakpoint that gives the most
favourable result for the null hypothesis of trend stationarity using the &,(\)
statistic, that is

& =inf &(V), i=1,2,2a,2, (21)

where A is a closed subset of the interval (0,1).

The distribution of EZ will depend not only on the location of the true
breakpoint, denoted Ag, but also on the magnitude of the level and/or slope
shift, ¢, because each £,(A) statistic will depend on the latter when it is
computed for a breakpoint different from Ag. The following assumption on
the magnitude of the shift allows us to derive the asymptotic distribution of
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Shift assumption. The magnitude of the shifts 6,6, and g in (9) to
(12) decreases to zero with the sample size at a rate faster than T2 for §
and 6, and at a rate faster than T=3/2 for &g.

Whether this assumption is a reasonable one is open to question. How-
ever, in the literature on breakpoint estimation, Bai (1994, 1997) assumes
that the magnitude of the shift shrinks to zero at a rate slower than 7~ /2
in order to derive the asymptotic distribution of the breakpoint estimator.
In our case, the rate is faster. Note that the assumption covers the case of
no break actually occuring.

Proposition 3. Let {y;} be generated under the null hypothesis of model i,
i=1,2 2a,2b, with g, ~IID(0,0?). Under the above shift assumption

1

& :>i1611f\ A [B;(r,\)]” dr, 1=1,2 2a,2D,

where B;(r, \) is defined as in proposition 1.

The proposition is proved in the appendix. First we prove that, under
shift assumption, the asymptotic distribution of proposition 3 still holds
when the location of the breakpoint is wrongly assumed. Then it is sufficient
to apply the continuous mapping theorem as in Zivot and Andrews (1992)
to get the result. Note that a co-integration test corresponding to case
[1] is proposed by Hao(1996), but he does not apparently make the shift
assumption.

Table 6 provides the asymptotic critical values for the statistic Ei, 1=
1,2,2a,2b, obtained by simulation for a sample size of T =500 using 5000
replications. Fach replication yielded one value of §;(\) from its asymptotic
distribution for all possible breakpoints (2 to 499). The minimum of these
values was taken as a realization from the distribution of the inf-statistic,

32

6 Senal correlation

The break point tests can be extended to models where ¢, is serially corre-
lated. The nonparametric correction of Kwiatkowski et al. (1992) can be
applied straightforwardly to yield statistics

3 (3 e
CNO=SEag =L (22)

with the same limiting distributions as the corresponding &;(A) tests. The
consistency of the tests follow from the argument in Kwiatkowski et al.

10



(1992) provided ¥ is o(T). The simplified statistics proposed in section 4 and
the unknown breakpoint statistics of section 5 can be amended in the same
way. Note that it might sometimes be sensible to estimate the long run
variance separately in each subsample.

As was noted earlier the KPSS correction can lead to size distortion
and /or low power. An alternative strategy, proposed by Harvey and Streibel
(1997) is to formulate a structural time series model and then construct the
test statistic using the innovations obtained by running the Kalman filter
under the null hypothesis with the nuisance parameters estimated under
the alternative. The same strategy was advocated by Leybourne and Mc-
Cabe (1994), except that they work in a slightly less parametric framework
based on modelling £, by an AR(p) process. The test statistic is constructed
from the innovation series y; = v, — &lyt,l — .= %pyt,p, where the autore-
gressive parameters are ML estimates obtained from fitting an ARMA(p,1)
model to first differences. The asymptotic distribution of the test statistic
is unchanged and Monte Carlo simulations show that in finite samples the
procedure has better size and power properties than KPSS .

Both the Harvey and Streibel (1997) and Leybourne and McCabe (1994)

procedures can be used with structural breaks.

7 Examples

Annual data on the volume of the flow of the Nile (in cubic metres x10%) is
shown in Figure 1; see Koopman et al (1995). Fitting a mean and computing
the test statistic (2) gives a value of £ = 2.527, indicating a clear rejection of
the null hypothesis that there is no random walk component; the asymptotic
5% critical value is 0.461. The KPSS test gives the same result with the
statistics for £ = 3 and 7 being 1.100 and 0.735 respectively. However, it
is known that the first Aswan dam was constructed in 1899 and if a level
intervention is included, neither the LBI nor the simplified test rejects the
null hypothesis, since &;(A) = 0.088 and {] = 0.301. In fact a simple random
walk plus noise model with a break in the level provides a good fit to the
data; see Harvey, Koopman and Penzer (1998). There is a possible outlier
in 1913, but including a dummy variable in the model for this year had little
impact on the test statistics. Since the stationary part of the model appears
to be white noise, the KPSS correction is unnecessary, but the test statistics
for £ = 3 and 7 are 0.074 and 0.096 and so it appears to have little adverse
effect.

The unconditional test also does not reject the null hypothesis, the test
statistic taking the values 0.058, 0.045 and 0.052 for ¢ = 0, 3, and 7 respec-
tively. However, it is interesting to note that the break point is located at

1897 rather than 1899.
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As a second illustration we apply the tests to annual data on US real
GNP for the period 1909-1970. These data were used in the well-known
article by Nelson and Plosser (1982). On the basis of augmented Dickey-
Fuller tests, Nelson and Plosser (1982) did not reject the null hypothesis of
a unit root. Subsequently, Perron (1989) observed that a structural break
is likely to have occured at the start of the Great Depression, and using his
testing procedure he was able to reject the unit root hypothesis in favour of a
trend stationary process. Zivot and Andrews (1992) then modified Perron’s
test by endogenizing the breakpoint, but reached the same conclusion as
Perron.

Our own view is that there are a quite a number of places where an
argument can be made for the introduction of a break, or a set of breaks,
into an economic time series like GNP. Thus we are not dealing with a
situation, as in the case of the Nile, where there is a well defined event at
a particular point in time which one would expect to give rise to a break in
the series. Nevertheless, suppose, following Perron (1989) that we assume
there is a known break after 1929 ( that is 7 = 1929). Table 7a shows the
results of applying tests with the KPSS correction in the following cases: no
break, break in the level, and break in both level and slope. The columns of
the table labelled =0 to /=8 refer to the lag length in the KPSS correction,
while the last two columns report the 5% critical values for A = 0.3 and
for A = 0.4, since the break occurs in between, at A = 0.34. The no break
case was reported in Kwiatkowski et al. (1992), where it was felt that
the evidence favoured the null hypothesis of trend stationarity, though it
was noted that the outcome of the test depends on the lag length in the
nonparametric correction. Fitting the ”Great Crash” model, that is a break
in the level as in model 2a, leads to non-rejection of trend stationarity,
though the outcome of the test is unclear when we consider a break in both
the level and the slope. This finding, then, is in line with Perron (1989).
However, the unconditional test, reported in table 7b for the case of model
2a, does not lead to a rejection of trend stationarity, though the implied
breakpoint is rather misplaced.

Looking at the graph of the series, in figures 2 and 3, one might equally
plausibly assume that there are two breaks: one at the time of the Great
Crash and one immediately after the Second World War. Figure 3 shows
the series with a fitted deterministic trend and breaks in both the level
and the slope in 1929 and 1945. Table 7c shows results obtained with the
simplified test, £5(2) in (20). These indicate a clear rejection of the trend
stationarity hypothesis. Since the breaks have been chosen by examining
the data, it could be argued that an unconditional test would be more ap-
propriate. However, this test is redundant if the null hypothesis has already
been rejected on the assumption of known breakpoints.

12



8 Seasonality

The presence of seasonal dummies will not affect the asymptotic distribu-
tions of the test statistics described so far. If the seasonal pattern evolves
according to a nonstationary process with complex unit roots, it can be
modelled explicitly as suggested by Harvey and Streibel (1997) or rendered
stationary by an appropriate transformation.

Canova and Hansen (1995) developed a procedure, analogous to the
KPSS test, for testing against the hypothesis that a series contains a non-
stationary seasonal component. If all the seasonal frequencies are included,
the asymptotic distribution of the resulting test statistic under the null is
CvM(s — 1). As shown in Harvey and Streibel (1997), the inclusion of a
time trend does not affect this asymptotic distribution. Thus CvMs(s — 1)
is not appropriate unless seasonal slopes, as used, for example, by Proetti
(1998), are included in the model; this can be shown by an extension of the
argument in Harvey and Streibel (1997, appendix).

The presence of breaks in the level and/or slope will not affect the as-
ymptotic distribution of the Canova-Hansen test. However, a break in the
seasonal pattern will. The asymptotic distribution of the LBI test statis-
tic could be derived. This would be tedious to do, but the simplified test
statistic, based on the residuals obtained before and after the break, has a
CvM (2s—2) asymptotic distribution. With & breaks in the seasonal pattern
the degrees of freedom would be k(s — 1).

9 Conclusions

This paper has derived the LBI test for the presence of a random walk
component in a series with structural breaks at known points. We then
proposed a simplified test in which the asymptotic distribution of the test
statistic is not dependent on the location of the breakpoint. The asymptotic
distribution is the generalised Cramér-von Mises distribution, with degrees
of freedom depending on the number of break points. The performance
of this simplified test was shown, via some simulation experiments, to be
comparable to that of the LBI test, with the LBI test being superior only
in the region close to the null hypothesis and for the break point near the
beginning or end of the sample.

An unconditional test, based on the assumption that there is a single
break at an unknown point, was formulated and critical values computed.
However, the examples illustrate that the breakpoint located by the test
may not necessarily be the correct or most appropriate one.

Serial correlation can be handled by a nonparametric correction to the
test staistics or by explicitly modelling the series. Seasonal effects can also

13



be allowed for in this way. The tests can also be applied in the context of
co-integration when a given co-integrating vector is hypothesized.

The asymptotic distribution of the test for the presence of nonstationary
stochastic seasonality is not affected by structural breaks in the trend. It is
affected by a break in the seasonal pattern but again the simplified test has
a Cramér-von Mises distribution.
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10 APPENDIX
10.1 Proof of Proposition 1

To prove the proposition we use the following two lemmas (whose proofs
are trivial). The first lemma contains asymptotic approximations of some
functions of time, while the second one deals with simple applications of
the invariance principle and continuous mapping theorem. Introduce the

notations > for >3 , > for ZtT:TH, =7t th=(T—71)'>tand
1 2 1 2

~ for asymptotic equivalence.

Lemma 4. Let 7 = [XT'] for A € (0,1). Then

>t~ %QTQ,
1

¢
> (s—1)~ T2 with = t)T,

s=1

t
Y (s—fﬁmﬁﬂ%ﬂT? with r =t/T.

s=7+1

Lemma 5. Let g; ~ iid(0,0%) and o, 3 € [0,1]. Then

oo 1T Y2 Z[BT] g = W(3) —W(a),

t=[aT]+1

/&)
oo 1T3/2 Z[BT] ley = / rdW (r),

t=[aT]+1

«o TN (1~ T) e = /zrdW(r) W),

1
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2
2
where W (.) is a standard Wiener process (Brownian motion).

Consider model 2 first (the proof for model 1 is a special case). Under
Hy: 0727 = (0, we can reparametrize the model as

Yo = pdie + podas + B (diet) + By (dait) + &,

where dy; = 1(t < 7), doy = 1(t > 7). Denote by (-)* the transformed
variables after partialing out the effect of the two level dummies dy;, dos
(which corresponds to taking deviations from the subsample averages), i.e.
transform the model into

v = B (dltt)* + 05 <d2tt>* + &5

Let P be the matrix that projects onto the space of these new regressors,
with entries

t—1t) 1<s<7,1<t<T,
pe =12 As(s—)(t—1) 7T<s<T,7<t<T,
0 otherwise,

2

—1 -1
where A, = <Z(t —51)2> , Ay = <Z(t —52)2> . Thus the regression
1

residuals are

55—51—141(8—%1)21:(
e = 55—52—142(8—%2)22:(

t—11)(ee—21) fors<rt
t—19) (e, —%9) for s>,
where the notation %; stands for the average of the variable x in the i-th
subsample, i = 1, 2.
Then, using the results in the lemmas above, it is easy to see that

[T"]
o T Ty ey = By (-, ),
s=1

where Bs(r, ) is defined in proposition 1. This, the continuous mapping

2

theorem and 2 % 02 imply the proposition.

For model 2a we use the following parametrization under Hy:

Y = pydae + podoy + Bt + 4.

Taking deviations from the subsample averages, we obtain y; = [Gt* — «;.
The projection onto the space spanned by t* is now given by the matrix P,
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with entries

A(s = 1) (t —1y), 1<s<m,1<t<T,

) A —t)(t—1t), 1<s<T,7<t<T,
Pt= NV AGs—T)(t—-T), 7<s<T,1<t<r,
A(s — 1) (t — 1o), T<s<T 7<t<T,

-1
where A = [S(t — 1) + (¢t — f2)2:| . This yields the following regression
T 2
residuals
Eg — 51 — A (8 — fl) <21:<t — El)(&t — 51) + %:(t — EQ)(E:t — gQ)) for s S T
Eg — 52 — A (8 — EQ) <Z<t — El)(&t — 51) + %:(t — f2)<€t — gQ)) for s > T.

1

€g =

Then, using the lemmas above, we have that the partial sum process for these
residuals weakly converges to By, (-, A) and therefore the result follows.
In the case of 2b we parametrize the model as

Yr = p+ B2 + Bozor + 4,

where 21, = (t — 7)1(t < 7) and 29 = (t — 7)1(¢t > 7). Now, first we take
whole sample total averages (i.e. project off the constant) and call 27, 23,
the resulting transformed variables. Then the projection onto the space
of the new regressors is defined by the matrix P = Z* (Z”"Z”‘)f1 7" with
entries

3

)\3(1 o )\)3Tﬁ3 [(CLZIS + bz;s) Zikt + (bziks + CZ;S) Z;t] )

Dst ~

where we have already replaced (Z* Z"‘)f1 with its asymptotic counterpart

3 ps| o b
A1 — \)3 b oc|’
with a, b, ¢ defined in the proposition. Using P we can again compute
the residuals and show that the partial sum process weakly converges to

Bay(+, A), and the result follows from the same arguments as in the previous
cases.

10.2  Proof of proposition 3

Let Ao = 7¢/T be the true breakpoint parameter. Consider each of the
models (9) to (12) under the null hypothesis of no random walk and rewrite
them more compactly as

y(Ao) = X, B+e; for t < AT,

yi(Xo) = x,B + wid+e, for t > AT, (23)
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where for instance for case [2] x; = wy = (1,1), B = (1, 3), 8 = (6,,05).
We can also rewrite (23) as

y:(Xo) = X8 4+ w,(Ao) d+e4, (24)

where wi(Ag) = wy - 1(t > AT).

When we compute the statistic (21) we regress y(Ag) on x; and wy(\)
for all A. So it is useful to express the true model in terms of w;(A) with A
not necessarily equal to Ag. Consider the case A > Ay for example. Then

Wt<)\0> = Wt<)\) + Sot<)‘07 )‘)7 (25>

where ,(Ao, A) = wy - 1(AT < t < AT'). Therefore we may rewrite (24) as
y(Xo) = Xt,B—I—Wt A)'d427 (A, Ao) (26)

— ( L2 (A Ao), (27)

where £5(A\, Ao) = g + ¢, (A, M)’ and z,(\) = (x}, w(A)"). The regression

(27) corresponds to the sequence (over A) of models that we estimate to

compute the statistic (21).
Let Mz(A) =1—Z()\) (Z()\)’Z()\))fl Z(\)'". The vector of OLS residuals

from regression (27) is then

e(A, Ao) Mz (A)e* (A, Ao) (28)
= Mz(A) (e + @(A, 20)6) (29)
= e(MA) +Mz(AN)p(A, Xo)d. (30)

From this expression we deduce that, under the shift assumption, fitting
a model with a misspecified breakpoint does not alter the asymptotic distri-
bution given by proposition 1. In fact Mz(A)¢ (A, Ag) are the residuals from
removing the broken trend z;()) from the piecewise linear variable @, (A, Ag).
Obviously these residuals are O(1) when @, (A, Ag) = 1(AoT < t < AT') and
O(t) when ¢, (A, Ag) =t - 1(AT <t < AT'). Then the partial sum of the ele-
ments of Mz (A)@(X, Ao)é is o(T"/?) under the shift assumption. Therefore

(1] (1]

T2 (M X)) = T3 e\ ) +o(1) (31)

t=1 t=1

= B;(-, N, (32)

where the process B;(-, ), r € [0,1], has been defined in proposition 1 for
the cases i = 1,2, 2a,2b.”

2 Alternatively we could have obtained the same result by keeping the magnitude of the
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Then, since the statistic (21) is defined as

B T /¢t 2
Eopnf 17073 (et 1, £

S—=

where the subscript 7 has been dropped, applying the continuous mapping
theorem as in Zivot and Andrews (1992) yields the result. This is because the
statistic can be expressed as a continuous functional of stochastic processes
defined on the underlying innovations, £;, where continuity is achieved when
A is a closed subset of the interval (0,1).

shift fixed and assuming that |\ — Ag| — O sufficiently fast as the sample size increases.
For example for a break in the level the partial sum of the elements of M z(A)g(X, Xg) is
O (|]A — Xo|T) , so the assumption |\ — A\g| = 0 (T’I/Q) would be adequate. Incidentaly,
this shows that the LBI test of section 3 is still valid when we don’t get the breakpoint
exactly but are close to it. However, in this section we are concerned with A spanning an
arbitrary closed subset of the interval (0,1), so assumption 1 is more appropriate.
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TABLE 1

Upper Tail percentage points of the distribution of the statistic (14) for i=1,2,2a,2b.
(smulated with T=1000, #r eplications=10000)

i=1: BREAK IN THE LEVEL WITH NO SLOPE.

0.900 0.950 0.975 0.990
Lambda

0.01 |0.339 0.456 0.559 0.716
0.1 0.285 0.378 0.471 0.607
0.2 0.225 0.293 0.368 0.478
0.3 0.189 0.246 0.302 0.379
0.4 0.161 0.204 0.245 0.303
0.5 0.150 0.187 0.223 0.264
0.6 0.164 0.207 0.251 0.314
0.7 0.191 0.242 0.295 0.378
0.8 0.231 0.305 0.388 0.484
0.9 0.283 0.378 0.484 0.606
0.99 |0.345 0.463 0.581 0.748

i=2: BREAK IN BOTH LEVEL AND SLOPE

0.900 0.950 0.975 0.990
Lambda

0.01 |0.119 0.146 0.172 0.213
0.1 0.095 0.120 0.145 0.175
0.2 0.079 0.097 0.114 0.137
0.3 0.064 0.079 0.095 0.112
0.4 0.056 0.066 0.076 0.091
0.5 0.053 0.062 0.071 0.084
0.6 0.056 0.067 0.078 0.092
0.7 0.065 0.079 0.095 0.118
0.8 0.079 0.095 0.115 0.140
0.9 0.097 0.119 0.142 0.173
0.99 |0.117 0.145 0.174 0.213
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i=2ac BREAK IN THE LEVEL ONLY

09 095 0.975 0.99
Lambda
0.01 |0.119 0.146 0.172 0.213
0.1 [0.096 0.122 0.146 0.177
0.2 [0.085 0.103 0.122 0.143
0.3 |0.086 0.105 0.121 0.142
0.4 [0.097 0.123 0.144 0.178
0.5 |0.105 0.133 0.162 0.209
0.6 |0.097 0.121 0.145 0.177
0.7 [0.085 0.102 0.120 0.144
0.8 [0.084 0.103 0.123 0.147
0.9 |0.098 0.120 0.143 0.173
0.99 |0.117 0.145 0.174 0.213

i=2b: BREAK IN THE SLOPE ONLY

09 095 0.975 0.99
Lambda
0.01 [0.119 0.146 0.176 0.213
0.1 |0.101 0.126 0.152 0.186
0.2 |0.088 0.108 0.130 0.155
0.3 |0.078 0.097 0.114 0.139
0.4 |0.072 0.086 0.100 0.119
0.5 |0.070 0.083 0.098 0.116
0.6 |0.073 0.089 0.104 0.126
0.7 |0.078 0.096 0.116 0.145
0.8 |0.087 0.109 0.131 0.161
0.9 0.101 0.126 0.151 0.187
0.99 |0.117 0.146 0.175 0.213
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TABLE 2

(a) Upper tail per centage points of the CvM 4(k) distribution (no timetrend)

90% 95% 99%

0.347 0.461 0.743
0.607 0.748 1.074
0.841 1.000 1.359
1.063 1.237 1.623

A WNBR|IX

(b) Upper tail percentage points of the CvM (k) distribution (time trend)

90% 95% 99%

0.119 0.149 0.218
0.211 0.247 0.329
0.296 0.332 0.428
0.377 0.423 0.521

A OWODNPRIX

Source: Nyblom and Harvey (1997).
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Size and power comparison between the L Bl statistic (13) and the simplified

i) T=100, #replications=5000.

TABLE 3

statistic (18) for i=2.

lambda| 0.1 0.3 0.5 0.7 0.9
q

0 0.048 0.054 0.048 0.053 0.047
0.01 0.313 0.221 0.177 0.230 0.325
LBI 0.1 0.884 0.824 0.830 0.819 0.896
1 0.999 0.999 1 1 0.999

10 1 1 1 1 1
0 0.050 0.051 0.048 0.047 0.047
0.01 0.256 0.194 0.177 0.200 0.260
Simplified 0.1 0.852 0.832 0.830 0.831 0.853
1 0.999 1 1 1 0.999

10 1 1 1 1 1

i) T=200, #replications=5000.
lambda| 0.1 0.3 0.5 0.7 0.9
q

0 0.050 0.056 0.042 0.052 0.047
0.01 0.695 0.576 0.534 0.577 0.699
LBI 0.1 0.994 0.989 0.994 0.990 0.993

1 1 1 1 1 1

10 1 1 1 1 1
0 0.049 0.049 0.042 0.041 0.043
0.01 0.634 0.550 0.534 0.560 0.626
Simplified 0.1 0.991 0.991 0.994 0.993 0.990

1 1 1 1 1 1

10 1 1 1 1 1
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TABLE 4

Upper tail percentage pointsfor the statistic (14) for i=1 and generalised to the case of 2 structural breaks

lambdas| 1/8, 1/4 1/8, 3/8 1/8, 5/8 1/4, 1/2 1/4, 7/112 1/3, 2/3
perc. points
0.9 0.205 0.153 0.124 0.112 0.100 0.093
0.95 0.269 0.197 0.151 0.140 0.119 0.110
0.99 0.418 0.300 0.218 0.208 0.167 0.148
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TABLE 5

Size and power comparison between the LBI statistic (14) generalised to the case of two structural breaks (and for i=1) and
the smplified statistic (20)

lambdas| 1/8, 1/4 1/8, 3/8 1/8, 5/8 1/4,1/2  1/4,7/12 1/3, 2/3
q
0 0.048 0.047 0.048 0.051 0.052 0.051
0.01 0.775 0.723 0.759 0.708 0.735 0.756
LBI 0.1 0.989 0.995 0.995 0.997 0.996 0.999
1 1 1 1 1 1 1
10 1 1 1 1 1 1
0 0.047 0.050 0.043 0.055 0.051 0.048
0.01 0.748 0.753 0.755 0.747 0.743 0.754
Simplified 0.1 0.994 0.997 0.998 0.998 0.996 0.999
1 1 1 1 1 1 1
10 1 1 1 1 1 1

Note: Simulation with T=200 and #replications=5000.
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TABLE 6

Upper tail percentage pointsfor the unconditional breakpoint test

0.9 0.95 0.99
i=1 0.071 0.087 0.134
i=2 0.033 0.041 0.054
i=2a 0.071 0.089 0.125
i=2b 0.050 0.060 0.084

Note: simulation with T=500, #replications=5,000.
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A) Structural break in 1929 (lambda=0.34)

TABLE 7

(=0 (=1 ¢=2 (=3 (= (= E (=7 (= 5% 5%
A=0.3 A=0.4
No break 0.630 0.337 0.242 0.198 0.173 0.158 0.148 0.141 0.137| 0.149 0.149
Break in the level 0.322 0.182 0.138 0.118 0.107 0.101 0.096 0.093 0.091| 0.105 0.123
Break in level and slope | 0.195 0.111 0.086 0.075 0.070 0.068 0.068 0.068 0.070| 0.079 0.066
Simplified statistic 0.529 0.301 0.232 0.204 0.191 0.186 0.184 0.186 0.191| 0.247 0.247
B) Unconditional test (structural break in the level)
(=0 (=1 (=2 (=3 (=4 (=5 (=6 (=7 (=8 5% 1%
Inf-statistic 0.194 0.108 0.081 0.071 0.066 0.065 0.064 0.064 0.066 | 0.089 0.133
Breakpoint 1926 1926 1926 1926 1925 1920 1920 1920 1920 / /
C) 2 structural breaks: 1929 and 1945
(=0 (=1 (=2 (=3 (=4 (=5 (=6 (=7 (=8 5% 1%
Simplified statistic 0.889 0.552 0.468 0.449 0.452 0.463 0.479 0.501 0.548 | 0.332 0.428
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Figure 1.

Volume of the flow of the Nile (cubic metres x10°)
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Figure 2.
US gnp and fitted trend with a break in the level.
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Figure 3.
US gnp and fitted trend with 2 structural breaks.
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