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Abstract

Sufficient conditions for strict stationarity of ARCH(«) are established, without
imposing covariance stationarity and for any specification of the conditional
second moment coefficients. GARCH(p,q) as well as the case of
hyperbolically decaying coefficients are included, such as the autoregressive
coefficients of ARFIMA(p,d,q), once the non-negativity constraints are
imposed. Second, we show the necessary and sufficient conditions for
covariance stationarity of ARCH(«), both for the levels and the squares.
These prove to be much stronger than the strict stationarity conditions. The
covariance stationarity condition for the levels rules out long memory in the
squares.
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1 Introduction

Introduced by the seminal work of Engle (1982), ARCH represent with no
doubt the most popular class of nonlinear time series models, in particular

thanks to the GARCH(p, ¢) development (Bollerslev 1986) defined by

€ = 20y, (1>

ol =wtone  + .. Foge ,+ Pt + .+ B, as., (2)

where w > 0, 3, > 0,a; >0(i =1,..,p, 7 =1,..,q) for integers p >0, ¢ >0
and a.s. means almost surely. The minimum conditions, which we assume
hereafter, imposed on the rescaled innovation z; are i.i.d.-ness, that |z|< co
a.s. and that the 22 are not degenerate. When p = 0 one gets the ARCH(q).

However, for long time, the probabilistic properties of ARCH(p) and
GARCH(p, ¢) and of the related statistical inference methods remained un-
known. The only exception is Weiss (1986) who established the asymptotic
properties of the Gaussian pseudo maximum likelihood estimator (PMLE)
and of the least squares estimator for ARCH(p). However severe restrictions
were imposed, in particular a bounded fourth moment of the ¢; was required.
This is both theoretically unduly restrictive (e.g. for ARCH(1) it implies
that ay be smaller than 1/ \/§) as well as in contrast with empirical findings
suggesting unbounded kurtosis of asset returns’ distribution (see e.g. Loretan
and Phillips (1994)).

The breakthrough development was made by Nelson (1990) who estab-
lished necessary and sufficient conditions on the GARCH coefficients and on
the rescaled innovation for strict stationarity and ergodicity of GARCH(1, 1)
allowing for unbounded second moment of the ¢;, including the IGARCH(1, 1)
case. In particular when

ElIn(f + a122)] <0, (3)

then o2 is strictly stationary and ergodic. The strength of (3) is that nowhere
covariance stationarity of the ¢; is implied and, indeed, it allows for mildly
explosive behaviour, e.g. a1 + 31 > 1 when E(z2) = 1.

The appeal of Nelson (1990)’s strict stationarity condition (3) consists in
its simplicity, in particular as a primitive function of the GARCH coefficients
and of the rescaled innovation distribution.



Indeed Lumsdaine (1996) and Lee and Hansen (1994) crucially rely on
Nelson (1990) result in order to establish the asymptotic properties of the
Gaussian PMLE for GARCH/IGARCH(1,1) without imposing a bounded
second, and thus fourth, moment condition.

Sufficient conditions for strict stationarity of more general GARCH(p, q)
were obtained by Bougerol and Picard (1992). They rely on the representa-
tion of GARCH as solutions of multivariate stochastic recurrence relations
and give the essential condition in terms of the top Lyapunov exponent of
certain random matrices (see eq. (2) and (3) in Bougerol and Picard (1992)).
These conditions collapse to (3) when p = ¢ = 1. Further results on the prob-
abilistic properties of GARCH(p, ¢) have then been developed, in particular
on the strong mixing (with geometric rate) and regular variation property,
imposing suitable smoothing assumptions on the distribution of the rescaled
innovation; see e.g. Davis, Mikosch, and Basrak (1999). However, these re-
sults on GARCH(p, q) suggest that in general is very difficult to express the
required conditions in terms of more primitive conditions, in contrast to Nel-
son’s GARCH(1, 1) result. Moreover, they crucially rely on the multivariate
Markovian structure of GARCH(p, ¢q).

Giraitis, Kokoszka, and Leipus (1998) found sufficient conditions for strict
stationarity of the ARCH(o0). This represents the most general formulation
of GARCH processes, generalizing (2) to:

ol =71+ 21/%5?4@7 a.s., Zwk < o0, (4)
k=1 k—1

where 7 > 0 and 1y, > 0. The ARCH(o0) has been introduced by Robinson
(1991). The GARCH(p, ¢) model is obtained choosing exponentially behav-
ing ¢, e.g. the GARCH(1, 1) follows setting 7 = w/(1—1) and ¢, = a3 gt
and the ARCH(p) model when 7 = w and ¢; = 0 for j > p. Although an
hyperbolic behaviour in the ARCH coefficients v; is allowed for, Giraitis,
Kokoszka, and Leipus (1998) strict stationarity condition

E(z) Y bk <1, (5)

k=1
implies a bounded second moment of the ¢. Indeed, for GARCH(1,1) (5)
equals F(f3; + a;22) < 1, the well-known covariance stationarity condition

for the €, (Bollerslev 1986), much stronger than (3).
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Based on a suitable nonlinear moving average representation of ARCH(o0)
we newly establish, the first contribution of this paper is to prove strict sta-
tionarity and ergodicity of the ARCH(oco) model using Nelson (1990)-type
conditions, i.e. expressed as primitive functions of the GARCH coefficients
and of the rescaled innovation distribution, without imposing the existence
of the second moment of the ¢;. We discuss implications for hyperbolically
decaying specifications of the v; and provide a stronger result for exponen-
tially decaying v;, which includes the GARCH(p, q¢) case. This is developed
in section 2.

Exploiting the well known linear ARMA (m, p) (with m = maz|p, q|) rep-
resentation of GARCH(p, q), introduced by Bollerslev (1986), the autocovari-
ance function (ACF) of the squares €? can be readily shown to be proportional
to the ACF of an ARMA(m, p) once the bounded fourth moment conditions
of the €, are imposed. The critical aspect is precisely calculating this constant
of proportionality, given by E[:2 — E(z?)]?E(0}). For general GARCH(p, q)
the solution has been recently given by Karanasos (1999). In section 3 we
propose an alternative way of evaluating F/(o}), valid for ARCH(oo). Both
the case of exponentially (e.g. the GARCH(p, q) case) and hyperbolically de-
caying coefficients v; are accounted for. Necessary and sufficient conditions
for weak stationarity of the levels ¢; and the squares ¢? are provided. Finally,
we discuss the implications of the covariance stationarity conditions on the
memory of the squares. It follows that covariance stationarity of the ¢; rules
out the possibility of long memory in the €2.

The proofs for the results of both sections are reported in the Appendix.

2 Strict stationarity of ARCH(0)

For ARCH(c0), it is well known that o7 admits the following representation,
readily obtained by using (1) and (4) recursively (cf. Giraitis, Kokoszka, and
Leipus (1998)),

of =73 M(l), a.s., (6)
=0

with My(t) :=1 and

My(t) == Z ,L/}jl"',L/}jzztajl"'Zt{jlf...fjl7 I>1 (7)

J1yesd1=1



Note that each M;(t) = Mj(z 1,2t 9,...) (I > 1),1.e. each M,(t) is a function
of all the lagged values of z.

However, 0 admits other ‘nonlinear moving average’ representations, in
contrast to linear processes. Nelson (1990), who focused on GARCH(1, 1),
considered the following

o7 =w Y _ Ni(t), a.s., (8)
k=0
with .
Nk(t) = H(ﬂl + @1Z?7j>, k> 07 (9)
j=1

with [T2_, ¢; = 1 when a > b for any sequence {c;}. In contrast to the M;(t),
note that Ni(f) = Ng(2t-1, ..., 2e-1) (k > 1), i.e. each Ng(t) is a function of
at most the k-th lagged value of the rescaled innovation.

The equivalent representation of the ARCH(c0) is given in the following
result, generalizing (8)-(9).

Theorem 1 For ARCH(co) (4), given 323215 < 00,
o7 =w Y _ Ni(t), a.s., (10)
k=0

setting w := 7/(327°, 1) and

Ni(t) := (11)

k k—l4+1k—142—51 k—d1——J1—1
2 2
Yoty | Do D e D UaWne i g g | B 20,
=1

ji=1  jeo=1 Ji=1

where S0 ¢; = 0 when a > b for any sequence {c;}.

Note that, equivalently, when vy > 0, one could set Ny(t) := 1, w :=
T/ (352 ;) and divide each Ni(t) (K > 1) in (11) by ;. This is the
parameterization used in (9) for GARCH(1,1).



Expanding (11) for £ =0,1,2 3, ... yields

No(t) = 11,

Ni(t) =9 + 1Zt2 1

No(t) =93 ‘|‘1/’11/}2(Zt 1 +Zt 2) ‘|’1/’1Zt 1Zt 2
N3(t) = by + (1/)11/)32} 1+ Y3 Z? 2 +1/)11/)3Zt 3)

‘H/’ﬂ/&(% 1Zt 2‘|’Zt 1Zt 3‘|’Zt 2% 3) ‘|‘1/’1Zt 1Zt 2% 39
N4( ) - 7l15 —I—

Summing up terms across the Ni(t) involving, in turn, no 22 ;, the singles
zf 4, the couples 27 ;27 . (i#]), and so forth, and dividing by 332, 1/, yields,
respectively, the My(t), Mi(t), Ms(t),... as in (7). Only for ARCH(p) the
two representations (6) and (11) coincides as, in this case, 1, = 0 for j > p
yielding M;(t) = Ny(t) (I > 1).

Using the suitable ‘nonlinear moving average’ representation prove to be
crucial when looking at the probabilistic properties of the ARCH(o0), as
shown by Nelson (1990) with respect to the GARCH(1,1) case. Using (11)
we now establish conditions which imply strict stationarity and ergodicity of
ARCH(o0).

Assume that v := E(Inz?) is well defined (eventually unbounded). Set

84
; v <0,
v { g 150 (12)

2 I

for an arbitrary constant 6 > 0.

Theorem 2 Let 0 < 7 < oo and vy, > 0 for at least one k > 1. If
eAzq‘/}i < 17 (13)
=1

then for the ARCH (c0) model (4), for any t,
r<o’<oo a.s.,

and o? is strictly stationary and ergodic, with a well-defined nondegenerate
probability measure on [T, 00).



Remark 2.1 Unlike GARCH(p, ¢), a multivariate Markovian representation
of ARCH(co) does not always exist and thus one cannot rely on it to estab-
lish strict stationarity. Indeed, our result allows for hyperbolically decaying
coefficients such as ¢; ~ ¢j° when j — oo with 0 < ¢, (§ — 1) < oo, where
a(x) ~ b(z) as * — xy means that a(x)/b(x) — 1.

For instance, when the ¢, are chosen to be the AR(oco) coefficients of
ARFIMA(p,d, q), then 3252, ; = 1 and thus a sufficient condition for (13)
would be the standard normalization F(z?) = 1, as this implies A < 0. Note
that, relying on this parameterization, E(z?) = 1 is ruled out by the Gi-
raitis, Kokoszka, and Leipus (1998) condition (5). Indeed, it is shown below
(cf. Theorem 4) that (5) expresses the necessary and sufficient condition for
covariance stationarity of the €;, much stronger than (13).

Remark 2.2 Condition (13) is a sufficient condition for strict stationarity
of ARCH(c0) although we conjecture to be very close to the necessary one.

For instance, for GARCH(1,1), (13) is
B+ arer <1,
slightly stronger than (3), yet still allowing o + 3; > 1 when F(z2) = 1.

Remark 2.3 When 7 = 0, Giraitis, Kokoszka, and Leipus (1998) show that

0? =0 a.s. is the unique solution of (4).

Remark 2.4 In analogy with the asymptotic results obtained relatively to
the Gaussian PMLE of GARCH(1,1) (Lumsdaine 1996) (Lee and Hansen
1994), condition (13) appears as the minimal regularity condition required in
order to establish the asymptotic distribution theory of the Gaussian PMLE
of ARCH(o0) for some finite-dimensional parameterization of the ¥; = 1,;(€)
where £ is a p X 1 vector. This is the topic of forthcoming research.

For exponentially decaying v;, as e.g. for GARCH(p,q), when ¢, <
Ap?~1(j > 1) for some constants 0 < A < 00, 0 < p < 1, (13) becomes

p+ Ae* < 1. (14)

However, we can exploit the special structure of exponentially decaying 1;
and obtain weaker strict stationarity conditions than (14) as follows.
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Theorem 3 Let 0 <7 < oo and ¢; < Ap? 1 (j > 1) for some 0 < a < A<
00, 0 < p <1 with; ~ap’ ! as j — oco. If

p+ Ae* < 2, (15)

and
Elin(p+ az})] < 0, (16)

then for the ARCH (c0) model (4), for any t,
<ol <00 a.s.,

and o? is strictly stationary and ergodic, with a well-defined non-degenerate
probability measure on [T, 00).

Remark 3.1 Unlike the case of exponentially decaying coefficients of Theo-
rem 3, full knowledge of the 1, for the hyperbolically decaying case, such as
eg U, =cj % 0<ec (6§—1)<oo(j>1),or the autoregressive coefficients
of ARFIMA(p,d, q), does not help in finding weaker conditions than (13).

Remark 3.2 In the GARCH(1, 1) case, where A = ¢, it follows that (15) is
redundant, in agreement with Nelson (1990, Theorem 2).
Let us focus on the GARCH(p, q) case (cf. (2)). Setting

BL) = AL+ o+ By I,
L being the lag operator (L z; = 2z;_1), we assume that for complex valued z
1= 5(=)|#0,]2< 1, (17)

l.e. the p roots of |1 — (3(z) |= 0 all lie outside the unit circle in the complex
plane. Note that, although (17) implies

Al <1,

it is not the covariance stationarity condition of the ¢, given instead by (cf.
Bollerslev (1986))
B(:=2)a(1) + 8(1) < 1, (18)



with a(L) := oy L + .. + o, L?. More importantly, note that (17) is implied
by Nelson (1990)’s condition (3) for otherwise, if 8 > 1,

Elln(6y + a12f)] > Infh > 0,

in contrast to (3).

Assume that the roots are all distinct, real and distinct from the roots
of a(L) = 0. The possibility of complex roots is tightly linked to the non-
negativity constraints on the coefficients in the ARCH(o0) representation
of GARCH(p,q). Nelson and Cao (1992, Theorem 2) show that for the
GARCH(2, q) case, complex roots are not allowed although the conditions
B1 20,08, >0, a; >0(i =1,..,9) can be substantially relaxed. However,
for general values of p it is unclear whether oscillatory behaviours in the
1);, induced by complex roots, are always ruled out by the non-negativity
constraints.

By standard arguments one obtains

ﬂ—a Ay Ap
1 A(L) <L>(1—plL+”+1—ppL>’

where p; (i = 1,..,p) define the inverse of the roots of |1 — 3(z)|= 0 and

1
(L= p1/pi) (L = pi1/p) (1 = pisa/pi)--(1 — pp/ps)

where A, = Ay =1 for p = 1. It follows that the ARCH(o0) (4) representa-
tion of GARCH(p, q) is readily obtained setting

Ai pp— , i:1,...,p,

’L/)‘ _ Oéllijq—l-..—l-OéjMo, j: 1,--,(], (19)
! aaphi—1+ .+ Qgltj—q, 7 >4

T=w/(1=0—..—F),

with p; == A1 (p1)? + .. + Ay (pp)?, 7> 0. Let p := max{p1,p2, ..., pp}, A
the corresponding A; and set A := (oq + .. + o) Y44 | A;|. Finally set
o= (a1 4+ ap t + .+ agpt ) A, yielding ¢ ~ ap’ as j — oo

Hence, with these definitions for A, « and p, Theorem 3 generalizes Nelson

(1990, Theorem 2) to the GARCH(p, q) case.



3 Weak stationarity and memory of ARCH(c0)

The minimal condition for covariance stationarity of the ¢, (and thus of the
€?), is clearly k := F(z2?) < oo, by (1). Following Robinson (1991), who
considered case k = 1, setting /(L) := 1 — k357, Y; [, we can re-write (4)
as

W(L)e; = KT+ 1, (20)

setting 14 := €7 — ko?. By (1) and i.i.d.-ness of the 2z, E(vy | Fr1) = 0,
where F; is the o-field of events induced by the €, (s < t); see Loeve (1978,
section 27.2, Frtension) for the definition of conditional expectations when
the corresponding unconditional expectations might not exist.

Assume that, for complexed valued z,

2)=> 62 =v¢(2), Go=1, st. Y 6 < oo, (21)
—0 50

A sufficient condition for (21) is

[p(2)|# 0, |21< 1,

implying (1) > 0 but we want to allow for the possibility that (1) =
Given (21), (20) can be re-written as

= r76(1) + Zé Vi ;. (22)

These simple manipulations suggest that 7, kK < 0o and K> ;2 ¢; < 1 imply
covariance stationarity of the ¢;. Indeed, it turns out that these are the
necessary and sufficient conditions for E(e?) < oco. This is developed in the
following theorem where the necessary and sufficient conditions for covariance

stationarity of the squares ¢? are also established.



Theorem 4 Assume that the conditions of Theorem 2 and (21) hold.
(i) Necessary and sufficient conditions for E(o}) < co are

T < 00, (23)

K < 00, (24)

R W< 1. (25)
i—1

Under these conditions
¢ = E(ef) =k7/(1 — /{Zd)l) < 00.
i—1

(ii) Necessary and sufficient conditions for E(o}) < co are

T < 00, (26)
0 := E(z! — k)? < o0, (27)
(03 wts() <1 (29)

setting o = 0, P = ¥y (k > 1), and xc(u) == S0 chepyu, u = 0,£1, ...,
for any square integrable sequence c;.
Under these conditions the €2 are covariance stationary with ACF

cov(ef,efﬂb) = E(l/f)x(g(u), u=0,%+1,...,

where

507 =00/ (1-0 3 xwlusl) - <.

U——00

Remark 4.1 The ACF of GARCH(p, q) follows setting

¢ = rw/(1 —ra(l) = 5(1)),

deriving the x;(u) and the xs(u), and thus E(v?), using the v; from (19)
and deriving the 6; from (21), respectively. For example, for GARCH(1, 1),
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setting K = 1 and 1 := aq 4 31, i.e. the ‘persistence’ parameter, one obtains

2
_ aq _ lu|—1 Q17
X&(O)—1+1_7T%7X5(U)—0417T1 (14'71_%%)7
of _ oty

Xy (0) = 1_7%, Xg(u) = 1 — 7 u==1,..

When 6 = 2, by means of simple manipulations, (28) yields the well-known
covariance stationarity conditions for € (cf. Bollerslev (1986, section 3))

3af + 37 4+ 2048, < 1, (29)

which, in turn, implies (25) (cf. (18)). In remark 4.4 below, we show that,
indeed, (28) strictly implies (25) without specifying any particular parame-
terization of the ;.

Remark 4.2 An alternative proof of sufficiency of (23)-(25) for F(o?) < co
is in Giraitis, Kokoszka, and Leipus (1998, Theorem 2.1).
When

(B Y <1, (30)

Giraitis, Kokoszka, and Leipus (1998, Theorem 2.1) show that F(o}) < co.
However, (30) is much stronger than (28). For instance, for GARCH(1, 1)

with # = 2k = 2, their condition becomes
31/2041 + 51 <1,

strictly implying (29), unless 8; = 0, the ARCH(1).

Remark 4.3 Hyperbolically decaying specifications of the ¢; and hence of
the ¢; are allowed for. Note that from (25), K < 1/(3°:°; ¢4) and thus k = 1
is ruled out when » 2, 1, = 1.

Imposing k = 1, a choice compatible with covariance stationary levels is
obtained using the autoregressive coeflicients of stationary ARFIMA(p,d, q)
(cf. Robinson and Zaffaroni (1997, section 3)) as follows. Set

a(l)
b(L)’

1— i&jv = (1—L)* (31)
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where 0 < d < 1/2, a(L), b(L) are finite order polynomials, all of whose

roots are outside the unit circle in the complex plane. Assuming that the non-
negativity constraints on the coefficients hold, i.e. 1; > 0, set ¢; = 1; (i > 2)

and 1; = 1€ for some given 0 < € < 1 (e.g. € = 9/10). Condition (28)
is more involved but, again, by a suitable modification of the first L (say)
coefficients ¢; (j = 1, ..., L), a feasible sequence of coefficients can be obtained

from (31).

Remark 4.4 An alternative, frequency domain, characterization of (28) is

0 [ 7; Fs(N) fu(NdA < 27, (32)
setting
Fs() =6, fo(A) = (/K% L = o(eM)f, —m <A<,

where x2 f,(A) = 14+ f1(A) — 2 Re(67 (™)), -7 < A < 7 and Re(")
indicates real part of its argument. This frequency domain specification
seems much easier to be computed and might be relevant when imposing
covariance stationarity of the €2 in practical estimation, e.g. when estimating
ARCH(o0) using the Whittle estimator (Giraitis and Robinson 1998).

The equivalent (32) representation of (28) could be used to show that
(28) strictly implies (25). In fact, setting 6§ = 2x = 2 for simplicity’s sake,
(32) can be re-written as

o [0 (12 Bele (@) ar < -2

However, fs(A) > 0(—7 < A < 7) but it is arbitrary, requiring necessarily
1—2 Re(6 () = =142 thjcos(jA) <0, =1 < A < 7.
=1

Given the non-negativity of the v; and cos(jA) < 1, with the equality
achieved for A = 0 (mod. 27), this is equivalent to

—142> 9; <0,
j=1

12



strictly implying (1) > 0.

Finally, exploiting the relation between the v (i > 1) and the 6, (j > 0)
(cf. (21)), (32) allows to express the time domain characterization (28) more
simply as

2> yxa(s) < 1710+ xs(0) — 1.
j=1

Remark 4.5 The original formulation of ARCH(o0), analogous to Robinson
(1991) but allowing k # 1, is

o =F+ Zwk(eik — KT), a.s., (33)
k—1

for some 0 < 7 < co. The re-parameterization (33) is clearly permitted only
for covariance stationary €, i.e. when (1) > 0, given that 7 = 7/¢(1).
Indeed, assume to start directly from (33) rather than from (4). By the non-
negativity constraint £ ;% < 1 as 9(1) < 0 is not allowed. Imposing
(1) = 0 and assuming (21), the linear moving average representation (22)
for the €2 would then be

& =C+ > Sy,
=0

for any ¢, given that ¥(L)e? = ¥(L)e? — 1(1)¢ = ¥ (L)(e2 — (), which is

meaningless.

Giraitis, Kokoszka, and Leipus (1998, Proposition 3.1) show that (30)
implies absolute summability of the ACF for the €2, ruling out long mem-
ory. However, considering that (30) is stronger than required in order to
obtain covariance stationary €2, it seems important to assess the impact of
the weaker condition (28) on the memory of the €.

Insights can be obtained by looking at the linear representation (22) for
2. In fact, it follows that the memory of the €? is expressed by the asymptotic
behaviour of the ¢; as 7 — co. Surprisingly, it turns out that even the much
weaker covariance stationarity condition (25) for the levels ¢ rules out long

13



memory in the €2. In fact, from (21) and (25),

S = 1/ R34 < o0
j=0 Jj=1

(28) ensures that the uncorrelated v, have finite variance but the rate of decay
of the ¢;, imposed by (25), is already quick enough to imply their absolute
summability. We summarize our results on the memory of the ¢ as follows.

Theorem 5 Assume that condition (25) of Theorem 4 hold. Then
Z (Sj < o0, (34)
j—1

where

I—s+1l—%1—..—25_2—1

o = ’ﬂ/}l‘l‘Z’{ Z Z Yy iy Wiy, 121 (35>

= 11=1 ts—1=1

When the v; decay toward zero slower than exponentially, viz. 1;/C* — oo
asi— oo for any 0 < ¢ <1, (84) implies that, as u — oo,

for some 0 < C' < o0.

When ; ~ ¢i® asi — oo for 0 < ¢,6 — 1 < oo, as e.g. for the
ARFIMA(p,d, q) parameterization described in remark 4.3, F(e?) < oo im-
plies

xs(u) ~ Cu™® u— oo, (37)

for some 0 < C' < co ruling out long memory in the €2,

Under the same assumptions on the asymptotic behaviour of the v;, the
exact rate in (37) was also obtained in Giraitis, Kokoszka, and Leipus (1998,
Proposition 3.2), although they impose (30), a sufficient condition for E(e}) <
oo. However, Theorem 5 makes clear that whereas the bounded second
moment conditions impart the degree of memory of the ¢?, the stronger
bounded fourth moment necessary and sufficient conditions (26)-(28) ensure
that the martingale difference sequence v, viz. the innovations in the linear

14



representation of the squares (22), are square integrable, but do not change
the memory implications of the model. This double role of the coefficients is
simply a by-product of the ARCH(o0) nonlinearity.

In the case of exponentially decaying 1/;, i.e. when it does exist a 0 < ( <
1 such that ¢;/¢* — ¢ as i — oo for some 0 < ¢ < 00, it clearly follows that

Xs(u) ~ C 6% u— o0,

for some 0 < 6 < 1,0 < C < 00, e.g. the GARCH(p, ¢) case.
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A Appendix
PROOF OF THEOREM 1: Re-parameterize the coefficients
Yy =clj1, j =1, (38)

for some constant 0 < ¢ < oo, which is absolutely innocuous. Clearly
S22 Ok < oo by assumption. Then, expanding My(t), My(t), Ms(t),.. yields

Mo(t) =
Mi(t) = c@ozt 1+ c@lzt o+ COy2% 44 .
My(t) = 283% 1Zt 9 T C 9091(% 1Zt 3+ Zt2 2%2 3)
+C28%Zt2 Zt gt 9092(% 1Zt 4t Zt 3Zt )+
Ms(t) = 0527 127 57 5+ ...

Premultiplying each M;(t) (I > 0) by ¢>.7° o 0k, expanding terms and group-
ing together all terms such that their coefficients ¢" 10, ...0;, (r>0,i1,.., 0 >
0) satisfy

r+i+..+i. =k, k=01,.. (39)

and defining them as Ny (1), yields

N()(t) = 090,
Ni(t) = el + 2022 |,
NQ(t) = 692 + +c¢ 9081zt 1 +c 9180zt 9 + 63802’t 1Zt 92,

Nk(t) == ch + 62(808k 1Zt2 1 + 919#22’3,2 + ...+ 9;6,1902’?7,6)

k1 2
+..+c gozt 1Zt 2 Rtk

Substituting back the c¢f,_; in terms of the 1, and setting w = 7/(37°, )
concludes. The re-parameterization (38) is used as a device in that it allows
to identify, within each summand, the number of factors z? and, as a con-
sequence, to characterize all the elements corresponding to each Ni(t). For
instance, with respect to N;(t), both cf; and ¢?63 satisfy (39) for k = 1, for
Ny(t), cby, c®006,, 2016y and >0 satisfy (39) for k = 2 and so on.
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Note that the only condition required for deriving the nonlinear moving
average representation (11) is >°7°, ¢ < co. O

PROOF OF THEOREM 2: Take an arbitrary constant integer M > 0
with M < k. Then, for any k > 1, split the RHS of (11) as

k/Mlk—I1+1k—d1—.—FJi—1 k—I+1k—j1—..—Ji—1
=3 Y. > B+ Z Yoo > Bi(t), (40)
=0 5i=1 ji=1 I=[k/M]+1 j1=1 J=1

where [-] is the integer part of its argument and
Bi(t) == s i Vb i it 21y F iy (41)
Let us dispose of the first sum on the RHS of (40). As [ < [k/M], one obtains

[k/M] k—l4+1k—F1—...—J1—1

S Y. Y B

=0 ji1=1 Ji=1
[k/M] E—1+1 M k—j1—..—J1-1
= > Z+ S X+ X By(t) (42)
=0 Jj1i=1  j=M+1 Ji=1 Ji=M+1

The term in the { }-brackets on the RHS of (42) is made by the sum of three
terms. One involving the sums ZJ (i =1,..,1) only:

[k/M]
Z {Z 21/}311/’32 d’yﬂ/}k G1—..§+1 Zt it Zt e ]l} (43)

I=0 (s1=1 ji=1

k11— i 141
71 Ji1H(i— )(_1

One involving the sums 370 5/ , ey 1) only:

[k/M]

> x (44)

E—1+1 k—Jji—...—Ji—1
2 2
Z Z wﬁwﬁ"',L/}jlwk*jlfmjﬂrlZt*j1“‘zt7j17m*jl )

JI=M+1  §=M+1

and the ‘mixed’ term

k/Ml1—1 E—ltit—j1—.—jsy 1 B=ltos—j1——Ji;_ -1 M
)35 3> Sk SRS SHRNTIEED DU SN 3¢
=0 s=1 Jip=M+1 Jiy_,=M+1 Jri=1  jrg=1
2 2 2
7‘/}j17~/}j2"'¢jl¢k*j1*...jl+1 thjl thjlfjg"ztfjlf..fjl} ) (45)
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where Y, . =3 (s L, , 1.e. it selects all the groups of indexes
’ {1 e g FUL81 yeuriy _ g 1=11, 0,0}
of dimension s (with s = 1,..,1—1) drawn from a number / of them and thus

for any s and any permutation j;, + ...+ 7, , + Jr, + - + Jr. = 1+ . + 1.
Note that filys 1= (i)

By Dudley (1989, Theorem 8.3.5), with probability one there exists a
constant K < oo such that for all k£ > K

[17;=0("), as. (46)

Imposing F |In z?|>7“< co for some arbitrary € > 0, by the law of iterated
logarithm for ii.d. variates (see e.g. Stout (1974, Corollary 5.2.1)) one
can refine case v = 0 in (46) setting § = 6(k) = [9/2u(inin uk)/k]*/? (cf.
definition of A in (12)) with p:= E(In z2)%.

For (43), for some 0 < ¢ < 1, writing ZWM] = Ei’f)/M]fl—l—Z
yields, for ¢ suitably small,

00 M [k/M] M
43) =0 (1/% > (e ;%‘)l + > (e Z%‘)l)

1=0 I=[¢ k/M) j=1

[k/M]
[Ck/M]>

=0 (1/% + (! 3 1/)j)ck/M) , @.5.
j=1

Concerning (44), along the same lines,

[k/M] oo
(44) —O( Z Z UHE D D CO w)

J=M+1 = [Ck/M] J=M+1

=0 | + (e Z V; Ck/M),a.s.

j=M+1

For the ‘mixed’ term,

s
_|_
N
e
M-
TN
\_D
Mg
§
M
§
v

I=[Ck/M]  s=1

=0 (wk + (e i%‘)ck/M) , a.S.
j=1
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Finally, for the second term on the RHS of (40),

k—l+1k—g1—.—J11 k

S oy Y B Y (@ Nu)
I=k/M]+1 j1=1 a=1 I=[k/M]+1 j=1

=0 ((eA iwj)k/M) , a.s.

Strict stationarity, ergodicity and non-degenerateness of the distribution of
the o7 follow along the lines of Nelson (1990, proof of Theorem 2). O

PROOF OF THEOREM 3: Following Theorem 2, take an arbitrary con-
stant integer M > 0 with M < k and split the RHS of (11) as

/M) k—14+1k—J1——J1-1 E—l+1k—j1——Jd1—1
Hn< Y S B+ Z oo > Bi(t), (47)
=0 ji=1 a=1 I=[k/M]+1 j1=1 Ji=1

with By(t) defined in (41). Given | < |k/M|, we have seen that the first sum
on the RHS of (47) can be written as the sum of three terms (43)-(45). The

term involving the sums Z (i =1,..,1) only is bounded by

[k /M]
0 ( 2 ()M Ae )l) = O ((0)*[L+((p) " M Aeh)/M])

=0 ((p’)k) , a.s.,
using (46) and choosing M large enough such that
= p((p) "M AN < 1.
Second, concerning the term involving the sums Z?i;ﬁtljr"fji’ﬁ(ifl)
(i =1,..,1) only, one obtains

[k/M] E—1+1 k—j1—..—J1-1
O (A Z (p)kl{ Z Z (o/)lzfjl...zfjlmjl})
=0

n=M+1 Ji=M+1

E E=l4+1  k—ji—.—ji-1
=0 (Z(P)kl@/)l Z Z Z?jl"'zfjl...jl)
=0 J1=1 s=1
k
=0 (H(p + oz’zfl-)) =0 (ea:p(k:/QE[ln(p + o/zf)])) , a.s.,
i—1
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and o = «a+ 6y for some 6y > 0 with 6y = o(1), arbitrarily small by

choosing M large enough.

) E—l+1-j1—...—jp_1+(h—1)
For the ‘mixed’ term, involving the sums ZJ s Dy~ Mt

(i,h=1,..,1), using (46),

O ([if? ) l:f M A& (/e (Z> (?:j))

_0 ([kz/ﬂjﬂ(p)k o/e) (’;)2}71(_1,_1;—1{:;—1\414/0/))
( (14 M A /o) (o) 104’@][’“/]”1([’;7]\41]))

= o (K*2(p")) , as.,

where 9 F1(-,+;+,+) is the (2,1) generalized hypergeometric series (Gradshteyn
and Ryzhik 1994, Section 9.1). The result follows using Gradshteyn and
Ryzhik (1994, # 9.132) yielding

WP (=1, —1; —k; —2) = 2(1 + Z)lr(—z)ré(_—k/z; - l>2F1(—l, —k+ 11 1/(1+2)),

where I'(+) is the Gamma function, simplifying terms, noting that as z — oo
o (=1, —k+1L1;1/(1+2)) = 0((’;)), using Gradshteyn and Ryzhik (1994,
# 0.156) and Stirling’s formula (Brockwell and Davis 1987, pg. 522) and
choosing M large enough such that

)1/M

o :zp((l—l—MA/o/) (p) '/ e <1.

Assume 1 < p + Ae*. The last term on the RHS of (47) is bounded by

k k—l4+1k—g1——J11
k I Al4+1 2 2
O Z A Z Z LT NP

l:[k/M]+1 =1

=0 (<p>“'“/M1 (Aeh) ([ﬁ])ma, et k[ —Aek/p)

M
= O(K*%ck) a.s.,
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for some constant ¢ = ¢(p, Ae*, M) with 0 < ¢ < 1, using Gradshteyn and
Ryzhik (1994, # 3.196 (1)) such that

];1+[£

M]? _AeA/p)
k

e)\
L @ o) A — ),
0

k
oF1(1,—k + [M

_ pkar[k/M] (Ae)\)f[k/M][

where the integral on the RHS above is O(c") by splitting f " f

for some € > 0 with Ae* —1<1—p—€e<1—pand choosmg M sultably
When p + Ae* < 1 the result follows trivially (cf. (14)). O

PROOF OF THEOREM 4: (i) Assume that E(0?) < co. Then necessity
of (23)-(25) follows taking expectation on both sides of (4). On the other
hand, assume that (23)-(25) hold. Then, premultiply both sides of (4) b
L == 1(N2{o7 ; < M}) for some constant M < oo where 1(A) equals one
when the event A holds and zero otherwise. Note that when o2 is bounded
from above, so are all the o2 , for k > 1. Setting P(A) equal to the proba-
bility of the event A, taking expectations,

B(o?1) < TP(a? < M)/(1= kY1),

as, using the law of iterated expectations,
B(o7 1) = B(P(0} < M, ..,0p o < M|0p )1 y07 ) < B0} 1 1) = E(071y),

the latter equality holding by strict stationarity. Finally, letting M — oo,
P(o} < M) — 1 by Theorem 2.

(ii) Assume that E(o}) < co. Then, (26)-(28) follow squaring both terms in
(4) and taking expectations,

E(Uzl) = (¢/K) + OE( Ut Z Yy, (Zé 6z+(31 JQ))
J1,72=1
using

E[(ef — ¢)(ef+u — @) = E(l/f) iéjéﬂu, u=0,%1,...,

=0
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o0

as the v, are square integrable martingale differences and $70°,6? < co by

(21). Sufficiency is obtained following the corresponding part in the proof of

(1). O
PROOF OF THEOREM 5: From

(143 6L (1 - kY ) = 1,
j=1 i=1

by the fundamental theorem for polynomials and simple yet tedious calcula-
tions, (35) follows. By a truncating argument, similar to the one used in the
proof of Theorem 2, it straightforwardly follows that, as 7 — oo,

§; = Kb + O ((K im)“) , (48)

for some 0 < ¢ < 1, re-discovering that condition (25) is needed for summabil-
ity of the 6;. Note that, when ¢); > 0(j > 1), then (35) implies 6; > 0 (j > 0).
Hence, for any v > 0 and some 0 < ¢ < o0,

Xo(uw) =D 88510+ Y 86w~ cdu(l +0(1)), u— oo,
j=0 j=u+1
given that, for u large enough,
Z 6j6j+u < buin Z 6j = 0(6U>7

for some constant 1 < n < oo. Finally, comparing (48) with (35) and given
k> 0,1; >0(i > 1), yields

6kNka7 k — oc.
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