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Abstract

Frequency domain statistics are studied in the presence of fractional
deterministic and stochastic trends. It is shown how the behaviour of the
sample variance-covariance matrix of nonstationary processes can be
dominated by components corresponding to a possibly degenerating band
around zero frequency. This property is used to establish the limiting
distribution of the averaged periodogram matrix, of memory estimates for
nonstationary series, and for frequency domain regression estimates under
nonstandard conditions.
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1. INTRODUCTION

For a sequence of column vectors u;, t = 1,2, ...,n, with real-valued ele-
ments, define the discrete Fourier transform

wu

5 Z ut—u zt)\
V 47N

where © = n~!' 37"  u; denotes the sample mean. Given also a vector se-
quence vy, t = 1,...,n, define the cross-periodogram matrix

Ly (X) = wu (A wi(X), (1.1)

v

the asterisk denoting complex conjugation combined with transposition. Writ-
ing \; = 2mj/n for integer j, define

7 2 m
Jj=

n

for 1 </ < m <n-—1. We can think of (1.2) as a discrete version of the
continuous average Fy,(A¢_1, Ami1), where

w

F(v,w) = / L(N)dA. (1.3)

v

Indeed by the orthogonality properties of the complex exponential

n

~ ~ 1
Fu.(l,n—1)= F,(0,27) = — ug —u) (v, — v, 1.4
(L= 1) = Ful02) = 3 (o= 9) (=) (1.4)
where the prime denotes transposition.

We term (1.3) the continuously averaged cross-periodogram matrix, and
(1.2) the discretely averaged periodogram matrix, or more briefly the aver-
aged periodogram. The case u;, v, scalar, where especially u; = v, has been
stressed in the literature. Early references to the study of scalar F,,(0,\) in
case of stationary short range dependent and long range dependent u; are,
respectively, Grenander and Rosenblatt (1957) and Ibragimov (1963). For
stationary short range dependent vector u;, v, and A degenerating slowly to
zero as n — o0, a simple function of F,(0, ) consistently estimates the
cross spectral density of ug, v; at frequency zero. The same role is played by
Fu»(1,m) when .

——|—@—>O, as n — oo, (1.5)
m n



see e.g. Brillinger (1975). In typical short range circumstances ﬁuv(é ,m) and
ﬁuv()\g,l, Am+1) have close asymptotic properties, while Robinson (1994a,b)
found both similarities and differences under long range dependence.

Here we shall study F,,(1,m) for nonstationary vector series u;, v; under
the more general condition

<g m — 00 as n — 00, (1.6)

which also permits m to increase as fast as n. Of course eventually m < n /2
under (1.5), while on the other hand eventually (1.5) is a special case of (1.6),
but in any case the requirement m < n/2 is virtually costless because, for
T< <2,

Re {Iuv(zﬂ- - )} Re {Iuv(A)} ’ Sm {Iuv( - A)} = —Qm {Iuv(A)} )

so that, for example, (cf (1.4)
) } , mnodd (1.7)

)
Fu(ln—1) = {(
Fo(lin—1) = 2@}%6{1% (1,5—1)}—1-2%[“@(#), n even. (1.8)

It is in fact only the real part of ﬁuv(l, m) which is relevant to the particular
applications considered in the present paper, but the theorem of the following
section, our main result, covers both real and imaginary parts. We mentioned
Fu(v,w) for comparison’s sake due to its classical interest, but it has less
computational appeal than ﬁuv(l, m) so we shall not discuss it further.

In the vector case it suffices to consider Fi,(1,m), relative to Fy,(1,m),
because F\uu(l, m) includes the averaged cross-periodogram of disjoint sub-
vectors of u;. Our nonstationary vector stochastic process u; obeys the model

U=+ py, t=1,2, ..., (1.9)

where z; is a nonstationary vector stochastic process while p, is a determin-
istic vector function of ¢. Detailed specification of x; and p, is given in the
following section, and we only mention here that the decomposition in (1.9)
is uniquely defined by the property that E(x;) = 0, ¢ > 1. Many econometric
models, for example, assume an additive representation covered by (1.9).

_ The main point of the first theorem of the following section is that
Fu(l,n — 1), and a fortiori F,,(1,M), m < M < n/2, are dominated
(under (1.6)) by Fyu(1,m) (c.f. (1.7), (1.8)). Note that, for such M,

Fuu(1, M) = Fuu(1,m) + Fuu(m + 1, M), (1.10)
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and the theorem derives stochastic bounds for both components on the right
side the second one’s bound being the smaller. Similar results have been
given by Robinson and Marinucci (1997). On the one hand, these authors do
not include the deterministic component g, of (1.9), while on the other they
obtain more refined results under otherwise milder conditions. Note that,
unlike the present paper and Robinson and Marinucci (1997), the large lit-
erature on averaged periodogram statistics is restricted to stationary series,
with rare exceptions such as Phillips (1991), whose proofs actually involve
weighted autocovariance type spectral estimates, which can have different
asymptotic properties from the averaged periodogram under nonstationar-
ity. Section 2 also applies the theorem, along with invariance principles for
vector nonstationary fractional sequences of Marinucci and Robinson (1998)
(see also Akonom and Gourieroux, 1987, Silveira, 1991), to establish the
limit distribution of the averaged periodogram. Section 3 provides two ap-
plications. We give limit theory for estimates of the memory parameters of
nonstationary vector sequences. We also give conditions for full-band and
narrow-band frequency domain least squares estimates of regression param-
eters to have the same normal limit distribution when both regressors and
errors have form (1.9).



2. MAIN RESULT

We began by completing the specification of (1.9). Let C' be a generic
positive constant, and ||| denote the Euclidean norm.

Assumption A Let u; be given by (1.9), where:

(1)

t
T = Z \Ijt,SES, (21)
s=1

Ee, =0, Eeye, =0, Ellg]|” <C <00, 1 <s#t, (2.2)

the &; being p x 1 vectors and the ¥, being p x p matrices with (a, b)th
elements 1), , satisfying

¥4

}@Z}ab,t‘ S C(1+t)da_17 ‘¢ab,t - Qpab,t—&—l} S CTb’t}u CL,b - ]-7 ey 4 i Z 17
(2.3)
fi
or .
d, > 3 a=1,..p. (2.4)
(ii) p, has a—th element p,, satisfying
1 Ha
|:uat| S C(l +t)6a %, }:uat - /’La,t-&—l‘ S C| tt|7 CL,b - 17 - D, t Z ]-7
(2.5)
for
>0, a=1,..,p. (2.6)

In (2.2), the innovations &; need not be identically distributed or indepen-
dent or martingale differences, while some stable heterogeneity is allowed for.
Moreover, finiteness of only second moments of x;, and thus of u;, is implied,
by contrast with Robinson and Marinucci’s (1997) fourth order stationarity
assumption on ;. The latter, however, assists these authors in deriving re-
sults for averaged cross-periodograms involving a nonstationary and (asymp-
totically) stationary series, whereas no element of x; can be asymptotically
stationary in view of (2.4). Robinson and Marinucci (1997) also relaxed the
uncorrelatedness assumption on &, to a much more general one of short range
dependence.

The different roles played by the d, and 6, in the exponents in (2.3) and
(2.5) will be of subsequent notational convenience. Clearly the conditions
(2.3) and (2.5) on the ¥, and p, are of the same character, though in case
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of u, one thinks of polynomials as leading examples, whereas in case of W,
it follows, in view also of (2.2), that x; can be the nonstationary fractionally
integrated vector autoregressive moving average

zy =AY L)® T (L)O(L) {110}, (2.7)

where L is the lag operator, 14 is the indicator function of the set A, ®(L)
and O(L) are finite order matrix lag polynomials with zeros outside the unit
circle, and

AN L) = dmg{a—L)*dl,...,a—L)*dp}, (2.8)
(1—L)y* — ;%L’ﬂ I(a) :/xale“’dx. (2.9)

Define
0, = max(d,, 6,), 1<a<p.

Let ¢ be an arbitrarily small positive number, and write 7% and F% for the
(a,b)th elements of I, and F,, in (1.1), (1.2).

Theorem 1 Under Assumption A and (1.6), for 1 < m < M < n/2, as
n — oo, and a,b=1,...,p,

F(1,m) = O, (n%t%1), (2.10)
Fl(m+1,M) = o, (n"+"7")

I

when d, # 1, 8, # 3, dy # 1, 6, # %, and thus if the bound in (2.10) is an
exact rate

n

Fon(1,m) = %Z(ut ) (g — ) (1 + 0p(1)), (2.11)

t=1

whereas when d, = 1 or 6, = % or dy, =1 or 6 :%

Ei(lm) = Oy (n"*07%),
Fi(m+1,M) = o, (' 1),

for any ¢ > 0.

Proof From the Cauchy inequality, for £ < m,

Febe, m)‘ < {ﬁgg(ﬁ, m)FSZ(é,m)}% . (2.12)

5



We can thus deduce results for a # b from those for a = b. Further, we can
study stochastic and deterministic components separately because

Foe(0,m) < 2F2(0,m) + 2F2% (£, m). (2.13)
With ¢!, the a—th row of Uy,
n S t
%w>=%mZ§yS“Z§M“p@%m
t=1 s=1 j=1 k=1
n n mm st
1 i(s— t A
= 27_‘_77 ;;6 Z Qpas lﬂgkgkqvbat k (214)
1 n n o
L 9 D DD SR
s=1 t=1 j=1 k=1,k#j

The expectation of this, non-negative scalar random variable, equals the
expectation of (2.14) alone, and is thus, writing ¢, =0, t <0,

27n ZZ e tAZ¢aS kE 5/€5k ¢at k

s=1 t=1
27_‘_77 {Z 28A¢as k} (gl‘ﬂg;ﬂ) {Ze_it/\d}a,tn} . (215)
t=1

Since the kth summand is a non-negative quadratic form, it follows from
(2.2) that (2.15) is bounded by a constant times

2

1 - . zs)\ 1 . . LEDN
?Z Z as k = % Ze Qpa,sfk
k=1 || s=1 k=1 || s=1
1 n n—k 2
= o Z eit/\@/}at (2.16)
2 1=
On the other hand, for the deterministic p,,
IR i
L) = 5— > ey, (2.17)
=1

Now from Robinson and Marinucci (1997), we deduce that for a real
valued sequence k; such that

_ C |k
| < C L, g — ppa| < S

1



we have, for 0 < |A| <7, v > 1,

, 1
Zem/@ < ¥ 3 <P< 1, (2.19)
t=1
CovP~!
< b (2:20)

cf. Kokoszka and Taqqu (1996, Lemma 3.1). For p = 1 the definition of
k¢ in Robinson and Marinucci (1997) is more special than that in (2.18), so
their result does not necessarily apply, but by proceeding in a similar way
as they did for p # 1, applying summation-by-parts and the usual bound for
the Dirichlet kernel,

v

E ezt)\ﬁt

t—1

< |—(;| Yt < C|l?\|g U =1 (2.21)
t=1

We then deduce from (2.16), (2.17), (2.19) - (2.21) that, for 0 < || <,

c 1
ETI%(N) < —,=<d, <1,
:C:C( ) — ‘A’Qda’Z
1 2
< C(ng),da—l,
A
2dg—2
<l — d,>1,
aa < 1
I\ < NN |)\|%a+1, 0<é, < 3
C (logn)? 1
< = =
= 5 )\2 ) 6a 2a
C'n2ba—2 1
< b, > =
= )\2 ) 9

It follows that from (1.2)

R n\ 2da—1 1
EF™(,m) < C (Z) L5 <da<,

logn? 4, 1,

2d,—1

14

IN

Cn

n

IN

C

, dg > 1,



and

. n26a71 1
Fuu(f,m) < 062—6‘17 0<6a<§,
(logn)? 1
< C ba = 3,
- A 2
n2ba—l 1
< C Oa > =.
- I 2
Altogether we can write, for some £ > 0,
R n2da—1
EF(6L,m) < C—; {1+ 14,21(ogn)*},
n20a—1

Faitm) < C

" (1 1ogosn?}

so that from (2.13)

~ 20,1
EF5(m) <C 1 [1 + {1da:1 + 15(1:%}77,5} ,

whence the results follow quickly from (2.12), (1.4), (1.6) - (1.8) and (1.10).
OJ

It follows that the contribution from all but an arbitrarily slowly in-
creasing number of Fourier frequencies to half the sample covariance matrix
Fuu(1,n—1) (see (1.4), (2.11)) is negligible when the bound in (2.10) repre-
sents an exact rate, which may be shown to be true under stronger assump-
tions. Such assumptions can also lead, indeed, to a representation for the
limit distribution of F,,(1,n — 1), and thence of F,,(1,m) and of various
functions of these statistics that are of interest. We introduce

Assumption B: Let Assumption A hold, let minj<,<, 6, > 0 and let &, be
an independent identically distributed zero mean sequence such that, for
d* = minlgagp da,

1
Bec =0, Bl <€y > max (2.5 )

also, for a,b=1,...,p, as t — oo let

¢an,t ~ gab(l + t)dailﬂ Hat ~ h’a(l + t)éa’

for finite nonzero constants g, h, where “~” indicates that the ratio of left
and right hand sides tends to 1; “~” is replaced by “=" for d, = 1,6, = 0.
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Assumption B can be checked for the model given by (2.7) - (2.9).
For d = (dy, ...,d,), 6 = (61, ...,6,), define the matrices

D(n;d,$) = diag {nelf%’ o nepf%} . G(rid) = {gabrd“*l} ’

and the variates

T

W(r;d) = /G(r—s;d)dB(s;Q), W(d):/W(r;d)dr,

V(d) = / (W (s d)W (r; d)f — W(d)W(d)'} dr.

where B(r;€)) is multivariate scaled Brownian motion, defined as a zero
mean continuous Gaussian process with independent increments and variance
matrix EB(r; Q)B(r; Q) = Qr, 0 < r < 1; W(r; d) was referred to as Type II
multivariate fractional Brownian motion by Marinucci and Robinson (1999).
Also define

H(T) = (hIT‘Slf%,...,hpr‘sP*%)’ ﬁ:/,u(r)dr,
1

H(6) = /{M(T)M(T)/—W/}dTa T(dﬁ):/u(T)W(T;d)’dh

0

and denote by V®(d), H*™(8), T*(d,§) the (a,b)th elements of V(d), H(6)
and T'(d, 9).

Theorem 2 Under Assumptions A and B and (1.6), as n — oo
2D Y (n;d, 8) Fyu(1,m)D Y (n;d, §) —q L(d, 6),
where the variate L(d, §) has (a,b)th element

L =V (d) 14, ydy=00+0,+ T (d, 6)1a,15,=0,0, 1" (d, ) La, 15,=00 10, +H* (6) L5, 1.5,=0, 16,

Proof We have

N N 1~
Fu(1,m) = {Fuu(l,m) - §Fuu(1,n - 1)}

1 ¢~ ~ . ~
5 {Fm(l,n 1)+ Fp(lin— 1)+ Fuo(l,n — 1) + F,u(1,n — 1)} .

9



From Theorem 1 (see (2.11), (1.4), (1.7), (1.8))

N 1~
D! {Fuu(l,m) - éFuu(l,n - 1)} D' =0,(1), asn — oo,

where D abbreviates D(n;d,6). Writing D = diag {ndl_%, ...,ndp_%}, we

have from Theorem 1 of Marinucci and Robinson (1997) that as n — oo
Dyt () — Tn) = W(r;d) = W(d), 0<r <1,

the convergence holding in the sense of Billingsley (1968) in the Skorokhod
space D[0,1]P. Now consider the space of mappings G € G from R — RP*P

such that Hfol Gdr

one we have pu(r)W(r;d) € G a.s., and hence from the continuous mapping
theorem

‘ < oo: because W (r;d)’ is continuous with probability

D Fpp(1,n — 1)Dyt =g V(d), Dy'E(1,n—1)Dy' —4 T(d,6),
as n — 0o, where Ds is diag {n‘sl*%, v n‘sp*%} , while by dominated conver-

gence R
DytF,(1,n—1)Dyt — H(8), asn — oo.

To complete the proof note that as n — oo

D_lDl — dmg {101:d17 .oy 19p:dp} R D_lDQ — dZCLg {191:51, .oy 19p:5p} . O

3. APPLICATIONS

We apply Theorems 1 and 2 to two examples, namely memory parameter
estimation and regression estimation.

Consider the following estimate of the “maximal memory” 6,,

.1 log Faa(1
9, = L)y e Futm) L
2 logn

Theorem 3 Under Assumptions A, B and (1.6), as n — oo

~ 1
(logn)(0, — 0,) —a 3 log L*(d,6), a=1,..,p. (3.1)

10



Proof We can write (logn) (Ea —40,) as
1 1-20, Thaa
§log {n aFuu(l,m)},

whence (3.1) follows from Theorem 2 and the continuous mapping theorem.
UJ

The estimate 5(1 automatically adjusts to whether the stochastic or the
deterministic component dominates. Its structure is somewhat similar to
that of the averaged periodogram memory parameter estimate of Robinson
(1994a,b), but it does not require his tuning parameter and does not require
the bandwidth m to increase slower than n. On the other hand, the The-
orem implies 0, is only (logn)-consistent, though note the generality of the
conditions.

For the other application, partition the variables in (1.9) as

B _ | Y G
(). l2) wls)

where v,y and (; are (p — 1) x 1 vectors and wy, z; and &, are scalars, and
suppose that, of these, only v; is observable, along with the scalar s; such
that

s, = v + wy, t=1,2,..., (3.2)

where (3 is an unknown (p — 1) x 1 vector. To estimate (3 consider

Em = [?Re {ﬁw(l,m)H - Re {F\m(l,m)} ,

as in Robinson (1994a), Robinson and Marinucci (1997). Note from (1.4)
that anl is just the least squares estimate with intercept correction, while
under (1.5) Em is a least squares estimate using only the discrete Fourier
transforms closest to the origin.

Denote by ((r) the leading (p — 1) x 1 sub-vector of u(r) and H,,(8) the
leading (p—1)x (p—1) submatrix of H(6), and let Dy = diag {n®*~%, ..., n% 174},
9p = (Gp1 s Gpp)"-

Theorem 4 Let Assumptions A, B and (1.6) hold, with

0g >dy, 6o>d,, t=1,...,p—1, (3.3)
dy, > by, (3.4)

and let
r{Hy.(6)} =p—1. (3.5)

11



Then as n — oo N
DS(ﬁm - ﬁ) —d N(07 Z)a

where
1

(6) / P21 C(r) dr H 6).

0

> = 9829,
2, —1"

Proof From (3.3), (3.4) the leading (p — 1) x (p — 1) submatrix of D is

. _1 _1 ] . .. . _1
D, = diagin® 32 ... n%-172 ! while its remaining nonzero element is n% 3.
b ) 9

It follows that

~

Dy(Br = 8) = { DR Bt b D, DR { P, 0)
From Theorem 2 and (3.3), (3.4), as n — oo
Dy Fon(1,m) D7 — Ho(6),
Dy Fyu(1,m)nz=% =y Tyu(d, 5),

where T, (d, ¢) is the leading (p — 1) x 1 subvector of 7'(d, §). However it is
straightforward to show that

1
'Q

Tow(d,6) ~ N |0, 2"620 _gpl /erP_IC(v)C(v)’dv : O
P

0

Our specification of regressors and errors in (3.2) is nonstandard in view of
the presence of stochastic nonstationarity and possible deterministic trends
in the errors, that is a nonstationary (, and a non-constant &,, and the
possible correlation between regressors and errors, that is between the com-
ponents y; of v; and z; of w;. The latter feature, though not the former ones,
was present in the treatments of Robinson (1994a), Robinson and Marinucci
(1997), indeed these authors included no deterministic components and the
first reference assumed stationarity throughout. In the situations covered by
these authors nonstandard limit distributions result, and the reason for the
normal limit in the present circumstances is the domination of the determin-
istic components of the regressors over the stochastic components of both
regressors and errors, and the domination of the stochastic component of the
errors over their deterministic component, as provided by (3.3), (3.4).

12
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