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Abstract 
 

We consider the estimation of the location of the pole and memory parameter, λ0 and 
α respectively, of covariance stationary linear processes whose spectral density 
function f(λ) satisfies f(λ) ∼ C|λ − λ0|−α in a neighbourhood of λ0. We define a 
consistent estimator of λ0 and derive its limit distribution 0λ

Z . As in related 
optimization problems, when the true parameter value can lie on the boundary of the 
parameter space, we show that 0λ

Z  is distributed as a normal random variable when 
λ0 ∈ (0, π), whereas for λ0 = 0 or π, 0λ

Z  is a mixture of discrete and continuous 
random variables with weights equal to 1/2. More specifically, when λ0 = 0, 0λ

Z  is 
distributed as a normal random variable truncated at zero. Moreover, we describe 
and examine a two-step estimator of the memory parameter α, showing that neither 
its limit distribution nor its rate of convergence is affected by the estimation of λ0. 
Thus, we reinforce and extend previous results with respect to the estimation of α 
when λ0 is assumed to be known a priori. A small Monte Carlo study is included to 
illustrate the finite sample performance of our estimators. 
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1. INTRODUCTION

Given a covariance stationary process xt, observed at times t = 1, 2, .., n, the
search for cyclical components, and their estimation and testing, is of undoubted
interest. This is motivated by the observed periodic behaviour exhibited in many
time series and manifested by sharp peaks of the spectral density estimate.
A well known model capable of generating such a periodic behaviour is the

regression model
xt = µ+ ρ1 cos

¡
λ0t
¢
+ ρ2 sin

¡
λ0t
¢
+ εt, (1.1)

where ρ1 and ρ2 are zero mean uncorrelated random variables with the same vari-
ance and {εt} is a stationary sequence of random variables independent of ρ1 and
ρ2. Model (1.1) has enjoyed extensive use and different techniques have been pro-
posed for the estimation of the frequency, amplitude and phase (see Whittle (1952),
Grenander and Rosenblatt (1957), Hannan (1961, 1973) and Chen (1988)). Exten-
sions to a model with more than one periodic component have been examined by
Quinn (1989) and Kavalieris and Hannan (1994), whose interest was also in testing
the number of sinusoidal/cosinusoidal components. See also Quinn and Hannan
(2001).
A second statistical model capable of exhibiting peaks in its spectral density

function is the autoregressive AR (2) process¡
1− a1L− a2L

2
¢
xt = εt (1.2)

when the roots of the polynomial
¡
1− a1L− a2L

2
¢
are complex, with λ0 identified

as the arc cos
³

a1
2
√−a2

´
. Models (1.1) and (1.2) represent two extreme situations

explaining cyclical behaviour of the data and the peakness of the spectral density
function. Model (1.2) possesses a continuous spectral density function whereas
model (1.1) has a spectral distribution function with a jump at the frequency λ0.
The cyclical component of the data remains constant or invariant with time in
model (1.1), whereas the cyclical pattern of model (1.2) fades out with time fairly
quickly.
Between these two extreme situations, there exists a class of intermediate models

in which the spectral density function of xt exhibits a pole at the frequency λ
0. For

that purpose, define the spectral density function of xt as the function f (λ) which
satisfies the relationship

γ (j) = Cov (xt, xt+j) =

Z π

−π
f (λ) cos (jλ) dλ, j = 0, 1, 2, .... (1.3)

We say that f (λ) has a pole at λ0 if

f (λ) ∼ C
¯̄
λ− λ0

¯̄−α
as λ→ λ0, (1.4)

where C ∈ (0,∞), α ∈ (0, 1) is the memory parameter and ”∼” means that the
ratio of the left- and right-hand sides tends to 1. One of the main objectives of this
paper is the estimation of λ0.
One model capable of generating such a cyclical behaviour in the data has been

proposed by Andel (1986) and Gray et al. (1989), and defined as¡
1− 2 ¡cosλ0¢L+ L2

¢d
xt = εt, (1.5)

where L is the backshift operator, d = α/2 for λ0 ∈ (0, π) whereas for λ0 =
0 or π, d = α/4. The model (1.5) was coined by Gray et al. (1989) as the
Gegenbauer model, who extended it to the GARMA model where the innovations
{εt} follow an autoregressive moving average (ARMA) process, and later by Giraitis

1
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and Leipus (1995) allowing for more than one pole or cyclical component. The
GARMA process is characterized by having the spectral density function

f (λ) =
σ2

2π

¯̄
1− 2 ¡cosλ0¢ eiλ + ei2λ

¯̄−2d ¯̄̄̄¯a
¡
eiλ; θ

¢
b (eiλ; θ)

¯̄̄̄
¯
2

, − π < λ ≤ π, (1.6)

where σ2 > 0, and a (·) and b (·) are polynomials of finite degree, all of whose zeroes
lie outside the unit circle. When λ0 = 0, we have the more familiar FARIMA
model, apparently originated by Adenstedt (1974), and studied by Granger and
Joyeux (1980) and Hosking (1981). GARMAmodels are characterized by a stronger
and more persistent cyclical behaviour than ARMA models, i.e. (1.2), but unlike
model (1.1), their amplitude does not remain constant over time.
If the location of the pole λ0 is known, then under some regularity conditions

and a correct specification of the model, Whittle estimates of the parameters α
(or d), θ and σ2, for example model (1.6), are known to be n1/2-consistent and
asymptotically normal. In the case of Gaussianity or linear processes, this was
shown by Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990)
when λ0 = 0 and generalized by Giraitis and Leipus (1995) and Hosoya (1997) for
λ0 different than 0. All these papers assume that f (λ) is fully specified by a set of
parameters

¡
α, θ0, σ2

¢0
.

Although knowledge of λ0 can be realistic in some time series data, with non-
seasonal data that knowledge of λ0 is not so clear. An example of the latter is
when the practitioner is interested in estimating cycles in macroeconomic or geo-
physical data. Recently, Giraitis et al. (2001) have shown that Whittle estimates of¡
α, θ0, σ2

¢0
are asymptotically the same irrespective of whether or not λ0 is known.

In addition, they prove that the estimate of λ0 is n-consistent although its limit
distribution remains an open problem.
However, if the ultimate interest is only the estimation of the memory parameter

α, one possible criticism of the parametric approach is that an incorrect specification
of the model leads to inconsistent estimates of α. One source of misspecification
is the choice of a wrong value of λ0. If that were the case, Whittle estimates
of α would be inconsistent, and it would possibly estimate the value zero. The
latter might happen even if a semiparametric approach was adopted, see Section
3. Thus, we might conclude that the data is short memory instead of long memory
dependent, which could have some adverse effects on the statistical inferences of
relevant statistics such as the serial covariance, see Hannan (1976) or Taqqu (1975).
The main objectives of this paper are twofold. First, under mild conditions,

to provide a consistent estimator of λ0 and characterize its limit distribution. In
particular we show that the limiting distribution of the estimator of λ0 depends
on whether λ0 ∈ (0, π) or λ0 = 0 or π. The second objective is to investigate the
consequences that the lack of knowledge of λ0 might have on the estimation of α.
Some earlier related work has been completed by Müller and Prewitt (1992) and

Yajima (1996). In the former, they estimate the peak of the spectral density f (λ)
in a model, like that in (1.2), whose spectral density function is continuous in [0, π].
Looking at arg supλ bf (λ), where bf (λ) is a smoothed nonparametric estimate of
f (λ), they show its consistency and the limit distribution to be a normal random
variable when λ0 ∈ (0, π). Yajima (1996) considers the estimation of λ0 in a
model with spectral density possessing a pole at λ0. Based on the maximum of the
periodogram of the data, he gave consistency and an upper rate of convergence for
the estimate of λ0. Unfortunately, the limit distribution was not provided which is
required for statistical inferences. In addition, his results rely on the assumption
that the data is Gaussian which is not required in the present paper. Finally, it
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should be mentioned that Giraitis and Leipus (1995) prove the consistency of λ0 in
a model like (1.6).
The paper is organized as follows. In Section 2, we describe a semiparametric

estimator of α when λ0 is known and the estimator bλ0 of λ0. In Section 3, we
discuss the statistical properties of bλ0 and we show that the asymptotic properties
of a two-step estimator of α remain the same irrespective of whether λ0 is known or
estimated. The finite sample behaviour of the estimators of λ0 and α are analyzed in
Section 4 through a Monte-Carlo study. Section 5 provides the proofs of the results
given in Section 3 which apply a series of lemmas given in Section 6. Finally, Section
7 contains a summary.

2. REGULARITY CONDITIONS AND THE ESTIMATORS OF THE
POLE AND MEMORY PARAMETER

Let {xt} be a covariance stationary linear process observed at times t = 1, 2, ..., n,
with spectral density f (λ) satisfying (1.4). When λ0 is known, under the semipara-
metric specification (1.4), several estimators of the memory parameter α have been
proposed and examined. In this paper, to estimate α we shall use a modification
of the log-periodogram estimator, see Robinson (1995a), which we now describe.
Consider the average periodogram spectral density estimator of f (λ),

f̈� = f̈ (λ�) =
1

2k1 + 1

X
|j|≤k1

I�+j, (2.1)

where I� = I (λ�) denotes the periodogram of xt, that is

I� =

¯̄̄̄
¯(2πn)−1/2

nX
t=1

xte
itλ�

¯̄̄̄
¯
2

! = 1, ..., [n/2] (2.2)

and I0 = 0, where λ� = (2π!) /n for ! = 1, 2, ..., [n/2], [z] denotes the integer part
of z and k1 = k1 (n) is a positive number which increases slowly with n, that is
k−11 +n−1k1 → 0. (Observe that the definition of I� entails sample-mean correction.)
Let ψ (u) be a weight function in (0, 1), and write

bα (λq) = 1

2hψk

kX
p=1

ψp

³
log bfq+p + log bfq−p´ , (2.3)

where ψp = ψ (p/k), hψ = −k−1
Pk

p=1 ψp log (p/k), bf� = max
³
f̈�, n−1

´
and k =

k (n), a positive number which increases slowly with n, that is k−1 + n−1k→ 0.

Definition 2.1. If λ0 is known, we define the estimator of the memory parameter
α as bα (λs), where λs is the closest Fourier frequency λq to λ0.

Remark 2.1. The motivation to use bf� instead of f̈� in (2.3) is due to the singular
behaviour of logx at x = 0. Specifically for the proof of tightness, i.e. Proposition
5.4 in Section 5, we have not been able to bound some probabilities or moments for
all n ≥ n0 as required. This problem, of course, does not appear as n → ∞ as
can be observed from Propositions 5.1 to 5.3 nor if our goal were to examine the
behaviour of bα (λs). We do not believe that this adjustment is needed in practice and
have made it here only because we cannot establish Theorem 3.2 (cf. Proposition
5.4) without it, unless some additional stronger conditions were introduced. For
instance, the normality of the data.

We now define our estimator of λ0 as bλ0 = λbq = (2πbq) /n, wherebq = arg max
q=0,...,[n/2]

bα (λq) . (2.4)
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Note that periodicity and symmetry around zero implies that it suffices to search
for the maximum in (2.4) at frequencies λq, with q = 0, ..., [n/2]. From (2.4) we

could define bα³bλ0´ as an estimator of α, that is (2.3) evaluated at bλ0. However,
see Section 3 below, since bα³bλ0´ does not have optimal properties, we will describe
a two-step estimator, denoted α̌

³
λ̆
0
´
, which overcomes all the adverse properties

of bα³bλ0´, see Theorem 3.4 below.

The motivation for the estimator in (2.4) is as follows. From the proof of Theorem
3.4 part (a) below, it is easily shown that bα (λs) is a consistent estimator of α. On
the other hand, if λq is in any open set outside λ

0, that is |λq − λs| > δ, for any
arbitrarily small δ > 0, Condition C.1 below implies that

f (λq) =
¯̄
λq − λ0

¯̄−α
g (λq) ∼ Cg (λq) .

That is, at the frequency λq the spectral density function behaves as if α were equal

to zero. So, from the proof of Theorem 3.4 part (a), we should expect that bα (λq) P→
0, implying that Pr

n¯̄̄bλ0 − λs

¯̄̄
< δ

o
→ 1. That is, the estimator given in (2.4) is

consistent. These heuristics will be formalized in Theorem 3.1 below. We finish
this section introducing the following regularity conditions and their discussion.

C.1: There exists α ∈ (0, 1) such that

f(λ) =

( ¯̄
λ− λ0

¯̄−α
g (λ) , if 0 ≤ λ ≤ π,¯̄

λ+ λ0
¯̄−α

g (λ) , if − π ≤ λ ≤ 0,
where g (λ) is a bounded symmetric and bounded away from zero function
with two continuous derivatives for 0 < λ < π.

C.2: {xt} is a covariance stationary linear process

xt =
∞X
j=0

βjεt−j;
∞X
j=0

β2j <∞,

where {εt} is a zero mean iid sequence with E
¡
ε2t
¢
= 1 and E |εt|� = µ� <

∞ for ! = 3, ..., 2τ and some τ ≥ 4.
C.3: As λ→ λ, the function β (λ) =

P∞
j=0 βje

ijλ satisfies

|∂β (λ) /∂λ| = O
³¯̄
λ− λ0

¯̄−1 |β (λ)|´.
C.4: k1+ιk−21 + k−2k31 log k + nk

−(τ2+2)/2τ
1 → 0, for some ι > 0 as n → ∞,

with k ≤ cn4/5, 0 < c <∞ and where τ is as in C.2.
C.5: The function ψ (x) is twice continuously differentiable whose second
derivative is Lipschitz of order at least 1

2 in its support (0, 1) and sat-

isfies
R 1
0 ψ (x) dx = 0, 0 < hψ = − R 10 ψ(x) (logx) dx < ∞, 0 < ψ

00
=R 1

0
ψ00 (x) (log x) dx, where ψ00 (x) = d2

dx2ψ (x), and¯̄
x−2ψ (x)

¯̄
+
¯̄̄
(1− x)−1 ψ (x)

¯̄̄
≤ D <∞.

We now discuss Conditions C.1-C.5. Condition C.1 is much the same as that
employed by Robinson (1995a, b). Indeed, C.1 implies that as λ→ λ0,

f (λ) = C
¯̄
λ− λ0

¯̄−α ³
1 +C−1g0

¡
λ0
¢ ¡

λ− λ0
¢
+O

³¯̄
λ− λ0

¯̄2´´
by Taylor expansion of g (λ) around λ0 and where C = g

¡
λ0
¢
. Observe that

g0
¡
λ0
¢
= 0 when λ0 = {0, π} by symmetry of f (λ) obtaining then the corre-

sponding condition used in Robinson (1995a, b). However, we prefer to state the
condition in its present form since, in Theorems 3.1 and 3.2 below, some regularity
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conditions on f (λ) are needed outside any open set containing ±λ0. Examples of
processes whose spectral density function satisfies C.1 are the FARIMA (p, α/2, q)
and the GARMA model given in (1.6). Finally, the last part of Condition C.1 is
quite standard in spectral density estimation literature. C.2 is needed for the proof
of tightness (see the proof of Theorems 3.2 and 3.1). It is also required to show
the uniform convergence of bf although for the latter property, at the expense of
stronger conditions on the rate of convergence of k−11 to zero, fewer moments of
εt can be assumed. Obviously C.2 is satisfied if εt is Gaussian. Condition C.3 is
the same as Robinson (1995b). Condition C.4 controls the rate of increase of k
and k1. For instance denoting k = nγ2 and k1 = nγ1 , in the Gaussian case, we
can take 0 < γ1 < 8/15 and 3γ1/2 < γ2 ≤ min {2γ1/ (1 + ι) , 4/5}, whereas for
τ = 4, the bounds are 4/9 < γ1 < 8/15 and 3γ1/2 < γ2 ≤ 4/5. Finally, Condition
C.5 characterizes the type of weight in (2.3). An example of ψ (u) satisfying C.5 is
ψ (u) = −u2 + 35u2.5/6− 29u3/6 + 2u3 log u.
It is worth mentioning that the quadratic behaviour of the weight ψ (u), as

u → 0, guarantees that the first moment of ξ (υ), see Theorem 3.2 below, has a
parabolic structure so that the maximum of ξ (υ) is easily obtainable. Obviously,
other different types of weights can be used which would not prevent the consistency
of the estimator of λ0. However, for weights not having a quadratic behaviour, the
asymptotic distribution of the estimate of the pole is not guaranteed to be normally
distributed. We will return to this condition subsequently after Theorem 3.2.

3. STATISTICAL PROPERTIES OF THE ESTIMATORS OF THE
POLE AND MEMORY PARAMETER

In this section, we prove a functional limit theorem for a process operating on
increments of bα (λq) near λ0 which together with the continuous mapping theorem
will allow obtaining the asymptotic distribution of bλ0. A similar approach was used
by Eddy (1980) to estimate the mode of a probability density function and Müller
(1992) for the estimation of the break point in a regression model. Apart from

providing the consistency and rate of convergence of bλ0 to λ0, the limit distribution
will guarantee that asymptotic valid inferences around the true value of λ0 may be
implemented.

The strategy of the proof to obtain the asymptotic distribution of bλ0 consists of
three steps, see Van der Vaart and Wellner (1996, Ch. 3). Step 1 establishes the

consistency of bλ0 to λ0. Step 2 establishes the rate of convergence of bλ0 to λ0, and
Step 3 shows that suitably rescaled versions of bα (λq) converges weakly to a limit,
denoted ξ (υ) in Theorem 3.2, in the space D [−M,M ] for each finite 0 < M <∞.
Note that convergence in D [−M,M ] for each finite 0 < M < ∞ is to be meant
convergence in D (−∞,∞). See Pollard (1984). From here, the continuous mapping
theorem will conclude that bλ0, after normalization, will converge in distribution to
the argmaxυ ξ (υ).

The next theorem gives the consistency and rate of convergence of bλ0 to λ0, i.e.
Steps 1 and 2. Theorem 3.2 justifies Step 3, whereas Corollary 3.3 examines the

asymptotic distribution of bλ0.
Theorem 3.1. Assuming C.1-C.5,

¯̄̄bλ0 − λ0
¯̄̄
= Op

¡
k1/2n−1

¢
.

We see that the rate of convergence of bλ0 to λ0 is slower than the parametric rate
n−1 obtained by Giraitis et al. (2001). This appears to be reasonable due to the
local behaviour of our statistics. The same phenomenon occurs in other related,
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although different, problems involving nonparametric statistics, see for instance
Eddy (1980), Müller (1992) or Müller and Prewitt (1992).

Under Conditions C.2 and C.4, for τ = 4,
³bλ0 − λ0

´
= Op

¡
nδ−2/3

¢
for any arbi-

trarily small δ > 0. However, a closer examination of these conditions and the proof
of Lemma 6.3 indicate that the rate depends on the number of finite moments of the

sequence εt in C.2. In general, with τ ≥ 4,
³bλ0 − λ0

´
= Op

³
nδ−(2τ

2−3τ+4)/2(τ2+2)
´
.

So, the greater the number of finite moments allowed for εt, the faster the rate of

convergence of bλ0 to λ0. In the extreme case where all the moments exist, the rate
of convergence of bλ0 becomes nδ−1. This rate was obtained by Yajima (1996) in
the Gaussian case and is arbitrarily close to n−1 obtained in Giraitis et al. (2001).

So Theorem 3.1 indicates that bλ0 = λ0+n−1
¡
2π
£
k1/2υ

¤¢
for some |υ| ≤M <∞.

To examine the asymptotic distribution of bλ0, let us introduce the following notationbξn (υ) = k
³bα³λs+[k1/2υ]´− bα (λs)´ . (3.1)

bξn (υ) is a random step function which is constant in the intervals £i/k1/2, (i+ 1) /k1/2¢,
|i| ≤ M , so that bξn (υ) is a random element in the Skorohod space D [−M,M ] for
arbitrary 0 < M <∞.
We now establish our main result, i.e. the aforementioned Step 3.

Theorem 3.2. Let |υ| ≤M , for any arbitrary M ∈ (0,∞). Assuming C.1-C.5,bξn (υ) weakly
=⇒ ξ (υ) in the space D [−M,M ] ,

where ξ (υ) is a continuous Gaussian process such that

E (ξ (υ)) = −h−1ψ ψ
00
υ2α/2 and Cov (ξ (υ1) , ξ (υ2)) = h−2ψ ςυ1υ2,

where ς =
R 1
0
ψ0 (u)2 du <∞ with ψ0 (x) = d

dxψ (x).

The immediate consequence of Theorem 3.2 is that argmaxυ ξ (υ) is a normal
random variable. Indeed, because Theorem 3.2 implies that the limiting process
ξ (υ) is Gaussian, it can be written as

ξ (υ) = −h−1ψ ψ
00
υ2α/2 + h−1ψ ς1/2υX

where X = N (0, 1). But ξ (υ) is a random parabola with fixed second derivatives
and a unique maximum at

υ∗ =
³
ψ
00
α
´−1

ς1/2X,

since by C.5, 0 < hψ, 0 < ψ
00
, so that ∂2ξ (υ) /∂υ2 = −h−1ψ ψ

00
α < 0. From here we

can observe the (possible) consequences of using a weight function ψ (u) which does
not have a parabolic structure at u = 0. The main implication is that if the latter
were the case, E (ξ (υ)) would not necessarily be a parabola as in Theorem 3.2. For
example, it may be that E (ξ (υ)) = C |υ|, in which case not only the argmaxυ ξ (υ)
can be difficult to obtain, but more importantly it would no longer be a normal
random variable. So, in view of the asymptotic normality achieved with a weight
ψ (u) satisfying condition C.5, it appears desirable to employ it. Similar issues
occur when estimating the date of a break in a regression model, see for example
Müller (1992).

Now we turn our attention to the asymptotic properties of bλ0. Note that Theo-
rem 3.1 indicates thatbλ0 = λs +

2πk1/2

n
bυn = λ0 +

2πk1/2

n
bυn +O

µ
1

n

¶
, (3.2)
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where bυn = argmaxυ bξn (υ). Then, we have the following:
Corollary 3.3. Denote Ψ = ς

³
ψ
00
α
´−2

. Assuming C.1-C.5, as n→∞
(a) If λ0 ∈ (0, π), then ¡2πk1/2¢−1 n³bλ0 − λ0

´
d→ Zλ0 ≡ Y = N (0,Ψ).

(b) If λ0 = 0, then
¡
2πk1/2

¢−1
nbλ0 d→ Z0 = Y I (Y ≥ 0), where I (A) denotes the

indicator function of the set A.

(c) If λ0 = π, then
¡
2πk1/2

¢−1
n
³bλ0 − π

´
d→ Zπ = Y I (Y ≤ 0).

We now comment on the results of Corollary 3.3. First, we now see the necessity
of Theorem 3.1 as it will give us the normalization needed to achieve a "proper"

asymptotic distribution. Next, we observe that the limiting distribution of bλ0
depends on whether λ0 is {0, π} or λ0 ∈ (0, π). The intuition about the limiting
distribution of bλ0 in cases (b) and (c) is as follows. As the maximization of bα (λq) in
(2.4) is restricted to the interval 0 ≤ λq ≤ π, for λ0 = 0, it implies that

³bλ0 − λ0
´
=bλ0 ≥ 0 so that Z0 cannot take negative values. Similarly, λ

0 = π implies thatbλ0 − π ≤ 0 and Zπ cannot take positive values. So, the estimation of λ
0 falls

into the category of a constrained optimization problem or inequality constraint
estimation. Indeed, when λ0 is an interior point of the set [0, π] and due to the

consistency of bλ0, we can expect that the constrained estimator, bλ0 = λbq, coincides
with the unconstrained estimator eλq = λeq = (2πeq) /n whereeq = arg max

q∈{0,±1,±2,...}
bα (λq) , (3.3)

whereas if λ0 = 0, bq = eqI (eq ≥ 0). Similar arguments apply when λ0 = π.

Once we have examined the properties of bλ0, we next examine the estimation of
α. By Theorems 3.1 and 3.2 and the functional mapping theorem, it is easily shown

that bα³bλ0´ − bα ¡λ0¢ = op
¡
k−1/2

¢
. So, k1/2

³bα³bλ0´− α
´
and k1/2

¡bα ¡λ0¢− α
¢

have the same asymptotic distribution. However, the faster the convergence of bλ0
to λ0, the slower the rate of convergence of bα³bλ0´ to α, and hence it becomes

slower than the rate obtained when λ0 is known. The same phenomena happens
to hold in Müller (1992). Hence, to circumvent this drawback, as in Müller (1992),
we propose a two-step procedure to estimate α. To that end, we shall use as an

estimator of α that given in (2.3) where λq is replaced by λ̆
0
= (2πq̆) /n such that¯̄̄

λ̆
0 − λ0

¯̄̄
= Op

¡
k1/2/n

¢
, and k and k1 being replaced by m and m1 respectively,

satisfying

C.6: m−1 +mm−21 +m5
1m
−3 logm1 + k/m→ 0 with m = cn4/5, 0 < c <∞.

In addition, to be a bit more general regarding our choice of the weight function
ψ (u), we allow for the weighted function, say w (u), to satisfy

C.7:
R 1
0
w (u) du = 0, 0 < hw = − R 1

0
w(u) (log u) du < ∞, w (u) ∼ cuζ as

u→ 0+ for some 1/3 ≤ ζ ≤ 1 and for all 0 < u1 < u2 < 1,

|w (u2)−w (u1)| ≤ D |u2 − u1|ζ ; 0 < D <∞.
So, our two-step estimator of α is defined as

α̌
³
λ̆
0
´
=

1

2hwm

mX
p=1

wp

³
log bfq̆+p + log bfq̆−p´ , (3.4)
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where bf (λ) = max
n
f̈ (λ) , n−1

o
and f̈ (λ) is as in (2.1) but with smoothing

parameter k1 there being replaced by m1, hw = −m−1Pm
p=1wp log (p/m) and

wp = w (p/m).

We now comment on α̌
³
λ̆
0
´
compared to α̈

³
λ̆
0
´
=
¡
hwm

¢−1Pm
p=1wp log bfq̆+p.

Observe that the former is a "symmetrized" version of the latter α̈
³
λ̆
0
´
. Assume for

simplicity that λ0 is known. As in other semiparametric estimators, for example
Robinson (1995a), one source of the bias of m1/2

¡
α̈
¡
λ0
¢− α

¢
comes from the

replacement of f (λ) by g
¡
λ0
¢ ¯̄
λ− λ0

¯̄−α
, which in our case, i.e. if λ0 6= {0, π},

will be proportional to

m−1/2
mX
p=1

wp

¡
λp +O

¡
λ2p
¢¢
= O

³
n−1m3/2

´
.

The main reason for this behaviour is that when λ0 = {0, π}, by symmetry we
have g0 (0) = g0 (π) = 0, whereas for λ 6= 0 or π, g0 (λ) may not be zero so that
g−1

¡
λ0
¢ ¯̄
λ− λ0

¯̄α
f (λ) = 1 + g−1

¡
λ0
¢
g0
¡
λ0
¢ ¡

λ− λ0
¢
+O

³¯̄
λ− λ0

¯̄2´
by a Tay-

lor expansion of g (λ) around λ0. Recall the comments made on C.1. However,
when the estimator α̌

¡
λ0
¢
in (3.4) is employed, the contribution of the above ap-

proximation (Taylor expansion) to the bias of m1/2
¡
α̌
¡
λ0
¢− α

¢
is proportional

to

m−1/2
mX
p=1

wp

¡−λp +O
¡
λ2p
¢¢
+m−1/2

mX
p=1

wp

¡
λp +O

¡
λ2p
¢¢
= O

³
m5/2n−2

´
.

Note that the latter holds true also for λ0 = {0, π}. So, the "symmetrized" estima-
tor α̌

¡
λ0
¢
would have a smaller bias order and thus it would have a faster rate of

convergence to α than α̈
¡
λ0
¢
.

Theorem 3.4. Denote Φ2 = 2−1
R 1
0 w2 (x) dx and B =

¡
∂2/∂λ2 log g

¡
λ0
¢¢ R 1

0 u2w (u) du.

Let λ̆
0
be an estimator of λ0 that

¯̄̄
λ̆
0 − λ0

¯̄̄
= Op

¡
k1/2/n

¢
. Assuming C.1-C.4

with k1 = nγ1 and k = nγ2 , where 2τ/
¡
τ2 + 2

¢
< γ1 < 8/15, 3γ1/2 < γ2 <

min
n
2γ1
1+ι ,

4
5

o
, τ as in C.2, and C6 and C7, then

(a) (2m)1/2 (α̌ (λs)− α)
d→ N

³
4π2c5/2B/

³
21/2hw

´
,Φ2/h2w

´
(b) (2m)1/2

³
α̌
³
λ̆
0
´
− α

´
d→ N

³
4π2c5/2B/

³
21/2hw

´
,Φ2/h2w

´
.

Remark 3.1. It is worth mentioning that the results of Theorem 3.4 hold true
if the weight ψ (u) employed to estimate λ0 were used in α̌

¡
λ0
¢
. However, this

weight will not guarantee an asymptotic variance smaller than 1, as is the case with
the weight used in the Monte-Carlo. In fact, for the weight used in the Monte-
Carlo experiment, h−2w Φ2 ∼ .70 which is smaller than the corresponding asymptotic
variance of other estimators of α suggested in the literature. Finally, the theorem

indicates that although any preliminary estimator of λ0, which satisfies
¯̄̄
λ̆
0 − λ0

¯̄̄
=

Op

¡
k1/2/n

¢
, is adequate for the results to follow, in practice it appears that one

may use that given in (2.4) for computational simplicity.

Theorem 3.4 provides a consistent estimator of the asymptotic variance of bλ0,
i.e. Ψ in Corollary 3.3, by replacing α by α̌

³
λ̆
0
´
. But more importantly, it indi-

cates that the two-step estimator α̌
³
λ̆
0
´
, apart from having the same asymptotic
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distribution as α̌
¡
λ0
¢
, achieves the optimal semiparametric rate of convergence ob-

tained by Giraitis et al. (1997) when λ0 = 0. So, asymptotically, there is no loss

by using bλ0 instead of λ0. However to achieve the latter, as in other nonparamet-
ric estimates, α̌

³
λ̆
0
´
will have a bias term of the same order of magnitude as the

standard deviation.

4. FINITE SAMPLE BEHAVIOUR

In this section we study via Monte-Carlo analysis the finite sample performance

of the estimators bλ0 and α̌³bλ0´. The models employed throughout the simulations
are

(1− L)α/2 xt = εt, t = 0,±1, ..., (4.1)¡
1− 2 cos (π/2)L+ L2

¢α/2
xt = εt, t = 0,±1, ..., (4.2)

where {εt} is a zero mean sequence of iid Gaussian random variables. Model (4.1)
generates a pole at λ0 = 0 whereas model (4.2) does at λ0 = π/2. We have chosen
α = 0.2, 0.4, 0.6 and 0.8. The autocorrelation functions of (4.1) and (4.2) are given
by

ρj =
j − 1 + α/2

j − α/2
ρj−1, j = 1, 2, ...

and

ρ2j =
1− j − α/2

j − α/2
ρ2(j−1), and ρ2j−1 = 0, (j = 1, 2, ...)

respectively, see for example Arteche and Robinson (2000). For each combination
of α and λ0, 2500 replications of series of lengths n = 256 and 1024 were generated
by the method of Davies and Harte (1987).

Also, we have compared the performance of bλ0 and α̌
³bλ0´ with the correspond-

ing estimators obtained using the popular, among practitioners, log-periodogram

estimator of Robinson (1995a). That is, consider eλ0 = λeq = (2πeq) /n whereeq = arg max
q=0,...,[n/2]

bαLOG (λq) , (4.3)

bαLOG (λq) = −
2 kX

j=1

φj log j

−1 kX
j=1

φj (log Ij+q + log Iq−j) , (4.4)

with φj = log j − k−1
Pk

�=1 log !. Moreover, we have examined the behaviour of

the estimator bαLOG

³eλ0´ of α, where k = m in (4.4). For the estimation of λ0,
the chosen bandwidth parameters were, for n = 256 and 1024, k = 14 and 24

respectively, and k1 = k0.6 log log 2k, whereas for the two-step estimators α̌
³bλ0´

and bαLOG

³eλ0´ of α, we have chosen m = n/4 and m1 = m0.6 log log 2m. The

weight functions used were ψ(u) = −u2+35u2.5/6−29u3/6+2u3 logu and w (u) =
u1/3 − 9u1/2/8, respectively.
Table 4.1 illustrates the bias and standard deviation of the estimators bλ0, given

in (2.4) and eλ0 in (4.3). More specifically, since bλ0 = (2πbq) /n and eλ0 = (2πeq) /n,
we have reported the bias and standard deviation of bq and eq. Table 4.2 summarizes
the bias, standard deviation and mean square error of α̌

³bλ0´ and α̌
¡
λ0
¢
. The

motivation to include α̌
¡
λ0
¢
is to investigate the relative loss we incur by lack of
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knowledge of λ0 in small samples. Recall that Theorem 3.4 indicates that asymptot-
ically there is no loss. Moreover, Table 4.2 illustrates the finite sample performance
of the corresponding estimators of α obtained using the log-periodogram estimator

in (4.4), that is bαLOG

¡
λ0
¢
and bαLOG

³eλ0´.
TABLES 4.1 AND 4.2 ABOUT HERE

Inspection of Table 4.1 indicates better performance of bλ0 than eλ0 across different
models and sample sizes, especially for α > 0.2. For example when α = 0.8,

the finite sample performance of bλ0 is clearly superior to that of eλ0, being this
superiority greater with the sample size. With regard to the estimators of the

memory parameter α, we observe that the proposed two-step estimator α̌
³bλ0´

outperforms bαLOG

³eλ0´ and has better finite sample properties for all α and λ0. In
some cases, the performance of bαLOG

³eλ0´ is very poor compared to that of α̌³bλ0´,
especially for large values of α. Finally, when comparing their performances with
the estimators obtained when the location of the pole λ0 is known, we observe

that the relative loss of efficiency of α̌
³bλ0´ is smaller than that of bαLOG

³eλ0´.
Moreover, as Theorem 3.4 indicates, it appears that knowledge of λ0 is not relevant

to estimate α when α̌
³bλ0´ is used, although it seems not to be the case when

the log-periodogram is employed. Altogether, we can conclude that bλ0 and α̌
³bλ0´

enjoy better finite sample properties than the corresponding ones based on eλ0 andbαLOG

³eλ0´.
5. AUXILIARY RESULTS AND PROOFS

We begin with the proof of Theorem 3.2.

5.1. Proof of Theorem 3.2. Let t = − £υk1/2¤. We examine the case t > 0,
that for t < 0 is similarly handled. First, since C.5 and Lemma 6.10 imply that¯̄
hψ − hψ

¯̄
= O

¡
k−1

¢
, we have by the definition of bα (λq) that

bξn ³t/k1/2´ = 2−1h−1ψ

Ã
6X

i=1

bξ(i)n (t)

!¡
1 +Op

¡
k−1

¢¢
after observing that bξn ¡t/k1/2¢ = bξn (υ), and where
bξ(1)n (t) = −α

kX
p=1

ψp log
¡|p− t|+ /p

¢
; bξ(2)n (t) = −α

kX
p=1

ψp log ((p+ t) /p)

bξ(3)n (t) =
kX

p=1

ψp log

 efp+s−tλα|p−t|+efp+sλαp
 ; bξ(4)n (t) =

kX
p=1

ψp log

Ã efs−p−tλαp+tefs−pλαp
!

bξ(5)n (t) =
kX

p=1

ψp log

Ã ef−1p+s−t bfp+s−tef−1p+s
bfp+s

!
; bξ(6)n (t) =

kX
p=1

ψp log

Ã ef−1s−p−t bfs−p−tef−1s−p bfs−p
!
,

where ef� = (2k1 + 1)−1Pk1
j=−k1 f(j+�)I(j+�6=s)+(s+1)I(j+�=s) and |q|+ = max (|q| , 1).

We examine the behaviour of bξ(i)n (t), for i = 1, ..., 6, in four propositions. Specif-

ically, Propositions 5.1 and 5.2 deal with the limiting bias of
P4

i=1
bξ(i)n (t), although

for the proof of Proposition 5.1, we will allow t < ρk for 0 < ρ < 1. Proposition
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5.3 examines the finite dimensional limiting distribution of bξ(5)n (t) + bξ(6)n (t) and
Proposition 5.4 its tightness. Propositions 5.1 to 5.4 imply Theorem 3.2.

Proposition 5.1. bξ(1)n (t) + bξ(2)n (t) = −ψ00α t2

k +O
³

t
k +

t5/2

k3/2

´
.

Proof. We only examine bξ(1)n (t), being bξ(2)n (t) identically handled. Assume ρ < 1/2
first, so that 0 < t < k/2. Then

bξ(1)n (t) = −α
tX

p=1

ψp log
¡|p− t|+ /p

¢− α
kX

p=t+1

ψp log ((p− t) /p) , (5.1)

whose first term on the right is O
¡
k−2t3

¢
because

¯̄
ψp

¯̄ ≤ Dp2/k2 by C.5 and the
integrability of

¯̄
u2 log ((1− u) /u)

¯̄
. Next, the second term on the right of (5.1) is

−α
2tX

p=t+1

ψp log ((p− t) /k)−α
k−tX

p=t+1

¡
ψp+t − ψp

¢
log (p/k)+α

kX
p=k−t+1

ψp log (p/k) .

Proceeding as with the first term on the right of (5.1), the first term of the last
displayed expression is O

¡
k−2t3 log (k/t)

¢
, whereas the last term is O

¡
k−2t3

¢
by

Taylor expansion of ψ (u) around u = 1, noting that C.5 implies that ψ (1) = 0 and
that

Pk
p=k−t+1 |log (p/k)| = O

¡
t2/k

¢
by Taylor expansion of log (x) around x = 1.

Finally, the second term of the last displayed expression is

−α t

k

k−tX
p=t+1

ψ0p log (p/k)−
α

2

t2

k

1

k

k−tX
p=t+1

ψ00p log (p/k) +O

µ
t5/2

k3/2

¶
(5.2)

by integrability of |logu| and that ψ00 (u) is Lipchitz continuous of order 1/2 by
C.5. By Lemma 6.10 and C.5, the first term of (5.2) is

−αt
Z 1

0

ψ0 (u) (log u) du+O

µ
t

k

¶
+O

 t

k


tX

p=1

+
kX

p=k−t+1

 ¯̄ψ0p log (p/k)¯̄


= αt

Z 1

0

ψ (u)u−1du+O
¡
k−1t

¡
1 + t2k−1 log (k/t)

¢¢
noting that C.5 implies that ψ (u) (logu)|10 = 0 and

¯̄
ψ0p
¯̄ ≤ Dp/k and then pro-

ceeding as above. On the other hand, the second term of (5.2) is

−α
2

t2

k

Z 1

0

ψ00 (u) (log u) du+O

µ
t3

k2
log

µ
k

t

¶¶
= −αψ

00
t2

2k
+O

µ
t3

k2
log

µ
k

t

¶¶
,

so that, because
¯̄
k−1/2t1/2 log (k/t)

¯̄ ≤ D for 0 < t ≤ k, we conclude that

bξ(1)n (t) = αt

Z 1

0

ψ (u)u−1du− α
ψ
00
t2

2k
+O

µ
t

k
+

t5/2

k3/2

¶
.

Now, when 1/2 ≤ ρ < 1, so that k/2 ≤ t < k, the proof is identical since in this case
the left side of (5.1) is−αPt

p=1 ψp log
¡|t− p|+ /k

¢−αPk−t
p=1

¡
ψp+t − ψp

¢
log (p/k)+

α
Pk

p=k−t+1 ψp log (p/k). Then proceed as above. Proceeding similarly, bξ(2)n (t) =

−αt R 10 ψ (u)u−1du−αψ
00
t2

2k +O
³

t
k +

t5/2

k3/2

´
. From here the conclusion is obvious.¤

Proposition 5.2. bξ(3)n (t) + bξ(4)n (t) = o (1).
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Proof. We only examine bξ(3)n (t), bξ(4)n (t) is similar. By definition, bξ(3)n (t) is

−
2k1X
p=1

ψpap −
kX

p=2k1+1

ψpap −
kX

p=1

ψpegp, (5.3)

where ap = log
³
f−1(p+s)I(p6=0)+(s+1)I(p=0) efp+s´−log³f−1(p+s−t)I(p 6=t)+(s+1)I(p=t) efp+s−t´

and egp = log ¡λαpf(p+s)I(p 6=0)+(s+1)I(p=0)¢− log³λα|p−t|+f(p+s−t)I(p6=t)+(s+1)I(p=t)´.
Since by C.1 and

¯̄
λ0 − λs

¯̄ ≤ π
n , D

−1 (k1/p)
α
< λαk1fp+s < D (k1/p)

α it implies
that, for p ≤ 2k1, |ap| = O (log (k1/p)) by Lemma 6.1. Note that at = O (log k1).
Hence the absolute value of the first term of (5.3) is bounded by

D |ψt| log (k1) +D

2k1X
p=1;p 6=t

¯̄
ψp

¯̄
log

µ
k1
p

¶
= O

µ
k31
k2

¶
= o (1)

by C.4 and because C.5 implies that
¯̄
ψp

¯̄ ≤ D (p/k)2. The absolute value of the
second term of (5.3) is bounded by

D

k1[log1/3 k1]X
p=2k1+1

¯̄
ψpap

¯̄
+D

kX
p=k1[log1/3 k1]+1

¯̄
ψpap

¯̄
= O

µ
k31 log k1

k2
+

tk21
k2

µ
1 + log

µ
k

t

¶¶¶
= o (1) ,

where for the first term on the left we have used that by Lemma 6.1 part (a), D−1 <¯̄̄
f−1p+s

efp+s ¯̄̄ < D and then C.5 and for the second term on the left that by Lemma

6.1 part (a),
¯̄̄
f−1p+s

efp+s − 1¯̄̄ = O
¡
p−2k21

¢
, which implies that

¯̄̄
log
³
f−1p+s

efp+s´¯̄̄ =
O
¡
p−2k21

¢
by the mean value theorem, and then Lemma 6.4 with νp = k−21 log

³
f−1p+s

efp+s´
there.
To complete the proof, it remains to show that the third term of (5.3) is o (1).

By C.1,
kP

p=1
ψpegp is
kX

p=1

ψp (log (g (λp+s))− log (g (λp+s−t))) (5.4)

−α
kX

p=1

ψp

³
log
¡¯̄
λp+s − λ0

¯̄
λ−1p

¢− log³¯̄λp−t+s − λ0
¯̄
+
λ−1|p−t|+

´´
.

Denote the first and second derivatives of log (g (λ)) by h (λ) and h0 (λ), respectively.
The first term of (5.4) is

−
µ
2πt

n

¶ kX
p=1

ψph (λp+s)−
µ
2πt

n

¶2
1

2

kX
p=1

ψph
0 ¡λp+s−θ(p)t¢

= −4π
2t

n2
h0 (λs)

kX
p=1

pψp + o (1) ,
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where θ (p) ∈ (0, 1), by C.4 and because Lemma 6.10 and C.5 imply that
k−1

Pk
p=1 ψp = O

¡
k−1

¢
, so that

kX
p=1

ψph (λp+s) =
kX

p=1

ψp (h (λp+s)− h (λs)) +O (1)

=
2π

n
h0 (λs)

kX
p=1

pψp +O
¡
k3n−2 + 1

¢
.

Next, the second term of (5.4) is

−α
(

2tX
p=1

+
kX

p=2t+1

)
ψp

³
log
¡¡
λp+s − λ0

¢
λ−1p

¢− log³¯̄λp−t+s − λ0
¯̄
+
λ−1|p−t|+

´´
.

The contribution due to
P2t

p=1 is o (1) by C.5 and then C.4, whereas the contribution

due to
Pk

p=2t+1, by Taylor expansion of log (x), is

−αn
µ
λs − λ0

2π

¶ kX
p=2t+1

ψp

µ
1

p
− 1

p− t

¶

+
α

2
n2
µ
λs − λ0

2π

¶2 kX
p=2t+1

ψp

½
1

p2 (s)
− 1

p2 (s− t)

¾
= O

¡
tk−1 log k

¢
+O

¡
k−1 + tk−2 log k

¢
= o (1)

where p (s− a) is an intermediate point between p−a and (p− a)+n
¡
λs − λ0

¢
/ (2π)

and then because n
¯̄
λ0 − λs

¯̄ ≤ π,
¯̄
p−jψp

¯̄ ≤ Dk−j for j = 1, 2, by C.5 and that¯̄
p2p−2 (s)

¯̄
+
¯̄̄
(p− t)2 p−2 (s− t)

¯̄̄
≤ D. So, we conclude that

bξ(3)n (t) = −4π
2t

n2
h0 (λs)

kX
p=1

pψp + o (1) .

Similarly bξ(4)n (t) = 4π2th0 (λs)
kP

p=1
pψp/n

2 + o (1). From here the conclusion of the

proposition is obvious. ¤

Proposition 5.3. The finite dimensional distributions of bξ(5)n (t)+bξ(6)n (t) converge
to those of a normal random variable.

Proof. By Wold device, it suffices to show that, for any finite l > 0,

lX
i=1

φi

µbξ(5)n (ti) + bξ(6)n (ti)

¶
d→ N

0, ς lX
i,j=1

φiφjυiυj

 ,
where φi satisfies

Pl
i=1 |φi|2 = 1 and υi = lim ti/k1/2. Denoting ef−1�

bf� by bg�,
bξ(5)n (t) = −

2tX
p=1

ψp log (bgp+s/bgp+s−t)− kX
p=2t+1

ψp log (bgp+s/bgp+s−t) (5.5)

: = b1t + b2t.

We begin by showing that b1t = op (1). In particular, we will show something
stronger than needed. That is, that for each ε > 0 there exists n0 such that

Pr

½
sup

t1≤q≤t2
|b1q − b1t1 | > ε

¾
< DM3k−1/2ε−1 log−1 k1, (5.6)
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for all n ≥ n0 and 0 ≤ t1 < t2 ≤
£
k1/2M

¤
. Because t2 ≤

£
k1/2M

¤
,

sup
t1≤q≤t2

|b1q − b1t1 | ≤ 2 sup
0≤|q|≤2[k1/2M]

|log bgq+s| 2[k
1/2M]X
p=1

¯̄
ψp

¯̄
≤ D sup

0≤|q|≤2[k1/2M]
|log bgq+s|M3k−1/2

since C.5 implies that
Pa

p=1

¯̄
ψp

¯̄ ≤ Da3/k2. Then, by Markov’s inequality, the left
side of (5.6) is bounded by

DM3k−1/2ε−1E sup
0≤|q|≤2[k1/2M]

|log bgq+s| ≤ DM3k−1/2ε−1 log−1 k1,

because Lemma 6.1 and the definition of bfq+s imply that bgq+s is bounded from
below by D−1n−h, for some h ≥ 1, and for x > D−1n−h

|logx− (x− 1)| ≤ D (x− 1)2 logn, (5.7)

by C.4, |logn/ log k1| ≤ D, and that by Lemma 6.3 and C.4, for some β > 0,

E

Ã
sup

q:|q|≤2k1
|bgq+s − 1|µ! ≤ D

log1+µ k1
(5.8)

E

Ã
sup

q:2k1<|q|
|bgq+s − 1|µ! ≤ D

kβµ1
. (5.9)

So, (5.6) holds true, which implies that b1t = op (1).
Next, the second term on the right of (5.5), i.e. b2t. Denoting

b3t =
k−tX

p=2t+1

¡
ψp+t − ψp

¢
log (bgp+s) , (5.10)

we have that b2t − b3t is
2tX

p=t+1

ψp+t log (bgp+s)− kX
p=k−t+1

ψp log (bgp+s) . (5.11)

Because by C.5,
nP2t

p=t+1

¯̄
ψp+t

¯̄
+
P2q

p=q+1

¯̄
ψp+q

¯̄o ≤ Dk−2
¡
t3 + q3

¢ ≤ DM3k−1/2,
the first term of (5.11) satisfies that

Pr

(
sup

t1≤q≤t2

¯̄̄̄
¯

2t1X
p=t1+1

ψp+t1 log (bgp+s)− 2qX
p=q+1

ψp+q log (bgp+s)
¯̄̄̄
¯ > ε

)
≤ DM3

εk1/2 log k1

(5.12)
by Markov’s inequality and (5.7)− (5.8), whereas the second term satisfies that

Pr

 sup
t1≤q≤t2

¯̄̄̄
¯̄
 kX

p=k−t1+1
−

kX
p=k−q+1

ψp log (bgp+s)
¯̄̄̄
¯̄ > ε

 ≤ DM

ε log k1

µ
t2 − t1
k1/2

¶
by (5.7) and (5.9) and because

Pk
p=k−q+1−

Pk
p=k−t1+1 =

Pk−t1
p=k−q+1 and by C.5,

supt1≤q≤t2
Pk−t1

p=k−q+1
¯̄
ψp

¯̄ ≤Pk−t1
p=k−t2

¯̄
ψp

¯̄ ≤ Dk−1
¡
t22 − t21

¢ ≤ DMk−1/2 (t2 − t1).
So, (5.6), (5.12) and the last inequality imply that for any ε > 0 there exists n0

such that for all n ≥ n0,

Pr

½
sup

t1≤q≤t2

¯̄̄̄µbξ(5)n (q)− b3q

¶
−
µbξ(5)n (t1)− b3t1

¶¯̄̄̄
> ε

¾
≤ DM

εk1/2 log k1

¡
M2 + (t2 − t1)

¢
.

(5.13)
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Clearly (5.13) implies that sup0≤t≤2[k1/2M]

¯̄̄̄bξ(5)n (t)− b3t

¯̄̄̄
= op (1). Proceeding sim-

ilarly, we have that for any ε > 0 there exists n0 such that for all n ≥ n0,

Pr

½
sup

t1≤q≤t2

¯̄̄̄µbξ(6)n (q)− b4q

¶
−
µbξ(6)n (t1)− b4t1

¶¯̄̄̄
> ε

¾
≤ DM

εk1/2 log k1

¡
M2 + (t2 − t1)

¢
,

(5.14)
where

b4t =
kX

p=3t+1

¡
ψp−t − ψp

¢
log (bgs−p) . (5.15)

Next, we examine b3t and b4t. Denoting ϑ� = bg� − 1 and writing
ebt = k−tX

p=2t+1

¡
ψp+t − ψp

¢
ϑp+s,

eebt = kX
p=3t+1

¡
ψp−t − ψp

¢
ϑs−p, (5.16)

Lemma 6.5 implies that b3t = ebt + t/k1/2op (1) and b4t =
eebt + t/k1/2op (1), where

the op (1) is uniformly in t ≤ ρk, for ρ < 1/3.

So, it remains to examine ebt and eebt. By Taylor expansion of ψp,

ebt = t

k

k−tX
p=2t+1

ψ0pϑp+s +
1

2

t2

k2

k−tX
p=2t+1

ψ00
µ
p

k
+ δ

t

k

¶
ϑp+s, (5.17)

where δ = δ (t) ∈ (0, 1). The first term on the right of (5.17) is

t

k

k−2k1X
p=2k1+1

ψ0pϑp+s +
t

k


2k1X

p=2t+1

+
k−tX

p=k−2k1+1

ψ0pϑp+s.

By Lemma 6.2, C.4 and C.5, the second term of the last displayed expression is
clearly tk1/21 /kOp

³
1 + k−1kα+1/21 I (α ≥ 1/2)

´
= t/k1/2op (1) where the op (1) does

not depend on t ≤ ρk. On the other hand, writing ηj = f−1j+sIj+s−1, the first term
is

t

k

k−2k1X
p=2k1+1

ψ0p
2k1 + 1

k1X
j=−k1

ηp+j +
t

k

k−2k1X
p=2k1+1

ψ0p
2k1 + 1

k1X
j=−k1

Ã
fp+j+sefp+s − 1

!
ηp+j.

(5.18)

Since
¯̄̄ ef−1p+sfp+s − 1

¯̄̄
= ef−1p+sfp+s

¯̄̄
1− f−1p+s

efp+s ¯̄̄ = O
¡
k21/p

2
¢
by Lemma 6.1,¯̄

f−1p+sfp+j+s − 1
¯̄ ≤ D k1

p
|j|
k1
by C.3, and by an obvious extension of Robinson

(1995b), E
¯̄̄Pk1

j=−k1 cjηp+j
¯̄̄
= O

³
k
1/2
1

´
for any |cj = c (j/k1)| ≤ D, we obtain

that the first absolute moment of the second term of (5.18) is by C.5 and then C.4,

tk−1/2O
³
k
1/2
1 k−1/2

Pk
p=1

¯̄
ψ0p
¯̄
/p
´
= t/k1/2o (1), where the o (1) does not depend

on t ≤ ρk.
On the other hand, after rearranging subindices, the first term of (5.18) is

t

k

k−2k1X
p=2k1+1

ηp

 1

2k1 + 1

2k1X
j=1

ψ0p+j


+
t

k

2k1X
p=k1+1

ηp

 1

2k1 + 1

p−k1X
j=1

ψ0j+k1

+ t

k

k−k1X
p=k−2k1+1

ηp

 1

2k1 + 1

k−k1X
j=p

ψ0j−k1

 .
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After standard calculations and routine application of Robinson’s (1995b) Theorem

2, the last two terms are t/kOp

³
k
1/2
1

´
= t/k1/2op (1) by C.4 and C.5, whereas the

first term of the last displayed expression is

t

k

k−2k1X
p=2k1+1

ψ0pηp +
t

k

k−2k1X
p=2k1+1

ψ0pηp

 1

ψ0p

 1

2k1 + 1

2k1X
j=1

ψ0p+j

− 1
 .

Because ψ0 (u) is continuous, C.5 implies that ψ0p+j/ψ
0
p → 1 as k1/p→ 0, and hence

the expression inside the parenthesis converges to zero as p→∞. So, by Toeplitz’s
lemma, we conclude that the last displayed expression, and therefore also the first
term of (5.17), is

t

k1/2

 1

k1/2

k−2k1X
p=2k1+1

ψ0pηp + op (1)

 .
Proceeding similarly as with the first term on the right of (5.17), the second term

of (5.17) is k−3/2t2
³
k−1/2

Pk−2k1
p=2k1+1

ψ00
¡
p
k + δ t

k

¢
ηp + op (1)

´
, so that

ebt = t

k1/2

 1

k1/2

k−2k1X
p=2k1+1

ψ0pηp +
t

k
Op (1) + op (1)

 , (5.19)

where the op (1) and Op (1) are uniformly in t ≤ ρk. Similarly, we obtain that

eebt = t

k1/2

 1

k1/2

k−2k1X
p=2k1+1

ψ0pη−p +
t

k
Op (1) + op (1)

 , (5.20)

where the op (1) and Op (1) are uniformly in t ≤ ρk.
Thus, (5.13), (5.14), Lemma 6.5, (5.19) and (5.20) imply that, for ti ≤

£
Mk1/2

¤
,

lX
i=1

φi

µbξ(5)n (ti) + bξ(6)n (ti)

¶
=

lX
i=1

φi

µebti +eebti¶+ ti
k1/2

op (1)
d→ N

0, ς lX
i,j=1

φiφjυiυj


(5.21)

by Robinson’s (1995b) Theorem 2 and Toeplitz’s Lemma since
¯̄̄
k−1

Pk−t
�=t+1

¡
ψ0�
¢2 − ς

¯̄̄
=

o (1) by Lemma 6.10. ¤

Proposition 5.4. bξ(5)n (t) and bξ(6)n (t) are tight.

Proof. Write ct = bξ(5)n (t) − b3t, where b3t is given in (5.10). To show that bξ(5)n (t)
is tight it suffices to show that ct and b3t are tight. Since the finite dimensional
distributions of ct converge to zero, cf. (5.13), Billingsley’s (1968) Theorem 15.4
implies that ct is tight if for each ε > 0 and ν > 0 there exists a δ ∈ (0, 1) such that

Pr
©
ϑ00 (ct, δ) ≥ ε

ª ≤ ν (5.22)

holds for all n ≥ n0, where

ϑ00 (ct, δ) = supmin {|ct − ct1 | , |ct2 − ct|} ,
and the supremum is over t1, t, and t2 satisfying t1 ≤ t ≤ t2 with t2−t1 ≤ δ

£
k1/2M

¤
and δ ∈ (0, 1). Observe that we can assume k−1/2 ≤ £t2/k1/2M¤− £t1/k1/2M¤. If£
t2/k

1/2M
¤− £t1/k1/2M¤

< k−1/2, then either t1 and t lie in the same subinterval
[(p− 1) /M, p/M) or else t and t2 do; in either of these cases the left side of (5.22)
vanishes.
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Inequalities (14.9) and (14.46) in Billingsley (1968) imply that (5.22) holds if

Pr {ϑ (ct, δ) ≥ ε} ≤ ν,

for some 0 < δ ≤ 1, where
ϑ (ct, δ) = sup

|(t−v)/(k1/2M)|<δ

|ct − cv| .

(Observe that as ct converges in probability to zero, which has continuous paths,
the Skorohod’s metric can be replaced by the uniform topology.) By the Corollary
of Billingsley’s (1968) Theorem 8.3, it suffices to show that

rX
i=1

Pr

(
sup

ti−1≤v≤ti

¯̄
cv − cti−1

¯̄ ≥ ε/3

)
≤ ν (5.23)

where 2−1δ <
£
k1/2M

¤−1
(ti − ti−1) < δ and 0 = t0 < t1 < ... < tr =

£
k1/2M

¤
.

But this is the case since by (5.13),

Pr

(
sup

ti−1≤v≤ti

¯̄
cv − cti−1

¯̄ ≥ ε/3

)
≤ DM3δ

ε log k1
.

Now choose n0 such that DM3ε−1 log−1 k1 < ν since r ≤ 2 £δ−1¤ to obtain (5.23).
Proceeding similarly, but using (5.14) instead of (5.13), bξ(6)n (t)− b4t is also tight.
Next, we show the tightness condition for b3t, the proof for b4t is similar and it

is omitted. Consider t < q. Then, b3t − b3q is

k−tX
p=2t+1

¡
ψp+t − ψp

¢
log bgp+s − k−qX

p=2q+1

¡
ψp+q − ψp

¢
log bgp+s (5.24)

=


2qX

p=2t+1

+
k−tX

p=k−q+1

 ¡ψp+t − ψp

¢
log bgp+s + k−qX

p=2q+1

¡
ψp+t − ψp+q

¢
log bgp+s.

The first term on the right of (5.24) is tight as we now show. Because by C.5,

¯̄
ψp+t − ψp

¯̄ ≤ Dk−1t,

¯̄̄̄
¯̄ 2qX
p=2t+1

1 +
k−tX

p=k−q+1
1

¯̄̄̄
¯̄ ≤ 3 (q − t) ,

abbreviating the first term on the right of (5.24) by ζt,q, we obtain that

rX
i=1

Pr

(
sup

ti−1≤q≤ti

¯̄̄
ζti−1,q

¯̄̄
≥ ε

)
≤

rX
i=1

Pr

(
D
ti − ti−1
k1/2

sup
p=2t+1,...,k

|log bgp+s| ≥ ε

)
≤ DM

ε log k1

by Markov’s inequality and (5.7) − (5.8) with µ = 1 there. Then, choose n0 such
that DMε−1 log−1 k1 < ν to complete.
Next, Taylor expansion implies that the second term on the right of (5.24) isµ

t− q

k

¶ k−qX
p=2q+1

ψ0p+t log bgp+s + 12
µ
t− q

k

¶2 k−qX
p=2q+1

ψ00p+� log bgp+s, (5.25)

where ! is an intermediate point between t and q.
The second term of (5.25) is tight as we now show. Proceeding as with the proof

of tightness of ct, it suffices to show that for all ν and ε > 0 there exists n0 such
that

rX
i=1

Pr

(
sup

ti−1≤q≤ti

¯̄̄̄
¯
µ
q − ti−1

k

¶2 k−qX
p=2q+1

¯̄
ψ00p+� log bgp+s¯̄

¯̄̄̄
¯ ≥ ε

)
≤ ν
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for all n ≥ n0 and 0 ≤ t0 < ... < tr ≤
£
k1/2M

¤
. But by (5.7) − (5.8) and that¯̄

ψ00 (u)
¯̄ ≤ D by C.5, the left side of the last displayed inequality is bounded by

Dε−1k−1 log−1 k1
rX

i=1

(ti − ti−1)
2 ≤ DM2ε−1 log−1 k1

rX
i=1

δ2 < ν

since r ≤ 2 £δ−1¤ and 2−1δ < £k1/2M¤−1 (ti − ti−1) < δ.
To finish the proof it remains to examine the first term of (5.25), denoted by

dt,q. Since from the proof of Proposition 5.3, the finite-dimensional distributions of
dt,q converge to those of the limiting Gaussian process which has continuous paths,
by Billingsley’s (1968) Theorem 15.4, it implies that it suffices to check that

Pr
©
ϑ00 (dt,q, δ) ≥ ε

ª ≤ ν

for some n ≥ n0. Now by Billingsley’s (1968) Theorem 15.6, it suffices to check the
moment condition

E |dt,qdq,v|β1 ≤ D

¯̄̄̄
t− v

k1/2

¯̄̄̄β2
(5.26)

for t ≤ q ≤ v and some β1 > 0 and β2 > 1. Write

dt,q =

µ
q − t

k

¶ k−qX
p=2q+1

ψ0p+t (bgp+s − 1) (5.27)

+

µ
q − t

k

¶
3k1X

p=2q+1

+

k−qX
p=3k1+1

ψ0p+t (1− bgp+s + log bgp+s) .
Using (5.7), the first absolute moment of the second term on the right of (5.27)

is bounded by

D

¯̄̄̄
q − t

k

¯̄̄̄
logn


3k1X

p=2q+1

+

k−qX
p=3k1+1

 ¯̄ψ0p+t ¯̄E (bgp+s − 1)2
≤ D |q − t| logn

µ
k2α1
k2
I (α ≥ 1/2) + 1

k1

¶
≤ D

¯̄̄̄
t− q

k1/2

¯̄̄̄1+ξ
logn

µ
k(ξ+1)/2

k1
+

k2α1 k(1+ξ)/2

k2
I (α ≥ 1/2)

¶
≤ D

¯̄̄̄
t− q

k1/2

¯̄̄̄1+ξ
for some 0 < ξ < 3 (1− α) by Lemma 6.2 and observing that

P3k1
p=2q+1

¯̄
ψ0p+t

¯̄ ≤
Dk21k

−1 = o
¡
k1/2

¢
by C.4 and C.5. So, the second term on the right of (5.27)

satisfies (5.26) which follows by the Causchy-Schwarz inequality choosing β1 = 1/2
and β2 = 1+ ξ, and that (q − t) (v − q) ≤ (v − t)2. Finally, proceeding as with the
proof of ebt given in (5.19),

E

¯̄̄̄
¯
µ
q − t

k

¶ k−qX
p=2q+1

ψ0p+t (bgp+s − 1)
¯̄̄̄
¯
2

≤ D

µ
q − t

k1/2

¶2
which implies that the first term on the right of (5.27) satisfies (5.26) choosing
β1 = 1 and β2 = 2, and noting that (q − t) (v − q) ≤ (v − t)2. So, we conclude that
b3t is tight. Proceeding similarly b4t is also tight, which completes the proof. ¤
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5.2. Proof of Corollary 3.3. (a) By Theorem 3.2, bξn (υ) weakly
=⇒ ξ (υ) in D [−M,M ]

for any arbitrary M > 0. Next, since the limiting Gaussian process ξ (υ) has con-
tinuous paths, i.e. it belongs to C [−M,M ], the Skorohod’s metric can be replaced
by the uniform topology. On the other hand, by Eddy (1980), the argmaximum
is a continuous functional in the set of parabolas with fixed second derivatives in
C [−M,M ]. So, by Van der Vaart and Wellner’s (1996) Theorem 3.2.2., we obtain
that bυn = argmax

υ

bξn (υ) d→ argmax
υ

ξ (υ) = υ∗,

where υ∗ = Ψ1/2X and X = N (0, 1). Observe that Theorem 3.1 shows that
Pr {|bυn| < L} > 1− δ for n sufficiently large. This together with problem 1.3.9 in
Van der Vaart and Wellner (1996, p.27) implies that bυn is uniformly tight.
But by construction, bλ0 = λ0+n−1

¡
2πk1/2

¢ bυn+O
¡
n−1

¢
, i.e. (3.2), and hence³

2πk1/2
´−1

n
³bλ0 − λ0

´
= bυn +O

³
k−1/2

´
d→ υ∗ = Ψ1/2X.

(b) As in (a), the limit process is ξ (υ), where from the definition of bλ0, υ ≥ 0.
Thus, if X takes a positive value, the restriction υ ≥ 0 is not binding and the
maximum of ξ (υ) is achieved at υ∗. However, when X takes a negative value,
the restriction is binding and thus the maximum is at υ = 0 due to the parabolic
structure of ξ (υ).
(c) The proof is identical to part (b) once the wording positive (negative) is

replaced by negative (positive). ¤

5.3. Proof of Theorem 3.1. Similarly to the proof of Theorem 3.2, it suffices to
show the theorem with hψ replaced by hψ. With that replacement and recalling
that bgp = ef−1p

bfp, bα (λq) becomes
h−1ψ

2k

kX
p=1

ψp (log bgp+q + log bgq−p) (5.28)

+
h−1ψ
2k

kX
p=1

ψp log
³
λα|p+q−s|+

efp+q´+ h−1ψ

2k

kX
p=1

ψp log
³
λα|q−p−s|+

efq−p´

−αh
−1
ψ

2k

kX
p=1

ψp

¡
log
¡
2π |p+ q − s|+ /n

¢
+ log

¡
2π |q − p− s|+ /n

¢¢
.

Because (5.7)−(5.9) imply that sup�=0,...,[n/2] |log bg�| = op (1), we then have that,
uniformly in q, the first term of (5.28) converges to zero in probability. Next, the sec-
ond term of (5.28). (Recall that 0 ≤ q ≤ [n/2].) If q < max {0, s− [k1 log k1]− k}
or s+ [k1 log k1] < q, this is

h−1ψ

2k

kX
p=1

ψp

(
log

Ã efp+q
fp+q

!
− log

µ
g (λq)

g (λp+q)

¶
+ log

Ã
λαp+q−s¯̄

λp+q − λ0
¯̄α
!)

+ o (1)

(5.29)
because Lemma 6.10 and C.5 imply that k−1

Pk
p=1 ψp = O

¡
k−1

¢
and by C.1,

fp =
¯̄
λp − λ0

¯̄−α
g (λp). But by Lemma 6.1 part (a) and Taylor expansion of

log (z) around z = 1, (5.29) is bounded in absolute value by

D

k

kX
p=1

¯̄
ψp

¯̄ Ã¯̄̄̄
log

µ
g (λq)

g (λp+q)

¶¯̄̄̄
+

k21

|q + p− s|2 + α log

Ã
λ |p+q−s|¯̄
λp+q − λ0

¯̄!!+ o (1) .
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The contribution due to the second term inside the brackets is easily shown to be
o (1), as is the contribution due to the third term by Taylor expansion and that
n
¯̄
λs − λ0

¯̄
< π. Finally, by the mean value theorem, the first term inside the

brackets is bounded by

D

k

kX
p=1

p

n

¯̄
ψp

¯̄
= O

µ
k

n

¶
,

because by C.1, g (λ) is continuously differentiable. Next, when s − [k1 log k1] <
q ≤ s + [k1 log k1], the second term of (5.28) is also o (1), since there are at most
O ([k1 log k1]) terms such that |p+ q − s| < [k1 log k1] and hence by Lemma 6.1,

D−1 log k1 ≤ log
³ efp+q nλα|p+q−s|+ + f−1p+q

o´
≤ D whereas for the remaining ones

|p+ q − s| > [k1 log k1], so that proceeding as before, it will be o (1) by C.4. Thus,
we conclude that the second term of (5.28) in this region isO

¡
k−1k1 log k1

¢
+o (1) =

o (1) by C.4. Similarly when max {0, s− [k1 log k1]− k} ≤ q ≤ s − [k1 log k1] we
obtain that the second term of (5.28) is also o (1). Proceeding as with the proof of
the second term of (5.28), it follows that the third term of (5.28) is o (1) uniformly
in q.
Using

R 1
0
ψ (x) dx = 0 and Lemma 6.10, we conclude that

sup
0≤q≤[n/2]

¯̄̄̄bα (λq)− 1
2
δ+,n (λq)− 1

2
δ−,n (λq)

¯̄̄̄
= op (1)

where δ+,n (λq) = −αh−1ψ k−1
Pk

p=1 ψp log
¡|p+ q − s|+ /k

¢
and

δ−,n (λq) = −αh−1ψ k−1
Pk

p=1 ψp log
¡|q − p− s|+ /k

¢
.

We now examine the properties of δ+,n (λq), those of δ−,n (λq) are handled sim-
ilarly. First by Lemma 6.10,

δ+,n (λs)− α = −αh
−1
ψ

k

kX
p=1

³
ψp log

³p
k

´
+ hψ

´
= O

¡
k−1

¢
.

Now, for arbitrarily small ρ > 0, supρ−1k≤|q−s| δ+,n (λq) < Dρ since by Taylor
expansion,

sup
ρ−1k≤|q−s|

¯̄
log
¡|q − s|+

¢− log ¡|±p+ q − s|+
¢¯̄ ≤ Dρ.

Next, by Proposition 5.1, sup|q−s|≤ρk δ+,n (λq)−α < −Dρ2, whereas since δ+,n (λq)
is a nonincreasing function in |q − s|, supρk≤|q−s|≤ρ−1k δ+,n (λq)− α < −Dρ2.

Therefore, writing bΛn (t) = bα (λs + (2πt) /n), we conclude that
Pr

Ã
sup
|t|≥ρk

³bΛn (t)− bΛn (0)´ > 0

!
→ 0,

i.e. bλ0 is a consistent estimator of λ0. Thus, to complete the proof of the theorem,
it suffices to show that for any ε > 0, there exists L > 0 such that

Pr

Ã
sup

ρk>|t|>k1/2L

³bΛn (t)− bΛn (0)´ > 0

!
< ε. (5.30)
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By Theorem 3.2, cf. Propositions 5.1 to 5.3,

k

t

³bΛn (t)− bΛn (0)´ = −ψ00 tαh
−1
ψ

k

Ã
1 +O

Ãµ
t

k

¶1/2!!
+
1

t

µebt +eebt¶
+
1

t

³
b3t −ebt´+ 1

t

µbξ(5)n (t)− b3t

¶
+
1

t

µ
b4t −eebt¶+ 1

t

µbξ(6)n (t)− b4t

¶
.

By Proposition 5.3, cf. (5.19) and (5.20), and Lemma 6.9,

sup
|t|<ρk

¯̄̄̄
1

t

µebt +eebt¶¯̄̄̄ = 1

k1/2
sup
|t|<ρk

¯̄̄̄
¯̄ 1k1/2

k−|t|X
p=|t|

ψ0p (2πIε,p+s − 1) + op (1)

¯̄̄̄
¯̄ = Op

µ
1

k1/2

¶

since by C.5, ψ0 (u) is continuous, so that sup|t|<ρk

¯̄̄
k−1/2

Pk−|t|
p=|t| ψ

0
p (2πIε,p+s − 1)

¯̄̄
=

Op (1) by Lemma 6.7, and thence by Lemma 6.5,

sup
|t|<ρk

¯̄̄̄
1

t

µebt +eebt¶+ 1
t

³
b3t −ebt´+ 1

t

µ
b4t −eebt¶¯̄̄̄ = Op

³
k−1/2

´
. (5.31)

By C.4, there exists a finite positive integer r such that k(r−1)β1 < k1/2 < k
(r+1)β
1 .

Consider first the case 2k1+rβ1 < k. Then, the left side of (5.30) is bounded by

rX
�=1

Pr

 sup
L�−1k
k
(�−1)β
1

≥|t|>L�k

k
�β
1

k

t

³bΛn (t)− bΛn (0)´ > 0

 (5.32)

+Pr

 sup
Lrk

k
rβ
1

≥|t|>2k1eL
k

t

³bΛn (t)− bΛn (0)´ > 0

+PrÃ sup
2k1eL≥|t|>k1/2L

k

t

³bΛn (t)− bΛn (0)´ > 0

!
,

where L0 = ρ, L� > 0 for ! > 1 and eL > 0. Since h−1ψ αψ
00
> 0 and bΛn (t)− bΛn (0) >

0, the third term of (5.32) is bounded by

Pr

(¯̄̄̄
¯Op

Ã
k21

k3/2 log k1
+

k1

kβ1 k
1/2

+ 1

!¯̄̄̄
¯ > α

¯̄̄
ψ
00 ¯̄̄

inf
2k1eL≥|t|>k1/2L

¯̄̄̄
t

k1/2

¯̄̄̄)
< ε

for L large enough, by Lemma 6.8 part (b) and (5.31), and because C.5 implies

that k21k
−3/2 = o (1), and k−1/2k1−β1 = k1/2k1+rβ1 /

³
kk

(1+r)β
1

´
= O (1). Next, the

second term of (5.32) is bounded by

Pr


¯̄̄̄
¯Op

Ã
k

k
(r+1)β+1
1

+
1

krβ1 log k1
+

k1/2

k1

!¯̄̄̄
¯ = op (1) > α

¯̄̄
ψ
00 ¯̄̄

inf
L�k

k
�β
1

>|t|>2eLk1
¯̄̄̄
t

k1

¯̄̄̄ < ε

for eL large enough, by Lemma 6.8 part (a), (5.31) and that k1/2 = o (k1), k1/2 <
k
(r+1)β
1 and C.4.
Finally, the first term of (5.32), whose typical element is, proceeding as before,

bounded by

Pr


¯̄̄̄
¯Op

Ã
k�β1

k�β1
+

k1+β1

k log k1
+

k�β1
k1/2

!¯̄̄̄
¯ = Op (1) > α

¯̄̄
ψ
00 ¯̄̄

inf
L�−1k
k
(�−1)β
1

>|t|>L�k

k
�β
1

¯̄̄̄
¯ tk�β1k

¯̄̄̄
¯
 < ε
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because k�β
1

k1/2
≤ k�β+1

1

k1/2k1
= o

³
k−1k�β+11

´
= o (1) by C.4 and that ! ≤ r.

Next, consider the case k < 2k1+rβ1 . In this case, let er be the biggest integer such
that 2k1+erβ1 < k < k1+rβ1 but k < k

1+(er+1)β
1 . The proof now proceed identically as

in the previous case, but now the sum of the first term of (5.32) runs from ! = 1 toer. Note that if k < 2k1+β1 , so that r = 1, then the left side of (5.30) is bounded by

Pr

Ã
sup

ρk>|t|>2eLk1
k

t

³bΛn (t)− bΛn (0)´ > 0

!
+Pr

Ã
sup

2eLk1≥|t|>k1/2L

k

t

³bΛn (t)− bΛn (0)´ > 0

!
,

and then proceed as in the proof of the second and third terms of (5.32), since
C.4 implies that k31 = o

¡
k2
¢
, and recalling that now k < 2k1+β1 , we have that

k1−β1 k−1/2 = o (1) by C.4. ¤

5.4. Proof of Theorem 3.4. We begin with part (a). Observing that C.7 implies
that

¯̄
hw − hw

¯̄
= O

¡
m−1

¢
and m−1

Pm
p=1wp = O

¡
m−1

¢
by Lemma 6.10, the

behaviour of (2m)1/2 (α̌ (λs)− α) is governed by that of

h−1w

(2m)1/2

mX
p=1

wp log (bgp+sbgs−p) + h−1w

(2m)1/2

mX
p=1

wp log

Ã efp+s
λ−αp

efs−p
λ−αp

!

−(2m)
1/2 α

hw

Ã
1

m

mX
p=1

wp log
³ p

m

´
+ hw

!
. (5.33)

Recall that ef−1p
bfp = bgp. By Lemma 6.10, the last term of (5.33) is o (1). Denoting

m∗1 = [m1 logm1], the second term of (5.33) is

h−1w

(2m)1/2


m∗1X
p=1

wp log

Ã efp+s
λ−αp

efs−p
λ−αp

!
+

mX
p=m∗1+1

wp log

Ã efp+s
λ−αp

efs−p
λ−αp

! . (5.34)

Next, because by Lemma 6.1, D−1 < λαm1
efs±p < D for |p| ≤ 2m∗1, we have that

the first term of (5.34) isO
³
m−1/2 log (m1)

Pm∗1
p=1 |wp|

´
= O

³
m1+ζ
1 m−(2ζ+1)/2 log1+ζ (m1)

´
=

o (1) by C.6 and C.7 since ζ ≥ 1/3. Denoting g (λp) = gp, the second term of (5.34)
is

h−1w

(2m)1/2

mX
p=m∗1+1

wp log

Ã efp+s
fp+s

efs−p
fs−p

!
+

h−1w

(2m)1/2

mX
p=m∗1+1

wp log (gp+sgs−p)

− αh−1w

(2m)1/2

mX
p=m∗1+1

wp

©
log
¡
λ−1p

¯̄
λp + λs − λ0

¯̄¢
+ log

¡
λ−1p

¯̄
λs − λ0 − λp

¯̄¢ª
.

Because, for |p| > 2m∗1, Lemma 6.1 part (a) implies thatD−1 ≤m−21 p2
¯̄̄
f−1p+s

efp+s − 1¯̄̄ ≤
D, we obtain by the mean value theorem that log f−1p+s

efp+s = O
¡
m2
1p
−2¢ and so

the first term of the last displayed expression is bounded in absolute value by

Dm2
1

(2m)1/2

mX
p=m∗1+1

|wp| p−2 = o
³
m1+ζ
1 m−(2ζ+1)/2

´
,

whereas the second term is 4π2Bc5/2/
¡
21/2hw

¢
+O

¡
m−1/2

¢
because

1

(2m)
1/2

mX
p=m∗1+1

wp log (gp+sgs−p) =
2

(2m)
1/2

m∗1X
p=1

wp log (gs)+
4π2Bc5/2

21/2hw
+O

µ
1

m1/2

¶
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by C.6 and Taylor expansion of log (gp+s) and log (gs−p) around log (gs) and that
by Lemma 6.10 and C.7,

Pm
p=1wp = O (1). So, the second term of (5.33) is

4π2Bc5/2/
¡
21/2hw

¢
+ o (1). Finally, proceeding as with the second term of (5.4),

the third term is easily shown to be bounded by Dm−1/2
P

p |wp| p−1 = o (1).
Denoting ϑb = bgb−1, and proceeding as with the proof of Lemma 6.5, to complete

the proof of the theorem, it suffices to show that

h−1w

(2m)1/2

mX
p=1

wp (ϑp+s + ϑs−p)
d→ N ¡0, h−2w Φ

2
¢

(5.35)

1

(2m)1/2

(
2m1X
p=1

+
mX

p=2m1+1

)
wp

¡
ϑ2p+s + ϑ2s−p

¢ P→ 0. (5.36)

We begin with (5.36). By Lemma 6.2 part (b), the first moment of the first sum

inside the braces on the left of (5.36) is o
³
m−1/2

P2m1

p=1 |wp|
´
= o

³
m1+ζ
1 m−(2ζ+1)/2

´
=

o (1) by C.7 and C.6 since ζ ≥ 1/3, whereas the contribution due to the second sum
inside the braces on the left of (5.36) is Op

¡
m−11 m1/2

¢
= op (1) by Lemma 6.2 part

(a), C.6 and Markov’s inequality. So, it remains to show (5.35), whose left side is

h−1w

(2m)1/2

Ã
2m1X
p=1

wp (ϑp+s + ϑs−p) +
mX

p=2m1+1

wp (ϑp+s + ϑs−p)

!
. (5.37)

Because Lemma 6.2 part (b) implies that E |ϑb| = o (1) for |b− s| < 2m1, the

first term of (5.37) is op
³
m1+ζ
1 m−(2ζ+1)/2

´
= op (1) by C.7, C.6 and Markov’s

inequality. But proceeding as in the proof of Proposition 5.3, cf. (5.21), the second
term of (5.37) converges in distribution to N ¡0, h−2w Φ

2
¢
, which completes the proof

of part (a).

Part (b). Dropping the constant hw and (2m)
−1/2, it suffices to show that

mX
p=1

wp {log (bgp+s−t/bgp+s) + log (bgs−p−t/bgs−p)} = op
³
m1/2

´
(5.38)

holds true uniformly in |t| ≤ £k1/2M¤
= o

¡
m1/2

¢
. We only examine the contribu-

tion due to the first term on the left of (5.38), the contribution due to the second
term follows by identical steps. The first term on the left of (5.38) is

2tX
p=1

wp log (bgp+s−t/bgp+s) + mX
p=2t+1

wp log (bgp+s−t/bgp+s) . (5.39)

Using (5.7)− (5.9) and Markov’s inequality, the first term of (5.39) is, uniformly
in t, op

µP[2k1/2M]
p=1 |wp|

¶
= op

¡
m1/2

¢
by C.6. Next, the second term of (5.39) is

2tX
p=t+1

wp+t log bgp+s − mX
p=m−t+1

wp log bgp+s + m−tX
p=2t+1

(wp+t −wp) log bgp+s.
By (5.7) − (5.9), the first two terms of the last displayed expression, uniformly in
t, are op

¡
k1/2

¢
= op

¡
m1/2

¢
by C.6. Finally, the third term on the last displayed

expression.
Let ϑp = bgp−1. Since by Lemma 6.3 andMarkov’s inequality, supp=1,...,[n/2] |ϑp| =

op (1), except in a set Ωn such that limn→∞Pr {Ωn} = 0, it implies that log bgp+s =
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ϑp+s − 2−1ϑ2p+s (1 + op (1)) by Taylor expansion. So, the third term of the last
displayed expression is(

m−tX
p=2m1+1

+
2m1X

p=2t+1

)
(wp+t −wp)ϑp+s +D

m−tX
p=2t+1

|wp+t −wp|ϑ2p+s (1 + op (1)) .

(5.40)
Since C.7 implies that |wp+t −wp| ≤ D (t/m)ζ , we have that

sup
t≤[k1/2M]

¯̄̄̄
¯

m−tX
p=2t+1

|wp+t −wp|ϑ2p+s
¯̄̄̄
¯ ≤ D sup

t≤[k1/2M]

µ
t

m

¶ζ
Ã

mX
p=2m1+1

ϑ2p+s

!

+ sup
t≤[k1/2M]

¯̄̄̄
¯
2m1X

p=2t+1

wpϑ
2
p+s

¯̄̄̄
¯ .

But by Lemma 6.2, E |ϑp+s|2 = O
¡
m−11

¢
if |p| > 2m1, whereas Lemma 6.3 implies

that supp=1,...,[n/2] ϑ
2
p+s = op (1). Hence, by Markov’s inequality, C.6 and C.7, the

third term of (5.40) is op
³
kζ/2m1−ζ/2m−11 +m−ζm1+ζ

1

´
= op

¡
m1/2

¢
. Proceeding

similarly and in view of C.7, the second term of (5.40) is op
³
m
1/2
1

¡
k1/2/m

¢ζ´
=

op
¡
m1/2

¢
. So, denoting bt =

Pm−t
p=2m1+1

(wp+t −wp)ϑp+s, that is the first term of
(5.40), to complete the proof we need to show that
supt≤[k1/2M] |bt| = supq=1,...,[Mk1/4] sup(q−1)k1/4≤t≤qk1/4 |bt| is op

¡
m1/2

¢
. Now, by

the triangle inequality, supt≤[k1/2M] |bt| is bounded by

sup
q=1,...,[Mk1/4]

sup
(q−1)k1/4≤t≤qk1/4

¯̄̄̄
¯
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p=2m1+1

¡
wp+t −wp+qk1/4

¢
ϑp+s

¯̄̄̄
¯ (5.41)

+ sup
q=1,...,[Mk1/4]

sup
(q−1)k1/4≤t≤qk1/4
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¯
(

mX
p=2m1+1

−
mX
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)¡
wp+qk1/4 −wp

¢
ϑp+s

¯̄̄̄
¯ .

Because
¡
supj |cj|

¢µ
= supj |cj|µ ≤

P
j |cj|µ for µ > 0, the second moment of the

second term of (5.41) is bounded by
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¶2ζ
= D

kζ+1/4

m2ζ−1 = o (m) ,

proceeding as with the proof of (5.16) and noting that C.7 implies that
¯̄̄
(m/p)ζ wp

¯̄̄
≤

D, and
¯̄̄¡
m/

¡
qk1/4

¢¢ζ ¡
wp+qk1/4 −wp

¢¯̄̄ ≤ D with ζ ≥ 1/3. The second moment of
the first term of (5.41) is bounded by
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where
¯̄
w∗p,t

¯̄
=
¯̄̄¡
m/k1/4

¢ζ ¡
wp+t −wp+qk1/4

¢¯̄̄ ≤ D by C.7. Now proceeding as with

the proof of (5.16), the right side of the last displayed equation isO
¡
m1−2ζk(1+ζ)/2

¢
=

o (m) since ζ ≥ 1/3 and k = o (m) by C.6. Using Markov’s inequality we conclude
that (5.41) is op

¡
m1/2

¢
and the proof. ¤
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6. TECHNICAL LEMMAS

From now on
P

j denotes
Pk1

j=−k1 and k1n
−1 → 0.

Lemma 6.1. Let efp be as defined in the proof of Theorem 3.2. Then,

(a)

(
D−1 < f−1p

efp < D³
f−1p

efp − 1´ = O
³
k21/ |p− s|2

´ |p− s| ≥ 2k1.

(b) D−1 ≤ λαk1
efp ≤ D if |p− s| < 2k1.

Proof. First observe that by definition of efp, f−1p
efp = (2k1 + 1)−1P

j
f−1p fj+p. We

begin with (a). We first show that D−1 < (2k1 + 1)
−1P

j
f−1p fj+p < D. Because¯̄

λ0 − λs
¯̄ ≤ π

n , D
−1 <

¯̄̄̄
1 +

n|λ0−λs|
2π(j+p−s)

¯̄̄̄
< D, for |j| ≤ k1, so that C.1 implies that

D−1

k1

[k1/2]X
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p− s

j + p− s

¯̄̄̄α
≤ 1

2k1 + 1

X
j

fj+p
fp
≤ D

k1

X
j

¯̄̄̄
p− s

j + p− s

¯̄̄̄α
.

But |p− s| ≥ 2k1 and |j| ≤ k1 imply that 2/3 < |(p− s) / (j + p− s)| < 2. From
here the conclusion is standard since α > 0, we conclude the first part of (a). Next,
we show the second part of (a). By Taylor expansion of fj+p, the left side is

1

2k1 + 1

X
j

(
(2π) j

n

f 0p
fp
+
(2π)2 j2

2n2
f 00
¡
λ
¢

fp

)
≤ D

k1

X
j

µ
j

p− s+ δj

¶2
(1 + o (1))

where λ = λ (p+ δj) is an intermediate point between λp and λp+j and δ =

δ (j) ∈ (0, 1), by C.1 and that f−1p f
¡
λ
¢
is bounded. The conclusion follows since

|p− s+ δj| ≥ |p− s|− |δj| > |p− s| /2.
(b) It is immediate since by C.1, f(j+p)I(j+p6=s) = Dλ−α|j+p−s|+ (1 + o (1)) and

λ−α1 λαk1 = o (k1). ¤

Lemma 6.2. Denote ϕ (k1) = O
³
k
−1/2
1

´
+O

¡
kα−11

¢I (α ≥ 1/2) I (|p− s| < 2k1).
Then,

(a) E
¯̄̄ ef−1p f̈p − 1

¯̄̄
= ϕ (k1) and (b) E

¯̄̄ ef−1p
bfp − 1¯̄̄ = ϕ (k1) .

Proof. We begin with (a). ef−1p f̈p − 1 is

ef−1p (2k1 + 1)
−1 X

j+p6=s
fj+p

µ
Ij+p
fj+p

− 1
¶
+ ef−1p (2k1 + 1)

−1
(Is − fs+1)I (|p− s| ≤ k1) .

(6.1)
In view of Propositions A.1 and A.2 of Hidalgo and Robinson (2002) and Lemma
6.1, the first term of (6.1) is ϕ (k1), whereas the second term of (6.1) is also ϕ (k1)
by Lemma 6.1 part (b) and that E (n−αIs) < D.

To show part (b), it suffices to examine ef−1p

³ bfp − f̈p
´
, which is by definition

ef−1p

³
n−1 − f̈p

´
I
³
f̈p < n−1

´
=
³³ ef−1p n−1 − 1

´
−
³ ef−1p f̈p − 1

´´
I
³
f̈p < n−1

´
.

(6.2)
By Cauchy-Schwarz inequality, the second moment of the right side of (6.2) is
bounded by

2E
³ ef−1p f̈p − 1

´2
+ 2

³ ef−1p n−1 − 1
´2

E
³
I
³
f̈p < n−1

´´
≤ DE

³ ef−1p f̈p − 1
´2
,



27

using that E
³
I
³
f̈p < n−1

´´
is

Pr
nef−1p f̈p − 1 < ef−1p n−1 − 1

o
≤ Pr

n¯̄̄ ef−1p f̈p − 1
¯̄̄
>
¯̄̄
1− ef−1p n−1

¯̄̄o
because by Lemma 6.1, ef−1p n−1 − 1 < −D for n large enough. Now use part (a)
and Markov’s inequality to conclude. ¤

Lemma 6.3. Let 2k1 < v < u ≤ [n/2] and p = 0, 1, ..., [n/2]. Denoting ψ (v, u) =

O

µ
max(u−v,k1)1/τ

k
(2+τ2)/2τ2
1

¶
and ϕ (k) = O

¡
log−µ−1 k

¢
,

(a)

 E
³
supp:| p−s|≤2k1

¯̄̄ ef−1p

³
f̈p − efp´¯̄̄µ´ = ϕ (k1)

E
³
supp:2k1<|p−s|=v+1,...,u

¯̄̄ ef−1p

³
f̈p − efp´¯̄̄´ = ψ (v, u)

(b)

 E supp:|p−s|≤2k1
¯̄̄ ef−1p

³
f̈p − bfp´¯̄̄µ = ϕ (k1)

E supp:2k1<|p−s|=v+1,...,u
¯̄̄ ef−1p

³
f̈p − bfp´¯̄̄ = ψ (v, u) .

Proof. For notational simplicity, we shall take s = 0. We begin with part (a).
From Hidalgo and Robinson’s (2002) Proposition A.1, it suffices to examine the be-

haviour of ef−1p

³
f̈p −Ef̈p

´
. On the other hand, Hidalgo and Robinson’s (2002)

Proposition A.3 parts (a,b) imply that it suffices to examine the behaviour ofef−1p

³
f̈ε,p −Ef̈ε,p

´
, where

f̈ε,p =
1

2k1 + 1

X
j

fj+pIε,j+p

and Iε,p = Iε (λp) is the periodogram of {εt}nt=1. We examine
supp=v+1,...,u

¯̄̄ ef−1p

³
f̈ε,p −Ef̈ε,p

´¯̄̄
only, that of supp=1,...,2k1

¯̄̄ ef−1p

³
f̈ε,p −Ef̈ε,p

´¯̄̄
is

similarly handled. Because supj |aj| =
¡
supj |aj|τ

¢1/τ
, the τth power of

supp=v+1,...,u

¯̄̄ ef−1p

³
f̈ε,p −Ef̈ε,p

´¯̄̄
is, except constants,

sup
p=v+1,...,u

¯̄̄̄
¯̄ 1

2k1 + 1

X
j

φj+p,p ((2π) Iε,j+p − 1)
¯̄̄̄
¯̄
τ

,

where φj,p = ef−1p fj. The last displayed expression is bounded by

2τ−1 sup
q
sup
p

¯̄̄̄
¯̄ 1

2k1 + 1

X
j

¡
φj+p,p ((2π) Iε,j+p − 1)− φj+b,p ((2π) Iε,j+b − 1)

¢¯̄̄̄¯̄
τ

+2τ−1 sup
q
sup
p

¯̄̄̄
¯̄ 1

2k1 + 1

X
j

φj+b,p ((2π) Iε,j+b − 1)
¯̄̄̄
¯̄
τ

(6.3)

where supq and supp denote supq=1+v/k1/τ1 ,....,u/k
1/τ
1

and sup
p=1+b−k1/τ1 ,...,b

respec-

tively, and b = qk
1/τ
1 .



28

After the change of indices j = j0 − k1, the second term of (6.3) is bounded by

D sup
q
sup
p

¯̄̄̄
¯̄ 1

2k1 + 1

2k1−1X
j=0

¡
φj+b−k1,p − φj+b+1−k1,p

¢ jX
a=0

((2π) Iε,a+b−k1 − 1)
¯̄̄̄
¯̄
τ

+D sup
q
sup
p

¯̄
φb+k1,p

¯̄τ ¯̄̄̄¯̄ 1

2k1 + 1

2k1X
j=0

((2π) Iε,j+b−k1 − 1)
¯̄̄̄
¯̄
τ

, (6.4)

by Abel summation by parts. On the other hand, by C.1 and C.3,¯̄
φj+b−k1,p − φj+b+1−k1,p

¯̄ ≤ D ef−1p (j + b− k1)
−1−α nα

≤ D

µ
p

j + b− k1

¶α

(j + b− k1)
−1 ,

since by Lemma 6.1 part (a) D−1 <
¯̄̄
f−1p

efp ¯̄̄ < D. So, using that supj |aj|τ ≤P
j |aj|τ , by Hölder’s inequality and that D−1 <

¯̄
φb+k1,p

¯̄
< D by Lemma 6.1 part

(a), we obtain that the first moment of (6.4) is bounded by

D

2k1 + 1

u/k
1/τ
1X

q=1+v/k
1/τ
1

2k1X
j=0

sup
p

µ
p

j + b− k1

¶τα

(j + b− k1)
−τ E

¯̄̄̄
¯

jX
a=0

((2π) Iε,a+b−k1 − 1)
¯̄̄̄
¯
τ

+D

u/k
1/τ
1X

q=1+v/k
1/τ
1

E

¯̄̄̄
¯̄ 1

2k1 + 1

2k1X
j=0

((2π) Iε,j+b−k1 − 1)
¯̄̄̄
¯̄
τ

which, because (2π)EIε,j+p = 1 and proceeding as in the proof of Brillinger’s (1981)
Theorem 7.4.4, is bounded by

D

u/k
1/τ
1X

q=1+v/k
1/τ
1

µ b

b− k1

¶τα
1

2k1

2k1X
j=0

(j + 1)τ/2

(j + b− k1)
τ + k

−τ/2
1


≤ D

u/k
1/τ
1X

q=1+v/k
1/τ
1

Ãµ
1

b

¶τ/2

+

µ
1

k1

¶τ/2
!
= O

Ã
max (u− v, k1)

k
τ/2+1/τ
1

!
,

because α < 1, b ≤ 2 (b− k1), q ≥ 1 + v/k
1/τ
1 and b = qk

1/τ
1 . Thus, we conclude

that the second term of (6.3) is O
³
max (u− v, k1) /k

τ/2+1/τ
1

´
.

Next, we examine the first term of (6.3). Because

ap,k1 =
2k1X
j=0

¡
φj+p−k1,p ((2π) Iε,j+p−k1 − 1)− φj+b−k1,p ((2π) Iε,j+b−k1 − 1)

¢
has at most k1/τ1 terms, and because (2π)EIε,j+p = 1 and proceeding as in the
proof of Brillinger’s (1981) Theorem 7.4.4, its τth moment is bounded by k

1/2
1 , so

that the expectation of the first term of (6.3) is bounded by

D

u/k
1/τ
1X

q=1+v/k
1/τ
1

bX
p=1+b−k1/τ1

k
1/2−τ
1 = op

Ã
u− v

k
τ/2+1/τ
1

!
,

because τ > 2. This completes the proof of part (a).



29

To show part (b), denoting ap = ef−1p n−1 − 1 and using (6.2), it suffices to
examine

sup
p
|ap| I

³
f̈p < n−1

´
≤ D sup

p
I
³ ef−1p f̈p − 1 < ap

´
.

But the expectation of the right side is bounded by

DEI
µ
sup
p

¯̄̄ ef−1p f̈p − 1
¯̄̄
> min

p
|ap|

¶
= DPr

½
sup
p

¯̄̄ ef−1p f̈p − 1
¯̄̄
> min

p
|ap|

¾
≤ D

µ
min
p
|ap|

¶−τ
E

µ
sup
p

¯̄̄ ef−1p f̈p − 1
¯̄̄¶τ

≤ D (ϕ (k1)I (p ≤ 2k1) + ψ (v, u)I (p > 2k1))
by Markov’s inequality and because

¡
supp |cp|

¢τ
= supp |cp|τ . ¤

Lemma 6.4. Let h (u) be a twice continuously differentiable function in (0, 1) such
that h (0) = h0 (0) = h (1) = 0 where h0 (u) = d

duh (u). Consider a sequence {νj}
such that

¯̄
j2νj

¯̄ ≤ D for all j. Then, for a > 2t, and denoting q = p− t+ 1,

pX
j=a+1

h (j/p) (νj − νj−t) = O

µ
t

p2
log
³p
t

´
+

t2

pq2
+

t

p2

¶
. (6.5)

Proof. The left side of (6.5) is

pX
j=p−t+1

h (j/p) νj −
aX

j=a−t+1
h ((j + t) /p) νj +

p−tX
j=a+1

(h (j/p)− h ((j + t) /p)) νj.

(6.6)
Since the first derivative of h (u) is continuous and h (1) = 0, from the mean value
theorem it follows that the absolute value of the first term of (6.6) is bounded by

D

pX
j=p−t+1

|(p− j) /p| |νj| = O
³
t2/
³
p (p− t+ 1)2

´´
= O

¡
p−1q−2t2

¢
,

using
¯̄
j2νj

¯̄ ≤ D. The absolute value of the second term of (6.6) is bounded by

D
aX

j=a−t+1

µ
j + t

p

¶2
|νj| = O

µ
t

p2

¶
,

since h (0) = h0 (0) = 0 and
¯̄
j2νj

¯̄ ≤ D, whereas the absolute value of the third
term of (6.6) is bounded by

D
t

p

p−tX
j=a+1

¯̄̄̄
h0
µ
j

p

¶
+

t

p
h00
µ
j

p
+ ξ

t

p

¶¯̄̄̄
|νj| = O

µ
t

p2
log
³p
t

´¶
by Taylor expansion of h0 (x) and using that h0 (0) = 0, where ξ = ξ (j) ∈ (0, 1). ¤

Lemma 6.5. Let ebt, eebt, b3t and b4t be given in (5.16), (5.10) and (5.15) respectively.
Then, for ρ < 1/3,

(a) sup
t≤ρk

t−1
¯̄̄
b3t −ebt ¯̄̄ = op

³
k−1/2

´
, (b) sup

t≤ρk
t−1

¯̄̄̄
b4t −eebt ¯̄̄̄ = op

³
k−1/2

´
.

Proof. We only examine part (a), part (b) is identical. Because by Lemma 6.3,
sup�=1,...,[n/2] |bg� − 1| = Op

¡
log−2 k1

¢
, then except in a set Ωn such that limnPr {Ωn} =
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0, log bg·+s = ϑ·+s − 2−1ϑ2·+s (1 + op (1)) by Taylor expansion, which implies that
for n sufficiently large, by definition of b3t,

sup
t≤ρk

t−1
¯̄̄
b3t −ebt ¯̄̄ ≤ D sup

t≤ρk
t−1

k−tX
p=2t+1

¯̄
ψp − ψp+t

¯̄
ϑ2p+s.

Because by Lemma 6.2, for |p| > 2k1, ϑ2p+s = Op

¡
k−11

¢
, for |p| < 2k1,

ϑ2p+s = Op

³
k
2(α−1)
1 I (α ≥ 1/2) + k−11

´
and by C.5,

¯̄
ψp − ψp+t

¯̄ ≤ D
¯̄
ψ0ξ
¯̄
t/k,

where ψ0p = ψ0 (p/k) and p ≤ ξ ≤ p+ t, the last displayed expression is

Op

Ã
I (α ≥ 1/2)
k
2(1−α)
1

2k1X
p=1

supt<2k1
¯̄
ψ0ξ
¯̄

k
+
1

k1

kX
p=1

supt≤ρk
¯̄
ψ0ξ
¯̄

k

!
= op

³
k−1/2

´
by C.5 and C.4. ¤

Lemma 6.6. Let φp = φ (p/k) where φ (u) is a continuous function in (0, 1).
Define

cr (µ;ϑ) =
2

nk1/2

[kϑ]X
p=[kµ]+1

φp cos (rλp)

where 0 ≤ µ < ϑ ≤ 1. For any µ < ϑ1 < ϑ2 ≤ 1, if k/n→ 0, then
n−1X
r1=1

n−r1X
r2=1

cr2 (µ;ϑ1) cr2 (µ;ϑ2) =

Z ϑ1

µ

φ2 (u) du (1 + o (1)) . (6.7)

Proof. The left side of (6.7) is

4

n2k

[kϑ1]X
p1=[kµ]+1

φp1

[kϑ2]X
p2=[kµ]+1

φp2

n−1X
r1=1

n−r1X
r2=1

cos (r2λp1) cos (r2λp2)

=
4

n2k

[kϑ1]X
p=[kµ]+1

φ2p

n−1X
r1=1

n−r1X
r2=1

cos2 (r2λp) (6.8)

+
2

n2k

[kϑ1]X
p1=[kµ]+1

φp1

[kϑ2]X
p2=[kµ]+1,p2 6=p1

φp2

n−1X
r1=1

n−r1X
r2=1

{cos (r2λp1+p2) + cos (r2λp1−p2)} .

Because, see Robinson (1995b),
Pn−1

r1=1

Pn−r1
r2=1

cos2 (r2λp) = (n− 1)2 /4, and
n−1X
r1=1

n−r1X
r2=1

{cos (r2λp1+p2) + cos (r2λp1−p2)} = −n, for p1 6= p2,

the right side of (6.8) is

(n− 1)2
n2

1
k

[kϑ1]X
p=[kµ]+1

φ2p

− 2

nk

[kϑ1]X
p1=[kµ]+1

φp1

[kϑ2]X
p2=[kµ]+1,p2 6=p1

φp2 =

Z ϑ1

µ

φ2 (u) du (1 + o (1)) ,

because φ (u) is continuous in u and k/n→ 0. ¤
Lemma 6.7. Denote ηp = (2π) Iε,p − 1 and φ (u) as in Lemma 6.6. The process

Rn (ϑ) =
1

k1/2

k−[kϑ]X
p=[kϑ]+1

φpηp; 0 ≤ ϑ ≤ 1/2

is tight.
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Proof. Since by Proposition 5.3, the finite limit distributions of Rn (ϑ) converge
to those of a Gaussian process with continuous paths, then by Billingsley’s (1968)
Theorem 15.6, it suffices to check the moment condition

E (|Rn (ϑ2)−Rn (ϑ)|τ |Rn (ϑ)−Rn (ϑ1)|τ ) ≤ D (ϑ2 − ϑ1)
ψ (6.9)

for some τ > 0, ψ > 1, where 0 ≤ ϑ1 < ϑ < ϑ2 ≤ 1/2. Because

Rn (ϑ)−Rn (ϑ2) =
1

k1/2

[kϑ2]X
p=[kϑ]+1

φpηp +
1

k1/2

k−[kϑ]X
p=k−[kϑ2]+1

φpηp

a sufficient condition for (6.9) to hold true is

E

¯̄̄̄¯̄ 1k1/2
[kϑ2]X

p=[kϑ]+1

φpηp

¯̄̄̄
¯̄
τ ¯̄̄̄
¯̄ 1k1/2

[kϑ]X
p=[kϑ1]+1

φpηp

¯̄̄̄
¯̄
τ ≤ D (ϑ2 − ϑ1)

ψ(6.10)

E

¯̄̄̄¯̄ 1k1/2
k−[kϑ]X

p=k−[kϑ2]+1
φpηp

¯̄̄̄
¯̄
τ ¯̄̄̄
¯̄ 1k1/2

k−[kϑ1]X
p=k−[kϑ]+1

φpηp

¯̄̄̄
¯̄
τ ≤ D (ϑ2 − ϑ1)

ψ .

We will examine (6.10) only, being the last displayed inequality similarly handled.
By definition of ηp,

1

k1/2

[kϑ2]X
p=[kϑ]+1

φpηp =

1
k

[kϑ2]X
p=[kϑ]+1

φp

Ãk1/2

n

nX
r=1

¡
ε2r − 1

¢!
+

nX
r=2

εr

r−1X
a=1

εacr−a (ϑ, ϑ2)

: = E1,n (ϑ, ϑ2) + E2,n (ϑ, ϑ2) ,

where cr (ϑ, ϑ2) was defined in Lemma 6.6. Because
¯̄̄P[kϑ2]

p=[kϑ]+1 φp

¯̄̄
≤ Dk |ϑ2 − ϑ|

by continuity of φ (x) andE
¡Pn

r=1

¡
ε2r − 1

¢¢2
< Dn by C.2, E (|E1,n (ϑ, ϑ2)| |E1,n (ϑ1, ϑ)|) ≤

(ϑ2 − ϑ1)
2 by the Cauchy-Schwarz inequality and that |ϑ2 − ϑ| |ϑ− ϑ1| < |ϑ2 − ϑ1|2.

That is, E1,n (ϑ, ϑ2) satisfies the inequality in (6.10) with τ = 1 and ψ = 2. So, to
complete the proof, it suffices to examine that the inequality in (6.10) holds true
for E2,n (ϑ, ϑ2). The fourth moment of E2,n (ϑ, ϑ2) is

E

 nX
2=r1≤r2≤r3≤r4

4Y
j=1

εrj

rj−1X
aj=1

εajcrj−aj (ϑ, ϑ2)

 ≤ D
4Y

j=1

 X
1≤aj≤rj≤n

c2rj−aj
(ϑ, ϑ2)

1/2

= D

 X
1≤a≤r≤n

c2r−a (ϑ, ϑ2)

2

,

proceeding as in the proof of Lemma 5.4 of Giraitis et al. (2001). But proceeding
as in Lemma 6.6, the right side of the last displayed equation is bounded by

D

ÃZ ϑ2

ϑ

φ2 (u) du

!2
≤ D (ϑ2 − ϑ1)

2

since φ (u) is continuous. This concludes the proof choosing τ = ψ = 2. ¤
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Lemma 6.8. Let 2k1 ≤ t0 < ρk for some arbitrarily small ρ > 0. Then,

(a)


sup2k1<t≤t0

¯̄̄̄
t−1

µbξ(5)n (t)− b3t

¶¯̄̄̄
= Op

³
t0
kkβ

1

+ k1t0
k2 log k1

´
sup2k1<t≤t0

¯̄̄̄
t−1

µbξ(6)n (t)− b4t

¶¯̄̄̄
= Op

³
t0
kkβ

1

+ k1t0
k2 log k1

´ (6.11)

(b)


supLk1/2<t≤2k1

¯̄̄̄
t−1

µbξ(5)n (t)− b3t

¶¯̄̄̄
= Op

³
k21

k2 log k1
+ k1

kkβ
1

´
supLk1/2<t≤2k1

¯̄̄̄
t−1

µbξ(6)n (t)− b4t

¶¯̄̄̄
= Op

³
k21

k2 log k1
+ k1

kkβ
1

´ (6.12)

where b3t and b4t are given by (5.10) and (5.15) respectively, and L > 0 and β > 0.

Proof. We begin with (a). We only examine the first equality in (6.11), being the
proof of the second equality similarly handled. By definition, see Proposition 5.3,bξ(5)n (t) = b1t + b2t. First, sup2k1<t≤t0

¯̄
t−1b1t

¯̄
satisfies the equality in (6.11) by

C.5 and since the sum in p has at most 2k1 terms, say p∗ = 1, ..., 2k1, for which
supp∗=1,...,2k1 |log bgp∗+s| = Op

¡
log−1 k1

¢
, whereas for the remaining terms

supp=1,...,k;p 6=p∗ |log bgp+s| = Op

³
k−β1

´
using (5.7) and (5.9).

Next we estimate b2t − b3t. First by (5.11), sup2k1<t≤t0 t
−1 |b2t − b3t| is

sup
2k1<t≤t0

t−1

¯̄̄̄
¯̄ kX
p=k−t+1

ψp log (bgp+s)− 2tX
p=t+1

ψp+t log (bgp+s)
¯̄̄̄
¯̄ = Op

³
t0k
−1k−β1 + t20k

−2k−β1
´
,

by C.5 and using (5.7) and (5.9) and Markov’s inequality.
Part (b). As was done in part (a), we only examine the first equality in (6.12), be-

ing the second similarly handled. By C.5 and (5.7) and (5.9) together with Markov’s
inequality, it follows easily that supLk1/2<t≤2k1

¯̄
t−1b1t

¯̄
= Op

¡
k−2k21 log

−1 k1
¢
. Fi-

nally, we estimate b2t − b3t. As was done in part (a), it suffices to examine

sup
Lk1/2<t≤2k1

t−1


¯̄̄̄
¯̄ kX
p=k−t+1

ψp log (bgp+s)
¯̄̄̄
¯̄+

¯̄̄̄
¯

2tX
p=t+1

ψp+t log (bgp+s)
¯̄̄̄
¯
 .

The second term of the last displayed expression is Op

¡
k21k
−2 log−1 k1

¢
by C.5 and

using (5.7) − (5.8), whereas the first term is Op

³
k1k−1k

−β
1

´
using C.5 and (5.7)

and (5.9), which concludes the proof. ¤

Lemma 6.9. Let φ (u) be as in Lemma 6.6. Then,

sup
ω∈[0,1]

¯̄̄̄
¯̄ 1k1/2

[kω]X
j=1

φj

µ
Ij+s
fj+s

− 2πIε,j+s
¶¯̄̄̄¯̄ = op (1) .

Proof. Writing uj = f
−1/2
j+s ωj+s,x and vj = (2π)

1/2 ωj+s,ε where ωj+s,x and ωj+s,ε

are the discrete Fourier transforms of xr and εr respectively the left side of the last
displayed expression is, by triangle inequality, bounded by

sup
ω∈[0,1]

1

k1/2

[kω]X
j=1

¯̄
φj
¯̄ |uj − vj|2 + 2 sup

ω∈[0,1]

¯̄̄̄
¯̄ 1k1/2

[kω]X
j=1

φjvj (uj − vj)

¯̄̄̄
¯̄ , (6.13)

where c denotes the conjugate of the complex number c.
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The first term of (6.13) is op (1) since its expectation is bounded by

k−1/2
kX

j=1

¯̄
φj
¯̄ n³

E |uj|2 − 1
´
− (E (ujvj)− 1)− (E (ujvj)− 1) +

³
E |vj|2 − 1

´o

= O

k−1/2
kX

j=1

log j

j

 (6.14)

because E |vj|2 = 1,
¯̄
φj
¯̄ ≤ D and the extension of Theorems 1 and 2 of Robinson

(1995a) given in Lemma 4.4 of Giraitis et al. (2001).
Next, to show that the second term of (6.13) is op (1), it suffices to show that

the finite dimensional distributions of the term inside the absolute value con-
verge to zero and the tightness condition. First, choosing ω∗1 such that [kω∗1] =
max

¡£
kζ
¤
, [kω1]

¢
for some 0 < ζ < 1/4, then for any 0 < ω1 < ω2 < 1,

E
¯̄̄
k−1/2

P[kω2]
j=1+[kω1]

φjvj (uj − vj)
¯̄̄2
is bounded by

2E

¯̄̄̄
¯̄̄k−1/2 [kω2]X

j=1+[kω∗1]

φjvj (uj − vj)

¯̄̄̄
¯̄̄
2

+ 2k−1 [kω∗1] ([kω
∗
1]− [kω1]) (6.15)

≤ Dk−1 log2 k
³³
[kω2]

1/2 − [kω∗1]1/2
´
(log (kω2)− log (kω∗1)) + [kω∗1] ([kω∗1]− [kω1])

´
,

proceeding as with (4.8) in Robinson (1995b). So, the finite dimensional distrib-
utions of the second term of (6.13) converge to zero in probability by Markov’s
inequality.
To complete the proof we need to show tightness. Since the limiting process has

continuous paths, by Billingsley’s (1968) Theorem 15.6, it suffices to show that

E

¯̄̄̄
¯̄k−1/2 [kω2]X

j=1+[kω1]

φjvj (uj − vj)

¯̄̄̄
¯̄
4

≤ D (H (ω2)−H (ω1))
1+δ (6.16)

where δ > 0, 0 < ω1 < ω2 < 1 and H (ω) is a nondecreasing continuous function.
The left side of (6.16) is bounded by

k−2
¡|M4|+ 3M2

2

¢
where Mr denotes the rth cumulant of

P[kω2]
j=1+[kω1]

φjvj (uj − vj). Using the in-

equality in (6.15), k−2M2
2 ≤ D (H (ω2)−H (ω1))

1+δ, so it remains to show that
k−2 |M4| satisfies the inequality in (6.16). Now k−2 |M4| is

1

k2

[kω2]X
j1,j2,j3,j4=1+[kω1]

Ã
4Y

i=1

φji

!
cum (vj1zj1 , vj2zj2 , vj3zj3 , vj4zj4) (6.17)

where we have abbreviated uj − vj by zj. By Theorem 2.3.2 of Brillinger (1981)
and denoting Xj1 = φjvj and Xj2 = φjzj,

(6.17) =
1

k2

X
ϑ

cum (Xj�; j! ∈ ϑ1) ...cum (Xj�; j! ∈ ϑp)

where the summation is over all indecomposable partitions ϑ = ϑ1 ∪ ... ∪ ϑp. A
typical component in cum (Xj�; j! ∈ ϑ1) has q1 elements vj and q2 elements zj, so
applying formulae of Brillinger [ (1981), (2.6.3), page 26 and (2.10.3), page 39], we
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deduce after straightforward calculations that cum (Xj�; j! ∈ ϑ1) is
Q

j∈υ1 φj times

µq1+q2
k(q1+q2)/2

Z
[−π,π]q1+q2−1

β
³
λ1 + ...+ λ(q1−1) + ν1 + ...+ νq2

´
β
¡−λ1¢ ...β ¡−λq1−1¢

βj1 ...βjq1

×eβ ¡−ν1¢ ...eβ (−νq2)Ej1...jq1�1...�q2

³
λ1, ..., λ(q1−1), ν1, ..., νq2

´
dλ1...dλ(q1−1)dν1...dνq2 ,

where Ej1...jq�1...�p

³
λ1, ..., λ(q−1), ν1, ..., νp

´
is

G
³
λj1 −

h
λ1 + ...+ λ(q−1) + ν1 + ...+ νp

i´
G
¡
λj2 + λ1

¢
×...G

³
λjq + λ(q−1)

´
G
¡
ν1 − λ�1

¢× ...×G
¡
νp − λ�p

¢
,

with G (λ) =
Pn

t=1 e
itλ and, say, eβ ¡−ν1¢ = β−1�1

β
¡−ν1¢ − 1. But by a routine

extension of Lemma 3 of Robinson (1995b) and observing that in each partitioned
υ, the subindex ji, i = 1, ..., 4, appears only once

(6.17) ≤ Dk−2

 [kω2]X
j=1+[kω1]

1

j1/2

4

≤ D (H (ω2)−H (ω1))
4 ,

where H (ω) = ω1/2 which is a nondecreasing continuous function. ¤
Remark 6.1. An alternative proof of this lemma can be found in Lemma 4 of
Delgado et al. (2004).

Lemma 6.10. (Brillinger, 1981 p. 15) Let h (x), 0 ≤ x ≤ 1, be integrable and
have an integrable derivative h(1) (x). Then

1

n

nX
j=0

h

µ
j

n

¶
−
Z 1

0

h (x) dx =
1

2n
(h (0) + h (1))+

1

n

Z 1

0

µ
nx− [nx]− 1

2

¶
h(1) (x) dx. ¤

7. CONCLUSIONS

In this paper we have studied a nonparametric estimator for the pole of a long
memory process under mild conditions on the spectral density f (λ). Specifically,
we have only assumed that f (λ) ∼ C

¯̄
λ− λ0

¯̄−α
with C > 0, but smooth elsewhere,

and where α, the memory parameter, belongs to the interval (0, 1). We have shown

that the estimator bλ0 of the pole λ0 is consistent and we have characterized its

limit distribution. More precisely, bλ0, centered around λ0 and appropriately renor-
malized, is asymptotically normal when λ0 ∈ (0, π), whereas if λ0 = 0 or π, the
asymptotic distribution is a mixture of a discrete and continuous random variable.
In particular, when λ0 = 0 the asymptotic distribution takes the value 0 with prob-
ability 1/2 and behaves as a (truncated) normal random variable for positive values.
In addition, we have shown that the asymptotic statistical properties of a two step
estimator of α are the same as when λ0 is known.
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Table 4.1

Bias and Standard Deviation of bq and eq
α

0.2 0.4 0.6 0.8
9.35 (8.33) 6.38 (6.96) 4.24 (5.39) 2.80 (4.04)

λ0 = 0 256
n 9.26 (7.88) 7.32 (6.85) 5.94 (6.01) 4.85 (5.25)

15.40 (15.50) 8.43 (10.74) 4.81 (7.64) 2.62 (5.76)
1024

22.91 (25.31) 15.55 (20.89) 9.60 (14.02) 6.73 (9.96)
0.003 (7.64) -0.084 (5.33) -0.091 (2.96) -0.054 (1.56)

256
0.209 (9.59) 0.270 (9.21) 0.272 (8.66) 0.320 (7.28)

λ0 = π

2 n 0.051 (11.87) 0.117 (4.77) 0.063 (1.89) 0.216 (1.13)
1024

0.435 (27.89) 0.144 (25.77) -0.213 (21.30) -0.060 (13.52)
The first row in each cell corresponds to bq, whereas the second row is that of eq.
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Table 4.2

Bias, Standard Deviation and MSE of the long-memory parameter estimators
λ0 n α

0.2
BIAS S.D M.S.E.

0.4
BIAS S.D M.S.E.

0.6
BIAS S.D M.S.E.

0.8
BIAS S.D M.S.E.

-0.020 0.064 0.004 -0.022 0.067 0.005 -0.017 0.071 0.005 -0.006 0.072 0.005
256 -0.019 0.057 0.004 -0.030 0.065 0.005 -0.024 0.074 0.006 -0.006 0.075 0.006

-0.001 0.089 0.008 -0.003 0.089 0.008 -0.003 0.089 0.008 -0.007 0.082 0.007
0 -0.015 0.084 0.007 -0.043 0.090 0.010 -0.064 0.099 0.014 -0.079 0.105 0.017

-0.006 0.024 0.001 -0.003 0.025 0.001 0.007 0.031 0.001 0.026 0.031 0.002
1024 -0.015 0.030 0.001 -0.014 0.035 0.001 0.002 0.040 0.002 0.032 0.045 0.003

-0.002 0.042 0.002 -0.003 0.042 0.002 -0.005 0.042 0.002 -0.005 0.042 0.002
-0.022 0.045 0.003 -0.039 0.054 0.004 -0.046 0.059 0.006 -0.051 0.066 0.007

-0.020 0.055 0.003 -0.035 0.059 0.005 -0.041 0.064 0.006 -0.040 0.070 0.006
256 -0.010 0.046 0.002 -0.020 0.053 0.003 -0.004 0.062 0.004 0.043 0.059 0.005

0.002 0.094 0.009 0.000 0.094 0.009 0.000 0.093 0.009 0.005 0.084 0.007
π

2 -0.050 0.098 0.012 -0.083 0.121 0.022 -0.100 0.156 0.034 -0.083 0.182 0.040
-0.012 0.022 0.001 -0.015 0.024 0.001 -0.007 0.028 0.001 0.014 0.034 0.001

1024 -0.014 0.018 0.001 -0.017 0.020 0.001 -0.003 0.024 0.001 0.044 0.035 0.003
-0.002 0.038 0.001 -0.004 0.038 0.001 -0.006 0.038 0.001 -0.007 0.038 0.001
-0.039 0.046 0.004 -0.064 0.069 0.009 -0.061 0.096 0.013 -0.023 0.097 0.010

The first row in each cell corresponds to the estimator bα(λ0), whereas the second,
third and fourth correspond to the estimators

∨
α(bλ0), bαLOG(λ

0) and bαLOG(eλ0)
respectively.


