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Abstract

We provide an asymptotic distribution theory for a class of Generalized
Method of Moments estimators that arise in the study of differentiated product
markets when the number of observations is associated with the number of
products within a given market. We allow for three sources of error: the
sampling error in estimating market shares, the simulation error in
approximating the shares predicted by the model, and the underlying model
error. The limiting distribution of the parameter estimator is normal provided
the size of the consumer sample and the number of simulation draws grow at
a large enough rate relative to the number of products. The required rates
differ for two frequently used demand models, and a small Monte Carlo study
shows that the difference in asymptotic properties of the two models are
reflected in the models’ small sample properties. The differences impact
directly on the computational burden of the two models.
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1 Introduction

Applied microeconometric studies of markets are often interested in estimating parameters of demand
(or production) functions from data on the quantity, price, characteristics and perhaps inputs of a
set of products which interact in a given market. In these studies observations are typically product-
specific, and the approximations used for the distribution of the estimators are obtained by taking
the limit as the number of those products, say J, grows large. Of course frequently the analyst has
more information available than just product level data on a single market. Often, for example,
data on a cross-section of markets, or data that follows a given market over time, will be available.
Somewhat less frequently, at least in the study of demand systems, additional micro level data (data
that matches individuals to the products they chose) is available. Even in these cases, however, the
number of products seems to be a relevant limiting dimension. Thus in studies that have data on
many markets, or a given market over time, the number of products at a given spatio-temporal point
is frequently at least as large as (and is often much larger than) the number of markets or time
periods; while in the demand studies where micro level data is available there are parameters whose
properties depend on a product-specific disturbance whose impacts do not get averaged out as the
number of consumers grow large [see Berry, Levinsohn, and Pakes (1998)].

This paper provides an asymptotic theory for estimators of the parameters of differentiated prod-
uct demand systems when the number of products in a given market is relatively large. Discrete
choice differentiated product demand systems posit that the utility of the consuming unit is a function
of; parameters @, observed product characteristics, x, random consumer tastes, A, and unobserved
(by the econometrician) product characteristics £. Some of the observed characteristics (e.g., price)
may be correlated with £&. The consuming unit either chooses one of the J product marketed or it
chooses not to spend any money on the goods in this market (in which case we say the consumer
chooses the “outside” alternative). Fach unit makes the choice which maximizes its utility. The
model’s estimate of market shares (or choice probabilities), say o (0, x,), are generated by simply
adding up over the choices of the alternative consuming units. We observe the actual market shares,
s. Up to sampling error, these are assumed to be the market shares generated by the model at the
true 6y. We also can calculate the model’s prediction for these choice probabilities at alternative

values of 6, i.e. o(-). The unobservables are implicitly defined by the system

ag(0,x,€) =s, (1)

which can be solved for £ as a function of (0, z, s). The 0 vector is estimated by method of moments,
using the vector of sample moment conditions formed, for example, from a zero covariance restriction

between some exogenous vector of instruments, 2, and the unobserved characteristics. The moment



restriction 1s then p
1
ElG,(0)] = Bl > 26(0,3,5)] =0, (2)
=1

at @ = 0. Several econometric issues arise in this context. These include the dependence in the
observations on £;(0,x,s) when 0 is not at its true value and the “triangular array” problem that all
the elements of s may change when an additional good is added (similarly, all the prices, which are
elements of x, may also change.) A further problem turns out to be quite important when either the
function o(-) is an integral which is estimated by Monte Carlo simulation based on a finite number
(ns) of simulation draws, or when the market shares, s, have sampling error. Then the disturbances
generated by the simulation and sampling processes also impact on the distribution of the estimators
and (as we shall show) their impacts can be quite large.

We begin with some quite general consistency and asymptotic normality results. Probably most
interesting, however, is their specialization to two classes of models which have been used extensively
in the literature. The limit theorems for these cases are developed for rates at which all three
sources of randomness (the consumer sampling process, the simulation process, and the process
generating the product characteristics) contribute to the variance in the limiting distribution of
the estimators, as this allows us to evaluate the their relative contributions. We consider first the
random coefficients logit based estimator of demand discussed in Berry, Levinsohn, and Pakes (1995;
henceforth BLP). Under quite general conditions we show that in the logit and random coefficient
logit cases the estimator will be consistent if .J log J/n and Jlog .J/ns converge to zero as J increases.
For asymptotic normality at rate v/J in these cases we require J?/n and J?/ns to be bounded. That
is, to obtain a CAN estimator for the parameters of these models we require the number of simulation
draws and the size of the consumer sample to grow as the square of the growth in the number of
products. This improves on rates reported in BLP. The other class of model’s we consider in detail
is the “pure characteristic” model. Its theoretical lincage dates back at least to Hotelling (1929)’s
horizontal model, and it has seen extensive use in the context of the vertical model introduced
by Shaked and Sutton (1982). It can be obtained from BLP’s specification by simply deleting the
independent and identically distributed disturbance “logit” errors from each choice alternative. Berry
and Pakes (1999) endow the pure characteristics model with an estimation algorithm analogous to
the estimation algorithm provided in BLP for their model, and discuss the advantages of the pure
characteristics framework (focusing on the analysis of the demand for, and the welfare implications
of, new goods). We show that to estimate the parameters of the uni-dimensional (one characteristic)
pure characteristic model consistently we require only that n and ns increase at rate log JJ, while for
asymptotic normality we require only that J/n and .J/ns stay bounded. We also explain why the

multidimensional pure characteristic model is likely to obey the same rate restrictions, but do not



have a formal proof to that effect. So the rate at which n and ns must grow for asymptotically normal
parameter estimates from the pure characteristics model is less than (is the square root of) the rate
at which they must grow to obtain asymptotically normal estimates for BLP’s model. These results
arise because differences in the nature of competition between the two models implies differences in
the properties of 9o (-)/0€. In particular in the models with “diffuse” substitution patterns, such as
the random coefficient logit model of BLP, all goods are substitutes for all other goods and do(-)/0¢
goes to zero as the number of products increase. As we will show it is the inverse of this partial that
determines the impact of simulation and sampling error on the estimate of £(+) that satisfies (1).
When the partial disappears this inverse grows large. So when J is large a little bit of simulation or
sampling error causes large changes in the computed value of £. In contrast the pure characteristic
model has “local” competition (products are only substitutes with a finite number of other products).
The more the number of products the “closer” will a product’s nearest competitor tend to be, and
the larger will be the market share response to small changes in the quality of the product. In
the pure characteristic model then, a little bit of simulation or sampling error will have almost no
effect on the computed value of €. This suggests that for fixed J we should be able to obtain “well
behaved” parameter estimates from the pure characteristic model with fewer simulation draws than
we need to use in estimating BLP’s model. We provide a small monte carlo study which indicates
that the difference is rather dramatic. This is one reason to expect the computational burden of
the pure characteristic model to be less than the computational burden of BLP’s model. Berry and
Pakes (1999) show that the computational burden of obtaining the £(0,x,s) from the system in
(1) is typically larger for the pure characteristics model than it is for BLP’s model. So there is a
trade off to be considered when comparing the computational burden of the two models. What this
paper suggests is that to obtain well-behaved parameter estimates we will have to have much larger
consumer samples and a much larger number of simulation draws if one uses BLP’s system than if
we use the pure characteristics model.

The paper is organized as follows. In section 2 we present the underlying model. In section 3
we present an overview of the main results and the intuition underlying them. Section 4 provides
the main mathematical details. In section 5 we discuss our leading examples. Section 6 contains
the results of a small Monte Carlo study. The proofs are contained in the appendix. We use
| Al = {tr(A’A)}1/2 to denote the Euclidean norm of any mxn matrix A, —, to denote convergence
in probability, and = to mean convergence in distribution. For a matrix A, s, we say A = O(g(.J))

if the absolute value of the maximum element of the matrix is of order g(.J).



2 The Model

We consider a market with J competing products and an outside good. The vectors of product
characteristics will be denoted by (£;, #1;). The £; € R are characteristics which are not observed
by the econometrician whereas the z1; € A} C R are observed. We assume that the sequence
¢, 3713‘}}]:1 are independent and identically distributed (i.i.d.) [or, perhaps, exchangeable| draws,
and, for the most part maintain the assumption that F[¢;|z;] = 0 and E[f?]a:l] < oo with probability
one, where 1 = (%11,...,%1s). The role and content of this assumption is discussed in Berry,
Levinsohn and Pakes (1995). It can be replaced by other identifying assumptions without changing
the logic of the underlying limit theorem.

In addition to the “exogenous” characteristics [those that satisfy £(¢ j |z1;) = 0], we allow products
to have additional characteristics, say zo; € Xy C R%, which are “endogenous” (like price) in the
sense of being related to the {¢;}. This produces a problem analogous to the traditional simultaneity
problem in demand and supply estimation. We let x; = (z1;, ¥9;), while = (z1,...,2;) and
€= (&,...,&,). At times we will also need explicit assumptions on the process generating x;.

For any given vector of individual characteristics [households of given income, family size, etc.],
say A € RY, the model determines a map from a parameter vector, # € ©, where © is a compact
subset of R¥, and the vectors of product characteristics, (z,¢), into the market shares purchased
by individuals with those characteristics. Let that map be w(x,&,A,0) : D — S;, where D is the

appropriate product space, and S; is the J + 1 dimensional unit simplex, 1.e.,
J
SJ: {(30,...,&])/’ OS 5; S 1 fOI‘jZO,...,J, and ZSj = 1}
7=0

If P is a distribution of X, then the vector of aggregate market shares predicted by our model, for a

given value of 0, and a particular P are

o(£,0,P) = /w(a:,f,)\,Q)dP()\), (3)

where we have suppressed the dependence of ¢ on « for convenience. The actual market shares in the
population are given by evaluating this function at (6°, P°) the true value of § and P. We designate
this vector by s° = o(¢, 6°, PY). Although P is known, or rather assumed, we typically will not
be able to calculate (£, 0, P°) analytically and will have to make do with a simulator of it, say
a(&, 0, P™), where P™ is the empirical measure of some 1.i.d. sample Ay, ..., \,s. For example,

a(&,0,P"%) = /w(a:,{,)\,Q)dP"S()\) = L iw(a:,{,)\jﬁ).

ns 4
j=1
We will make the following regularity assumptions on o(&,6, P).
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ASSuMPTION Al. (regularity conditions for share function) For every finite J, for all 0 € ©,
and for all P in a neighbourhood of P°, o;(£,0,P)/0¢, exists, and is continuously differentiable in
both & and 0, with 0c;(§,0,P)/0¢; >0, and for k # j, 00;(§,0,P)/0&, <0 (for k, j=1,...,J).
Moreover, s? > 0 for all j.

Note that although these properties must hold for each finite J, they need not hold in the limit.
Thus although we assume that s° > 0, we have s? — 0 as J — oo for all but possibly a finite subset
of the products. Although we do not explicitly model the process which generates the products with
positive market shares, below we require the process that generates the (£, x) tuples to satisfy certain
regularity conditions.

The observed vector of market shares are denoted by s™ € S;. Generally, s™ will be constructed
from n i.i.d. draws from the population of consumers. Similarly, we assume that for any fixed (¢, ),
say (04, &), that the function o (&, 61, P°) is constructed from ns independent, unbiased, simulation

draws. This makes it natural to make A2.

ASSUMPTION A2. The markel shares sy = 15" 1(C; = ¢), where C; is the choice of the
i consumer, which are i.i.d. across i, while for any fized (£,0), 04(&,0, P") — 04(€,0, P°) =
N €0is(0,€), where £4;45(0,&) are independent and have mean zero and the function £4:4(0,€)

is bounded and continuous. Define the J x J matrices Vi = nE[(s" — s°)(s" — s°)] = S — ss' and

Va(0,8) = nsE[(0(€,0, P) — 0(£,0,°))(0(&, 0, ™) — 0(¢,0, P°))'].

We now outline the logic of the estimation procedure. Elsewhere, [Berry, Levinsohn, and Pakes
(1995), and Berry and Pakes (1999)] we provide quite general conditions which insure that for every
(s,0,P) € 89 x © x P, where S = {s : 0 < s, < 1 for all £} and P is a family of probability

measures, there is a unique solution for the £(6, s, P) that satisfies
s—o(£,0,P)=0. (4)

By the implicit function theorem, Dieudonné (1969, Theorem 10.2.1), and A1, the mapping £(0, s, P)

) 87
is continuously differentiable in 6,s, P, in some neighbourhood. The true value of &, say £°

, 8, , 13 obtained as the solution to
0°, s°, PY), is obtained as the soluti
80_0_(57 807 P0>:0 (5>

Define £(0, s, P) as the unique vector that solves (5). Also define the instrument matrix z =

21,...,%;) whose components 2, = 2(x11, ..., T15), € R, where 2(-), : (R*)) — R and ¢ > k
q q q
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(k is the dimension of ), for ¢ = 1, ..., J. Note that we allow the value of the instruments for
the j" observation to be a function of the values of the characteristics of all the observations. This
is because most notions of equilibrium in use [e.g., Nash in prices or quantities| imply that the en-
dogenous variables we are instrumenting [i.e., price] are functions of all the characteristics all the
products. We will require only weak regularity conditions on the 2z, and will introduce them where
needed below.

Now let
G(0,s, P) szgesp (6)

The assumption that F(&;|z1) = 0 ensures that E[GJ(QO, s, P%)] = 0. If we were able to calculate
§,(0, s, PY), then (2) would suggest using as our estimate of # the method of moments estimator,
Hansen (1982), obtained by minimizing the norm of G;(6,s°, P?). Unfortunately we observe only
s" and not %, and we cannot calculate o(£, 8, P%) but only o(¢, 6, P™*). Consequently, what we
do is substitute an estimate of £, obtained as that value of £ that sets s" — (€, 0, P"*) to zero and
denoted by £(0, s™, P™), into (2) and minimize the resulting objective function. Thus our estimator

of 6, say 5, is defined as any random variable that satisfies
|G (@, 5", )|l = inf |Gy (0, 5", P™*)]| + 0p(1/VJ). (7)

The computation of 0 is discussed further in Berry, Levinsohn, and Pakes (1995).

3 Overview of the Main Results

The objective function we are minimizing, |G (0, s", P"?)||, has a distribution determined by three
independent sources of randomness: randomness generated from the draws on the vectors {¢;, z1;},
randomness generated from the sampling distribution of s", and that generated from the simulated
distribution P™¥. Analogously there are three dimensions in which our sample can grow: as n, as
ns, and as J grow large. Our limit theorems will allow various rates of growth for each dimension.
Throughout we let J — oo and make n and ns deterministic functions of J, i.e., we write n(J) and
ns(J) and let n(J),ns(J) — oo at some specified rate. If n(.J),ns(J) — oo at a fast enough rate,
then the contribution from simulation and from the distribution of s™ will be of smaller order, and
the asymptotics will be dominated by the randomness of £. We would like to guarantee that all three
terms contribute to the asymptotics, and make assumptions about the rate of growth of n,ns to
ensure this (this will allow us to evaluate the contribution of simulation and sampling error to the
asymptotic distribution of the estimator). Finally, note also that both s" and ¢ (€, 0, P) take values

in R, where J is one of the dimensions that we let grow in our limiting arguments [although for

6



expositional ease we have not indexed these functions by J in the statement of our assumptions,
those assumptions should be interpreted as holding for each finite J|.
We begin with a heuristic argument which provides the basic logic underlying the proof. The

consistency argument is established by showing that:
(i) supgee ||G (0, 8", P™) — G;(0, s°, P°)|| converges to zero in probability.
(ii) an estimator that minimized |G, (6, s°, P°)|| over 6 € © would be consistent for 6°.

To obtain (i), we show that the sequence £(6, s™, P"¢) is close to £(f, s°, P°) uniformly in 6 in
probability in the sense that

J
g 5 G0, ) = 60,8 P 0 ®
Let e" = s" —s® and ™ (0) = o[£(0, s°, P"%), 0, P"$|—o[£(0, s°, P"®), 6, P°). Since (0, s, P)solves
(5), to prove (8) we will need that ||e™ + £"%(0)|| —, 0 uniformly in 0. In addition, we put conditions
on (&, 0, P) which ensure that the solution to (5) converges to £(8, s°, P°) when ||" + £™(0)|| —, 0,
and that s® — o (¢, 0, P°) is sufficiently far away from zero when ¢ is different from £(6, s°, P°). The
extra conditions we need here depend on the precise model generating market shares, so will formulate
them in a general way, and then specialize to our two leading cases.

To establish (ii), we apply a standard law of large numbers to G J(QO, 59, P?). However, we cannot
guarantee convergence of G5 (6, s°, P°) for 6 # 6°, because at 0 # 6° equilibrium in the product market
will ensure that the ;(s, 0, P) are correlated. Instead, we use an asymptotic identification condition
to bound the function ||E[G;(0,s°, P°)]|| uniformly away from zero when 6 lies far enough away
from 6°. The intuition underlying why we expect the identification condition to hold is transparent
in the logit example, and generalizes to the other models we consider (a formal verification of this
identification condition would require assumptions on the nature of equilibrium in the market being
studied).

We turn next to asymptotic normality. We write
£(0, s, P™) =£(0, s°, P°) + {5(8, s P™) — €0, $°, P”S)} + {5(8, s0 P — (0, s°, PO)}. 9)

By assumption Al, that for each J, almost every P, almost all £, and every 6 € O, the function

a(&, 0, P) is differentiable in £, and its derivative has an inverse, say

do (€, 0, P) }1‘ (10)

e r) = {215



Abbreviate o(0,s, P) = 0(£(s,0, P),0,P) and H(0,s,P) = H({(s,0,P),0,P). By the mean value
theorem the last two terms in equation (9) can be expressed in terms of " and £"*(), random

variables whose distributions are given by A2; specifically,
(0, 8", Py = €00, s°, P+ H Y0, s°, P°) {" — "(0)} + (0, s", P™),

where (6, s™, P™) is a remainder term whose properties we will detail below. Write

GJ(Q,Sn,PnS) = QJ(Q)—I—remJ(Q)

G;(0) = G0, P% + %Z’Hl(Q, sO PO {e" —£"5(0)}, (11)

where rem; (0) = %Z’T(Q, s", P™®). Our limit theorems work from this representation of G ;(6, s, P"*).
We proceed as follows. First, we will provide conditions under which v/Jrem 7(0) converges uniformly
to zero in probability. This requires a stochastic equicontinuity condition and a rate restriction on
n(J) and ns(J). Next we assume that the function E[G;(0,s° P°)] is approximately linear in 6
near 0°, i.e., B[G;(0,5° P%)] ~T(0 — 0°) as 6 — 0°, where T is full rank. Finally, we assume that
G (0, 5°, P°) itself is stochastically equicontinuous. Combining these facts, it follows that v/.J (@— 0°)
is the approximate minimizer of the quadratic function |Tv/.J(0 — 6°) + v/ JG;(6°)||, which implies
that!

VIO — 0% = —(T'T)'T'VJIG, (6°) + 0,(1).

The asymptotic distribution of v/.J (@— 90) is therefore determined by the asymptotic distribution
of the random vector \/ng(QO), which is the sum of three terms: E;.le zjfj/\/j, 2 HN0°, s, Po)gn/\/j,
and 2 H-1(6°,s°, P%)ems(6°)/ v/J. These random variables are each asymptotically normal at rates
determined by the growth of n(.J) and ns(.J); they are also mutually independent. We develop the
limit theory so that all three terms are of the same magnitude, i.e., so that the effects of share
estimation and simulation are captured by our approximations.

To this end we seek conditions under which the second and third terms are asymptotically normal
with zero mean and finite non-zero variance [the first term, E;.le 2&;/ V'J, is clearly O,(1) and
asymptotically normal under our conditions|. Note that the variance of 2'H 71(80, s0, PNen/ VT s
®,(.J), while the variance of 2/ I *(6°, s°, Po)gns(QO)/\/j is ®9(.J), where

1
c1>1(J):—Jz’H*1V1H*1’z D Dy(J) =

"H YWy H Y 12
n nsXJZ V2 & (12)

where H = H(0°,s°, P°) and V, = V,(0°,£(s°,0°, P%)).

Lsee Pakes and Pollard (1989) for this argument



So, it will be sufficient to find conditions on n(.J) and ns(.J) that guarantee these matrices are
bounded [asymptotic normality follows]. We consider the term ®4(J) [similar comments apply to
®5(J)]. The behaviour of the elements of the J x J matrix H1(,s°, P°) has a key role here, and,
consequently, we will consider several different scenarios regarding these quantities as is appropriate
for different models [i.e., models that have been used for demand estimation|, each of which generates
a different limit theorem.

The different limit theorems arise because the different models have different implications for the
components of 9o (+) /€. In particular in the models with “diffuse” substitution patterns, such as the
random coefficient logit model of BLP in which all goods are substitutes for all other goods, that
partial goes to zero as the number of products increase, and its inverse grows large. Consequently,
when J is large a little bit of sampling error causes large changes in the computed value of £. In
contrast, in the pure characteristic model, competition is “local”, the more the number of products
the “closer” will your nearest competitor tend to be and the larger will be the response to small
changes in the quality of the product. In these cases a little bit of simulation or sampling error will
have almost no effect on the computed value of €.

Formally, if we let @’ = (ay,...,a,) = 2/H1(6°,s° P°) and suppose, without loss of generality,

that z is a J x 1 vector, we have

®4(J) = n—lj > als; - (Z aﬁj) , (13)

j=1 j=1

since V] = S — s¢’. The magnitude of the matrix ®; depends on the sequence a and the sequence
s. The term in square brackets can be considered to be the ‘variance’ of the vector (aq,...,a ) with
respect to the multinomial like measure induced by the sequence of weights (sq,...,s;) [note that
depending on the behaviour of sg, these weights do not necessarily sum to one].

There are three factors that influence the magnitude of this quantity. First, the magnitude of
the sequence s?; we shall assume that these quantities are all of order O(1/.J). Second, the rate at
which the a)js grow or decline with J. Finally, the variability of the sequence {a;}. In general, if
(a1,...,a5) = g(J)(ao, ..., a,s) for some function g(-) and sequence {a,1,...,a,s} having uniformly

bounded variance, i.e., for all J, E;.le az;/J — (E;.le a,;/J)* <M < oo, then for all J,

J
j=

J 2 J J 2
2 2 2 x 2
a;s; — (Z aj%‘) =g(J)*$ Y als; - (Z aoj8j> <mg(J)", (14)
1 j=1 J=1 J=l1

where m* < oo. This gives a global bound on the variance; it is essentially this bound that was used
in BLP to provide sufficient conditions for asymptotic normality. However, it turns out that in a

leading special case (the logit and random coeflicient logit), there is further structure that can be
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exploited to give tighter bounds on the variance. Specifically, in some cases we have

(a1,...,a;) = g(N{(L,...,1) + O(1/])}

for some non-decreasing function g [i.e., the normalized a's have zero sample variability]. Then, we

have

Zazsj - (Z ajsj> ~ g(J)? Zsj — (Z sj>

J=1

= g(J)?s0(1 — o). (15)

When the share of the outside alternative sq is O(1/J), then (15) is O(g(J)?/J); when the share
of the outside alternative is O(1), it is the larger magnitude O(g(J)?).In the former case, we get a
reduction in the magnitude of the variance.

In a subsequent section we investigate three examples. Our purpose is to verify the order of
magnitude of the covariance matrix ®1(.J) and to establish the precise rate of growth on n(.J), ns(.J)
required to achieve asymptotic normality. We achieve this by identifying the rate of growth and

variability of the sequence {aq,...,a;}.

3.1 Structure of the Argument

The main purpose of this paper is to obtain consistency and asymptotic normality results for the
empirical analogues of two frequently used models of demand; 1) the logit model and its extension
to the random coeflicients logit as discussed in BLP(1995), and ii) the “pure characteristics model”
which first appeared as the horizontal model of Hotelling (1929) [see also Shaked and Sutton’s (1982)
vertical model], and has recently been endowed with an estimation algorithm by Berry and Pakes
(1999).

The next section provides a formal consistency and asymptotic normality argument for a broader
class of models which includes the models of interest as special cases. In the following section we
work out the implications of these theorems for our special cases. The reader who is not interested
in the details of the mathematical argument should be able to proceed directly to section 5 and take

away what is needed for the examples.
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4 Consistency and Asymptotic Normality

4.1 Some Notation

We will work with the product space S; x © x P, and endow the marginal spaces with (pseudo)
metrics pp on P, pp on ©, and p, on S;. Let p be the corresponding metric on the product space.
Some leading examples of metrics include: the Lo, metric on P, pp(P,Q) = supg.|P(B) — Q(B)],
where B is the class of all Borel sets on R*, and the Fuclidean metric on ©, pz(0,6") = ||0 — ¢'| . As
for the metric on Sy, we take

(1) (3)”
e

fo<a<l

maxlgjgj
po(s' s%) =

maxlgjgj‘s;—sz‘ fa=0.

Note that the space &; and metric p, both change with .J, but the space can be embedded in
the limiting space consisting of all sequences. The metric depends on the parameter «, which will
in turn depend on the model being treated. The higher « is, the stronger is the metric. Define
for each €, the following neighbourhoods of 6°, P° and s%: Npo(e) = {P : pp(P, P°) < €} and
Nyple) = {5 : p,(s,8°) < €}, Nyole) = {0 : pp(0,0°) < €}, and define the product neighbourhood
N(€) = Npo(€) x Nyo(e). For each 6 and any € > 0, define =(;¢) = {& : % € — S(Q,SO,PO)HQ < e}.

4.2 Consistency

We make several additional assumptions.

ASSUMPTION A3. The random sequences s™ and P™ are strongly consistent with respect to the

corresponding metrics, i.€.,

(a) Prl (li)m ps(s™, s°) :o} =1 ; (b) Prl (li:gn pp(P™, PY) =0| =1. (16)
n(J)—oo ns(J)— oo
Furthermore, we suppose that the true marketl shares satisfy

J 0 0 J 0 0

1 s3(1 — s7) 1 $3(1 — s

0 ; J J 0.
(C> nJje Z (30)20‘ - ) ( ) ns - Jo Z (SQ)Qa -

j=1 J j=1 J

When pp is the uniform metric, A3(b) is the Glivenko-Cantelli result for the uniform convergence
of the sample distribution function of identically distributed random variables. Assumption A3(a)

is complicated because the dimensions of the vectors s" and s° increase with J. Note that each

11



s is a sum of independent bounded random variables with expectation s?. Therefore, to verify
this assumption requires restrictions on the growth rate of n(J) and s°. For example, suppose that
s? = 0O(1/J) for each ¢, which implies that var(s}) = O(1/nJ) by assumption A2. Therefore, (s} —
s9)/s% = Op(m) for each ¢ =1,...,J. This gives the pointwise rate of convergence; to obtain the
sup-norm convergence rate [with respect to the psendo-metric p,(s', s?) = maxj<4c|s} — 52| /8],
we apply the Bonferroni and Bernstein inequalities [the latter is applicable because each s} is a sum

of independent bounded random variables with expectation s?, see Pollard (1989)] to find
J
> 61 < Z Pr [ > 61
=1
J o2
< exp | —
- ; P < 2var(sl/sd) + 26/%82)

J

< Zexp (—EQO(H/J)> . (17)

n 0
S — 5

0
8

Pr l max

1<¢<J

n 0
Sg — 5
0
¢

S

A sufficient condition for (17) to decrease to zero is that (Jlog.J)/n — 0, which implies (16)(a).
Assumption A3(c) is implied by J*/n — 0 when s? = O(1/J) for each ¢.

Assumption A4 is a fairly mild restriction on the instruments that will be satisfied for example if
they are bounded. Note that there is no presumption that a law of large numbers holds since to show
that we would need to be more specific about the details of how the instruments are constructed and
the nature of the equilibrium.

ASSUMPTION A4. The instruments are such that the matriz z'z/.J is stochastically bounded, i.e.,
for all € > 0 there exists an M, such that Pr[||z'z/J|| > M| < e.

Next we provide an assumption that ensures the uniform mean square convergence for the vector
£(0,s™, P™*). In this context it is convenient to introduce the one to one (or bijective) transformation
77 [the transformation is applied componentwise, i.e., 75(s) = (7s(s1),...,7s(s;s))] and the J x 1

vector (€, 0;s,P) =1;(s) — 7;(c(£,0,P)). We then define

S(Q,S,P) = argmfinHwJ(S,Q;s,P)H

for any 6, s, P. With this definition we are able to draw on the existing stock of asymptotic theory
for optimization estimators to describe the properties of £(6,s", P™). Let 7,(x) = J %271,(x) for

some fixed function 7,(x), and let 7, (x) = dr,(x)/dz. We shall take

21 ifg<a<l
Ta(®) =

logx ifa=1.

12



In the logit-like case, we use o = 1 and 7,(z) = logz, while in the vertical case we take o = 0 and
To(z) = 2. The next condition is an asymptotic identification condition used in the analysis of the
preliminary estimation of £.

ASsumMPTION Ab. For all § > 0, there exists €(6) such thal with probability one

liminf inf inf “1/)](5793 SO,PO) _1/’(5(97307130)793 307P0)H > €

S0 00O ||c—¢(0,50,P0)|[>6V/T

Assumption A6 is our “identification” condition [see Theorem 3.1 of Pakes and Pollard (1989)].
Note that it does not require convergence of the objective function G (6, s°, P°) at 8 # 0° (that would

require conditions on the process generating the #'s and an equilibrium assumption).

ASSUMPTION A6. For all 6 > 0, there exists C(6) such that

lim Pr| inf ||G(0, s°, P°) —G;(6°, s°, PO)|| > C(8)| = 1.

J—00 9§§N90(5)

THEOREM 1 [Consistency| Suppose that A1-A6 hold for some « € [0,1]. Then, 0 —, 0°.

The proof is in the appendix.

4.3 Asymptotic Normality

Premultiplying (11) by VI , we get

VIG,(0, s, P™) = vV JG,(0) + VJrem,(6). (18)

We shall give conditions under which VG J(QO) is asymptotically normal with bounded variance,
while v/Jrem J(QO) is of smaller order. The precise magnitude of the variance of VG J(QO) is deter-

mined by the behaviour of the matrix H (90, s%, PY) 7! an issue we will come back to below.
AssUMPTION B1. 6° is in the topological interior of ©.
ASSUMPTION B2. For all § in some 8 > 0 neighbourhood of 6°
E[G5(0, s°, P*)] =T7(0 = 0°) + oll0 — 6°]),

where 7 — T as J — oo, and T has full (column) rank.

13



Define the stochastic process in (€, P, 6)

1
vi(€ P0) = —=2H Y,0,P){" —<™(0)}, 19
HEPD) = = P) (7 — () 19
where €™ = (7, ...,£%) and £"(0) = (£7°(0),...,°(0)) . This process has the structure of a sum of

independent random variables from a triangular array as can be seen after interchanging the order

J(€,P,.0) ZYJZ £,0,P) = Y. (0P

25=1

of summation thus

J

Y€, 0, P) = %Z%(fﬁap)gﬁ o Y75.(6,0,P) nsfza] §,0, P)e;us(0), (20)
=1

where 2/H 1(£,0, P) = (a1(£,0, P),...,a;(£,0, P)). The random variables Y;; and Y7, are indepen-
dent across i and is with mean zero and with a distribution that changes with J. This structure is
used to apply laws of large numbers for triangular arrays of independent random variables.

ASSUMPTION B3. Let Yj; = Yj(£(6°,s°, P°), 0% P°) and Y;,, = Y}, (£(6°, s° P°),6°, P°), and
suppose that lim; ., E(2'¢€'2/J) = ®g and that

(a) lim nsE [YfZSYﬂS} =®; ; (b) lim nE[Y;Y]= (21)

J—o0 J—o0
for finite positive definite matrices ®;, j = 0,1,2, and that for some § > 0, E(||2€/VJ||?1?) = o(1)

and

(a) nskE [HYJ*ZS

M =o1) 5 ) B [JYAl*] = o). (22)

The reason for condition (22) is that as .J increases the distribution of the random variables Y7,
and Y7; changes, so we must use the Liyapunov Central Limit Theorem for triangular arrays of inde-
pendent but not necessarily identically distributed random variables, which in turn requires moment
conditions holding to power 2 + 6. Our examples will translate these conditions into restrictions on
n(J) and ns(.J). To do so we shall have to make more detailed assumptions about z and H. The next
section will provide the details of our two leading cases.

Finally, we use a stochastic equicontinuity condition on the stochastic process (19) to handle
remainder terms. This approach to asymptotics is now well established in econometrics, see the

recent survey of Andrews (1994).

ASsUMPTION B4. The process v;(€, P,0) is stochastically equicontinuous at (s°, P°), that is, for
all ¢ > 0 and n > 0, there exists an ¢ > 0 such thatl

14



lim sup Pr sup HUJ(S,P,Q)—UJ(S(SO,PO,Q),PO,Q)H > <.

J—00 (6,6,P)c©XE(6;€) XN po (€)

In B4 we need to insure that \/j[GJ(Q,s,P) — EG;(0,5° P%)] can be made arbitrarily close
to \/j[GJ(QO, s, P) — EG;(6°,s°, P%)] (with arbitrarily large probability) by making 6 close to 6°.
This is stronger than the condition needed to make v/.J[G;(6,5°, P°) — EG,(0,5°, P%)] close to
\/j[GJ(QO, s P%) — BG;(6°, 5%, P°)] (we have also to insure that the consumer sampling and the
simulation processes do not cause jumps in the disturbance process at values of 6 close to €0>.
Condition B2 requires only that the expectation of G';(6°, s°, P°) be differentiable. This condition is
similar to condition (iii) of Theorem 3.3 in Pakes and Pollard (1989). The stochastic equicontinuity
assumption is sufficient to ensure that the remainder term is of smaller order in probability than
VIG J(QO). We verify this condition below for the logit case. With these conditions we can give the

asymptotic normality of 0.

THEOREM 2. [Asymptotic Normality] Suppose that A1-A6 and B1-B/ hold for some «. Then,

VIO —0°) = N {o, (I'T) ' (i: c1>i> r(r’r)l} .

The proof is in the appendix. Standard errors can be constructed in the usual way. One can
improve efficiency by taking the weighted norm with weights proportional to the inverse of the
covariance matrix 23:0 d,. However, since we are only dealing with the demand subsystem here,

such an estimator would only be efficient in a limited information sense.

5 Examples

We consider two classes of models. In the first class substitution patterns are relatively diffuse.
Specifically, the distribution of utilities for one good, conditional on the utilities of all the other
goods, has full support. A leading example here is the logit model. The logit is much criticized as
an empirical model, and so we also consider the random coefficients logit model of Berry, Levinsohn,
and Pakes (1995). In the second class of models substitution patterns are more concentrated and
depend on preferences for a finite number of product characteristics. Leading examples here are the
horizontal model of Hotelling (1929) and the vertical model of Shaked and Sutton (1982). Berry and

Pakes (1999) provide an estimation algorithm for this class of models.
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We show that the asymptotic behaviour of our estimator can be quite different in the two models.
In the first, more traditional class, our examples indicate that the variance in both the simulation
and the sampling error must decline at a rate faster than J increases for consistency and at the
rate J? for asymptotic normality. For our example of the second class of models, the variance in
the sampling and the simulation error can decline at any rate for consistency and must decline at
rate J for asymptotic normality. We explain how these rate conditions are related to the underlying
assumptions about the nature of substitution between products. In the sequel all calculations will
be done at true values for s, P and so we will dispense with the unnecessary superscripts wherever

possible.

5.1 Diffuse Substitution Patterns

We give a quite general result which covers pretty much all cases with “diffuse” substitution patterns
(as in the logit and random coeflicient logit examples introduced below). Our bounds on 7 and ns

for the logit based cases are sharper than those given in this general result.

AssumpTION C1l. Suppose that the instruments z are bounded and

do,(€, 0, P)
a,

J

[ 005(6,0, P) _
aE,

J

0<c<inf.Jg < sup <c< oo,

where the infimum and supremum are taken over j =1,...,J & € Z(6;¢) and (s,P) € N(e) for

some positive shrinking sequences of constants €(.J). Also, suppose that for some d > 0,

J[L—A(J)] > d, (23)
where

D0, (€, 0, P)/0g,|
=sup Y il 9o;(&, 0, P)/0g;

where the supremum is taken over j=1,...,J & € Z(0;¢), 0 € ©, and (s, P) € Ne).
The quantity A(J) measures the degree of diagonal dominance in the sensitivity of the share
matrix to the &, ie., the fraction of people who will shift to the “outside alternative” or “zero

option” as £ decreases.

COROLLARY. Suppose that A1-A6 hold for some «. Then, sufficient conditions for (21) and (22)
to hold are given by
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J? J?

lim su <oo ; limsu < o0. 24
Ty () I ms(T) (24)
For consistency, the weaker rate condition
J? J?
li =0 ; L =0. 25
P n(J) R ns(J) (25)

suffices. These are essentially the conditions reported in BLP. As we will see our logit case (even our
random coefficients logit) specializes the assumptions in C1 further and in turn requires weaker rate

conditions on n and ns.

5.1.1 The logit model

This is the most familiar of the models with diffuse substitution patterns. Partly as a result, it is
quite easy to illustrate the roles of the assumptions in deriving the limit properties of the estimator
for this model. Consequently we provide more detail on verification of our assumptions for this case.

Consider the utility function
Uij = 05 + € = 130 + &5 + €45, (26)

where z; is a vector of observed product characteristics, §; is the unobserved characteristic and €;;
is an 1.1.d. extreme value error term. The systematic utility is given by 6;.

Since we can add an individual specific constant to all utilities without changing the distribution
of choices, there is a free normalization in this model. This is customarily resolved by setting the
utility of the outside good wu;0 = €. Taking expectations with respect to the distribution of €, we

obtain that the market share function is

O_j:1+zkemk9+£k7 j
One consequence of this is that when s; = O(1/J) for all j, the outside alternative is O(1/.J) also.

=1,...,J

Note also that there is an analytic expression for the observed product characteristic

Sj = 1I1(8j) - 1I1(80) - QTJQ (27>
This relationship holds for all s,£. The resulting estimator of 6 is just a linear instrumental variable
regression of In(s7) — In(sg) on z;.

Since this estimator has an explicit form one can derive directly the conditions needed for con-

sistency. We look for a sufficient condition for the mean square consistency of §,(s",0). We have

)~ In(1 + (25032,

S So

%Z{gj(s",e) —&;(s%,0))” = %Zﬂn(l +(

Sy — 84
¢
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It is straightforward to verify that this quantity is O,(J/n) under our conditions. Therefore, the
consistency condition here is that .Jlog.J/n — 0.
In the logit case it is easy to derive the elements of the inverse share matrix analytically. Let H

denote the J x J share matrix derivative evaluated at the truth, then H has elements

s;i(1—s;) k=3
3Uj_ i j) J

o€, (28)

—Sij lf k 7£ j,
Le, H(s) =S —ss, where S = diag(s), with s = (s1,...,s;)". Therefore, H ' =S 1+ii'/(1 —i's),
where i = (1,...,1). Letting €; be the vector with k' element equal to one and all other elements

zero, we get

51 SJ Sp

J
<
ap = 2 H e, = <ﬁu---aZ_J> e + Ly, i'er = JQ{— +O(1/J)}, (29)

where z = J ¢ ijl 2, that is, g(J) = J? and a,; = a,, for all j, k in (14).

We now verify the conditions needed for asymptotic normality; in particular, (21), (22), and B4.
Note that (29) shows that nE[|Yy|?] = O(J?/n),which implies that (21(a)) is satisfied provided
sup; J2/n < co. We now verify (22). Note that

J

E a;j&ji

=1

for some constant ¢, because E;.le lesi] < Zj:l 1(C; = j)+ E1(C; = j) < 2, and (29) is true.
J
S

Therefore,
J2 2-+6
<
VI 4= - <n\/j >

for any 6. In conclusion, nE[|Y;|2*] = O(J338/2n=(40)) = o(1), provided 3 + 36/2 — 2(1 + §) < 0,
Le., any § > 2 suffices. In conclusion, condition (22) is satisfied for any § > 2. In the fixed coefficient

< max ]aJ]Z]asﬂ] <cJ?

1< <J

2+6

logits case there is no need for simulation and so we do not have a £"%(9).
We next provide some guidance regarding the identification conditions A6 and B2. In the logit

case we have
G(0) — G,(0°) = ( sz )9 0°).

Consequently, a sufficient condition for A6 is that for each ¢ > 0 there is an J(£) such that for any
J > J(¢) the matrix, J ! E‘.le z;x; has rank k with probability at least 1 — ¢, because then

(go)oe
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as required. In terms of the pricing problem this requires that the price of a product not be a linear
function of that product’s demand side attributes. However, we know that the solution to the pricing
problem generates a pricing function which depends on the characteristics of competitor’s, as well as
on its own characteristics.

Finally, we turn to the stochastic equicontinuity condition B4. In the logit case, there is no
simulation, 1.e., P is known exactly, and there is only the sampling error to consider. Furthermore,
since the equation for £ is explicit, we can work with the process

1

vy(s) = jz’H’l(s)sn,

where H !(s) = S~1 —ii' /(1 — i's). We verify assumption B4 in the appendix. Specifically, we show
that

vs(s") — (%) = O,(J*?%/n), (30)
so that the remainder terms are of smaller order than the leading variance terms, and B4 is satisfied

when J? /n is bounded.

5.1.2 The Random Coefficients Logit

The logit model is not very suited to empirical work; as is well-known, it implies odd substitution

patterns between products. However, the random coefficients logit, given by

is known to give more reasonable substitution patterns because of the random coefficients on the x
vector. Our notation is intended to separate out the terms with interactions between individual and
product, xz;\;; usually, the product characteristics that interact are the prices. The systematic utility
6; depends on the parameters ¢ and the product characteristics z;, ;.

The market share for this model is given by

ajZ/ e dP()\)E/sj()\)dP()\)EE[sj()\)]. (31)

Note that the integrand, s;(A), is just the logit market share function evaluated at a particular value

of the random coeflicients. The derivatives of the market share function are

| S sFAPO) =k

P,
~ [ 5(NseNAPR)  ifk#£5.

Unfortunately, there is no analytic inverse for this model and no easy expression (that we know

of ) for the inverse matrix H !. However, we can still characterize its properties sufficiently well to
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ensure that the property (15) holds. We state the result for the leading case that s; = O(1/J) for
3=0,1,..., J

THEOREM 3. For any veclor z,

YH ey
—— ==40(1/J k=1,...,J
J2 §0+ (/ )7 ? ? ?

where 1, = limy o J7VS2T | 25 and S = limy_o J [ so(N)dP(N).

This result is proved in the appendix. It says that each element of the sequence a in (13) has
magnitude O(J?) and that the elements are identical to this order of magnitude. Therefore, the
variance term (13) is of order J?/n as in the fixed coefficient logit case. The remaining arguments of
the previous subsection hold here too so that the condition for the central limit theorem is satisfied
in the random coefficient case.

We could provide more detailed formalizations of both the identification and stochastic equicon-
tinuity conditions, but we really have nothing substantive to say that we have not already said in

the context of the fixed coefficient logit model.

5.2 Non Diffuse Substitution: The Vertical Model

We now consider models with a finite set of product characteristics as in Berry and Pakes (1999)
(they drop the i.i.d. &; terms in the logit and random coefficients logit). The simplest example is

the “vertical” model of Shaked and Sutton (1982). In this model the utility function is
Uiy = 65 — Aipj,

where §; = x;+¢; and we normalize the outside alternative so that §; = 0. Without loss of generality
we take 3 = 0.

Suppose that the products are ordered as 0 = 6y < 61 < 69 < 03 < .... Necessary and sufficient
conditions for all goods to have positive market share are: that 0 = py < p1 < ps < ..., that
A; = (6;—6;-1)/(pj — pj—1) are ordered as Ay > Ay > ... and that F'(-) (the distribution of ;) is

strictly increasing over the domain of the A’s. The market shares are then given by

80:1—F(A1>, SJ:F(AJ)—F(AJ+1), fOszl,...,J—l, SJ:F(AJ).
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Since the integrals defining the shares in this model are uni-dimensional we shall suppose that there
is no simulation error. Still we need to show that J1||€;(s") — &,(s°)||> —, 0. To this end note that
J
§;(A(s)) = Z(Pz —pr-1)A(s),
1=1

where it is understood that po = 0. Since A;(s) = F~1(1 — g;é $1), we have

M=) =D - )FA=D) s) - F A=) 8.

Recall that F(+) is strictly increasing (so its inverse satisfies a Lipschitz condition) and assume that
whatever equilibrium is established max;<;(p; —p;j—1) = ¢ < c0. Then for any € > 0

J<J

Py %Z{sxsn)—sj(s“)f“] < P {607 600} >

i1 i1 2
< JmaxPr s — sty >¢fe
- < 20: : < /

= I
< Jexp(—en/c),

by Bernstein’s inequality (since E?;& s can be expresses as a sum of n independent random variables
cach bounded by one). The last term goes to zero provided n — oo faster than log J.
Recall that to find the rate at which we need n to grow for the consistency and asymptotic

normality results we need the elements of the matrix H !, where H = 00 /0¢. Letting oy = f(A4)/py,
Qo9 = f(AQ)/(pQ - pl); e, 0 = f(AJ)/(pJ - pjfl), it can be shown that

a1+ a9 —Qiy 0 . 0
—ay  aptaz - 0 0
H = 0 o —ay, 0 |- (32)
0 —ay 1 aytayq —ay
0 0 0 —Qy Qg

The matrix H is a band matrix with all elements more than one place from the diagonal being zero.

Note also that all row and columns sums are zero apart from the first row and column. Therefore,
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it can be verified that

(o5} a1 (o5} (25}

1 14,1 1,1 .o L1

min(i,j) 1 1 (o7} a9 1 a9 a1 o
-1 _ - — 4 01,1 1,1, 1 ., 14 141
H - Z o - (23} 23] + 25 (23} + a2 + a3 (23} + a2 + a3

r=1 r . . .
Z!J . . :

S I I S T
a1 a1+o¢2 a1+ _I_OCJ

Notice that any fixed i, j element of the inverse matrix is of order one as J — oo (this is in contrast
to the logit models where the individual elements of the inverse were all of order .J).

Assume that the z are bounded. Then, for k =1,...,J,

k J k
_ 1 1 1
ar =2 H e, < max|y| x Jg Oég—{—E <§ Oé_g_ ozL;)]
L =1

kp P lkp P
¢ — DPe-1 ¢ — Pe-1
B 2 T

= max|z|x |J

I

J=1£=5+1

which gives the individual elements in the vector 2’ H !. Note that because p; < p; when j < k,

k
DPe — P

ar, < max|z| x J —_—,

e 2 ; f(Ae)

which is of order J for any fixed k.
For Theorems 1 and 2 we must determine the magnitude of the sample variance of the sequence
(a1,...,a;) with respect to the multinomial(sy, ..., s;) or equivalently the multinomial(1/.J,... 1/.J).

In fact,

e
]~
??‘Q[\D
|
N
e
]~
£
N—
N
N
e
]~

o
Il

10 o p 2
< JQ(max]zl])ijz;<Z e — Do 1)

2
< J? (max | DQ y % Zizl (E?:l(?e - Pefl))
- l {minicpc; f(A)}

J

< J*(max|z|)’| x m Z

k:

which is finite provided % Egzl p% is finite and minj<,<y f(A¢) > m > 0. We assume both of these

conditions in what follows (although one can use a similar argument to obtain different rates when
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they do not.? Note that the requirement that % 22:1 p? < oo does impose conditions both on the
way we add products as J increase and on the nature of the pricing equilibrium, but those conditions
seem reasonable.

Given the lower bound m and that the price sequence has a finite second moment, (14) holds with
g(J) = J. Therefore, the covariance matrix ®;(.J) is of order .J/n. That is, in this case, we obtain
consistency if n and ns increase at any rate faster than log J, while the asymptotic normality result
holds with all three terms contributing provided n and ns grow like J. We do not know whether one
can improve on our inequality.

Now consider the multifactor model
U5 = Sj + %ﬂi - )‘ipju

where z; is a vector of dimension k — 1. Note that for each given 3;, we have a one factor model as
before except that some goods will not be chosen depending on the value of 3,. The resulting H is
a symmetric band matrix with positive diagonal elements and negative off-diagonals. In fact, it is
irreducible and diagonally dominant: its first kg row sums are Ay, ... Ag, > 0, while the remaining
row sums are zero. This implies that H is strictly positive definite and is an M-matrix, i.e., all
elements of H~! are positive just like in the one factor case [see Fiedler (1986, Chapter 5]. We
conjecture that the magnitude of ®1(.J) is also .JJ/n for any k, so that the rate of convergence in the
k-factor case is the same as in the one factor model, but we do not know this for a fact.

Note the contrast to the logit-type models, where n must increase at rate J for consistency and
rate J?2 for the asymptotic normality result [when all shares are the same magnitude]. The difference
between the models is due to the difference between localized and diffuse competition. In the models
with idiosyncratic errors, the derivative of market share with respect to product quality is declining
at the same rate as the shares. Therefore, the elements of the inverse derivative matrix (do /d€ )71 are
growing in J, and the number of simulation draws must increase at a faster rate to offset this. In the
vertical model, competition is localized and the derivative of market share with respect to product
quality does not decline in J, and so the elements of the inverse derivative matrix stay bounded. As

a result our limit theorems can suffice with a lower rate of growth for n in the vertical model.

2When the argument can be extended to cases where f is not bounded away from zero, the crude bounding argument
given above will imply a slower rate of convergence [i.e., g(J) is larger] because now min<¢< s f(A;) converges to zero at
some rate. We can think of A; as being the order statistics from a sample produced by F. For example, if F' is the folded
normal, then max; A; grows like \/21log J and min; f(A;) = f(max; A;) shrinks to zero like exp(—(y/2log J)?) = J 2.
If F'is Pareto with 1 — F(z) = 27 % for z > 1 and 6 > 0, then max; A; grows like JY? and f(max; A;) shrinks to zero
like J—(0+1)/6,
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6 Monte Carlo Results

In this section we discuss some Monte Carlo results for very simple versions of our models. First,
we start with a simple logit, where the market shares are observed with sampling error. Then we
discuss a random coefficients logit (with simulation error in the computed shares) and finally a pure
vertical model.

All of our examples here involve data on a single-cross section of markets, to fit with our theoretical
discussion of how estimates behave as J varies within a market. In practice there are several reasons
to prefer to estimate off data that features a cross section or time series of different market equilibria.

For the logit model, the deterministic part of utility is drawn as

b; = ;0 +&;, (33)

where &, is drawn from the standard normal distribution. The z’s are a constant and a standard
normal, with a 3 coeflicient on the constant of 3 and a slope coeflicient of 1. (Except as noted, all
random variables in the Monte Carlo exercises are 1.1.d. draws.)

Table 1 gives the mean estimated value of 3, across 1000 Monte Carlo datasets. Fach column
gives results for a different value of J, the number of products, while the panels running down the
table vary the number of draws used to calculate the “observed market share”. Note that zero shares
are discarded from the dataset. The fourth panel gives results for n set proportional to J, while in
the fifth panel n is set equal to J2. The last column uses the true expected shares (i.e., “n = o0”).

In the second row of each panel is the empirical standard deviation (not the standard deviation
of the mean) while the third row gives the mean squared error. Apart from the inversion, the simple
logit model is linear in parameters. Thus, given no sampling error in the shares, we should get
unbiased results even for small J. This is consistent with the results for n = co.

We see that the results are particularly bad for small n relative to J, with a large apparent bias.
This is in large part due to the sample selection bias that comes from throwing small share products
out of the market.> Note that the zero-share products are likely to have particularly low values of &,
so we expect a downward bias in the estimated slope coefficient.

Table 2 gives Monte Carlo results for a random coefficients logit. In this case (as in most of the
empirical literature on aggregate data), we assume that observed market shares have no sampling
error.* We can always simulate positive predicted shares and so there is no sample selection problem.
In this case, we can consider smaller values of n, but because the computational burden is higher we

do not include a set of results for J2.

3We did not deal with this problem in our theoretical analysis above, but it might be a problem for some datasets

built from small samples of consumers.
4l.e. we are assuming that the observed shares are aggregated over a very large number of consumers.
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Our random coefficients logit example once again sets §; = x;3+¢&;, but now g = (=5,1). Utility

of consumer % for product j is

Uiz = 65 + oV + €4,
where v is standard normal, ¢ is set to one and ;9 is the non-constant element of z. As usual, the
¢’s are 1.1.d. extreme-value draws. The market shares are calculated by taking n draws from the
distribution of the random coefficient v. The “observed” market shares are set to their expected
value at the true parameter values (i.e., we are assuming that the observed shares are aggregated
over a very large number of consumers. )

Computation of the inverse shares follows BLP, but we do not use a variance reduction (impor-
tance sampling) scheme of sort used in that paper.

Table 2 gives summarizes the estimates of ¢, the variance of the random coefficient on the non-
constant . The results are consistent with the idea that the estimation routine performs badly at
very low values of simulation draws and that variances decrease in the number of products J. Note
that the bias seems to increase in J holding n fixed — the bias is high when n is small relative to
J. Remember that our consistency results above require both J and n to increase and that in the
“logit-like” case, n must increase fairly rapidly.

Table 3 has results for the vertical model. As in Table 1, the variance in observed shares is
generated by small samples of consumers rather than from simulation error in the predicted shares.
Once again, this can produce zero observed market shares, but in the vertical model the zero share
products can included in the estimation routine at little cost.’

The exact vertical model considers a utility function of
uij = 6 — pvip;, (34)

where 6 is “quality”, v; is the marginal disutility of a price increase and p is a parameter of the
model. To keep the random coefficient in an easy one-parameter family, we assume that v; is drawn
from the unit exponential distribution, so that p (set equal to one in the experiments) is the mean
disutility of a price increase. In fact, p is not separately identified from demand-side data and so is
held fixed at one in the Monte Carlo experiments (this is just a normalization.)

Quality is modelled as 6; = x;3+&, where the two components of x are a constant and a uniform

drawn from (0,2). (3 is set equal to (1.5,1). The “unobserved” &,

; is uniform on (—1,1). To insure

that the expected shares are all positive, price is set equal to §%.°

°In practice, the inversion for § simply sets the § of zero share products to the § of the next lowest-priced good.
Since zero shares occur in the vertical model when 6’s are “close together”, this creates little bias. Note the contrast to
the logit model, where zero share products have systematically low §s and where the inversion routine cannot handle

zero shares.
81n the vertical model, all shares will be positive if price increases “fast enough” in quality.
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The results in Table 3 summarize the estimates of 3,, the slope coeflicient on x in the quality
equation. These results are strikingly consistent with the idea that, given the vertical model, even a
small number of simulation draws will produce decent estimates. Even with share data constructed
from 50 consumers, the estimation gives decent results, although for fixed, small n the variance is not
decreasing much in J. In contrast, with large n the variance declines at very close to the expected
rate of \/j .

In practice, Table 3 gives some hope to the practical implementation of more complicated “pure
random coefficient” models (i.e., those without i.i.d. €’s.) While such models may be computational
more difficult than traditional random coefficients models, they may be relatively robust with respect
to simulation error and so a relatively small number of simulation draws may be necessary when

computing market shares.

A Appendix

Proor or THEOREM 1. We show that

sup S [[€00, 57, P%) = €0, 5, PO)| = o,(1) (3)

0co

which implies that
1 1 1
sup || 2/ {6(0, ", P™) — £(0,°, PP < |21 x S sup[[€(0, 8™, P"7) = £(0, 5%, PP)]|?
oco J J J oco
= OP(1)7
1e., that
sup |G 5(0, s™, P™) — G,(0, s°, P°)|| = o,(1). (36)

0cO
The result (35) follows from the following argument. First,

2ug]’¢J(£(8,s",Pns),§; 307P0)H S zugH,L/}J(S(&sn7PnS)78;SO7PO) - 1/}](5(973n7pn5)78; sn7Pns)H
S S

< supsup ||, (€, 0; 5%, P°) — 4, (&, 0; 8", P™)||

0co ¢

< HTJ(Sn) — TJ(SO)H

+supsup [7y(a (€, 5", P) +2(0)) = (o (s, o, P))]|
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For some intermediate values 5; we have by the mean value theorem

J
n 2 1 N n 2
[ra(sm) = ma” = 5230 [P Gy = D)
j=1
J
. 2 1 st —$
< N i %
121?51 $3)" Ta (55) JO‘Zl (s%)e ]
=1 J
J 0 0
, 2 1 $(1—s)
< max ;)% Ta (55) ana; J(S?)Qaﬂ X (14 0p(1))
= 0,(1),

because

1
nJO‘Z (89)2 = ol)

=1\
by assumption A3, while max;<;<;|(s})" To (5;)] < M with probability tending to one by assump-
tions A3. This is because

M > max

max (5;)% 71 (55)

= max ‘{(s?)a + 85 — (Sg)a} Ta (35)

1<5<J
> O\« — g]a - (S?)a —a —
> o [(59)"Tel30)| = ma | = | ima 55 7 (55

Oya =
= max |(55)"7a(3)] + op(1),

where the 0,(1) term follows from A3. The result
0 0 ns 0 0 _
sup HTJ(J(S,S ,PY) +2™(0)) — 15(0(&, 87, P ))H = 0,(1)

follows by similar arguments.

When ||€ — £(6,s°, PO)|| > 8v/J, we have infgeo |2 ,(€,6; 8%, P?)|| > ¢ by assumption A6. This
implies that ||£(0,s", P"¢) — £(0, s°, P°)||?/J = 0,(1) by standard arguments. Consequently, we now
assume that (36) holds and hence

|G (@, ", P)|| = inf |G, (0, 8°, P°)]| + 0,(1).
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Now note that assumption Al together with the law of large numbers for triangular arrays [see,
for example, Billingsley (1986, Theorem 6.2)] imply that ||G;(6°, 5%, P*)|| = 0,(1). Therefore, by
Theorem 3.1 of Pakes and Pollard (1989) it will suffice to show that for every (6,2) > (0,0) there
exists a C*(6) > 0 and an J(g) such that for J > J(=)

] > O >1—
Pr| inf [G/0)] 2 C°(5)] 2 1=,

where we have omitted indexing G; by (s°, P°) for notational convenience. From the triangle in-

equality infgn,(s) |G (0) — G ;(6°)] > C(8) implies that

2 1G(O)] = C@) = 16 (6°)])

Fix € > 0, and let ¢* = min{s, C(8)}, so that 0 < £* < &. Since |G, (6°)|| = 0,(1), there exists J;(=*)
such that for any J > Ji(¢*), Pr{||G,(0°)| > £*/2} < £*/2. By assumption Al, there exists Jo(=*)
such that for J > Jy(e*), Pr{inf%j\/eo(é) |G (0) — GJ(QO)H > (C(8)} > 1 —¢e*/2. Consequently, (2)
implies that for J > max{J;(c*), Jo(c*)}

P inf |G, >C6)—e"/2| >1—-">1—c¢.
1"%}\20(5)!! O ZC0)—/2) 21 -" 21—«

To complete the proof let C*(6) = C(6) —*/2 > 0.

PROOF OF THEOREM 2. As discussed in section 3, this will follow from Pakes and Pollard (1989,
Theorem 2) provided our remainder terms are o0,(1) and the leading terms satisfy a central limit
theorem.

For each fixed 6, we use a Taylor series approximation to £(6, s", P™) — £(0, s°, P"*) and to
£(0, $°, P%) —£(0, s° P°). Specifically, by the intermediate value theorem

0 = o(£(0,s", P™),0, Prs) — s

= o(&(0,s°, P™),0, P") — 5" + 8 Pns {5 s", P —£(0,8°, P} (37)

where € are intermediate between £(0, s", P™) and £(6, s°, P™). Thus using the facts that

a(£(0,5°, P%),0, P™) = s and that for any & € Z(6;€) the matrix do(£,0, P"%) /OE' is invertible,

we can write
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1

§0.5" P™7) — (0,80, ") = - {—3“@’3?13 2

Tikewise

ns -1
£0,°, P™) — £(0,8°, P°) = — {%} (),

where ¢ are intermediate between (0, s°, P"*) and £(0, s°, P°). Therefore,

1 / I nsy—1 80 0y —1 n_i / ns
\/jremJ(Q):—ﬁz [H(E,0,P™) ' — H(0,s", P") "¢ 75 [H(E,0, P™)

We must establish that v/Jrem 7(0) = 0,(1) uniformly. We just show that

H z {H £,0,pP)t H(@,SO,PO)*l}sn = 0,(1).

1 — H(, sO,PO)fl} £"5(6).

(40)

The proof for the second part is similar and is omitted.. By assumption A3 there exists a sequence €

such that Pr{p,(s",s%) > €,} — 0 and Pr{pp(P"%, P°) > €,} — 0. Then, notice that for any n > 0,

Pr(||vs (&, P™,0)|| >0 < Pr[||vs(& P™,0)|| > n, (s", P") € N(es)] 4+ Prs" & Noo(es)]

+Pr [P ¢ Npoles)]

IA

IA

Pr[  sup lvs (&, 2, 0) || > n] + o(1)
(6:PYER(:0) <A po (0

IA

Pr [[|vs(&(s°, P°,0), P°,0)|| >n/2] + o(1)

—I—PI‘[ sup ”VJ(S,P,Q)_VJ(S(S()’PO
(E:P)EE(Q;G)XNPO(e)

= Pr[||vs(&(s°, P°,0), P°,0)|| > n/2] +o(1),

by the stochastic equicontinuity condition B4. Finally, for each fixed 0, £ € Z(0;

by Markov’s inequality we have for any n > 0,

lz’H(S, 0,P) e

Pr [l (€ P, 0)[| > . (57, P™) € Nes)] + o(1)

0), °,0)]] > n/2]

€), and P € Npo(e),

Prl
J

E||Y(£,0,P)?
7]2
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by assumption B3 in Theorem 2.
We next show that

[Var (c’ﬁgj(eo))} TG, (0°) (41)

is asymptotically normally distributed with mean zero and variance one for any vector c. Since the
three terms in VJG J(QO), denoted T';1, T, and T's3, say, are mutually independent it suffices to show
that var (¢ Tjg)il/ 2 Ty, £ = 1,2,3, converge to standard normal random variables. Then, by the
Cramér-Wold device [the fact that a multivariate random variable is normal if any linear combination
of its elements are|, we have the result.

A standard central limit theorem for mutually uncorrelated random variables establishes that
(¢ E{var(g|z)zz"}e) V2 T122E(0°, 80, P°) = N(0, 1).

Condition (22) enables us to apply the Lyapunov central limit theorem for triangular arrays [see for
example, Billingsley (1986, Theorem 27.3)], which says that the random variables ¢/ Y " | Y and
Y Y7,s are asymptotically normal.

COROLLARY. The proof of this corollary uses the following lemma:

LEMMA 1. Suppose that A1 and C1 hold. Let 0o (£,0,P)/0¢ = C(£,0,P) — A(£,0, P), where
C(&,0,P) = diagldo;(&, 0, P)/0,]. Assumption Al insures that both A(,0,P) and C(£,0,P) are
nonnegative for all & € Z(0;¢€), 0, and P. Then for each finite J, [00(£,0,P)/0¢'™1 exists, is
differentiable in & and 0, and satisfies

(60, P)=CB,

where B = (b,;) = [I — AC |71, (We have eliminated the dependence of these maltrices on (€,0, P)

for notational convenience). Furthermore,

B > 0 (element by element)

J
> by <[I=AW)) Y forj=1,..., T

PROOF OF LEMMA 1. By assumption Al, C ! exists, so if [/ — AC~ '] ! exists the fact that (C'—
A)CHI — AC71 71 = I proves that C' — A inverse exists. Let Q@ = AC™! and B = lim; szo QP
(since @ > 0, the limit exists and is nonnegative). If B is finite, then: B(I —Q) is finite and equals I,
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e., [I— AC™1]7! exists and is nonnegative. Let ¢ = ETJZI q; and ¢ = max< < ¢}, where Q = (g;).
Then, if we can show that ¢" < A(J)", since A(J) < 1, we will have Y " ¢" < [1 — A(J)]"!. That
is, if ¢* < A(J)*, then B satisfies all conditions of the lemma.

The proof of ¢* < A(J)" is by induction on ¢. It is true by assumption for £ = 1. Assume it is
true for t. Then

Hl Z Z%quy = Z {Z qTU} S ZA fqu; < A(T)

r=1 v=1 v=1

We now return to the proof of the corollary. Write

J

b
a; = (ZH '), = (/C'B); Zz@ Y

and therefore,

’ J’ < maXxi<e<y ’Ze’ Zbﬁy < Zsup J2
minj<g<.y Cy cd

Therefore, applying the argument of section 3, we obtaln the bound

3

@I(S,Q,P) S CJ_
T

for some finite constant c. In conclusion, the covariance matrix of J 12/H 1" is bounded by some
constant matrix times J*/n. This bound holds for all £ € Z(0;¢), 6 € ©, and (s, P) € N(e). Similar
calculations apply to the term J Y22/ H ~1em5(0). Therefore, (25) is established. For the asymptotic

normality result, we take 6 = 2 in (22). Recall that the moment generating function of the centred

multinomial vector (1,...,2;) is
J
J
0= () 5109).
j=1
where 14, ...,1; are dummy arguments. We have to calculate
1 4 1 AN
E (n—\/j Zaj5j> = ip ZajE [5& +...+ i Z Z Z Z a;aara; P [gi5884]
7j=1 7j=1 7=1 I=1 k=1 2=1

4 distinct indices
where a; satisfy (29). The first and last terms are
J

1 1 1
n4j22a§E[gﬂ = O(n4j2><J><J8><j):O(—4)

mn

=1

; A A A 1 1 J®
4, 18
T A2 ;1: ?1 gl ;1 a;a;aQ;5;515,S; = O<n4j2 X JUx JT % J4) = O(n4)’

4 distinct indices
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while the other terms are no larger than this in magnitude. In conclusion,

6
nB [|[Yal'] = O(%) = o(1),
so that condition (22) is satisfied.

PROOF OF (30). Tt suffices to show that for any random sequence s(n) converging to s® we have
|vs(s(n)) — vs(s°)|| —p 0. We shall take s(n) = s" and show that R, = v;(s") — v,(s°) = 0,(1),
where
1 1

1
1—a2sm  1—4

™t “(s" Lz’iz” s — s
anﬁz{(s) — S5 }(s _8)+\/j ( N

The following argument shows that under our conditions Ry91 = O, (J 3/2 /n) and Rpge = Op,(J 3/2 /n).

s} = Rpo1 + n2e.

We deal first with R,91, which can be rewritten using a geometric series expansion as

1 &
Ryo| < ze|| X —= £
’ 21’_max” EH \/jgz;l‘l‘(sg

n_

where 6, = (s} — s;)/s,. For any € > 0,

Pr[|Rua1| > €] < Pr||Rn2| > cand max |6] < 1/21 + Pr lmax 60| > 1/21
I 1<e<J 1<e<J

< Pr [|Rp21] > cand max |6,] < 1/21 + o(1)
i 1<e<T

by the uniform convergence of 6, assumed in A3. When maxj<i<; |6¢] < 1/2) |Rpa1| < \% ijl 6?,
and by the Markov inequality

J 2 7 2
92 =N,  H(
Pr —Z(S%>€ S \/Jzél (8)
VT =1 €
2 J o (1-se)
nyVJ 21 s, 3/2
= =0(J )
E (7% fn)
Similar calculation applies to R,,99.
PROOF OF THEOREM 3. Let T,T; : P —R, where
ZH(P) ey, 7
T,(P)=——=—— ; T(P)=-—"2
(P = TGy = e



where the notation H(P) emphasizes the dependence of the matrix H on the probability measure P.
We must show that for all € > 0, there exists Jy such that for all .J > Jy,

T5(P) = T(P)| <«

We shall work with a discrete mixture of fixed coefficient models indexed by m. By the triangle

inequality

[T,(P) =T(P)| < [T5(P) = Ts(Bn)| + |T5(Fn) = T(En)| + |T(Prn) = T(P)]

= [+11+111

for any m. The proof that 11 is small follows directly from our assumptions and the strong law of
large numbers. We show below that /1 converges to zero uniformly in m, .J. What remains is to show

that [ is small, which follows from the crude inequality

1
= ‘z’H(P)’lek — 2 H(P,)" ek\ < = HzH 1H |H(P) — H(P,)| HH(P)*lekH (42)

and the following bounds (obtained below)

|2 H(P) Y| < o) (43)
[H(P) Texl| < O(T?) (44)
|H(P) = H(ER)| < O(1/mU-m72J12), (45)

provided J* /m — 0.
PROOF OF (44). Writing H(P)™' = C'B, we have that H(P) 'e; = (bl—k bJ—Jk) whose

(squared) norm is

J b? 1 d ’ constant
L - by | < = Oo(J*
Z ? — mlnlngJC§ (Z Jk> — J2 {1 _ A(J)}Q ( )

J=1

because the elements of B and C are known to be positive. This establishes (44). The verification
of (43) is given below.

PROOF OF (45). Specifically, we show that the matrix H(P) = [ S(N\)dP(X) — [ s(A)s(A)dP())
can be well approximated by the matrix H(FP,) = [ S(A — [ 8(A)s(A)d P (X), where Py, is

an empirical distribution of size m from the populatlon governed by P, that is,
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H(Pp) = = 3" {5(M) — s(W)s())

We work element by element. Since Js;(A) is bounded away from both zero and infinity, we have

that for positive finite constants ¢; and ¢y,

P

Prl ‘/ )(1 — 8;(\) {dBn(X) — dP(A)}| >

< exp [—2/{2/mcl}

JQ/sj()\)sk()\) {dPn(X) —dP(N)}| >

I3|RI

< exp [—2/{2/m02} ,

I3 IRI

by Hoeffding’s exponential inequality, see Pollard (1984, p191). Therefore taking k = em 2(log m)",

we have by the Bonferroni inequality,

Pr l max

1<g#k<J

J? / ()N {dPn () — dP()}] > S1osm) |

ml/2

IA

IS

ik

/Sj()‘)sk()\> {dP,(\) —dP(\)}| > c(logm)"]

ml/2

— O(J*) exp|—< (log m)”] (46)

for some constant ¢*. Taking m = J* for any o > 0, we get that

Z Pr l max
1<GAR<T

provided r > 3/2c¢*«, so that by the Borel-Cantelli lemma, we have for any > 0,

Q/Sj(A)sk(A) {dPn(A) — dP()\)}‘ > M} < o0

ml/2

(172

max
1<j#k<J

JQ/sj()\)sk()\) {dPn(\) — dP()\)}‘ — 0 (47)

with probability one. Similarly,

m=mM/2 nax
1<5<J

7 [ 5N = D P = dP ()}

with probability one. In conclusion, the discrete mixture of logits well approximates any random

.0 (48)

coeflicient logit matrix. Specifically, (45) follows because
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|H(P) = H(Pa)|* = Z {H(P)~ H(Pa)Y,+ ) Y {H(P)~ H(Pu)}j,

j=1 k=1
JFk
< — 2 4 J? — 2
< Jmax {H(P) = H(Fm)};; + 77 max {H(P)— H(Fn)}jy
- o /\/Jmlfn)
with probability one for large m, J by (47) and (48).
Proor or II. Consider the discrete mixture
1 m
H= = £ L
LS (st — s,
=1
where s* = (sf,...,s}), £=1,... m. We show that
J
Lo 72 %
—zH = ——+0(1/J kE=1,...,J 49
JQZ Ck J%Eleg_l_ (/ )7 ) ] ( >
where sf =1 — Z}le si=0(1/J), t=1,...,m.

Write H = (D + UV')/m, where D = Y7"  S* and U = (s',...,s7) and V = —(s*,...,s7). We

have

FH ey =m{ZD e, —ZD'UI+V'D'U) 'V D e} (50)
by the Sherman-Morrison-Woodbury formula [Golub and Van Loan (1989, p51)]. First note that

YD ey = 22 = 0(T/m),
dy
where d; = Y )" 55 = O(m/J), j = 1,...,J, so this term is of smaller order. We are going to

establish that

e 1to)
VD) = S o7 (51

foralli,5 =1,...,m. In this case,

m

7 YDA+ VDU VD e =

1 —17r7: -1
mZ’D UZZ/V/D € —I—O(l/J),

where i'V'D e, =1 and 2D Ui = E‘]

=1 %4, so we get the required result (49).
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We have

dg
1 m
| _ J 258 J 2§85 . -1, _— _ :
2D Uism = ( Ej:l d; szzl d; ) s VD ey = :
S
dp
and
_ 7 (sh)? _ J  sls? _ J  sism
1 E] 1 df Zj:l d; e Zj:l d;
_ ZJ 575) 1— ZJ (s3)? _ ZJ 5387
]‘I’ V/DflU — .7 1 dj j:l dj j:1 dj
m 1 m 2 m 2
_ N 5% _ N %S v G
Zj:1 d; Zj:1 d; 1 Zj:l d;
. 1 J .
Substitute s7" = d; — >, L} and use the fact that 5 sﬁ- =1 — s}, to obtain
J STS? i m—1 J S]?SE- 1 m—1
E = 1—s5— E o =1—sk——g a
0 = 0 ok
d; d;
j=1 =1 \j=1 =1
J (ST)Q J m—1m—1 J Sg-sk m—1 J
E = g d; + E I _9 g ey
d J d; J
=1 J =1 =1 k=1 j=1 7 =1 j=1
m—1m—1 m—1
_ ¢
= Qg + E So— 8, — (m—2),
=1 k=1 =1
J k E
— ] ]
where ag, = > =1 Therefore, we can write
A a 1 Om 1.m—1 6 1)
I+V'D U= + = ’ =X +—,
a b J & 1) J
where the m — 1 X m — 1 matrix A is
1—an —aie s —a1,m-1
—Q12 1—ayp - —Q2.m—1
A= ,
—1m-1 —A42m-1 .- 1-— m—1,m—1
while the m — 1 x 1 column vectors
m—1 1
_{1_25:1 alt’} Jsg
a= ;0= : ,
~1
{1 — > g, 1/3} Jsg'
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and the scalars b = (m — 1)— Z:ll Z;’:ll agy and ¢ = J(= )" 11 b+ sT).
Note that the matrix X = (x;;) is singular, in fact the last column (row) is equal to minus the

sum of the preceding m — 1 columns (rows). Therefore, by Taylor expansion

m

8 det 82 det
- < > Z 8%’“ 2J2 Z aatgk@m ejkelr T (53)

First, we have that ddet (X) /0z; = a:ﬁsd‘, where a:?kdj is the adjoint [i.e., the determinant of the
matrix X, formed by deleting the j’th row and k’th column from X, see Anderson (1984, p598)| of

x;x. In fact, for all 7,k

2 = det(A), (54)

as we show below. Since most of the matrix F = (ejz) is zero, we only need the adjoints corresponding
to the outer (right) border of the matrix X, which means there are only order m terms in the first
summation in (53). Also, note that

0?2 det (X) B 0?2 det (X)

8&7mj8$mk 8$Jma$km

=0 53,k=1,...,m,

so there are only order m? terms in the second summation. Furthermore, since

9? det (X)

= det(Aj;) = O(det(A)/m),
the second term in (53) is of order m/J? and
det(I + V'D'U) = det(A) f: sp[14+O(1/J)]. (55)
Finally, we must show that the adjoints of the matrix ;lz X + E/J satisfy
2 =det(A)1 +O(1/T)], j#k, (56)

which implies (51) holds.

Proor or (54). We use the fact that determinants are invariant to certain linear transformations

and also that the matrix X has the following property
m—1 m—1
__Zajjé ) ajmk:_za:mfu j,kle,...,m,
=1 =1
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to show that the determinant of the matrix

T11 SRR R Trj+1 = Tim

ij —
Im—1,1 *° Tm—-1,j-1 Tm-145+1 **° Tm—1,m

is the same as the determinant of the matrix A. Specifically, add columns 1 to m — 2 to the m — 1’th

column and one gets the matrix A. For general X;; a sequence of such transformations gives the

result.
Proor oF (56). Essentially the same as above.
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Table 1:
Monte Carlo Estimates for the Simple Logit Model
True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Sim Draws # of Products
10 25 50 100 200
500 0.941 0.798 0.778 0.633 0.518

(0.362) (0.209) (0.137) (0.086) (0.076)
0.133] [0.084] [0.068] [0.142] [0.238]
1000 0.997 1.013 0.974 0934 0.882
(0.426) (0.255) (0.149) (0.120) (0.077)
0.180] [0.065] [0.023] [0.019] [0.020]
2000 1.023  1.046 0098 0976 0.923
(0.500) (0.224) (0.138) (0.123) (0.089)
[0.248] [0.052] [0.019] [0.015] [0.014]
10 0.685 0.728 0.768 0.921 0.916
(0.406) (0.214) (0.132) (0.110) (0.088)
0.262] [0.120] [0.071] [0.018] [0.015]
J2 0.615 0857 1.021 1.022 1.015
(0.358) (0.200) (0.139) (0.101) (0.077)
0.275] [0.060] [0.020] [0.010] [0.006]
00 1.027 0997 00995 1.007 1.008
(0.376) (0.242) (0.133) (0.094) (0.073)
[0.141] [0.058] [0.017] [0.009] [0.005]

Notes: Standard Errors in (-) and Mean Squared Errors in [-].




Table 2:
Monte Carlo Estimates for the Random Coefficients Logit
True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Sim Draws # of Products
10 50 100
10 1.194 1.218
(0.982) (0.512)  *
[1.002] [0.310]
50 1.025 1.039 1.241

(0.645) (0.311) (0.495)
(0.416] [0.098] [0.303]
100 0982 1.013 1.037
(0.674) (0.271) (0.209)
0.454] [0.073] [0.045]
500 0.998 1.008 1.015
(0.633) (0.255) (0.181)
[0.400] [0.065] [0.033]
10J 0.982 1.008 1.018
(0.674) (0.255) (0.181)
0.454] [0.065] [0.033]

Notes: Standard Errors in (-) and Mean Squared Errors in [-].
*With 100 products and only 10 draws, we had numeric problems
computing the estimates.




Table 3:
Monte Carlo Estimates for the Pure Vertical Model
True Value of the Parm is 1
1000 Monte Carlo Repetitions

# Sim Draws # of Products
10 25 50 100 200
50 1.023 1.022 1.011 0.997 1.013

(0.494) (0.373) (0.349) (0.321) (0.302)
[0.150] [0.294] [0.010] [0.013] [0.044]
100 1.005 1.010 1.005 1.002 1.009
(0.426) (0.303) (0.257) (0.244) (0.217)
0.061] [0.018] [0.009] [0.013] [0.000]
500 0.993 0998 1.001 1.005 1.007
(0.371) (0.223) (0.176) (0.142) (0.123)
0.120] [0.097] [0.024] [0.006] [0.032]
1000 1.01 099 1.00 1.00 1.00
(0.361) (0.227) (0.162) (0.118) (0.097)
0.006] [0.094] [0.001] [0.007] [0.009]
10 1.018 1.014 1.008 0.998 0.996
(0.440) (0.253) (0.175) (0.120) (0.085)
0.304] [0.043] [0.031] [0.002] [0.041]
J2 0.998 00998 1.000 1.002 1.000
(0.423) (0.227) (0.153) (0.105) (0.074)
0.002] [0.026] [0.044] [0.000] [0.055]
0 0.997 0999 0.999 1.001 0.997
(0.364 (0.214) (0.141) (0.101) (0.072)
0.088  [0.054] [0.004] [0.000] [0.000]

Notes: Standard Errors in () and Mean Squared Errors in [-].
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