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Abstract  
 
 
 

Nonlinear functions of multivariate financial time series can exhibit long 
memory and fractional cointegration. However, tools for analysing 
these phenomena have principally been justified under assumptions 
that are invalid in this setting.  Determination of asymptotic theory 
under more plausible assumptions can be complicated and lengthy. 
We discuss these issues and present a Monte Carlo study, showing 
that asymptotic theory should not necessarily be expected to provide a 
good approximation to finite-sample behaviour. 
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1 Introduction

Fractional cointegration analysis is increasingly found to be a promising tool for

dimensionality reduction in �nancial time series. On the one hand, series of asset re-

turns may have little autocorrelation, whereas instantaneous nonlinear functions, such

as squares, can exhibit evidence of long memory. Considering series on several assets,

it is possible that there exists a linear combination of the nonlinear functions that has

shorter memory. Then there is said to be fractional cointegration. Note that here, as

implied by many stochastic volatility (SV) models, series are supposed to be station-

ary. By contrast, in analysing macroeconomic time series, levels are typically believed

to be nonstationary with a unit root, and cointegration exists when there is a linear

combination that is stationary (with short memory).

A variety of tools for analysing fractional cointegration in stationary series is becom-

ing available. The main stress has been on �semiparametric�methods. These avoid full

parameterisation of autocorrelation, in favour of a local power law for the spectral density

around zero frequency. Estimates of memory parameters can be rendered inconsistent by

misspeci�cation of short memory properties. Moreover, when the cointegrating relation

is expressed in regression form, with one of the observables on the left hand side, the

other observables cannot plausibly be assumed orthogonal to the cointegrating errors.

Thus (�full-band�) time domain procedures (in a stationary environment) such as least

squares will inconsistently estimate the cointegrating vector. This leads to a focus on

methods based on a vanishing neighbourhood of zero in the frequency domain, such that

the number, m, of Fourier frequencies used increases with sample size n, but more slowly.

An undesirable consequence of this semiparametric strategy is rates of convergence (in

case of both memory parameters and cointegrating vector estimates) that are slower

than would be possible in a fully parametric setting. However, parametric estimates of

memory parameters and (due to the stationarity) cointegrating vectors can only converge

at rate n
1
2 (there is no super-consistency), and the slower rates of the semiparametric

methods (depending on m) may be acceptable when n is very large indeed, as is the case

with many �nancial time series.

Asymptotic theory for the semiparametric estimates has been developed mainly un-

der assumptions that are unfortunately implausible in this setting. Usually series have

been assumed to be generated by linear �lters of conditionally homoscedastic martingale

di¤erences. This is justi�ed if, for example, series are Gaussian. Recall, however, that
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in �nancial series the long memory property, and the possibility of fractional cointegra-

tion, has tended to emerge only for certain nonlinear functions. It is possible (see e.g.

Hurvich, Moulines, and Soulier, 2005) to specify SV models for which the log-squares

transformation yields a linear representation, on which linear �lter assumptions might

be plausible. Note, however, that linear factor models for asset returns are widely used

in the asset pricing literature. As discussed by Gonçalves da Silva and Robinson (2005),

the presence of aditional additive errors, which seems realistic, would render this type

of �linearisation� impossible. Furthermore, these results crucially hinge on particular

parametric speci�cations for the SV model, which are proposed, at least in part, for

reasons of technical convenience. As a result, linear-in-martingale-di¤erence representa-

tions should not be assumed to necessarily hold for volatility measures. Models for them
can be articulated, in terms of underlying independent and identically distributed (iid)

sequences, say, but the nonlinearity makes derivation of asymptotic properties (already

a delicate matter in the linear setting) extremely complicated and lengthy. Moreover,

due to second order bias that a¤ects some estimates, useful limit distribution theory

is unavailable. As a result, relevant asymptotic theory is not well developed, in view

of which Monte Carlo simulation here plays a rather larger role than the usual one of

investigating relevance of asymptotic theory in �nite samples.

In the following section we consider the modelling of cointegration of series that

are generated by SV models. Section 3 discusses methods of estimating cointegrating

coe¢ cients (the stress being on relatively simple �single equation�methods), and also

memory parameters. Section 4 presents Monte Carlo simulations.

2 Long memory, cointegration and stochastic vola-

tility

Consider �rst a covariance stationary scalar process zt, t = 0;�1; : : :, having spectral
density fz(�), � 2 (��; �]. We say that zt is a (fractionally integrated) I(d) process, for
d 2 (�1

2
; 1
2
), if

fz(�) � C j�j�2d ; as �! 0; (2.1)

for some C 2 (0;1), ���meaning that the ratio of left- and right-hand sides tends to 1.
We call d the �memory parameter�of zt. An I(0) process is said to have short memory,

an I(d) process for d < 0 is said to have negative memory, and an I(d) process for d > 0
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is said to have long memory. We will focus on cases d � 0.
Now consider a p � 1 column vector Zt = (z1t; : : : ; zpt)0, such that zit is I(di), di 2

[0; 1
2
), i = 1; : : : ; p > 1. In general it is supposed that there is cross-correlation between

the zit but it is not necessary at present to discuss the nature of this, except to note

that by the Schwarz inequality the cross-spectral density at frequency � between zit and

zjt has modulus of order no greater than j�j�di�dj as � ! 0. Now suppose that there

exists an unknown nonzero p � 1 vector � (the �cointegrating vector�) such that the
unobservable process ut = �0Zt is an I(du) process, for du < mini di. Then Zt is said

to be fractionally cointegrated. Notice that if p = 2 a necessary condition for fractional

cointegration is that d1 = d2. Alternative de�nitions of fractional cointegration are

reviewed by Robinson and Yajima (2002), who also discuss the possibility of existence

of two or more cointegrating relations, and methods for estimating the number of these.

It is desirable to reconcile these properties of long memory and fractional cointe-

gration with a more fundamental modelling of Zt, which is plausible in �nancial series.

Consider a jointly strictly stationary q � 1 vector process �t, for q � p, such that

zit = gi(�t); i = 1; : : : ; p; (2.2)

where the gi are nonlinear functions. As analysed in this kind of general setting by

Robinson (2001), if at least one element of �t has long memory, then, for given i, zit
may have long memory, though the existence of long memory, and the actual value of

di, depends on the nature of gi as well as memory parameters of elements of �t. In view

of the nonlinearity, theoretical analysis is greatly facilitated if �t is Gaussian but it is

not necessary to stress this possibility here.

It may be possible, further, to infer the cointegrating relation for Zt from an under-

lying structural relation for �t. We consider perhaps the simplest case. We take p = 2,

q = 4, write �t = (�1t; �2t; �3t; �4t)
0, and assume it is Gaussian. Suppose that the f�itg

are mutually independent processes, that for i = 1; 2; 3 the �it are iid with zero mean

and variance �2i , and that �4t is an I(d4) process, for d4 > 0. Suppose that we observe

sequences xt; yt, generated by

xt = �1�t + �1t; (2.3)

yt = �2�t + �2t; (2.4)
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where �1; �2 6= 0 and
�t = �3th(�4t); (2.5)

where h is a possibly nonlinear function, with Efh(�4t)2g <1.
This setup can be interpreted as a factor model for asset returns, xt and yt, where

�t is the (unobservable) market return, and �1, �2 are the market risk exposures of xt
and yt, respectively. Since memory properties (of volatilities, in this case) are invariant

to temporal aggregation (see Chambers, 1998), (2.3)-(2.5) should be a reasonable model

across all sampling frequencies. Now �t is not an iid sequence but it is a square-integrable

martingale di¤erence, and thus uncorrelated, sequence, as therefore are xt and yt. Thus

xt and yt exhibit an ideal property of asset returns, say. Because xt and yt are therefore

I(0) sequences, and all linear combinations of them are also I(0), they are not cointe-

grated. However, we can deduce a cointegrating relation between the squares z1t = x2t ,

z2t = y
2
t . We have

z2t = (�2�t + �2t)
2

= �z1t + ut; (2.6)

where � = �22=�
2
1 and

ut = �
2
2t + 2�2�2t�t � 2��1�1t�t � ��21t: (2.7)

Clearly ut has no autocorrelation, and is thus an I(0) process. We have

z1t = �
2
1�
2
t + 2�1�1t�t + �

2
1t: (2.8)

The last two terms on the right are also I(0). However for suitable h, the leading term

�21�
2
t has long memory, and thence so has z1t. For example if �t = �3t�

2
4t, z1t is I(2d4� 1

2
),

or if �t = �3te
�4t, z1t is I(d4). In either case, z2t has the same memory parameter as z1t,

and Zt = (z1t; z2t)0 is fractionally cointegrated, with cointegrating vector � = (��; 1)0.
A similar conclusion is drawn if, even more simply, �1t is missing from (2.3). Notice

that �t is generated by a SV model and plays the role of a common factor. Fractional

cointegration can also arise if �1t and/or �2t are replaced by processes with SV (so that

ut can have long memory), as shown by Gonçalves da Silva and Robinson (2005).

Though (2.6) is expressed in the form of a regression model, it does not possess the
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classical properties. The unobservable sequence ut actually has nonzero mean (as does

z1t), but this situation is recti�ed by introducing an intercept. More important, however,

ut is not orthogonal to the right hand side observable z1t:

Cov(z1t; ut) = �2��21
�
�21 + 2E(�

2
t )
	
< 0; (2.9)

taking �1 = 1 with no loss of generality. For general p, after rewriting �0Zt = ut in

regression form, then even in the absence of an underlying structure like (2.3), (2.4) there

is no reason to suppose that orthogonality between cointegrating errors and right-hand

side regressors obtains, especially as the designation of left-hand variable is arbitrary.

3 Estimation of cointegrating vector and memory

parameters

Assuming the p-th element of � is non-zero, adopting an arbitrary normalization, and

designating zpt as left-hand side variable, we rewrite the cointegrating relation �0Zt = ut
as

Yt = �
0Xt + ut; (3.1)

where Yt = zpt, Xt = (z1t; : : : ; zp�1;t)
0 and � is a (p � 1) � 1 vector. It is desired to

estimate the unknown � = (�1; : : : ; �p�1)
0, on the basis of observables Zt, t = 1; : : : ; n.

The most obvious estimate of � is ordinary least squares (OLS) with intercept correc-

tion (bearing in mind that ut may have non-zero mean, as the discussion of the previous

section suggests). This is

�̂O =

�
nP
t=1

(Xt � �X)X 0
t

��1 nP
t=1

(Xt � �X)Yt; (3.2)

where �X = n�1�nt=1Xt. However, the correlation envisaged between ut and Xt makes

�̂O inconsistent for �, bearing in mind also the stationarity of Zt; this outcome di¤ers

from the familiar one in which Zt has a unit root and ut is I(0), where the asymptotic

dominance of sums of squares of ut by those of Xt overwhelms the simultaneous equation

bias, leading to n-consistency of �̂O.

A consistent estimate of � was proposed by Robinson (1994). For a vector sequence
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at, de�ne the discrete Fourier transform

wa(�) = (2�n)
� 1
2

nP
t=1

ate
it�; (3.3)

and for a vector sequence bt, possibly the same as at, de�ne the (cross-) periodogram

matrix

Iab(�) = wa(�)w
0
b(��): (3.4)

For a sequence m = m(n) such that

m � n

2
; (3.5)

1

m
+
m

n
! 0; as n!1; (3.6)

de�ne the narrow-band least squares estimate of �,

�̂NB =

 
mP
j=1

Re fIXX(�j)g
!�1

mP
j=1

Re fIXY (�j)g ; (3.7)

where �j = 2�j=n and Re(�) is the real part operator. Note that omission of the

frequency �0 = 0 corresponds to a sample mean correction like that in (3.2), while if in

contrast to (3.5), (3.6), m = n � 1 we have �̂NB = �̂O. However, the condition (3.6) is
crucial to the consistency of �̂NB. The basic intuition for the consistency is as follows.

By the Cauchy inequality, for i = 1; : : : ; p� 1,����� mPj=1Re fIziu(�j)g
����� �

(
mP
j=1

Izizi(�j)
mP
j=1

Iuu(�j)

) 1
2

; (3.8)

and under suitable conditions this is

Op

 
n

�Z �m

0

��2did�

Z �m

0

��2dud�

� 1
2

!
= Op

�
n
�m
n

�1�di�du�
: (3.9)

On the other hand, under suitable conditions, for �m = diag
�
�d1m ; : : : ; �

dp�1
m

	
,

1

m
�m

mP
j=1

Re fIXX(�j)g�m !p 
; (3.10)
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where 
 is a constant positive de�nite matrix. It follows that

�̂NB;i � �i = Op
��m

n

�di�du�
; i = 1; : : : ; p� 1; (3.11)

where �i and �̂NB;i are the i-th elements of � and �̂NB. Since cointegration entails

du < di, i = 1; : : : ; p� 1, �̂NB is thus consistent for �. The key is the domination, near
zero, of the spectral density of ut by the spectral densities of z1t; : : : ; zp�1;t.

Consistency of �̂NB was �rst shown by Robinson (1994) in case p = 2, and then, with

the rate in (3.11), by Robinson and Marinucci (2003) for general p. The conditions they

imposed to deduce the crucial properties (3.9) and (3.10) were that Zt is generated by

a linear moving average in conditionally homoscedastic martingale di¤erences. As pre-

viously noted, this is inconsistent with our SV setup, such as illustrated in the previous

section, albeit similar to one for log squared returns for a certain SV model (see e.g. Deo

and Hurvich, 2001) and a multiplicative set-up in place of the additive one, typi�ed in

(2.3), (2.4). However, Gonçalves da Silva and Robinson (2005) have established (3.11)

for p = 2 under a somewhat more general set-up than that described in connection with

(2.3) and (2.4). The proof is exceedingly lengthy, however, requiring Hermite approxi-

mations to the �rst and second moments of the periogram, and things do not generalise

immediately to the case p > 2, where one must also consider the asymptotic behaviour

of the cross-periodogram to establish (3.10).

The estimate �̂NB is desirably computationally simple, and the exclusion of high-

frequency contributions makes this estimate robust to contamination by short run dy-

namics, such as those introduced by microstructure noise. It has been applied in frac-

tional cointegration analyses of implied and realised volatility by Christensen and Nielsen

(2004), Bandi and Perron (2004).

In general the rate in (3.11) is sharp, and indeed under additional conditions it seems

that, for each i, (n=m)di�du(�̂NBi��i) converges in distribution not to a non-degenerate
random variable, but to a constant. This is due to the presumed coherence between

Xt and ut around zero frequency. Without such coherence, asymptotic normality and a

faster rate of convergence is possible. Christensen and Nielsen (2004) supposed that the

cross-spectral density between zit and ut is o(j�j�di�du), as �! 0, rather than having real

part behaving precisely like j�j�di�du . Assuming also that di + du < 1
2
, i = 1; : : : ; p� 1,

they deduced that m
1
2 (m=n)du��1m (�̂NB��) is asymptotically multivariate normal; they

assumed Zt is linear in homoscedastic martingale di¤erences, as in Robinson (1994),
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Robinson and Marinucci (2003).

Though the model constructed in Section 2, (2.6) based on (2.3)-(2.5) and z1t = Xt =

x2t , z2t = Yt = y
2
t , does not satisfy the linearity assumption of Christensen and Nielsen

(2004), it does satisfy a lack-of-coherence assumption that corresponds to theirs. It is

easily seen that Cov(zs; ut) = 0 if s 6= t, so in view of (2.8), the cross-spectral density of
z1t; ut is �nite and constant, and o(j�j��), where � > 0 represents the memory parameter
of z1t. (In the cases discussed after (2.8), the possibilities that � = d4 and � = 2d4 � 1

2

emerged.)

Violation of orthogonality represents an important way in which (3.1) disobeys classi-

cal regression conditions, but it is not the only one. Though the simple set-up with p = 2

analysed in the previous section ensured that ut has no autocorrelation (see (2.7)), more

generally ut can be not only autocorrelated but even have long memory, as indicated

by Gonçalves da Silva and Robinson (2005). In the absence of simultaneous equations

bias, a suitable weighted frequency domain estimate will be more e¢ cient. In (3.1) with

short memory ut orthogonal to Xt, Hannan (1963) showed that weighting inversely with

respect to a nonparametric estimate of fu can achieve the same asymptotic e¢ ciency

as generalised least squares based on a correctly speci�ed parametric model for fu. Hi-

dalgo and Robinson (2002) extended this �nding to long memory ut, with unknown du.

However, the �full-band�estimates will incur similar simultaneous equations bias to �̂O.

Nevertheless, it is worth considering whether some such weighting can improve on �̂NB,

since fu changes even over the interval [�1; �m]. Smith and Chen (1996) proposed the

weighted narrow-band estimate

�̂WNB = ~�(d̂u); (3.12)

where

~�(d) =

 
mP
j=1

�2dj Re fIXX(�j)g
!�1

mP
j=1

�2dj Re fIXY (�j)g ; (3.13)

and d̂u is a consistent estimate of du (see below). Note that ~�(0) = �̂NB. Smith and

Chen (1996) in fact proposed �̂WNB in a more traditional regression setting, with ut
orthogonal to Xt, and did not establish any asymptotic properties. Recently, Nielsen

(2005), under the same kind of incoherence-near-zero assumption as Christensen and

Nielsen (2004), established that for given d, which satis�es a suitable constraint relative

to du and the di, m
1
2 (m=n)du��1m (

~�(d)��) is asymptotically normal. Nielsen (2005) also
discussed the relative e¢ ciency of ~�(d) and �̂NB, noting some circumstances in which
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~�(d) can be the more e¢ cient even when d 6= du.
However du is clearly an optimal choice of d, and given that du is unknown it is

natural to focus on �̂WNB which, like �̂NB, should still be consistent in the presence of

coherence between ut and Xt, violating Nielsen�s (2005) condition. We have, say,����� mPj=1�2d̂uj Re fIziu(�j)g
����� �

(
mP
j=1

�2d̂uj Izizi(�j)
mP
j=1

�2d̂uj Iuu(�j)

) 1
2

: (3.14)

We assume (as in Robinson, 1994)

(log n)(d̂u � du)!p 0; as n!1; (3.15)

which can readily be justi�ed in view of asymptotic theory for various memory parameter

estimates. Then

�2d̂uj = �2duj �
2(d̂u�du)
j � �2duj no((logn)

�1) � �2duj eo(1) � 2�2duj ; (3.16)

for n su¢ ciently large. It is then readily seen that (3.14) is

Op

 
n

�Z �m

0

�2(du�di)d�
m

n

� 1
2

!
= Op

�
n
�m
n

�1+du�di�
: (3.17)

Also under (3.15), and similar conditions to those giving (3.10), we can justify the step

1

m

�m
n

��2du
�m

mP
j=1

�
�2d̂uj � �2duj

�
Re fIXX(�j)g�m !p 0; (3.18)

and then that
1

m

�m
n

��2du
�m

mP
j=1

�2duj Re fIXX(�j)g�m (3.19)

converges in probability to a constant positive de�nite matrix.

Notice that in the model (2.6) derived from (2.3)-(2.5), du = 0 so we expect no

improvement of �̂WNB over �̂NB. However, we can extend this model to allow at the

same time du > 0, and incoherence at frequency zero between regressors and errors.

At least for linear processes, bias and autocorrelation can be corrected simultane-

ously by more elaborate methods. These are based on a full system of p equations that
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expresses also the long memory properties of the zit, i = 1; : : : ; p � 1, and lead to esti-
mates of � which depend not only on d̂u, but also on estimates of the di, i = 1; : : : ; p�1.
Such estimates of � are developed by Hualde and Robinson (2004); they are asymptoti-

cally normal (centered at �) with the same rate as described for �̂NB and �̂WNB under

the incoherence-near-zero assumption, but without imposing that. We focus in our nu-

merical study in the following section only on the �single-equation�estimates (based on

(3.1)) we have discussed above, this is partly due to their computational simplicity, but

also because incoherence-near-zero can often be justi�ed in a factor model context, as

discussed above, whence �̂NB and �̂WNB enjoy a reasonably fast rate of convergence.

Even if simple estimates of � are used, there may be interest in estimation of the di,

as well as in estimation of du; as is required for �̂WNB. In particular, such estimates are

useful in determining the existence and extent of cointegration, as described by Robinson

and Yajima (2002). In this multivariate setting, e¢ ciency gains are possible by estimat-

ing memory parameters jointly, especially if prior equality constraints are placed on the

di. However, joint estimates have principally been developed under the assumption of

no cointegration, and if there is cointegration they are liable to be inconsistent. Thus we

describe some leading �semiparametric� estimates. We introduce a generic univariate

stationary process vt which can represent any of the zit, or, where estimation of du is

concerned, residuals yt� ~�
0
Xt, such that ~� represents one of our consistent estimates of

�.

Denote by d the unknown memory parameter of vt. Geweke and Porter-Hudak (1983)

proposed a log-periodogram estimate, a simpli�ed version of which, due to Robinson

(1995a), is

d̂LP =

(
mP
j=1

�
ln j � 1

m

mP
i=1

ln i

�2)�1 mP
j=1

�
ln j � 1

m

mP
i=1

ln i

�
ln Ivv(�j): (3.20)

Assuming that m satis�es at least (3.5) and (3.6), Robinson (1995a), Hurvich, Deo, and

Brodsky (1998) showed that

m
1
2 (d̂LP � d)!d N(0; �

2=6); as n!1: (3.21)

An e¢ ciency improvement is possible, for the same m sequence, via the local Whittle

10



estimate (Künsch, 1987),

d̂LW = argmin
d2D

(
ln

 
mP
j=1

j2dIvv(�j)

!
� d 1

m

mP
j=1

ln j

)
; (3.22)

where D is a compact subset of (�1
2
; 1
2
). This was shown by Robinson (1995b) to satisfy

m
1
2 (d̂LW � d)!d N(0;

1

4
); as n!1: (3.23)

Note that the conditions imposed to deduce (3.21) and (3.23) do not cover the SV

setup described in the previous section, but see e.g. Deo and Hurvich (2001). Various

modi�cations, in particular bias corrections, have been introduced. Hurvich, Moulines,

and Soulier (2005) allow for a more re�ned approximation to fv(�) than C�
�2d, there is

something of a signal-plus-noise character to the model (2.3), (2.4), so we might consider

the estimate

(d̂MLW ; �̂) = arg min
(d;�)2D��

(
ln

 
mP
j=1

Ivv(�j)

j�2d + �

!
+
1

m

mP
j=1

ln(j�2d + �)

)
; (3.24)

where � is a compact subset of the positive real line. Hurvich, Moulines, and Soulier

(2005) justify asymptotic normality of d̂MLW , but with a di¤erent asymptotic variance

from that in (3.23).

4 Simulations

We now present a Monte Carlo study of �nite-sample performance. For linear proc-

esses, Robinson and Marinucci (2003) reported simulation experiments of NBLS with

I(1) observables and I(0) cointegrating errors, while Marinucci and Robinson (2001)

explored di¤erent cases of fractional cointegration with nonstationary observables and

stationary errors. Bandi and Perron (2004) examined NBLS for the regression between

realised and implied volatility, generating the data from a discretised continuous time

SV model. Gonçalves da Silva and Robinson (2005) reported experiments of NBLS in a

SV framework similar to ours. We present results for two settings, one linear, and the
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other generalising (2.2)-(2.6). Under the linear model, we generate (see (2.3), (2.4))

z1t = �t + �t; (4.1)

z2t = ��t + "t; (4.2)

where we use the abbreviated notation �t = �1t, �t = �2t, "t = �3t, and for i = 1; 2; 3, f�itg
is a zero mean Gaussian ARFIMA(0; di; 0) process with variance �2i . In the nonlinear

case, we use (see (2.3)-(2.6))

z1t = (�t + �t)
2; (4.3)

z2t = (�2�t + "t)
2; (4.4)

where �t = �1th(�1t), �t = �2th(�2t), "t = �3th(�3t), and for i = 1; 2; 3, f�itg is an inde-
pendent standard Gaussian sequence, and f�itg a zero mean Gaussian ARFIMA(0; di; 0)
with variance �2i . In both models, the basic processes f�itg and f�itg, i = 1; 2; 3, are all
generated independently of each other, and we will denote the variances of �t, �t, "t by

�2� , �
2
�, �

2
" respectively.

Under each model, we employ 1,000 replications of series of length n = 2048 and

estimate � by narrow-band regressions of z2t on z1t, where � = �22 in the nonlinear

setting. Note that both models can be written as (2.6), with

ut = "t � ��t (4.5)

in the linear setting and

ut = "
2
t � ��2t + 2�t (�2"t � ��t) (4.6)

in the nonlinear setting. We present bias, standard deviation (SD) and root mean

squared error (RMSE) of ~�(d) given by (3.13), for various values of d, both �xed and

estimated. All are evaluated at the bandwidth, m�, that minimises RMSE.

Asymptotic theory

We �rst examine the performance of Nielsen�s (2005) asymptotic theory under the

linear model, when �t is absent in (4.1). We set � = 1, d1 = 0:4, d3 = 0:2, �2� = 4

12



d Asy. SD MC SD Ratio

0.10 0.0176 0.0213 1.211

0.15 0.0155 0.0203 1.307

0.20 0.0152 0.0201 1.323

0.25 0.0154 0.0204 1.328

0.30 0.0157 0.0209 1.332

0.35 0.0161 0.0216 1.337

0.40 0.0166 0.0223 1.341

0.45 0.0171 0.0230 1.344

Table 1: Asymptotic and Monte Carlo SD of WNBLS, for varying d; linear setting with
�t absent.

and �2" = 2. This simulation is comparable to his model A, although we focus on full-

band estimates, i.e. m = n=2. (Given the independence between ut and z1t, this choice

dominates any other value of m.) Table 1 reports asymptotic (Asy.) and Monte Carlo

(MC) SD for di¤erent values of d. Monte Carlo bias is negligible in this setting and

therefore omitted. Note that Nielsen�s (2005) theory requires

(2d1 + 2d3 � 1)=4 < d � d3; (4.7)

which in this case is equivalent to 0:05 < d � 0:2, but we compute his asymptotic SD
also for d > 0:2. Here we �nd that Monte Carlo SD is almost always over 30% larger

than the asymptotic one, so the asymptotic theory is not a good approximation even

when n = 2048.

More realistically, a complete factor model such as (4.1), (4.2) allows the explanatory

variable z1t to include an idiosyncratic component, �t. The discrepancy between z1t and

the ideal explanatory variable, �t, can be interpreted as a case of measurement error

(ME), causing z1t to be correlated with ut. While still compatible with Nielsen�s (2005)

assumptions, this would increase the Monte Carlo SD even further without changing the

asymptotic one (as long as d2 < d3), thereby widening the gap between them. Figure 1

plots the theoretical and Monte Carlo SD of ~�(d) relative to that of ~�(d3), for di¤erent

values of d. Although the asymptotic and Monte Carlo levels in Table 1 substantially

di¤er, their ratios across d are comparable, and d = d3 is the optimal choice in both.

13
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Figure 1: Asymptotic and Monte Carlo relative SD of ~�(d) versus ~�(d3), for varying d;
linear setting with �t absent.

Variation in measurement error

We present results for di¤erent types of ME, namely: no ME, i.e. �t absent in (4.1) or

(4.3); antipersistent ME (d2 = �0:2); iid ME (d2 = 0); and long memory ME (d2 = 0:2).
In the nonlinear model, the antipersistent case would still generate I(0) ME in (4.3)

and is therefore omitted. In both settings we use � = 1, d1 = 0:4, d3 = 0:2, �2� = 4,

�2" = �
2
� = 2, and h(x) = exp(x) as the volatility function for the nonlinear setting.

Table 2 reports Monte Carlo optimal bandwidth, bias and RMSE, under the linear

setting, for various regression estimates of �: unweighted NBLS, ~�(0); the theoretically

optimal but infeasible weighted estimate, ~�(d3); and feasible versions of it, ~�(d̂3), where

d̂3 is a consistent estimate of d3. In these cases, d3 is estimated using LP (3.20), LW

(3.22), or MLW (3.24) based on the regression residuals from a �rst step unweighted

NBLS regression; the same m is used in the �rst and second steps. Due to the modi�ed

14



�t absent d2 = �0:2 d2 = 0 d2 = 0:2
~� m� Bias RMSE m� Bias RMSE m� Bias RMSE m� Bias RMSE

NBLS 1024 -0.0005 0.0273 81 -0.0279 0.0642 25 -0.0470 0.0897 12 -0.1301 0.1752

True d3 1024 -0.0001 0.0201 53 -0.0283 0.0652 23 -0.0555 0.0933 10 -0.1326 0.1789

LP 1024 -0.0001 0.0209 53 -0.0297 0.0651 23 -0.0524 0.0928 10 -0.1322 0.1799

LW 1024 -0.0001 0.0204 53 -0.0296 0.0650 23 -0.0524 0.0930 10 -0.1321 0.1800

MLW 1024 0.0001 0.0205 53 -0.0301 0.0650 23 -0.0539 0.0937 10 -0.1339 0.1807

Table 2: Monte Carlo bias and RMSE of regression estimates, for di¤erent types of
measurement error; linear setting.

�t absent d2 = �0:2 d2 = 0 d2 = 0:2bd3 m Bias RMSE Bias RMSE Bias RMSE Bias RMSE

LP 80 -0.0020 0.0806 -0.0485 0.0934 -0.0574 0.0993 -0.0070 0.0821

LW 80 -0.0072 0.0628 -0.0519 0.0821 -0.0613 0.0892 -0.0108 0.0675

MLW 200 0.0491 0.1002 0.0569 0.1464 0.0184 0.1177 0.0418 0.0908

Table 3: Monte Carlo bias and RMSE of residual memory estimates, for di¤erent types
of measurement error; linear setting.

spectral approximation in (3.24), when using MLW we compute WNBLS as

~�(d̂; �̂) =

 
mP
j=1

Re fIXX(�j)g
j�2d̂ + �̂

!�1
mP
j=1

Re fIXY (�j)g
j�2d̂ + �̂

; (4.8)

instead of (3.13). Table 3 reports bias and RMSE for these preliminary estimates of d3.

In the model without ME all regression estimates have, as expected, virtually no bias

and perform best in the full-band case. Here, ~�(d3) clearly exhibits an e¢ ciency gain

over ~�(0), which is equivalent to OLS (3.2). However, as progressively more persistent

ME is introduced, both estimates have increasing bias, and the RMSE of ~�(d3) grows

much faster than that of ~�(0). Indeed, in the presence of ME, simple NBLS always

outperforms the weighted estimate. Here and throughout all experiments, estimates are

biased towards zero, due to the negative correlation between z1t and ut caused by ME.

The feasible versions of WNBLS seem to closely match the infeasible one in both RMSE

and bias, in many cases even appearing slightly better. This behaviour arises because

whenever ME is present, the optimal weighting is actually obtained for d < d3, so the

negative bias of LP and LW, seen in Table 3, can actually work to their advantage.

Although MLW actually displays positive bias, the weights in (4.8) do not depend on d̂2
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�t absent d2 = 0 d2 = 0:2
~� m� Bias RMSE m� Bias RMSE m� Bias RMSE

NBLS 973 -0.0042 0.0840 8 -0.1495 0.2717 8 -0.1944 0.3210

True d3 973 -0.0042 0.0855 8 -0.1589 0.2829 8 -0.2020 0.3290

LP 973 -0.0042 0.0840 8 -0.1516 0.2753 8 -0.1969 0.3243

LW 973 -0.0043 0.0842 8 -0.1514 0.2747 8 -0.1966 0.3237

MLW 973 -0.0043 0.0847 8 -0.1532 0.2776 8 -0.1987 0.3266

Table 4: Monte Carlo bias and RMSE of regression estimates, for di¤erent types of
measurement error; nonlinear setting.

alone but also on �̂ in (3.24), allowing it to still outperform the infeasible estimate for

d2 = �0:2. The optimal bandwidths for each estimate are lower the more persistent the
ME is, since frequencies closer to zero become more contaminated with the correlation

between z1t and ut.

Table 3 shows that both LP and LW perform relatively well throughout. The small

biases are insu¢ cient for the bias reduction properties of MLW to make a di¤erence; in

fact, this estimate displays larger bias than LP and LW in three of the four cases. As

expected, the much lower SD of LW makes it the best in RMSE. Although some of the

bias can be attributed to estimation error, most of it surely comes from the �signal-plus-

noise�nature of the residuals, as seen in (4.5). When �t is absent or when �t has the

same memory as "t, LP and LW are essentially unbiased, while for d2 = �0:2; 0 some
bias is present.

Tables 4 and 5 present results for the nonlinear setting. Here it can be seen that

the weighted estimate is always outperformed by NBLS, with ME causing much more

signi�cant bias. Even in the absence of ME, the optimal bandwidth is slightly below the

full-band case, possibly as a consequence of ut being orthogonal to but not independent of

z1t, as can be seen by setting �t = 0 in (4.6). All feasible weighted estimates outperform

the infeasible one, which can again be explained by the negative biases found in Table 5.

Biases are stronger here than in the linear setting, partly because of the estimation error

and the nonlinear setting, but also because of the signal-plus-noise structure. Note that

in this setting the I(0) noise in (4.6) does not vanish even if �t is absent. For both LP

and LW, bias is the main component of RMSE. Therefore, the bias reduction provided

by MLW allows it to dominate the other estimates in the presence of ME. Again, the

inferior performance of the weighted estimate relative to simple NBLS demonstrates that

d = d3 is not the optimal choice in this setting.
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�t absent d2 = 0 d2 = 0:2bd3 m Bias RMSE Bias RMSE Bias RMSE

LP 80 -0.1512 0.1704 -0.1827 0.2016 -0.1640 0.1861

LW 80 -0.1562 0.1690 -0.1847 0.1969 -0.1666 0.1810

MLW 200 -0.0411 0.1827 -0.0986 0.1840 -0.0697 0.1788

Table 5: Monte Carlo bias and RMSE of residual memory estimates, for di¤erent types
of measurement error; nonlinear setting.

Naturally, if d3 is no longer the optimal choice for d, the usefulness of estimating

it from the data can be questioned. This is veri�ed in Figures 2 and 3, which show

the RMSE of ~�(d) relative to that of ~�(d3), for di¤erent values of d, in the linear and

nonlinear settings. Only in the linear case without ME is d = d3 optimal; in all other

cases, the optimal value is smaller, and it is reduced the more persistent the ME is. In

the nonlinear case the optimal values for d are always negative, and in a region excluded

by (4.7). It should also be noted that, in the absence of information on the optimal

d, NBLS should be chosen over ~�(d3) (or its feasible versions). Tables 6 and 7 report

optimal bandwidth, bias and RMSE for ~�(d), with d = 0, 0:2 and the values of d that

minimise RMSE in each case (indicated in bold-face), in the linear and nonlinear settings.

The degradation in performance with more persistent ME can still be seen here, and

bias is often slightly smaller for the optimal d. However, the variation in bias across d

is relatively small, and most of the variation in RMSE can be explained by variations in

SD.

The minimization of RMSE at values di¤erent from d = d3 is surprising since it does

not conform to the asymptotic theory. A frequency domain generalised least squares ap-

proach will weigh the contribution of each frequency by the inverse of their approximate

SD, thereby �whitening�the observations. A possible explanation for the discrepancy

lies in the approximation error in (2.1), which in the limit theory is made irrelevant by

assuming enough smoothness in the spectral density, but can play a major role in �nite

samples. The whitening approach will give low weight to the frequencies closer to zero,

where variance is higher but (2.1) is a more accurate approximation, and will boost the

impact of more distant frequencies where the approximation is not so accurate. Another

relevant factor is the coherence between z1t and ut, here generated by �t, which is the

leading source of bias. Being of smaller order than the spectral pole, it will be irrele-

vant asymptotically, but this also means higher frequencies are more contaminated than
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Figure 2: Relative RMSE of ~�(d) versus ~�(d3), for varying d and d2; linear setting.
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Figure 3: Relative RMSE of ~�(d) versus ~�(d3), for varying d and d2; nonlinear setting.
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�t absent d2 = �0:2 d2 = 0 d2 = 0:2

d m� Bias RMSE m� Bias RMSE m� Bias RMSE m� Bias RMSE

-0.05 1024 -0.0005 0.0331 67 -0.0303 0.0663 33 -0.0519 0.0902 12 -0.1269 0.1750
0.00 1024 -0.0005 0.0273 55 -0.0279 0.0642 25 -0.0470 0.0897 12 -0.1301 0.1752

0.05 1024 -0.0004 0.0235 52 -0.0294 0.0632 25 -0.0502 0.0896 11 -0.1298 0.1757

0.20 1024 -0.0001 0.0201 39 -0.0283 0.0652 23 -0.0555 0.0933 10 -0.1326 0.1789

Table 6: Monte Carlo bias and RMSE of ~�(d), for varying d and di¤erent types of
measurement error; linear setting. The minimum RMSE choice of d is indicated in
bold-face.

�t absent d2 = 0 d2 = 0:2

d m� Bias RMSE m� Bias RMSE m� Bias RMSE

-0.30 1022 -0.0025 0.0946 14 -0.1476 0.2674 14 -0.1901 0.3148
-0.20 976 -0.0033 0.0845 8 -0.1386 0.2666 14 -0.1963 0.3154

-0.10 973 -0.0039 0.0830 8 -0.1441 0.2681 14 -0.2022 0.3178

0.00 973 -0.0042 0.0840 8 -0.1495 0.2717 8 -0.1944 0.3210

0.20 973 -0.0042 0.0855 8 -0.1589 0.2829 8 -0.2020 0.3290

Table 7: Monte Carlo bias and RMSE of ~�(d), for varying d and di¤erent types of
measurement error; nonlinear setting. The minimum RMSE choice of d is indicated in
bold-face.

lower ones. Again, decreasing the weight of the lowest frequencies is likely to worsen

the estimation. Both these factors lead to an optimal d that will tend to be lower than

d2; in some circumstances they can outweigh the heteroskedasticity in the periodogram,

and the optimal d will be negative, as can be seen in Figures 2 and 3 and Tables 6 and

7.

Variation in sample size

Failure of asymptotic theory to provide a good approximation in �nite samples is

further explored by changing the sample size. Figures 4 and 5 and Tables 8 and 9

present similar results to Figures 2 and 3 and Tables 6 and 7, for n = 512, 2048, 8192.

We set � = 1, d1 = 0:4, d2 = 0, d3 = 0:2, �2� = 4, �
2
" = �

2
� = 2, and use h(x) = exp(x) as

the volatility function for the nonlinear setting. In both the linear and nonlinear settings,

the optimal value for d increases with n, but not dramatically. Even for n = 8192, the

optimal d is not only below d3, but also outside the parameter range in (4.7). For all
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n 512 2048 8192

d m� Bias RMSE m� Bias RMSE m� Bias RMSE

0.00 15 -0.0950 0.1555 25 -0.0470 0.0897 61 -0.0271 0.0532

0.05 13 -0.0905 0.1560 25 -0.0502 0.0896 61 -0.0296 0.0525
0.20 12 -0.0977 0.1601 23 -0.0555 0.0933 41 -0.0265 0.0538

Table 8: Monte Carlo bias and RMSE of ~�(d), for varying d and n; linear setting. The
minimum RMSE choice of d is indicated in bold-face.

n 512 2048 8192

d m� Bias RMSE m� Bias RMSE m� Bias RMSE

-0.30 15 -0.3060 0.4520 14 -0.1476 0.2674 16 -0.0583 0.1419

-0.20 15 -0.3145 0.4528 8 -0.1386 0.2666 13 -0.0586 0.1396

-0.05 15 -0.3261 0.4572 8 -0.1468 0.2697 11 -0.0594 0.1389
0.00 15 -0.3296 0.4591 8 -0.1495 0.2717 11 -0.0608 0.1392

0.20 8 -0.3096 0.4669 8 -0.1589 0.2829 8 -0.0555 0.1424

Table 9: Monte Carlo bias and RMSE of ~�(d), for varying d and n; nonlinear setting.
The minimum RMSE choice of d is indicated in bold-face.

values of d, there is a strong improvement in both bias and RMSE as n increases. While

in the linear case the optimal bandwidth for each d increases with n, in the nonlinear

setting it is often higher for n = 512 than for n = 8192. Bandwidths for n = 2048 are

the lowest of the three sample sizes, suggesting a �U-shaped� bandwidth pro�le that

will continue diverging to in�nity as the theory requires.

Figures 6 and 7 illustrate the distributional properties of NBLS by plotting kernel

density estimates for varying n, under the linear and nonlinear setting. Density estimates

are computed for a sequence of s = 50; 000 NBLS estimates bi, i = 1; : : : ; s, using

bf(b) = 1

sh

sX
i=1

�

�
bi � b
h

�
; (4.9)

where � (�) is the standard Gaussian density function and the bandwidth h is chosen
using (3.31) of Silverman (1986),

h = 0:9s�1=5min(SD; IQR=1:34); (4.10)

where SD and IQR are the sample standard deviation and interquartile range of the
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Figure 4: Relative RMSE of ~�(d) versus ~�(d3), for varying d and n; linear setting.

0.9

1

1.1

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.4

d

Re
la

tiv
e 

RM
SE

Figure 5: Relative RMSE of ~�(d) versus ~�(d3), for varying d and n; nonlinear setting.
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bi. Estimates for other values of d yield very similar shapes and are thus omitted, but

available from the authors upon request. However, unlike for other values of d, NBLS

is not covered by (4.7). Still, in the linear case all curves in Figure 6 seem to be fairly

close in shape to that of a normal density. On the contrary, densities in Figure 7 are all

highly skewed to the left, even for n = 8192, suggesting that the asymptotic distribution

under the nonlinear setting might not be normal. In both settings, bias and SD seem

to be decaying at the same rate, which is natural given our minimum RMSE bandwidth

choice.

Variation in the signal-to-noise ratio

Figures 8 through 11 and Tables 10 through 13 can be interpreted in the same way

as Figures 2 and 3 and Tables 6 and 7, for the linear and nonlinear settings, where we

�rst change the variance of the ME, then the variance of the signal. In both experiments

we start with � = 1, d1 = 0:4, d2 = 0, d3 = 0:2, �2� = 4, �
2
" = �

2
� = 2, and h(x) = exp(x)

as the volatility function for the nonlinear setting. The variance of the ME in the �rst

experiment is then set to �2� = 1=2, 2, 8, by varying �22 in the linear setting, and by

using hk(x) = k exp(x), with k = 1=2, 1, 2, as the volatility function for �t, while keeping

�22 constant, in the nonlinear setting. The resulting sequences �t are consequently the

same, up to a multiplicative factor, for each value of �2�. In the second experiment, the

variance of the signal is changed by choosing �21 so that �
2
� = 2, 4, 8.

These parameters a¤ect the accuracy of the estimates by in�uencing the relative

variance of z1t and ut in (4.2), which can be interpreted as a signal-to-noise ratio, and

the covariance between z1t and ut, which can be seen in (4.5) and (4.6) to depend

crucially on �t; this was derived in (2.9), for a di¤erent setting.

Figures 8 and 9 and Tables 10 and 11 show that both m� and the optimal d decrease

rather heavily as �2� increases, especially in the nonlinear setting. For large values of

�2�, the common component in z1t and ut becomes very important, in�uencing even

frequencies relatively close to zero. As a result, both the bandwidth and the weights

should adjust so that only the lowest frequencies (where the spectral pole still dominates)

have signi�cant in�uence. Tables 10 and 11 display a strong degradation in both bias

and RMSE, caused by the increased coherence between regressor and residuals.

While increasing �2� in�uences both ut and z1t, scaling up the common component

in both, increasing the cointegrating parameter � boosts the weight of the common
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Figure 6: Kernel density estimates of NBLS for varying n; linear setting.
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Figure 7: Kernel density estimates of NBLS for varying n; nonlinear setting.
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Figure 8: Relative RMSE of ~�(d) versus ~�(d3), for varying d and �2�; linear setting.
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Figure 9: Relative RMSE of ~�(d) versus ~�(d3), for varying d and �2�; nonlinear setting.
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�2� 1/2 2 8

d m� Bias RMSE m� Bias RMSE m� Bias RMSE

-0.10 142 -0.0297 0.0629 39 -0.0524 0.0913 10 -0.0897 0.1516
0.00 112 -0.0329 0.0584 25 -0.0470 0.0897 10 -0.0969 0.1527

0.05 82 -0.0301 0.0579 25 -0.0502 0.0896 10 -0.1005 0.1541

0.10 81 -0.0326 0.0578 25 -0.0533 0.0904 10 -0.1041 0.1560

0.20 55 -0.0280 0.0596 23 -0.0555 0.0933 7 -0.0893 0.1595

Table 10: Monte Carlo bias and RMSE of ~�(d), for varying d and �2�; linear setting. The
minimum RMSE choice of d is indicated in bold-face.

�2� 1/2 2 8

d m� Bias RMSE m� Bias RMSE m� Bias RMSE

-0.40 1022 -0.0477 0.1333 18 -0.1454 0.2682 4 -0.4607 0.5858
-0.20 98 -0.0444 0.1233 8 -0.1386 0.2666 4 -0.4703 0.5880

-0.10 68 -0.0447 0.1216 8 -0.1441 0.2681 4 -0.4751 0.5903

0.00 66 -0.0491 0.1228 8 -0.1495 0.2717 4 -0.4798 0.5933

0.20 63 -0.0555 0.1308 8 -0.1589 0.2829 4 -0.4889 0.6007

Table 11: Monte Carlo bias and RMSE of ~�(d), for varying d and �2�; nonlinear setting.
The minimum RMSE choice of d is indicated in bold-face.

component in ut alone, keeping z1t constant. Still, this provokes a comparable increase

in correlation, causing very similar e¤ects to those reported for �2�. Monte Carlo results

for this case are omitted but available upon request.

Figures 10 and 11 and Tables 12 and 13 display the e¤ect of the strength of the

signal �t. In the linear case, this scales up the signal in z1t without a¤ecting ut. In

the nonlinear case, both are a¤ected, but since the SV model used generates heavily

leptokurtic processes (implying that the variance of �2t is the major contribution to the

variance of z1t) and �t only a¤ects ut through a white noise component (thus having a

bounded contribution to the spectrum around the zero frequency), the impact on ut will

be minimal compared to that on z1t. In both models, increasing �2� will have the double

e¤ect of increasing the variance of z1t, thereby making the observables more correlated at

all frequencies, and scaling up the spectral pole caused by the memory in �1t, improving

the local signal-to-noise ratio. While both e¤ects will have a clearly positive in�uence on

the accuracy of the estimates, as seen in Tables 12 and 13, the e¤ect on m� and on the

optimal d is not clear, as even frequencies distant from zero become less contaminated

by the dependence between z1t and ut. As a result, Figures 10 and 11 show very little
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�2� 2 4 8

d m� Bias RMSE m� Bias RMSE m� Bias RMSE

-0.05 25 -0.0843 0.1380 33 -0.0519 0.0902 42 -0.0310 0.0585

0.00 23 -0.0852 0.1382 25 -0.0470 0.0897 40 -0.0327 0.0579
0.05 22 -0.0883 0.1392 25 -0.0502 0.0896 39 -0.0346 0.0580

0.20 19 -0.0946 0.1455 23 -0.0555 0.0933 25 -0.0305 0.0603

Table 12: Monte Carlo bias and RMSE of ~�(d), for varying d and �2� ; linear setting. The
minimum RMSE choice of d is indicated in bold-face.

�2� 2 4 8

d m� Bias RMSE m� Bias RMSE m� Bias RMSE

-0.30 8 -0.3350 0.4722 14 -0.1476 0.2674 18 -0.0702 0.1696

-0.20 8 -0.3453 0.4733 8 -0.1386 0.2666 8 -0.0628 0.1695

-0.15 8 -0.3504 0.4750 8 -0.1414 0.2671 8 -0.0642 0.1691
0.00 8 -0.3649 0.4833 8 -0.1495 0.2717 8 -0.0680 0.1705

0.20 7 -0.3714 0.4980 8 -0.1589 0.2829 8 -0.0726 0.1764

Table 13: Monte Carlo bias and RMSE of ~�(d), for varying d and �2� ; nonlinear setting.
The minimum RMSE choice of d is indicated in bold-face.

variation on relative RMSE with �2� .

Distributional properties of residual memory estimates

While the previous experiments show that estimates of residual memory are not nec-

essarily useful for choosing d in (3.13), they might still be relevant for other purposes,

namely to verify if a cointegrating relationship exists at all. The use of the LP and

LW estimates is well established by now, and their �nite-sample properties have been

examined in various settings (see e.g. Robinson and Henry, 1999; Nielsen and Frederik-

sen, 2005). In �nite samples, LW is generally found to have bias of similar magnitude

but lower variance than LP, to conform with (3.21) and (3.23). However, the recent

MLW estimate has not yet been directly compared to LW. The �ndings of Hurvich,

Moulines, and Soulier (2005), Hurvich and Ray (2003), and Table 5, indicate that, even

for moderate sample sizes, MLW can successfully reduce bias in the presence of a �signal-

plus-noise� structure, but at the cost of a substantially higher SE than LW. We now

present a short comparison of �nite-sample distributional properties of LW and MLW

in the context of residual memory estimation, for n = 512; 2048; 8192. Residuals are
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Figure 10: Relative RMSE of ~�(d) versus ~�(d3), for varying d and �2� ; linear setting.
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Figure 11: Relative RMSE of ~�(d) versus ~�(d3), for varying d and �2� ; nonlinear setting.
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Linear setting Nonlinear setting

n 512 2048 8192 512 2048 8192

LW 140 270 360 240 320 300

MLW 240 940 3720 240 680 4010

Table 14: Approximate minimum RMSE bandwidths of d̂LW and d̂MLW , for varying n;
linear and nonlinear settings.

obtained from s = 1; 000 replications of NBLS regression in the linear and nonlinear

settings, with � = 1, d1 = 0:4, d2 = 0, d3 = 0:2, �2� = 4, �
2
" = �

2
� = 2, and h(x) = exp(x)

as the volatility function for the nonlinear setting. The minimum RMSE bandwidths

reported in Tables 8 and 9 are used in this step. Then, LW and MLW estimates are con-

structed from the residuals for a grid of bandwidths (from 10 to n=2, with increments of

10), allowing us to approximately locate the minimum RMSE bandwidth for each mem-

ory estimate. Figures 12 through 15 show kernel density estimates (see (4.9), (4.10)) of

LW and MLW, under the linear and nonlinear settings, using the approximately optimal

bandwidths given in Table 14.

Table 14 shows that while LW works best with a narrow-band approach, MLW has

optimal bandwidth rather close to n=2. This is possible because, unlike LW, MLW

corrects for the presence of iid noise, and thus its spectral approximation is relatively

accurate throughout all frequencies considered. However, for higher frequencies to be

informative, the absence of short memory dynamics is crucial; the inclusion of, say,

ARMA dynamics in any of the f�itg would undoubtedly require MLW bandwidths to

be much lower.

All curves in Figures 12 and 13 suggest that the �nite-sample density of LW is fairly

close in shape to that of a normal density, but heavily biased downwards. While in the

linear setting both bias and SD are substantially reduced when n increases, estimation

in the nonlinear one seems surprisingly insensitive to sample size; even for n = 8192 the

mean is much closer to 0 than to 0:2. Figures 14 and 15 highlight a potential problem

of MLW in �nite samples. In several cases, the distribution of MLW is bimodal, with

peaks close to 0 and 1=2, the boundaries of the parameter space. In the nonlinear set-

ting, this behaviour is apparent even for n = 8192, with a small mode close to the true

parameter value being barely distinguishable. Performance in the linear setting is more

encouraging: for n = 8192, the �boundary�modes disappear and are replaced by an

essentially unbiased unimodal density. Still, it is worth noting that the SD in this case
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Figure 12: Kernel density estimates of LW for varying n; linear setting.
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Figure 13: Kernel density estimates of LW for varying n; nonlinear setting.
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Figure 14: Kernel density estimates of MLW for varying n; linear setting.
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Figure 15: Kernel density estimates of MLW for varying n; nonlinear setting.
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is roughly twice that of LW, and that the tails of the density are still moderately asym-

metric. The �ndings of bimodality and higher SD in MLW are maintained in alternative

(unreported) experiment designs, suggesting that they are linked to the additive noise

structure itself, not to �rst step estimation error or nonlinearity. Estimation error in

the �rst step regression actually contaminates the true errors (4.5), (4.6) with a higher

memory component (in this case, of memory d1 = 0:4), which should induce a positive

contribution to both bias (thereby reducing the LW bias) and SD.

Concluding remarks

The results presented indicate that asymptotic theory should not necessarily be ex-

pected to provide a good approximation to �nite-sample performance.

We �rst showed that, even in a standard setting, where error and regressor are inde-

pendent Gaussian processes, Monte Carlo SD deviates substantially from its asymptotic

counterpart. While in this setting d = d3 is the optimal choice for WNBLS, further

results demonstrate that the introduction of nonlinearity or ME makes this choice sub-

optimal, and indeed dominated by simple NBLS. Furthermore, the nonlinear setting

always yields a negative optimal d, even in the absence of ME. Although optimal band-

widths somewhat vary, they appear to be lower than those implied by commonly used

feasible rules. For instance, Nielsen (2005) uses m = [n0:4] and m = [n0:5]; yielding

m = 21, 45 for n = 2048, which would be clearly too high for most of the nonlinear

settings considered. While in the linear setting the RMSE pro�les seem to be relatively

sensitive to the choice of d, in the nonlinear one a wide range of values for d perform

comparably; this is possibly a consequence of the lower bandwidths used. The optimal

choice of d seems to be sensitive to most parameters in the model, so a feasible rule

would undoubtedly require preliminary estimation of these.

All the �nite sample results were generated under assumptions which might not

be realistic in practice, such as Gaussianity and independence of the underlying, un-

observable processes, and the absence of short memory dynamics. These assumptions

constitute a best-case scenario, and relaxing them might well widen the gap between

theoretical predictions and �nite sample performance. More elaborate methods, such

as those of Hualde and Robinson (2004), exhibit more desirable asymptotic properties

under conditions that are in some sense weak, though it is not clear to what extent they

can be justi�ed when the linearity assumptions underlying them are relaxed. Heavy
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dependence on preliminary estimates may also hamper their �nite sample performance.

A brief comparison of residual memory estimates was also presented. It seems that,

while MLW is found to dominate LW in RMSE for large enough n, due to the large

negative bias of the latter, it displays high dispersion and bimodality, which can be

especially misleading in cointegration analysis, where the focus is often on the di¤erence

between memory estimates obtained from observables and residuals. On the contrary,

LW, being biased downwards in both cases, might yield more accurate inference on the

existence and degree of fractional cointegration. Evaluation of these issues is left for

future research.
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