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Abstract 

 
 
We consider a multivariate continuous time process, generated by a system of 
linear stochastic differential equations, driven by white noise and involving 
coefficients that possibly vary over time. The process is observable only at 
discrete, but not necessarily equally-spaced, time points (though equal spacing 
significantly simplifies matters). Such settings represent partial extensions of ones 
studied extensively by A.R. Bergstrom. A model for the observed time series is 
deduced. Initially we focus on a first-order model, but higher-order ones are 
discussed in case of equally-spaced observations. Some discussion of issues of 
statistical inference is included. 
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1 INTRODUCTION

Continuous-time modelling in econometrics was pioneered by Rex Bergstrom. At least

if calendar e¤ects can be ignored, econometric time series data are usually observed,

perhaps after temporal aggregation, at discrete, regular intervals of time. On the

other hand, the interval of measurement may have no economic signi�cance, in which

case an underlying continuous-time process can be imagined. If so, modelling based

on the continuous-time process may be more natural and elegant, than modelling

directly the discrete-time observations. In his 1966 Econometrica paper and 1967

book, Bergstrom (1966, 1967) initiated continuous-time modelling of discrete-time

macroeconometric data as a topic of econometric research. Consequently, interest

expanded in the 1970�s, as illustrated by the collection of articles by a number of

researchers that Bergstrom (1976) edited. On a personal note, I was then a young

researcher whose interest in the topic was considerably stimulated by reading Rex�s

early work. He kindly published a chapter of my PhD thesis in Bergstrom (1976),

and was always immensely kind and helpful to me in my career.

Building on his early development of the subject, Rex Bergstrom continued to con-

tribute to it very signi�cantly and uniquely for the rest of his life. His work included

several advances in econometric theory, developing exact and approximate discrete

time models and justifying rules of large sample statistical inference on parameters in
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the underlying continuous-time model (e.g. Bergstrom, 1983); this work was marked

by considerable rigour and care, and matched the challenge of the topic. Perhaps even

more distinctively, he successfully built and empirically estimated multiple equation

models of the economy (e.g. Bergstrom, 1984); this work was considerably informed

by economic theory, and his approach has been very in�uential, having been adopted

by a number of empirical macroeconometric researchers internationally. Remark-

ably, he continued to be productive long into retirement, as illustrated by his �nal,

posthumously-published book, Bergstrom and Nowman (2007).

Developing statistical inference on continuous-time models using discrete-time

data is an ambitious undertaking, as Rex Bergstrom was well aware. Intuitively,

this is obvious from the fact that any sequence of discrete observations can be inter-

polated by uncountably many continuous paths. This leads to the classical "aliasing"

phenomenon (most frequently discussed in the context of stationary processes, where

the spectral density of the equally-spaced discrete sequence is generated from that of

the continuous one by the "folding formula"), and thence to a lack of identi�ability.

The folding formula produces an upper bound for the continuous-time spectral den-

sity (because it is everywhere non-negative), but uncountably many versions of it are

consistent with a given discrete-time spectral density.

However, a parsimonious parametric model for macroeconomic processes is usu-

ally necessary due to shortage of data, especially in a multivariate setting, and such

4



a model can considerably alleviate the identi�cation problem. Typically, the model

has been a system of constant-coe¢ cientstochastic di¤erential equations. Then it is

possible (see Phillips, 1973) that the parameters in the model can be at least locally

identi�ed, though this can be di¢ cult to demonstrate analytically. Unfortunately,

though an exact discrete-time model can be written down, and may belong to the

familiar autoregressive moving average (ARMA) class, the parameters of the discrete-

time model can be extremely complicated functions of the underlying parameters;

their analytic form depends, indeed, on whether any roots of the continuous-time

autoregressive operator are repeated, and if so, on their multiplicities. Consequently,

interest in simpler, discrete-time "approximations" developed, for example ones gener-

ated by replacing derivatives by di¤erences (see e.g.Bergstrom, 1966). However, there

is an element of arbitrariness in the choice of approximation, and for a given model

a continuum of "discrete approximations" can be justi�ed, utilization of each leading

to di¤erent parameter estimates and possibly di¤erent conclusions about economic

behaviour (see Robinson, 1977a). One solution is to employ the basic discrete ARMA

structure that is derived, and estimate this unconstrainedly, ignoring the restrictions.

However, the ARMA typically has more coe¢ cients than the initial continuous-time

model had, so ine¢ ciency results. As a further pitfall, the linear stochastic di¤eren-

tial equations are typically assumed to be driven by white noise, or more generally,

in the stationary case, the process has a rational spectral density. This assumption
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cannot be taken for granted, hence, specifying the dynamics of the unobservable in-

put process is a hazardous undertaking, and misspeci�cation leads to a misspeci�ed

"exact" discrete model.

Nevertheless, a considerable body of work has developed, in large part due to

Rex Bergstrom and his students, treating the modelling of systems with or without

predetermined variables, developing the linear model to allow for forms of nonlin-

earity, and extending stationary models to nonstationary ones, to re�ect the growing

econometric interest in nonlinear and nonstationary dynamics in purely discrete time.

The literature is described in the historical review article Bergstrom (1988). In fact,

this literature, beginning over 40 years ago, with its focus on macroeconomic time

series, is re�ected in considerable recent activity with continuous-time modelling in

�nance. Here the main di¢ culties facing Bergstrom, discussed above, are reduced

due to the very �nely spaced sampling of many �nancial time series, and their con-

siderable length. Nevertheless,high frequency �nancial data and microstructure noise

a¤ect model formulations in a way that introduces considerable analytic complexity

and calls for new inferential approaches. Phillips and Yu (2005a,b, 2006) emphasize

the magnitude of �nite sample bias due to the discrete sampling, and its economic

implications.

The bulk of research on continuous-time modelling has assumed constancy of pa-

rameters across time. On the other hand, time-varying models have over the years
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become a focus of study within mainstream discrete time series econometrics and sta-

tistics. In large part this is due to a need to describe one or more changes in structure,

due to economic, political or natural events that have a sudden e¤ect on the economy.

There has also been considerable work with parameters that can change over time,

possibly smoothly and possibly with respect to each observation point, or perhaps

with discontinuous jumps. Here we will discuss an extension of a famous result for

time invariant continuous-time models that was alluded to above: a discrete-time

equally-spaced sequence from a continuous time ARMA process has a certain discrete

ARMA representation, as found by Bartlett (1946) and subsequent researchers. We

attempt to extend this sort of result to a setting that allows general variation across

time in coe¢ cients. We also allow for multivariate data, and additionally consider

the possibility of irregularly-spaced sampling. Finally we discuss issues of modelling

statistical inference.

2 TIME-VARYING CONTINUOUS-TIME MODEL AND DISCRETE

SAMPLING

On the real interval T = [t0; :), de�ne X(t), t 2 T , to be a mean-zero, real-valued,

p-dimensional vector homogeneous random process with orthogonal increments, that
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is

E (X(t1)�X(t2)) (X(t3)�X(t4))0 = (t1 � t2) Ip; t1 = t3 > t2 = t4;

= 0; t1 > t2 � t3 > t4; (1)

Ip being the p-rowed unit matrix and the prime denoting transposition.

Initially, let A(t) and B(t) be respectively q� q and q� p matrices of real-valued,

bounded, measurable functions and consider the system

dY (t) = A(t)Y (t)dt+B(t)dX(t); t 2 T ;

Y (t0) = Y0: (2)

Many processes Y (t) that arise, not only in economics but also the natural sciences

and engineering, are so modelled, but often with A(t) and B(t) assumed constant

across t, as in Rex Bergstrom�s work. Note that changing A(t) with t entails time-

varying dynamics, whereas changing B(t) with t entails time-varying conditional het-

eroscedasticity.

It is assumed that observations can be made only at countably many points in T ,

t1 < t2 < � � � . Indeed the property (1) may limit the accuracy with which Y (t) can

be continuously recorded. We deduce a model for Y (tj), j � 1.

Let there exist, for all t, a nonsingular fundamental matrix �(t) for A(t) (Cod-
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dington and Levinson, 1955, pp.69-71), satisfying

d

dt
�(t) = ��(t)A(t); t > t0;

�(t0) = Iq: (3)

Suppose, in addition to (1), that

EY0 = 0;

EY0Y
0
0 = 
 <1;

EY0 (X(t2)�X(t1))0 = 0; t0 < t1 � t2: (4)

A solution will be described as unique if it is unique in the mean square sense consid-

ered by Friedman (1975, Theorem 1.1). The following theorem demonstrates equiv-

alence in second-order moment properties of continuous-time and discrete-time solu-

tions.

Theorem: Let Yc(t); t 2 T , be the unique solution of (2). For any given sequence

t1; t2; :: 2 T , where t0 < t1 < t2 � � � , let Yd(tj), j � 1, be the unique solution of

Y (tj)� �(tj)�1�(tj�1)Y (tj�1) = Z(tj); j � 1;

Y (t0) = Y0; (5)
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where

EZ(tj) = 0;

EZ(tj)Z(tj)
0 = �(tj)

�1�j�(tj)
�10;

EZ(tj)Z(tk)
0 = 0; j 6= k;

�j =

Z tj

tj�1

�(t)B(t)B(t)0�(t)0dt: (6)

Then

EYc(tj)Yc(tk)
0 = EYd(tj)Yd(tk)

0;

for all j; k.

Proof. Premultiplication of (2) by �(t) and use of (3) produces

d (�(t)Y (t)) = �(t)B(t)dX(t);

whence integration over (tj�1; tj), j � 1, produces

�(tj)Y (tj)� �(tj�1)Y (tj�1) =
Z tj

tj�1

�(t)B(t)dX(t);

which may be written as (5), with

Z(tj) = �(tj)
�1
Z tj

tj�1

�(t)B(t)dX(t):

It is readily veri�ed that (1) implies (6). Now (5) has the unique solution

Yd(tj) = �(tj)
�1
�
Y0 +

jP
i=1

�(ti)Z(ti)

�
; j � 1;
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so that, from (4), (6)

EYd(tj)Yd(tk)
0 = �(tj)

�1 �
 + �1 + � � �+ �min(j;k)��(tk)�10:
On the other hand, from Soong (1973, p.154) a solution of (2) is

Yc(t) = �(t)
�1
�
Y0 +

Z t

t0

�(u)B(u)dX(u)

�
;

and this is unique (Friedman, 1975, Theorem 1.1). Thus

EYc(tj)Yc(tk)
0 = �(tj)

�1

 

 +

Z min(tj ;tk)

0

�(u)B(u)B(u)0�(u)0du

!
�(tk)

�10

= EYd(tj)Yd(tk)
0:

This completes the proof.

This "skip -sampling" result could be extended to cover temporally-aggregated

data. It would be more di¢ cult to deal with a situation in which di¤erent elements

of Y (t) are observed at di¤erent time points.

In the usual constant-coe¢ cient case, A(t) � A, we have, with t0 = 0, �(t) = e�At,

where for a square matrix Z, eZ = 1+
X1

j=1
Zj=j! when the series converges. Then we

deduce that the AR coe¢ cient matrix � (tj)
�1� (tj�1) = e

A(tj�tj�1). In the regularly-

spaced case where tj�tj�1 = �, the latter matrix becomes eA�, as in Rex Bergstrom�s

work. With irregular spacing we have a multivariate extension of a result obtained by

Robinson (1977b).
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More generally, for a scalar integrable function f(t), suppose A(t) = Af(t), where

�(t) = e�Ag(t) with g(t) =
Z t

�1
f(u)du. Thus �(tj)�1� (tj�1) = eAfg(tj)�g(tj�1)g, in

which we may write g(tj) � g(tj�1) =
Z tj

tj�1

f(u)du. For example, in the periodic

case f(t) = cos(bt), b 6= 0, we have g(t) = � sin(bt)=b and thence �(tj)�1� (tj�1) =

eAfsin(btj)�sin(btj�1)g=b = e2A sinfb(tj�tj�1)=2g cosfb(tj+tj�1)=2g. With regular spacing, tj+1 �

tj � �, this becomes e2A sin(b�=2) cos(b(t��=2)) at tj = t. Thus the discrete-time model

also has a periodic structure.

We have focussed on closed systems, containing no predetermined or exogenous

variables. An open system, which contains a vector U(t) of such observable variables

is

dY (t) = A(t)Y (t)dt+ C(t)U(t) +B(t)dX(t); t 2 T:

We can infer from the Theorem proof, by simply substituting C(t)U(t)+B(t)dX(t) for

B(t)dX(t), a model that includes Y (t) only discretely, but depends on the continuous

U(t), as well as the continuous X(t). However, it is likely that U(t) will only be

observed discretely. This mirrors the problem encountered with constant-coe¢ cient

models, where a full discrete model has been deduced by either "exactly", by an

implicit assumption about the continuous time dynamics of U(t), which is inevitably

a source of misspeci�cation if incurred, or a discrete "approximation", which again

really has the staus of a good approximation for suitable continuous time dynamics

(see e.g. Phillips, 1974, Sargan, 1974, Robinson, 1976, Bergstrom, 1983). Of course
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an allowance for irregular spacing raises the possibility that U(t) could be observed

at di¤erent times from Y (t), which would make for further di¢ culties.

3 Higher-Order Extension

Successive application of the step from (1) to (5) yields a sampled version of the

rth-order vector continuous-time model

dDr�1Y (t) =
rP
i=1

Ai(t)D
i�1Y (t)dt+B(t)dX(t);

Y (t0) = Y0; (7)

where Dj = dj=dtj. First write (7) in the form (2) with X(t), Y (t), A(t), B(t) there

replaced by2666666666666664

0

0

...

0

X(t)

3777777777777775
;

2666666666666664

Y (t)

DY (t)

...

Dr�2Y (t)

Dr�1Y (t)

3777777777777775
;

266666666664

0 Iq 0

0
. . .

... Iq

A1(t) A2(t) � � �Ar(t)

377777777775
;

2666666666666664

� � � 0

� � � 0

� � �

0

� � � B(t)

3777777777777775
respectively.

For simplicity consider only the familiar case of equally-spaced observations, tj+1�

tj � 1. Then a discrete model like (5) is obtained, with tj and tj�1 replaced by t and

t� 1. (Although we call it �discrete�it is of course valid continuously over t.) Now
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the �rst subvector of the latter model has the form

Y (t) =
rP
i=1

Fi(t)D
i�1Y (t� 1) +

Z t

t�1
G(t)dX(t):

If Fr(t) is nonsingular, an expression for Dr�1Y (t� 1) is obtained. By means of this,

Dr�1Y (t � 1) is eliminated from the remainder of (5), and a new (2) is formed, in

which Y (t) is replaced by

�
Y (t)0; Y (t� 1)0; DY (t)0; DY (t� 1)0; � � � ; Dr�2Y (t)0; Dr�2Y (t� 1)0

�0
:

A new (5) is derived and from the �rst two subvectors of this, expressions forDr�2Y (t�

1), Dr�2Y (t � 2), deduced, much as before. A further (2) is constructed and so on,

until the �nal (2) has Y (t)0 replaced by (Y (t)0; � � � ; Y (t� r + 1)0). From the �rst

subvector of the associated (5) model we deduce

Y (t)�
rP
j=1

Rj(t)Y (t� j) =
r�1P
j=0

Sj(t)Z(t� j); (8)

for suitable matrices R1(t); :::; Rr(t), S1(t); :::; Sr�1(t), and where for each t, the se-

quence Z(t � 1); Z(t); � � � are uncorrelated but possibly heteroscedastic vectors, and

the right side of (8) results from the r�1 integrations that have been performed. The

fact that (7) and (8) have solutions with identical autocovariance properties may be

demonstrated as in the Theorem.

Similar results were earlier established for the special case that coe¢ cients and

sampling intervals are constant over time, early references being Bartlett (1946),
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Walker (1950), Phillips (1959). Then if the initial conditions are at �1, and, say,

Y (t) is covariance stationary, (5) and (8) become special cases of ARMA models,

about which a great deal is known. An open question is the extension of such results

to spatial and spatio-temporal data.

4 Modelling and Inference Issues

The properties we have developed demonstrate some equivalence between continuous-

time models with time-varying coe¢ cients, and discrete-time models, but they fall

far short of providing a basis for statistical inference, given discrete-time data..

The approach taken to modelling A(t) and B(t) in (2) is a crucial initial con-

sideration. They could be parametric, in the sense of depending on t and �nitely

many unknown parameters, or they could be nonparametric, or else a semiparametric

setting could be considered, for example A(t) could be parametric but B(t) non-

parametric. Then the corresponding discrete model (5) inherits the same kind of

properties (though the inovations covariance matrix �j depends on on both A(t) and

B(t): For parametric A(t), however, the extent to which a parametric representation

of the autoregressive coe¢ cient matrix �(tj)�1� (tj�1) can be deduced is far from

clear. Even in the equally-spaced context, with tj+1 � tj constant, matters are more

complicated even than in the time-invariant settings developed by Rex Bergstrom.

Rather, a desire for e¢ ciency gains from utilising the restrictions required by the
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continuous time model is liable to give way to a more pragmatic approach to spec-

ifying the discrete-time model, either parametrically or nonparametrically, with the

continuous time one essentially playing the role of motivating a loosely-de�ned dis-

crete time dynamic structure, via the Theorem. In higher-order models (7), choice of

the order r is as always an issue. Notice that A(t) and B(t) could also be regarded

as stochastically generated but independent of fX(t)g (see e.g. Nicholls and Quinn

1981), in which case the Theorem is valid conditional on fA(t)g, fB(t)g.

Given a discrete-time speci�cation, a variety of strategies for estimation are pos-

sible. In parametric models, these are likely to be based on a form of Gaussian

likelihood or pseudo-likelihood, as in the time-invariant models considered by Rex

Bergstrom. For the purpose of statistical inference, developing asymptotic distribu-

tion theory presents formidable di¢ culties. The irregular spacing permitted in the

Theorem is a severe complication in itself, even for time-invariant models. This is due

essentially to the loss of Toeplitz structure in the covariance matrix of the data, mak-

ing it very di¢ cult to develop regularity conditions that comprehensibly separate out

assumptions on the process generating the observation timest, be it deterministic or

stochastic, and assumptions on fA(t)g, fB(t)g ; fX(t)g : For a vector, time-invariant

version of (2), with irregular spacing, Robinson (1977) developed Gaussian estimates

and asymptotic theory. In a purely discrete-time setting, Dunsmuir (1983) developed

asymptotic theory for estimates of time-invariant ARMA models when data are sub-
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ject to missing from a regularly-spaced grid. For time-varying discrete-time models,

asymptotic theory will rely inter alia on stability properties, or suitable knowledge

of the nature of any instability. Some theoretical properties of time-varying discrete

time models, with regularly-spaced observations, have been developed by, e.g., Hallin

(1978), Melard and Herteleer-de-Schulter (1989), and parametric estimation has been

considered by, e.g., Subba Rao (1970), Kitagawa and Gersch (1985). For nonparamet-

ric A(t) and B(t), a local kernel smoothing approach can be employed, as in the time-

varying semiparametric regression and regularly-spaced locally stationary time series

contexts of Robinson (1988), Dahlhaus (2000), respectively; here, to enable a useful

asymptotic theory, A(t) would be replaced by A(t=n), where n is the number of ob-

servations and observations are drawn at t = 1; :::; n: The above discussion has had in

mind the closed systems which are the focus of the paper. With open systems, brie�y

discussed in Section 2, after making the interpolation/approximation that creates a

discrete-time model, there is potential for less dependence on strong assumptions on

the input noise X(t), as stressed by Robinson (1976), in case of constant-coe¢ cient

models. Rex Bergstrom�s pioneering investigations have not only solved important

issues in time series modelling and inference, but opened the way for much further

research.
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