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Abstract

Semiparametric estimates of long memory seem useful in the analysis of
long financial time series because they are consistent under much
broader conditions than parametric estimates. However, recent large
sample theory for semiparametric estimates forbids conditional
heteroscedasticity. We show that a leading semiparametric estimate, the
Gaussian or local Whittle one, can be consistent and have the same
limiting distribution under conditional heteroscedasticity as under
conditional homoscedasticity assumed by Robinson (1995a). Indeed,
noting that long memory has been observed in the squares of financial
time series, we allow, under regularity conditions, for conditional
heteroscedasticity of the general form introduced by Robinson (1991)
which may include long memory behaviour for the squares, such as the
fractional noise and autoregressive fractionally integrated moving
average form, as well as standard short memory ARCH and GARCH
specifications.

Keywords: long memory; dynamic conditional heteroscedasticity;
semiparametric estimation.
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1 Introduction

In recent years, tools for investigating possible long memory in time series have been

considerably developed. Early work of Mandelbrot (1969) considered the possibil-

ity of long memory modelling in economic and �nancial time series, his work and

that of Adenstedt (1974) began parametric modelling of long memory, while Geweke

and Porter-Hudak (1983) introduced semiparametric procedures, and empirical ap-

plications have become numerous. A review of the literature from an econometric

standpoint is in Robinson (1994). Very long, approximately stationary series, such as

series of asset returns and other �nancial measurements, are best analyzed, at least at

an initial stage, by semiparametric estimates. They have the advantage of avoiding

precise speci�cation in that they parametrically model only the low frequency part of

the spectral density (or the long-lagged autocovariances), thus avoiding inconsistency

in estimation of even the low frequency structure that would be caused by misspec-

i�cation (or over�tting) of the short memory dynamics. Semiparametric estimates

have a slower rate of convergence than parametric ones, but with su�cient data this

concern may be outweighed by their greater robustness properties.

We semiparametricallymodel long memory in a covariance stationary series xt, t = 0,

�1; : : : ; by

f(�) � G�1�2H as �! 0+; (1.1)

where 1
2 < H < 1 and 0 < G <1, f(�) being the spectral density of xt satisfying

j = cov(xt; xt+j) =
Z �

��
f(�) cos(j�) d�; j = 0;�1; : : : : (1.2)

Under (1.1), f(�) has a pole at � = 0 for 1=2 < H < 1 (when there is long memory

in xt), f(�) is positive and �nite for H = 1=2 (which we identify with short memory

in xt) and f(0) = 0 for 0 < H < 1=2 (which we describe as negative dependence

or antipersistence). Two leading semiparametric estimates of the memory param-

eter H are the log periodogram estimate of Geweke and Porter-Hudak (1983) and

the Gaussian or local Whittle estimate of K�unsch (1987). Only recently has asymp-

totic distributional theory of these estimates been laid down, by Robinson(1995a,b),

though earlier attempts in case of the log periodogram estimate appear in the litera-

ture, and in fact, the version of the log periodogram estimate considered by Robinson

(1995b) di�ers from the original, and also provides e�ciency improvements. Even

with such improvements, the Gaussian semiparametric estimate is the more e�cient.

Unlike the log periodogram estimate, it is not de�ned in closed form, but nonlin-

ear optimization is only needed with respect to a single parameter, H, and can be

accomplished rapidly.
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The asymptotic theory of Robinson(1995a,b) rules out the possibility of conditional

heteroscedasticity, and this seems a drawback in case of �nancial series for which

semiparametric estimates otherwise seem appropriate. Indeed, Robinson (1995b)

analyzed the log periodogram under the assumption that xt is Gaussian. For the

Gaussian semiparametric estimate he made the weaker assumption

xt = E(xt) +
1X
j=0

�j"t�j;
1X
j=0

�2j <1; (1.3)

where the "t satisfy at least

E("tjFt�1) = 0 almost surely (a.s.); (1.4)

�2t
def.
= V ("tjFt�1) = �2 a.s.; (1.5)

for all t, where Ft is the �-�eld of events generated by ("s; s � t) and �2 is a constant.

We would like to relax (1.5) to allow for the possibility of autocorrelation in the "2t ,

for example in some �nancial applications, the levels xt can be approximated by

a martingale sequence (so �j = 0; j > 0) but the squares x2t = "2t cannot, so

that the sequence xt is not a sequence of independent random variables. In fact,

empirical evidence (see, e.g. Ding, Granger, and Engle (1993)) has also suggested

that dependence in the squares can fall o� very slowly, in a way that is possibly more

consistent with long memory than with standard short memory ARCH and GARCH

speci�cations.

In fact, prior to Ding, Granger, and Engle (1993), GARCH-type models admitting

the possibility of long memory had already been proposed by Robinson (1991) and

applied to �nancial time series by Whistler (1990). Robinson (1991) considered the

speci�cations

�2t = �2 +
1X
j=1

 j("
2
t�j � �2) (1.6)

and

�2t =

0
@� + 1X

j=1

 j"t�j

1
A
2

We shall discuss only the \ARCH(1)" speci�cation (1.6). This can be reparameter-

ized as

�2t = � +
1X
j=1

 j"
2
t�j
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and includes both standard ARCH (when  j = 0; j > p, for �nite p) and GARCH

(when the  j decay exponentially) models. More generally, if, for complex valued z,

 (z) = 1�
1X
j=1

 jz
j (1.7)

satis�es

j (z)j 6= 0; jzj � 1; (1.8)

de�ne

�(z) =
1X
j=0

�jz
j =  (z)�1; �0 = 1: (1.9)

Then Robinson (1991) rewrote (1.6) as

"2t � �2 =
1X
j=0

�j�t�j ; (1.10)

where

�t = "2t � �2t (1.11)

satis�es

E(�tjFt�1) = 0 a.s.; (1.12)

by construction. The requirement

0 <
1X
j=0

�2j <1 (1.13)

includes the traditional long memory speci�cations of moving average coe�cients, for

example the autoregressive fractionally integrated moving average (ARFIMA) case

�(z) = (1� z)�d
b(z)

a(z)
; (1.14)

for 0 < d < 1
2 and �nite order polynomials a(z) and b(z) whose zeros are outside the

unit circle in the complex plane, and the fractional noise case

corr
�
"2t ; "

2
t+j

�
=

P1
i=0 �i�i+jP1

i=0 �
2
i

=
1

2

n
jj � 1j2d+1 � jjj2d+1 + jj + 1j2d+1

o
: (1.15)

Robinson (1991) developed Lagrange multiplier tests for no-ARCH against alterna-

tives consisting of general �nite parameterization of (1.6), specializing to (1.14) and

(1.15). In both these cases, the autoregressive weights �j satisfy

1X
j=0

j jj <1: (1.16)
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Under

max
t
E
�
"4t
�
<1; (1.17)

it follows that

E
�
�2t
�
� 2

�
E
�
"4t
�
+ E

n
E
�
"2t jFt�1

�o2�

� 4E
�
"4t
�
� K; (1.18)

where K is a generic �nite constant, so that the innovations �t in (1.10) are square

integrable martingale di�erences, "2t is well de�ned as a covariance stationary process

and its autocorrelations can exhibit the usual long memory structure implied by (1.14)

or (1.15). Even if (1.17) does not hold, the \autocorrelations"
P1

i=0 �i�i+j=
P1

i=0 �
2
i

are well de�ned under (1.13). Giraitis, Kokoszka, and Leipus (1998) have derived

su�cient conditions for a stationary solution of (1.6), given that "t = �t�t for i.i.d.

�t and  j � 0 for all j, which do not cover long memory in "2t , so the character of

solutions of (1.6) remains open to further study.

Subsequent to Robinson (1991), similar long memory versions of (1.6) have been

pursued by Baillie, Bollerslev, and Mikkelsen (1996), Ding and Granger (1996) and

others, for example, the model labelled (4.27) in Ding and Granger (1996) was dis-

cussed in Section 5 of Robinson (1991), being the case a = b � 1 in (1.10), (1.14)

above. Alternative models which provide long memory in squares and short memory

in levels were proposed by Robinson and Za�aroni (1997,1998).

In view of the empirical evidence of Whistler (1990) and Ding, Granger, and Engle

(1993), it seems appropriate to allow for possible long memory in "2t in inference on

long memory in xt. In this paper, we consider the Gaussian semiparametric estimate

of H in these circumstances, partly because it is well motivated by superior e�ciency

properties under the previous conditions, and because the log periodogram estimate

(and some others) are technically more complex and cumberome to handle when

Gaussianity is relaxed, due to their highly nonlinear structure.

The following section describes the Gaussian semiparametric estimate of H. Because

the estimate is of the implicitly de�ned extremum type, one has to establish consis-

tency prior to deriving limiting distributional behaviour, and these tasks are carried

out in Sections 3, the proofs appearing in an appendix. Section 4 reports a small

Monte Carlo study of �nite sample behaviour. Section 5 contains some concluding

comments.
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2 Semiparametric Gaussian estimate

On the basis of observations xt, t = 1; : : : ; n, de�ne the periodogram

I(�) =
1

2�n

�����
nX

t=1

xte
it�

�����
2

;

and consider estimating H by

Ĥ = argmin�1�h��2
R(h);

where 0 < �1 < �2 < 1 and

R(h) = log

8<
: 1

m

mX
j=1

I(�j)

�1�2hj

9=
;� (2h� 1)

1

m

mX
j=1

log �j ;

in which m 2 (0; [n=2]) and �j = 2�j=n.

As explained in Robinson (1995a), for m = [n=2], Ĥ is a form of Gaussian or Whit-

tle estimate under the parametric model f(�) = Gj�j1�2H , all � 2 (��; �], and its

asymptotic properties would be approximately covered by Fox and Taqqu (1986),

Giraitis and Surgailis (1990) and others, under Gaussianity, or more generally the

assumption that xt is linear with independent and identically distributed innova-

tions. (These authors considered continuous, rather than discrete, averaging over

frequencies.) When m < [n=2] such that, as n ! 1,

1

m
+

m

n
!1; (2.1)

Ĥ can be viewed as a semiparametric estimate based on (1.1), and can be derived

by concentrating out the scale factor from a narrow-band form of Whittle objective

function. Under (1.1), (1.3)-(1.5) and (2.1), and other regularity conditions, Robinson

(1995a) showed that Ĥ is consistent for H, and under further conditions that

m
1

2 (Ĥ �H)!d N(0;
1

4
) as n ! 1: (2.2)

The bandwidth parameter m is analogous to that employed in weighted periodogram

estimates of the spectral density of short memory processes. Clearly (2.1) is a min-

imal requirement for consistency under (1.1). Henry and Robinson (1996) discussed

optimal choices of m in the determination of Ĥ.

The compact set [�1;�2] of admissible h values in Robinson (1995a) can include ones

between 1
2 and 1, where there is long memory, ones between 0 and 1

2 , where there is

negative dependence or antipersistence, and h = 1
2 , where there is short memory. It
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seems desirable to avoid assuming, say, 1
2
< H < 1, a priori, but rather to allow also

for the possibility that H � 1
2
, especially in view of the very mixed evidence of the

existence of long memory in levels of �nancial series (see, e.g. Lo (1991), Lee and

Robinson (1996)), in view of the e�cient markets hypothesis, under which H = 1
2
,

and in view of the possibility that log price levels may be nonstationary with less than

a unit root, in which case returns can exhibit negative dependence (as in Henry and

Payne (1997)). By contrast, the bulk of asymptotic theory relevant to long memory

assumes a priori that long memory exists.

It turns out that not only is Ĥ still consistent for H in the presence of the (possi-

bly long memory) ARCH behaviour described in the previous section (although with

stronger moment conditions), but (2.2) holds in detail with the same asymptotic vari-

ance, so that no features of the ARCH structure de�ned by (1.6) or (1.10) enter. This

outcome is not entirely predictable, since ARCH-type behaviour can a�ect limiting

distributional properties (see, e.g. Weiss (1986), Kuersteiner (1997)). It is especially

desirable in the present case. This is in the �rst place due to the simplicity of the

limiting variance in (2.2), which is independent of both H and G. Moreover, although

maximum likelihood estimation of parametric versions of (1.10), such as (1.14) and

(1.15), is implicit in the derivation of LM tests by Robinson (1991), no rigorous

asymptotic theory exists for such estimates, apart from the ARCH and GARCH spe-

cial cases studied by Weiss (1986), Lee and Hansen (1994) and Lumsdaine (1996).

Thirdly, there is no asymptotic theory available for semiparametric estimation of the

memory parameter determining the asymptotic behaviour of the  j or �j in (1.6) and

(1.10). We will return to this last point in section 5. Our derivation of the asymptotic

properties of Ĥ follows the main steps of the proof in Robinson (1995a), and uses

a number of properties established there, but it also di�ers signi�cantly, posing new

challenges. This appears to be the �rst paper which develops asymptotic theory in a

long memory context that allows for ARCH structure. Long memory is not covered

by the mixing conditions stressed in much econometric literature, the long memory

literature featuring either Gaussian processes (e.g. Fox and Taqqu (1986), Robinson

(1995b)), nonlinear functions of Gaussian processes (e.g. Taqqu (1979)), linear �lters

of independently and identically distributed sequences (e.g. Giraitis and Surgailis

(1990)), nonlinear functions of such linear �lters (`Appel polynomials', see Giraitis

and Surgailis (1986)), as well as the model (1.3)-(1.5). None of these approaches

represents conditional heteroscedasticity in a martingale di�erence sequence.
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3 Consistency and asymptotic normality of the Gaussian

semiparametric estimate.

We introduce the following assumptions.

Assumption A1 For H 2 [�1;�2], 0 < �1 < �2 < 1, and 0 < G < 1, f(�)

satis�es (1.1).

Assumption A2 In a neighbourhood (0; �) of the origin, f(�) is di�erentiable and

d

d�
log f(�) = O(��1) as �! 0+:

Assumption A3 xt satis�es (1.3), (1.4) and (1.17) with �2t given by (1.6) such that

(1.16) holds and the �j de�ned by (1.7)-(1.9) satisfy (1.13). In addition either

E
�
"3t jFt�1

�
= E("3t ) a.s.; t = 0;�1 : : : ; (3.1)

or

1X
j=0

j�jj <1: (3.2)

Assumption A4 m satis�es (2.1).

Assumptions A1, A2 and A4 are identical to the equivalently-numbered ones of Robin-

son (1995a). We stress that only local (to zero) assumptions are made on f(�), so

that it need not be smooth, or even bounded (or nonzero) outside a neighbourhood

of the origin. In place of the current Assumption A3, Robinson (1995a) assumed

(1.3)-(1.5) with a homogeneity condition, so that we require more moments while

allowing for ARCH behaviour, possibly with long memory. The requirement (3.1)

that conditional third moments be nonstochastic is restrictive, but satis�ed if "t has

a conditionally symmetric density, or, more specially, if

"tjFt�1 � N(0; �2t ): (3.3)

The alternative requirement (3.2) rules out long memory in "2t but covers standard

ARCH and GARCH speci�cations (that is (1.14) with d = 0), as well as many pro-

cesses for which autocorrelation in squares decays more slowly than exponentially.

Note that (1.17) itself entails a restriction on the magnitude of the �j; see for in-

stance the results of Engle (1982), Bollerslev (1986) for ARCH(1) and GARCH(1,1)
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processes under (3.3), and of Nelson (1990) under more general distributional assump-

tions. However, (1.17) is not a necessary condition, and indeed, under (3.2) it can be

shown to be unnecessary by means of a longer argument, involving truncations, than

that in the proof of the following theorem.

Theorem 1 Under Assumptions A1-A4,

Ĥ !p H; as n ! 1:

The limiting distributional properties of Ĥ rest on stronger conditions than those

su�cient for consistency.

Assumption A1' For some � 2 (0; 2],

f(�) � G�1�2H
�
1 +O(��)

�
as �! 0+;

where G 2 (0;1) and H 2 [�1;�2].

Assumption A2' In a neighbourhood (0; �) of the origin, �(�) is di�erentiable and

d

d�
log j�(�)j = O(

j�(�)j
�

) as �! 0+;

where �(�) =
P1

j=0�je
ij�.

Assumption A3' The �rst sentence of Assumption A3 holds, and

max
t
E"8t <1; (3.4)

E
�
"2t"u"v�1

�
= 0; E

�
"4t"ujFu�1

�
= E

�
"4t "

2
u"vjFv�1

�
= 0; a.s.; t � u � v; (3.5)

�j = O(jd�1); as j!1; d <
1

2
; (3.6)

�j = O(jH�
3

2 ); as j!1; (3.7)

and the �j are quasi-monotonically decreasing.

Assumption A4' As n ! 1

1

m
+
m1+2�(logm)2

n2�
+
(m logm)2

n
! 0; (3.8)

and, if (3.2) does not hold, for the same d as in Assumption A3'

m(logm)

n
1

2
�d

! 0: (3.9)

8



Compared to the corresponding assumptions in Robinson (1995a), Assumptions A1'

and A2' are unchanged (still restricting f(�) only near the origin, such that � in-

dicates the smoothness of f(�)=G�1�2H there), but Assumptions A3' and A4' trade

o� the relaxation of constant conditional innovations variances and fourth moments

with some strengthening of conditions. The eighth moment condition (3.4) replaces

the fourth moment condition of Robinson (1995a), while, when there is long memory

in the "2t , extension of (3.1) to (3.5) is again satis�ed in case (3.3). The strengthening

of moment conditions is a matter both of practical concern, in view of the charac-

teristics of much �nancial data, and of theoretical concern in view of the results of

Engle (1982), Bollerslev (1986), Nelson (1990), for example. As with Theorem 1, it

is likely that Theorem 2 below can be established under a milder moment condition

by a more detailed argument. Note, however, that Davis and Mikosch (1997) have

shown that the sample autocorrelations of squares of ARCH(1) sequences have non-

degenerate probability limits when fourth moments do not exist. Condition (3.5) is

seen to hold under (3.3), on noting that then

E
�
"4t jFt�1

�
= 3�2t ; E

�
"6t jFt�1

�
= 15�6t ; a.s.;

and applying these properties and (1.4), (1.6) and (1.16) recursively. Condition (3.6)

strengthens (1.13) while being satis�ed in the examples (1.14) and (1.15). d can

be arbitrarily close to 1
2
, so that (3.6) is not of great concern in itself, except that

(3.9) strengthens (3.8) unless d � (1 � 2�)=(4� + 2), which is possible only when

� < 1
2
is chosen in (3.8), whereas when the levels xt themselves have fractional noise

or ARFIMA long memory (analogous to models (1.15) and (1.14) for "2t ), � = 2 is

available in Assumption A1'. In (3.8), the requirement (m logm)2=n! 0 was not in

Robinson (1995a), but it does not bind when � � 1
2
. Fractional noise and ARFIMA

xt satisfy (3.7), which is consistent with Assumption A1', and also satisfy the quasi-

monotonicity assumption on the �j, which entails (see Yong (1974)), for all su�ciently

large j

j�j � �j+1j � K
j�jj
j
: (3.10)

In fact, we believe that this requirement, and (3.9), could be removed or relaxed by

a more detailed proof, but the quasi-monotonicity requirement does not seem very

onerous, while (3.9) is also needed when the "2t have long memory, and there always

exists an m sequence satisfying both (3.8) and (3.9).

Theorem 2 Under Assumptions A1'-A4', (2.2) holds.

The most notable aspect of this Theorem 2 is that the asymptotic variance, 1/4,

achieved by Robinson (1995a) is not a�ected by the conditional heteroscedasticity.
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For readers not wishing to go through the proof of Theorem 2 in the appendix, we

provide here a briefer, more intuitive explanation of this outcome, in case of the

simple ARCH(1) model

�2t = � +  1"
2
t�1: (3.11)

The most likely way in which conditional heteroscedasticity could a�ect the asymp-

totic variance is through the variance of the normalized score m
1

2dR(H)=dh. It turns

out (see Robinson (1995a)) that this can be approximated by a quantity proportional

to

nX
t=2

zt; (3.12)

where

zt = "t�t; �t =
t�1X
s=1

"sct�s (3.13)

cs =
2

nm
1

2

mX
j=1

bj cos(s�j); bj = log j � 1

m

mX
i=1

log i: (3.14)

Now the asymptotic variance of (3.12) is una�ected by conditional heteroscedasticity

if

nX
t=2

E
n�
�2t � �2

�
�2t
o
! 0; as n!1: (3.15)

Under (3.11), (3.15) is proportional to

nX
t=2

E
�
�t�1�

2
t

�
=

nX
t=2

E

 
�t�1

t�1X
s=1

c2t�s�s

!
+

nX
t=2

E

0
@�t�1

t�1X
v 6=s

"v"sct�vct�s

1
A ; (3.16)

where �t = "2t � �2. The second term on the right is zero on applying (1.10), nested

conditional expectations, (3.1) and (1.4). The �rst term on the right of (3.16) is

bounded in absolute value by

nX
t=2

t�1X
s=1

c2t�sjt�s�1j; (3.17)

where j = cov("2t ; "
2
t+j). (3.17) tends to zero by the Toeplitz lemma becausePn

t=2

Pt�1
s=1 c

2
t�s ! 1 (see Robinson (1995a)) and j ! 0 as j ! 1 under (3.11);

in fact arbitrarily slow decay in the autocorrelations of the squares "2t su�ces.
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4 Finite sample comparison

While the asymptotic properties of Ĥ which we have established are highly desir-

able, and reassuring in applications to long �nancial series, it is of interest to ex-

amine their relevance to series of more moderate length. For example, conditional

heteroscedasticity might worsen the normal approximation in (2.2), and if there is

considerable persistence, of the ARCH or GARCH type or especially of the long

memory type which our asymptotics may also permit, the variance of Ĥ might di�er

considerably from 1=4m. It is also of interest to consider robustness to departures

from the moment conditions of Theorems 1 and 2. Finite sample performance of Ĥ

was examined under the presumption of no conditional heteroscedasticity by Robin-

son (1995a), and compared with that of a version of the log-periodogram estimate,

while Taqqu and Teverovsky (1995) include such estimates in a more comprehensive

simulation study, but again restricted to conditionally homoscedastic environments.

We report a Monte Carlo study of Ĥ applied to simulated series xt following an

ARIMA(0,H � 1
2
,0) parametric version of (1.3), for various H and various forms of

conditional heteroscedasticity in "t.

We �rst took "t = �t�t, where the �t are NID(0,1), so that (3.3) is satis�ed, and �t
follows one of the speci�cations below.

(i) IID: �2t = �2. The "t are independent and identically distributed, so that

there is no conditional heteroscedasticity. We can take �2 = 1 with no loss of

generality.

(ii) ARCH: �2t = :5 + :5"2t�1. The "t are ARCH(1) with modest autocorrelation in

the "2t ; they satisfy (1.17), but not (3.4) (Engle (1982)).

(iii) GARCH: �2t = :05 + :5"2t�1 + :45�2t�1. The "t are GARCH(1,1), with strong

autocorrelation in the "2t at \short" lags (nearly IGARCH); they do not satisfy

(1.17) (Bollerslev (1986)).

(iv) LMARCH: �2t =
n
1� (1� L):25

o
"2t . The "t have (moderate) long memory

ARCH structure satisfying (1.6)-(1.9) and (1.14) with a(z) = b(z) = 1, so that

the "2t follow the ARFIMA(0,d,0) structure discussed in Section 5 of Robinson

(1991), with d = :25.

(v) VLMARCH: �2t =
n
1 � (1 � L):45

o
"2t . The "t have \very long memory" ARCH

structure, such that the "2t follow the same type of model as in (iv) but with

d = :45, close to the stationarity boundary.

The model speci�cation (1.6) adopted here for �2t does not allow for asymmetric

response of conditional variances to positive and negative returns, which is reported
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in the empirical �nance literature as the leverage e�ect. We have nevertheless also

considered a form of Nelson's EGARCH (Nelson (1991)), which models the leverage

e�ect.

(vi) EGARCH: ln�2t = �:5+ :9 ln�2t�1� :5�t�1+ :5j�t�1j, with �t still NID(0,1). The
coe�cient of �t�1 induces a strong leverage e�ect, volatility rising in response

to unexpectedly low returns. In case of unexpectedly high returns, the volatil-

ity behaves as in an AR(1) stochastic volatility model, with AR coe�cient

calibrated on typical values in the empirical literature on �nancial volatilities

(which are nearly always larger than .9, see e.g. Ghysels, Harvey, and Renault

(1996)). The innovations "t have �nite unconditional moments of all orders.

So far as the ARFIMA(0,H � 1
2,0) model for xt is concerned (so that in relation to

(1.3),
P1

j=0�jL
j = (1 � L) 12�H), we consider:

(a) \Antipersistence": H=.25,

(b) \Short memory": H=.5,

(c) \Moderate long memory": H=.75,

(d) \Very long memory": H=.95.

We study each of (i)-(vi) with (a)-(d), covering a range of short/long/negative mem-

ory in "t and a range of short/long memory in "2t .

Tables 1-4 deal respectively with each of the four H values (a)-(d). In each case the

results are based on n=64, 128 and 256 observations, with bandwidths m= n=16, n=8,

n=4, and 10000 replications, as in the Monte Carlo study of Robinson (1995a) with

conditionally homoscedastic "t. In each table we report, for the conditional variance

speci�cations (i)-(vi), Monte Carlo bias of the Gaussian semiparametric estimate;

Monte Carlo root mean squared error (MSE); 95% coverage probabilities based on the

N(H, 1=4m) approximation (2.2) for Ĥ; and also the e�ciency of the log-periodogram

estimate relative to the Gaussian estimate, that is the ratio of the Monte Carlo mean

squared errors, and we can compare this with the ratio of the asymptotic variancesp
6=� ' :78. We make the comparison with the log periodogram estimate (the version

in Robinson (1995b), but with no trimming) because it has been popularly used, but

we do not otherwise report the results for this estimate.

The innovations "t were generated recursively with starting values subsequently dis-

carded. In particular, "t = �t�t with �2t = 1, t = �1000; : : : ; 0, and �2t = �2P (L)"2t ,

t = 1; : : : ; 2n, where �t � NID(0,1) and �2 and P (L) are the relevant intercept

and operator in cases (i) to (v), the latter being truncated to 1000 lags in the two

long memory cases (iv) and (v). In case (vi), ln�2t was generated recursively ac-

cording to the formula. The Gauss random number generator RNDN was used with
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random seed starting at the value 12145389. A method based on the Cholevsky

decomposition (mi;j)
2n
i;j=1 of the Toeplitz matrix

�
�ji�jj

�2n
i;j=1

, where �j are the auto-

covariances of an ARFIMA(0,H � 1
2,0), was then used to simulate xt from the errors

"t as xt =
Pt

i=1mti"i, t = 1; : : : ; 2n, the �rst n values being subsequently discarded.

For each series simulated, the periodogram was computed by the Gauss Fast Fourier

Transform algorithm and Ĥ computed using a simple gradient algorithm. The opti-

mization was constrained to the compact set [:001; :999] (chosen values for �1 and �2

respectively) and for selected replications, R(h) was plotted on the interval [�1; 2]
and was always found to be very smooth with a single relative minimum.

Perhaps the most striking feature of the results is the relatively poor performance of

Ĥ and of the normal inference rule (2.2) provided by Theorem 2 in the GARCH case,

compared to the other processes. Out of the 36 H;m;n combinations, the GARCH

bias is largest in 18 cases, while its MSE ties largest in 3 cases and is outright largest

in 28. Moreover the deviation of 95% coverage probabilities from their normal values

ties largest 3 times and is outright largest 28 times, for GARCH. Relative e�ciencies

to the log periodogram estimate are also most out of line with their asymptotic values

for the GARCH: it ties with the largest discrepancy 12 times and has the outright

largest 10 times. To further investigate this relatively poor performance of Ĥ in case

of GARCH errors, Monte Carlo empirical distribution functions of 2
p
m(Ĥ �H) are

plotted for all four values of H against the standard normal distribution function in

�gures 1 to 3, which correspond to three di�erent choices of the pair (n;m), namely

(64,4), (128,16) and (256,64). These empirical distributions are truncated because

the estimate is restricted to the interval [0:001; 0:999]. In the case where n = 64 and

m = 4, the empirical distributions are highly leptokurtic and a high proportion of

estimates hit a boundary. When n and m increase, the tails become thinner.

Looking at the other heteroscedastic speci�cations, VLMARCH leads to a slightly

worse performance than LMARCH, but with no reliable evidence that this is signif-

icantly worse than ARCH, or indeed IID. Failure of the moment conditions (1.17)

and (3.4) has no evident e�ect. In our series of modest length, the relatively poor

behaviour under GARCH may be better explained by the impact of a near unit root;

for much larger values of n, LMARCH and VLMARCH would presumably do worse

than GARCH, but in such samples this is unlikely to be a matter of great practical

concern. In absolute terms, even GARCH does not perform so badly for us to ques-

tion the usefulness of the asymptotic robustness results in moderate sample sizes.

When H = 1
2 , Ĥ has almost identical root MSE and 95% coverage probabilities for

EGARCH and ARCH. In the EGARCH case, Monte Carlo biases are typically larger

when there is antipersistence and smaller in case of very long memory in levels. As

expected, MSE decreases monotonically, as n and m increase. The decay in bias
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with increasing n is less noticable, while the typical decay in bias with increasing m

is somewhat surprising but broadly in line with results of Robinson (1995a), in case

of fractional Gaussian noise levels (which has similar spectral shape to that of the

ARFIMA(0,H� 1
2
,0)). As in the no-ARCH �nite sample results of Robinson (1995a),

coverage probabilities are markedly sensitive to choice of m, and this problem clearly

requires further study beyond that of Henry and Robinson (1996), though for larger

n this is likely to be less of a problem.

Finally, the e�ect of heavy-tailed conditional distributions for "t is investigated in

Tables 5 and 6 in case of short memory levels (H = 0:5). Monte Carlo biases,

root MSEs, coverage probabilities and relative e�ciencies of the log periodogram

estimate are reported as before for models (i) to (v) only with "t = �t�t, where

the �t are i.i.d. t4 in Table 5 and i.i.d. t2 in Table 6, so that �t has respectively

in�nite fourth moment and in�nite second moment. Relative e�ciency of the log

periodogram estimate seems una�ected by heavy-tailedness. However, when there is

no conditional heteroscedasticity, Ĥ on the whole performs better when �t is t4 than

when it is normal, and better still when it is t2, in terms of Monte Carlo bias, MSE

and coverage probability. Conditional heteroscedasticity produces a reverse picture.

The results for t4 �t are better than those for normal �t in only 7 cases in respect

of bias, 4 in respect of MSE and 2 in respect of coverage probability. The results

for t2 are better than those for t4 in only 1 case in respect of bias, 4 in respect of

MSE and 4 in respect of coverage probability. Moreover, these exceptions are mostly

for the n = 64, m = 8 combination, and frequently the deterioration produced

by extreme heavy-tailedness is substantial. And although bias and MSE typically

decrease with increasing n and m for t-distributed �t, suggesting that consistency of

Ĥ is maintained, there is some tendency for coverage probabilities to actually worsen

(become smaller) especially for t2, so that not only is the heavy-tailedness reected in

the distribution of Ĥ but there is evidence that the limit distribution of Theorem 2

may not hold under this violation of the moment conditions, in line with the evidence

of Davis and Mikosch (1997) referred to earlier.

Overall the results suggest that the possibility of conditional heteroscedasticity can be

a cause for concern in moderate sample sizes, especially for IGARCH-like behaviour

and when the conditional distribution of "t has heavy tails. On the other hand,

some forms of conditional heteroscedasticity appear to have little e�ect and in these

circumstances, use of Ĥ and the associated large sample inference rules of Robinson

(1995a) seems warranted at least for reasonably large samples, though as is typically

the case with smoothed nonparametric estimation, reporting results for a range of

bandwidths is a wise precaution.
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5 Final comments.

This paper seems to be the �rst attempt to study the impact of conditional het-

eroscedasticity on the behaviour of semiparametric estimates of long memory. More-

over, we have allowed in the asymptotic theory not only for standard ARCH and

GARCH speci�cations of conditional heteroscedasticity, but for the ARCH(1) model

for squared innovations introduced by Robinson (1991), which covers ARFIMA struc-

ture. The fact that the limiting distribution has the same simple form as under condi-

tional homoscedasticity not only implies that existing rules of large sample statistical

inference remain valid (including the test for I(0) based on the objective function

R(h) recently developed by Lobato and Robinson (1998)), but also suggests that the

formulae for asymptotic mean squared errors of Ĥ provided by Henry and Robinson

(1996) will remain valid, and the consequent rules for the optimal choice of bandwidth

m. So far as the technical contribution of the current paper is concerned, it seems

that very similar methods can be used to investigate the large sample distribution

theory of other statistics in the presence of (possibly long memory) conditional het-

eroscedasticity, such as nonparametric estimates of the spectral density of a process

with short memory in levels, as well as more elaborate statistics.

The Gaussian semiparametric estimate can be used at an initial stage in the analysis

of a series xt, perhaps to test for a speci�c value of H such as 1
2
(as in Lobato and

Robinson (1998)), or to create a fractionally di�erenced series �Ĥ� 1

2xt, where � is

the di�erencing operator. This represents an asymptotically valid aproximation to

an I(0) series without any parametric assumption on the autocorrelation of the un-

derlying I(0) process �H� 1

2xt, so we might then proceed to identify the order of a

parametric model such as an ARMA on the basis of the �Ĥ� 1

2xt, possibly then car-

rying out estimation of the ARFIMA model for xt by a parametric Gaussian method.

A question that then arises is whether the innovations in the model (equivalent to

our "t) have conditional heteroscedasticity, and if so, what is the nature and extent

of it. This is of interest whether or not xt has long memory, and even if xt is a mar-

tingale di�erence, xt = "t. If (1.10) is parameterized, say by (1.15) or (1.14), then we

can estimate the unknown parameters by applying the conditional Gaussian loglike-

lihood underlying the LM tests developed by Robinson (1991), though asymptotic

properties of the parameter estimates remain to be established in the long memory

case, and indeed in many short memory ones. However, such a procedure carries the

disadvantage that even the memory parameter d will be inconsistently estimated if

the short memory dynamics of the squares is misspeci�ed, while we may in any case

prefer an exploratory approach at the initial stage.

One may thus consider applying a semiparametric procedure for estimating d to the
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"2t , or their proxies. For example, the Gaussian method appears to be a candidate,

because, although the "2t cannot be Gaussian, Gaussianity of xt was not assumed by

Robinson (1995a), or in the current paper. However, while some of the analysis of

these papers will be relevant, and (1.10) represents "2t as a linear �lter of martingale

di�erences �t, not only do the �t have conditional heteroscedasticity but their odd

conditional moments are perforce stochastic, so that no conditions analogous to (3.1)

or (3.5) can be imposed. The form of the limiting distribution of the Gaussian

semiparametric estimate of d, as well as its derivation, are thus open questions.

Appendix

Proof of Theorem 1 The main part of the proof of the corresponding Theorem 1

of Robinson (1995a) applies except for the proof that

m�1X
r=1

�
r

m

�2(��H)+1 1

r2

������
rX

j=1

�
2�J(�j)� �2

������� !p 0; (A.1)

where

J(�) =
1

2�n

�����
nX
t=1

"te
it�

�����
2

and � = �1 when H < 1
2 +�1 and � 2 (H � 1

2;H] otherwise. (Note that unlike in

Robinson (1995a), we take the unconditional variance of "t to be �2, not unity.)

The justi�cation for the above claim rests on the fact that the remainder of the

aforementioned proof depends only on unconditional second moment properties. In

view of (3.18) of Robinson (1995a), (A.1) is implied if

nX
t=1

("2t � �2) = op(n) (A.2)

and

nX
s6=t

1

"s"tA
(r)
st = op(r

1��n); some � > 0; (A.3)

uniformly in r 2 [1;m� 1], where A(r)
st =

Pr
j=1 cos [(s� t)�j]. The left side of (A.2)

has mean zero and variance

nX
t;s=1

1X
j;k=0

�j�kE(�t�j�s�k) =
nX

t;s=1

1X
j=0

�j�j+s�tE(�
2
t�j) (A.4)
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in view of (1.4), with �j = 0, j < 0. In view of (1.18) and the Cauchy inequality,

(A.4) is, with �j =
�P1

i=j �
2
i

� 1

2 ,

O

0
@n 1X

j=0

�2j + n�0

n�1X
j=1

�j

1
A = o

�
n2
�

by the Toeplitz lemma and (1.9), thus verifying (A.2). To prove (A.3), the left hand

side has variance

4E

0
B@ nX

u<v

1

nX
s<t

1

"s"t"u"vA
(r)
st A

(r)
uv

1
CA : (A.5)

In view of (1.4) of Assumption A3, it is clear that no summands for which t 6= v can

contribute. Thus, (A.5) is

4E

0
B@ nX

s<t

1

"2t"
2
sA

(r)2
st

1
CA + 8E

0
B@ nX

u<s<t

1

"2t"s"uA
(r)
st A

(r)
ut

1
CA : (A.6)

The �rst term in (A.6) is bounded by

4max
t
E("4t )

nX
s<t

1

A
(r)2
st = O(rn2);

from (3.20) of Robinson (1995a). Substituting (1.10) in the second term of (A.6)

gives

8E

0
B@ nX

u<s<t

1

0
@�2 + 1X

j=0

�j�t�j

1
A "u"sA(r)

st A
(r)
ut

1
CA

= 8
nX

u<s<t

1

�t�sE (�s"u"s)A
(r)
st A

(r)
ut

= 8
nX

u<s<t

1

�t�sE
�
"3s"u

�
A
(r)
st A

(r)
ut :

Under (3.1), this is identically zero. Under (3.2), it is bounded in absolute value by

8rmax
t
E("4t )

1X
j=0

j�jj
nX
s<t

1

���A(r)
st

��� � Krn

0
B@ nX

s<t

1

A
(r)2
st

1
CA

1

2

= O
�
r
3

2n2
�

because
���A(r)

st

��� � r. Thus, (A.3) is veri�ed.
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As explained by Robinson (1995a), there is a lack of uniformity in the convergence

of R(h) around h = H � 1
2
which is of concern when H � 1

2
+ �, and then one has

to show also that

1

m

mX
j=1

(aj � 1)
�
2�J(�j)� �2

�
!p 0 (A.7)

where aj = ( j
p
)2(��H) for 1 � j � p, and aj = ( j

p
)2(�1�H) for p < j � m, where p =

exp ( 1
m

Pm
j=1 log j). However, by similar arguments to those used above we establish

(A.7) under Assumption A3, in view of the proposition, established in Robinson

(1995a), that
Pn

t=1

Pn
s6=t

hPm
j=1(aj � 1) cosf(s� t)�jg

i2
= o(mn2).

Proof of Theorem 2 Again, the basic structure of the proof of Robinson (1995a) is

unchanged, and a number of properties established there are still of use. Again a mean

value theorem argument is applied, and the scores approximated by a martingale.

The approximation, and the treatment of second derivatives of R(h), are a�ected

by the changed conditions, but we postpone discussion of this until after we have

established the asymptotic normality of the approximating martingale, whose proof

is considerably a�ected.

With the de�nitions (3.12) and (3.14),
Pn

2 zt is a martingale and we wish to show, as

in Robinson (1995a), that as n!1
nX
t=1

E(z4t )! 0; (A.8)

nX
t=1

E
�
z2t jFt�1

�
!p �

4: (A.9)

By the Schwarz inequality, E (z4t ) � (E"8t )
1

2 (E�8t )
1

2 . Because the "t are martingale

di�erences, by Burkholder's (Burkholder (1973)) and cr-inequalities

E
�
�8t
�
� KE

� t�1X
s=1

c2t�s"
2
s

�4 � �
max

s
E"8s

�
r4n = O

�
(logm)8=n4

�

uniformly in t by (4.22) of Robinson (1995a), with rt = c21 + : : :+ c2t . Thus,

nX
t=1

E
�
z4t
�
� K

(logm)4

n
! 0

to verify (A.8). To check (A.9), write

E
�
z2t jFt�1

�
= �2t �

2
t = �2�2t + (�2t � �2)�2t :
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From (4.14) and (4.15) of Robinson (1995a),

nX
t=1

�2t � �2 =
n�1X
t=1

�trn�t + �2
(
n�1X
t=1

rn�t � 1

)
+

nX
t=2

X
r 6=s

"r"sct�rct�s; (A.10)

with �t = "2t � �2. The �rst term on the right has mean zero and variance

n�1X
t=1

n�1X
u=1

t�urn�trn�u: (A.11)

Now

jjj = O
�
j2d�1

�
; as j ! 1 (A.12)

by (3.4) and (3.6), and

n�1X
t=1

rt! 1; as n ! 1 (A.13)

established by Robinson (1995a). It follows from the Toeplitz lemma that (A.11)

tends to zero. Clearly, the second term in (A.10) thus tends to zero, whereas the last

term has mean zero and variance bounded by

2
�
max

t
E"4t

� nX
t;u=2

min(t�1;u�1)X
r 6=s

1

jct�rct�scu�rcu�sj: (A.14)

This follows from the corresponding derivation in Robinson (1995a), but upper bound-

ing E("2t "
2
s) by the Schwarz inequality. The absolute value did not arise in Robinson

(1995a) but it is clear from his derivation that the bound established there applies

to (A.14), namely O
�
(logm)4(n�1 +m�1=3)

�
! 0. It remains to show that

nX
t=2

(�2t � �2)�2t !p 0: (A.15)

The left side is

�2
nX
t=2

(�2t � �2)rt�1 +
nX
t=2

(�2t � �2)
t�1X
s=1

c2t�s�s +
nX

t=2

(�2t � �2)
t�1X
v 6=s

1

"v"sct�vct�s: (A.16)

The �rst term is

�2
nX

t=2

1X
j=1

 j�t�jrt�1 = �2 (S1 + S2) ;
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where

S1 =
n�1X

j=1�n

�j

n�1X
t=1

rt t�j+1; S2 =
�nX

j=�1

�j

n�1X
t=1

rt t�j+1;

and  j = 0; j � 0. Now S1 has mean zero and variance

n�1X
j;k=1�n

j�k
n�1X
s;t=1

rsrt s�j+1 t�k+1 � Knr2n�1
� 1X
j=1

j jj
�2 2n�2X

j=0

jj j

= O

 
(logm)8

n1�2d

!
! 0; as n!1;

using (1.16), (A.12) and rn = O ((logm)4=n), which was established by Robinson

(1995a). On the other hand

E jS2j � K
n�1X
t=1

rt
1X
j=n

j jj!0; as n!1;

from (1.16) and (A.13), so that the �rst term in (A.16) is op(1). The second term in

(A.16) is

nX
t=2

0X
v=�1

 t�v

t�1X
s=1

c2t�s�v�s (A.17)

+
nX
t=2

t�1X
v=1

 t�v

t�1X
s=1

c2t�s�v�s: (A.18)

The expectation of the absolute value of (A.17) is bounded by

K
�
max

t
E"4t

� nX
t=2

1X
j=t

j jjrt�1! 0

using (1.16), (A.13) and the Toeplitz lemma. (A.18) includes the component

nX
t=2

t�1X
s=1

 t�sc
2
t�s�

2
s;

whose absolute value has expectation which likewise tends to zero. The remainder of

(A.18) can be written

nX
t=2

t�1X
v=1

 t�v

v�1X
s=1

c2t�s�v�s +
nX
t=2

t�1X
v=1

 t�v

t�1X
s=v+1

c2t�s�v�s: (A.19)

The �rst term in (A.19) has mean square

nX
t;u=2

t�1X
v=1

 t�v

v�1X
s=1

c2t�s

u�1X
q=1

 u�q

q�1X
p=1

c2u�pE (�v�s�q�p) : (A.20)
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Now each (v; s; q; p) such that s < v, p < q satis�es one of the relations v = q,

s � q < v, q < s < v, p � v < q or v < p < q. The contribution from summands in

(A.20) such that v = q is bounded by

K
�
max

t
E�4t

� nX
t;u=2

min(t�1;u�1)X
v=1

j t�v u�vj
v�1X
s=1

c2t�s
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Next, for v > q � s, p < q,
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; ; (A.21)
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qX
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as follows from (1.10) and
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Now (A.21) is bounded in absolute value by
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where the second inequality employs Burkholder's (1973) inequality and the �nal one

E
�
�4j
�
� 8

�
E
�
"8j
�
+ E

n
E
�
"2j jFj�1

�o4� � K; by (3.4). Considering similarly the

three cases fp < q < s < vg, fp � v < q and s < vg and fs < v < p < qg, we have
jE (�v�s�q�p)j � K (�v�q + �v�s + �q�v + �q�p)

whenever s < v, p < q and v 6= q, where �j = 0 for j < 0. Thus the contribution to

(A.20) for v 6= q is bounded in absolute value by

K
nX

t;u=2

t�1X
v=1

j t�vj
v�1X
s=1

c2t�s

u�1X
q=1

j u�qj
q�1X
p=1

c2u�p (�v�q + �v�s + �q�v + �q�p)
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� K
nX

t;u=2

8<
:

t�1X
v=1

u�1X
q=1

j t�v u�qj�v�q

9=
; rt�1ru�1

(A.23)

+ K
1X
j=1

j jj
nX

u=2

ru�1
nX

t=2

t�1X
s=1

c2t�s

(
t�1X
v=1

j t�vj�v�s

)
:

The terms in braces are bounded respectively by

1X
i;j=0

j i i+j+u�tj�j;
1X
i=1

j ij�t�s�i;

which tend to zero as ju� tj!1 and jt� sj!1 respectively, in view of (1.13) and

(1.16) and the Toeplitz lemma. Thus, (1.16), (A.13) and the Toeplitz lemma further

imply that (A.23)!0 as n!1, completing the proof that the �rst term of (A.19) is

op(1). The second term of (A.19) can be treated in the same way to conclude that

(A.18) is op(1). The last term of (A.16) is

2
nX

t=2

t�1X
j=�1

 t�j�j

t�1X
v<s

1

"v"sct�vct�s: (A.24)

Now, note that

E (�j"s"v�k"r"u) = 0; v < s; u < r; v 6= u or s 6= r:

This follows by proceeding recursively using (1.6) and nested conditional expecta-

tions, and the fact that E ("tjFt�1), E ("3t jFt�1), E ("4t "ujFu�1), t � u and E ("4t "
2
u"vjFv�1),

t � u � v, are all a.s. zero under A3'. On the other hand, for all indices,

jE (�j"s"v�k"r"u)j � max
t
E
�
"8t
�
<1

by H�older's inequality. It follows that (A.24) has second moment

4
nX

t;u=2

t�1X
j=�1

 t�j

u�1X
k=�1

 u�k

min(t;u)�1X
v < s

1

ct�vct�scu�vcu�sE
�
�j�k"

2
v"

2
s

�

� K
nX

t;u=2

min(t;u)�1X
v < s

1

jct�vct�scu�vcu�sj = O

 
(logm)4

m
1

3

!

as in (A.14), to complete the proof that (A.10) !p 0 and thus of (A.9).

Application of the remainder of the proof of Robinson (1995a) requires estimation of

Ur � r�2 and Vr � Ur, where Ur = 2�
Pr

j=1 J(�j), and Vr =
Pr

j=1 I(�j)=G�
1�2H
j , for

1 � r � m. In Robinson (1995a) it is shown that Ur � r�2 = Op(r
1

2 ), but inspection
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of the only use that is made of this bound indicates that Op(r1��) would su�ce, for

any � > 0. From Robinson (1995a),

Ur � r�2 =
r

n

nX
t=1

("2t � �2) +
nX
t=2

"t
t�1X
s=1

"sdt�s; (A.25)

where ds =
2
n

Pr
j=1 cos s�j. The �rst term of (A.25) has mean zero and variance

O

0
@r2
n

nX
j=1

jjj
1
A = O

�
r2n2d�1

�
= O

 
r2(1��)

r2�

n1�2d

!
;

and this is O
�
r2(1��)

�
under (3.8) on taking � � 1

2 � d. The second term in (A.25)

has mean zero and variance

E

(
nX
t=2

�2t

t�1X
s=1

"2sd
2
t�s

)
+ E

8<
:

nX
t=2

�2t

t�1X
v 6=s

"s"vdt�sdt�v

9=
; :

The �rst term is Op (n(maxtE"6t )
Pn

t=1 d
2
t ) = O(r) from Robinson (1995a), whereas

the second term is zero from (3.5). Thus, Ur � r�2 = Op(r1��), some � > 0. The

bound established for Vr � Ur by Robinson (1995a) was

Op

�
r1=3(log r)2=3 + r�+1n�� + r1=2n�1=4

�
; (A.26)

where (3.8) was assumed. Again, this bound is stronger than necessary, and it will

su�ce to establish the bound (A.26) +Op

�
rnd�

1

2

�
. To approximate the scores by a

suitable martingale it is su�cient that

mX
j=1

�j

 
I(�j)

G�1�2Hj

� �2J(�j)

!
= op(m

1

2 ); (A.27)

and the left side is, by summation by parts and j log r � log(r + 1)j � r�1, bounded

by
m�1X
r=1

1

r
jVr � Urj+ 2 logmjVm � Umj:

We can then invoke (3.8) and (3.9) to establish (A.27), if indeed Vr � Ur = (A.26)

+Op

�
rnd�

1

2

�
. In fact, part of the proof in Robinson (1995a) that Ur � Vr has bound

(A.26) continues to hold, but not that relating to the contribution to the variance of

(A.25) from fourth cumulants. Under the conditions of Robinson (1995a) that second

and fourth conditional moments are constant, cum("r; "s; "t; "u) = cum("r; "r; "r; "r)

if r = s = t = u, and zero otherwise. However, under the present asssumptions, we

have

cum("r; "s; "t; "u) = cum("r; "r; "r; "r); r = s = t = u;

= r�s; r = t 6= s = u; (A.28)

= r�t; r = s 6= t = u; (A.29)

= r�t; r = u 6= t = s; (A.30)
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and zero otherwise. The contributions from (A.28)-(A.30) to the variance of Vr � Ur

will thus be studied. In view of (A.28)-(A.30) the contribution of fourth cumulants

to the variance of Vr includes terms such as

�
G

r

�2 rX
j;k

(�j�k)
2H�1

X
v 6=s

v�s�v(�j)�s(��j)�s(�k)�v(��k); (A.31)

where �v(�) =
Pn

t=1 �t�ve
it� and we take �t = 0, t < 0. Now �v(�) is identically zero

when v > n. On the other hand when v < 0 such that (�v)�1 = O(j�j) we have by
summation by parts, (3.7) and (3.10), that

j�v(�)j �
n�v�1X
t=1�v

j�t � �t+1j
������

tX
s=1�v

eis�

������+ j�n�vj
������
n�vX

s=1�v

eis�

������
� K

(1� v)H�3=2

j�j = O
�
j�j 12�H

�
;

whereas for v < 1 such that �v = O(1=j�j)

j�v(�)j �
1�v+sX
t=1�v

j�vj+
������

n�vX
t=1�v+s

�te
it�

������ (A.32)

for 1 � s < n. Applying summation by parts in the same way as above to the second

term of (A.32) indicates that it is O((1 � v + s)H�3=2=j�j), while the �rst term is

O((1� v + s)H�1=2). Choosing s such that 1� v+ s � 1=j�j indicates that (A.32) is
also O(j�j 12�H). In the same way, it follows that for 1 � v � n, �v(�) = O(j�j 12�H). It
immediately follows that (A.31) is O(r2n�1

Pn
j=1 jj j) = O(r2n2d�1) as desired. The

other fourth cumulant contributions to the variance of Vr are treated in the same

way, and those to the covariance between Vr and Ur and to the variance of Ur follow

if anything more easily, to complete the proof that the fourth cumulant contribution

to Vr � Ur is Op(rnd�
1

2 ). We have of course not assumed (3.2) in the above, but if

we do then
P1

j=0jj j <1, so it is easily seen that (A.31) is O(r2=n), whence (3.9) is

not required.
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\Antipersistence": H=.25, �t � N(0,1)

TABLE 1.1: Monte Carlo BIASES for the Gaussian semiparametric estimateof longmemory applied to an ARFIMA(0,

�:25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.060 0.014 -0.001 -0.006 -0.011 -0.004 -0.028 -0.017 -0.004

ARCH 0.062 0.010 -0.001 -0.003 -0.016 -0.007 -0.028 -0.016 -0.006

GARCH 0.065 0.020 0.005 -0.004 -0.010 -0.003 -0.026 -0.018 -0.006

LMARCH 0.064 0.012 0.002 -0.001 -0.012 -0.004 -0.022 -0.014 -0.003

VLMARCH 0.064 0.018 0.001 -0.002 -0.010 -0.004 -0.020 -0.013 -0.004

EGARCH -0.107 -0.054 -0.039 -0.033 -0.012 -0.017 -0.002 -0.002 -0.007

TABLE 1.2: Monte Carlo ROOT MSE for the Gaussian semiparametric estimate of long memory applied to an

ARFIMA(0, �:25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.34 0.24 0.16 0.23 0.16 0.11 0.16 0.11 0.07

ARCH 0.34 0.23 0.17 0.23 0.16 0.12 0.16 0.11 0.08

GARCH 0.34 0.25 0.19 0.24 0.19 0.14 0.18 0.14 0.11

LMARCH 0.34 0.24 0.17 0.24 0.16 0.12 0.16 0.12 0.08

VLMARCH 0.34 0.25 0.18 0.24 0.17 0.13 0.17 0.13 0.10

EGARCH 0.37 0.26 0.18 0.25 0.17 0.13 0.17 0.11 0.08

TABLE 1.3: 95% COVERAGE PROBABILITIES for the Gaussian semiparametric estimate of long memory applied

to an ARFIMA(0, �:25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.85 0.90 0.84 0.91 0.84 0.89 0.83 0.88 0.91

ARCH 0.85 0.90 0.82 0.92 0.84 0.85 0.84 0.88 0.85

GARCH 0.84 0.88 0.75 0.90 0.76 0.76 0.77 0.77 0.74

LMARCH 0.84 0.90 0.82 0.91 0.83 0.85 0.82 0.86 0.86

VLMARCH 0.85 0.89 0.79 0.91 0.79 0.80 0.79 0.81 0.80

EGARCH 0.81 0.86 0.80 0.88 0.83 0.84 0.84 0.88 0.86

TABLE 1.4: RELATIVE EFFICIENCY of the log periodogram estimate compared to the Gaussian semiparametric

estimate of long memory applied to an ARFIMA(0, �:25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.56 0.68 0.73 0.68 0.76 0.78 0.76 0.80 0.78

ARCH 0.57 0.67 0.74 0.67 0.74 0.79 0.75 0.79 0.81

GARCH 0.57 0.67 0.74 0.66 0.74 0.80 0.73 0.80 0.84

LMARCH 0.57 0.68 0.74 0.67 0.75 0.80 0.76 0.81 0.81

VLMARCH 0.56 0.68 0.75 0.67 0.75 0.81 0.75 0.82 0.83

EGARCH 0.56 0.67 0.73 0.67 0.74 0.80 0.75 0.80 0.81
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\Short memory": H = :5, �t � N(0,1)

TABLE 2.1: Monte Carlo BIASES for the Gaussian semiparametric estimate of long memory applied to white noise

with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID -0.035 -0.029 -0.025 -0.027 -0.026 -0.013 -0.020 -0.013 -0.008

ARCH -0.034 -0.030 -0.021 -0.030 -0.024 -0.016 -0.021 -0.015 -0.009

GARCH -0.033 -0.034 -0.019 -0.037 -0.022 -0.018 -0.026 -0.019 -0.012

LMARCH -0.031 -0.034 -0.020 -0.032 -0.021 -0.013 -0.019 -0.011 -0.009

VLMARCH -0.032 -0.032 -0.025 -0.033 -0.024 -0.016 -0.022 -0.015 -0.007

EGARCH -0.030 -0.036 -0.031 -0.031 -0.025 -0.020 -0.018 -0.015 -0.010

TABLE 2.2: Monte Carlo ROOT MSE for the Gaussian semiparametric estimate of long memory applied to white

noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.37 0.27 0.18 0.27 0.18 0.11 0.18 0.11 0.07

ARCH 0.36 0.27 0.19 0.27 0.18 0.13 0.17 0.11 0.08

GARCH 0.36 0.29 0.21 0.28 0.20 0.15 0.20 0.15 0.11

LMARCH 0.37 0.28 0.19 0.27 0.18 0.12 0.18 0.12 0.08

VLMARCH 0.37 0.28 0.20 0.28 0.19 0.13 0.19 0.13 0.10

EGARCH 0.36 0.27 0.19 0.27 0.18 0.13 0.17 0.11 0.09

TABLE 2.3: 95% COVERAGE PROBABILITIES for the Gaussian semiparametric estimate of long memory applied

to white noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.63 0.76 0.84 0.77 0.84 0.89 0.83 0.88 0.92

ARCH 0.65 0.77 0.81 0.77 0.83 0.84 0.85 0.88 0.86

GARCH 0.65 0.72 0.76 0.74 0.77 0.75 0.79 0.77 0.74

LMARCH 0.64 0.75 0.81 0.76 0.82 0.85 0.82 0.86 0.87

VLMARCH 0.64 0.75 0.79 0.75 0.80 0.81 0.80 0.81 0.81

EGARCH 0.65 0.77 0.80 0.78 0.84 0.84 0.85 0.88 0.86

TABLE 2.4: RELATIVE EFFICIENCY of the log periodogram estimate compared to the Gaussian semiparametric

estimate of long memory applied to white noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.60 0.78 0.82 0.78 0.84 0.80 0.84 0.82 0.77

ARCH 0.60 0.77 0.80 0.78 0.83 0.82 0.83 0.82 0.82

GARCH 0.60 0.76 0.81 0.77 0.84 0.84 0.84 0.86 0.85

LMARCH 0.60 0.78 0.82 0.78 0.84 0.82 0.84 0.83 0.81

VLMARCH 0.60 0.76 0.82 0.78 0.83 0.83 0.84 0.85 0.84

EGARCH 0.61 0.78 0.82 0.79 0.83 0.82 0.83 0.81 0.82
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\Moderate long memory": H = :75, �t � N(0,1)

TABLE 3.1: Monte Carlo BIASES for the Gaussian semiparametric estimateof longmemory applied to an ARFIMA(0,

:25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID -0.108 -0.050 -0.027 -0.040 -0.012 -0.010 -0.004 0.001 -0.007

ARCH -0.112 -0.053 -0.031 -0.035 -0.014 -0.015 -0.003 -0.004 -0.005

GARCH -0.113 -0.057 -0.033 -0.043 -0.020 -0.020 -0.014 -0.007 -0.006

LMARCH -0.110 -0.051 -0.026 -0.038 -0.013 -0.011 -0.005 0.001 -0.006

VLMARCH -0.104 -0.052 -0.034 -0.044 -0.015 -0.010 -0.005 -0.004 -0.006

EGARCH -0.107 -0.054 -0.039 -0.033 -0.012 -0.017 -0.002 -0.002 -0.007

TABLE 3.2: Monte Carlo ROOT MSE for the Gaussian semiparametric estimate of long memory applied to an

ARFIMA(0, :25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.38 0.26 0.17 0.26 0.17 0.11 0.17 0.11 0.07

ARCH 0.37 0.26 0.18 0.25 0.17 0.12 0.16 0.11 0.08

GARCH 0.37 0.28 0.20 0.27 0.20 0.15 0.19 0.14 0.11

LMARCH 0.38 0.27 0.18 0.26 0.17 0.12 0.17 0.12 0.08

VLMARCH 0.37 0.27 0.19 0.27 0.18 0.13 0.18 0.13 0.10

EGARCH 0.37 0.26 0.18 0.25 0.17 0.12 0.17 0.11 0.08

TABLE 3.3: 95% COVERAGE PROBABILITIES for the Gaussian semiparametric estimate of long memory applied

to an ARFIMA(0, :25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.80 0.86 0.83 0.87 0.84 0.88 0.84 0.89 0.91

ARCH 0.81 0.86 0.80 0.88 0.84 0.85 0.85 0.88 0.86

GARCH 0.80 0.84 0.75 0.86 0.76 0.76 0.79 0.77 0.75

LMARCH 0.80 0.85 0.81 0.87 0.83 0.85 0.82 0.86 0.87

VLMARCH 0.80 0.85 0.79 0.86 0.80 0.81 0.80 0.82 0.81

EGARCH 0.81 0.86 0.80 0.88 0.83 0.84 0.84 0.88 0.86

TABLE 3.4: RELATIVE EFFICIENCY of the log periodogram estimate compared to the Gaussian semiparametric

estimate of long memory applied to an ARFIMA(0, :25, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.61 0.75 0.79 0.74 0.78 0.79 0.79 0.81 0.79

ARCH 0.62 0.75 0.78 0.74 0.79 0.80 0.78 0.82 0.80

GARCH 0.60 0.74 0.79 0.74 0.79 0.81 0.80 0.82 0.83

LMARCH 0.61 0.76 0.78 0.74 0.80 0.80 0.79 0.81 0.81

VLMARCH 0.61 0.75 0.80 0.74 0.79 0.81 0.79 0.82 0.81

EGARCH 0.61 0.75 0.80 0.74 0.79 0.81 0.78 0.80 0.80
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\Very long memory": H = :95, �t � N(0,1)

TABLE 4.1: Monte Carlo BIASES for the Gaussian semiparametric estimateof longmemory applied to an ARFIMA(0,

:45, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID -0.201 -0.102 -0.059 -0.087 -0.044 -0.027 -0.035 -0.015 -0.013

ARCH -0.190 -0.107 -0.070 -0.085 -0.047 -0.033 -0.034 -0.017 -0.018

GARCH -0.210 -0.132 -0.088 -0.110 -0.073 -0.053 -0.060 -0.043 -0.037

LMARCH -0.210 -0.117 -0.076 -0.101 -0.060 -0.043 -0.052 -0.030 -0.024

VLMARCH -0.218 -0.121 -0.081 -0.112 -0.064 -0.047 -0.056 -0.037 -0.032

EGARCH -0.187 -0.105 -0.070 -0.084 -0.046 -0.034 -0.034 -0.017 -0.017

TABLE 4.2: Monte Carlo ROOT MSE for the Gaussian semiparametric estimate of long memory applied to an

ARFIMA(0, :45, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.38 0.23 0.14 0.22 0.13 0.09 0.12 0.08 0.06

ARCH 0.37 0.23 0.16 0.21 0.14 0.10 0.12 0.08 0.07

GARCH 0.38 0.25 0.17 0.23 0.15 0.11 0.14 0.10 0.08

LMARCH 0.38 0.23 0.15 0.21 0.13 0.09 0.13 0.08 0.06

VLMARCH 0.38 0.24 0.16 0.22 0.14 0.10 0.13 0.09 0.07

EGARCH 0.37 0.23 0.16 0.21 0.13 0.10 0.12 0.08 0.07

TABLE 4.3: 95% COVERAGE PROBABILITIES for the Gaussian semiparametric estimate of long memory applied

to an ARFIMA(0, :45, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.80 0.86 0.89 0.88 0.91 0.93 0.93 0.94 0.95

ARCH 0.81 0.86 0.87 0.89 0.91 0.91 0.93 0.94 0.92

GARCH 0.81 0.85 0.85 0.87 0.88 0.87 0.90 0.90 0.86

LMARCH 0.81 0.86 0.88 0.89 0.91 0.91 0.92 0.94 0.93

VLMARCH 0.80 0.86 0.87 0.87 0.90 0.89 0.91 0.92 0.89

EGARCH 0.82 0.87 0.87 0.89 0.92 0.91 0.93 0.94 0.92

TABLE 4.4: RELATIVE EFFICIENCY of the log periodogram estimate compared to the Gaussian semiparametric

estimate of long memory applied to an ARFIMA(0, :45, 0) series with �ve speci�ed innovation structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.61 0.65 0.64 0.62 0.61 0.63 0.57 0.59 0.65

ARCH 0.59 0.67 0.67 0.62 0.62 0.63 0.57 0.59 0.66

GARCH 0.62 0.67 0.65 0.63 0.61 0.61 0.57 0.57 0.60

LMARCH 0.61 0.65 0.64 0.61 0.59 0.61 0.56 0.54 0.59

VLMARCH 0.62 0.65 0.65 0.61 0.60 0.60 0.56 0.56 0.62

EGARCH 0.61 0.67 0.68 0.61 0.61 0.64 0.57 0.58 0.66
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\Short memory": H = :5, �t � t4

TABLE 5.1: Monte Carlo BIASES for the Gaussian semiparametric estimate of long memory applied to white noise

with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID -0.028 -0.031 -0.020 -0.026 -0.022 -0.011 -0.021 -0.011 -0.005

ARCH -0.033 -0.041 -0.035 -0.028 -0.030 -0.022 -0.025 -0.020 -0.019

GARCH -0.041 -0.043 -0.027 -0.042 -0.037 -0.027 -0.043 -0.029 -0.024

LMARCH -0.035 -0.030 -0.027 -0.031 -0.023 -0.016 -0.021 -0.022 -0.013

VLMARCH -0.031 -0.036 -0.028 -0.029 -0.029 -0.019 -0.030 -0.024 -0.019

TABLE 5.2: Monte Carlo ROOT MSE for the Gaussian semiparametric estimate of long memory applied to white

noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.37 0.27 0.17 0.28 0.17 0.11 0.17 0.11 0.07

ARCH 0.35 0.26 0.21 0.25 0.18 0.16 0.17 0.13 0.13

GARCH 0.36 0.30 0.24 0.30 0.25 0.21 0.26 0.22 0.18

LMARCH 0.36 0.28 0.20 0.28 0.20 0.15 0.22 0.16 0.11

VLMARCH 0.36 0.29 0.22 0.29 0.22 0.17 0.24 0.19 0.15

TABLE 5.3: 95% COVERAGE PROBABILITIES for the Gaussian semiparametric estimate of long memory applied

to white noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.64 0.76 0.85 0.77 0.85 0.89 0.85 0.89 0.91

ARCH 0.69 0.78 0.76 0.80 0.82 0.76 0.86 0.84 0.72

GARCH 0.66 0.68 0.69 0.69 0.65 0.61 0.63 0.58 0.53

LMARCH 0.65 0.74 0.78 0.73 0.78 0.77 0.74 0.75 0.74

VLMARCH 0.65 0.72 0.74 0.72 0.72 0.72 0.69 0.67 0.64

TABLE 5.4: RELATIVE EFFICIENCY of the log periodogram estimate compared to the Gaussian semiparametric

estimate of long memory applied to white noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.60 0.77 0.80 0.78 0.81 0.78 0.83 0.81 0.77

ARCH 0.61 0.77 0.80 0.78 0.83 0.82 0.82 0.83 0.83

GARCH 0.60 0.74 0.81 0.74 0.82 0.85 0.81 0.85 0.88

LMARCH 0.60 0.77 0.82 0.77 0.84 0.84 0.84 0.86 0.85

VLMARCH 0.60 0.76 0.83 0.76 0.83 0.85 0.83 0.87 0.86
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\Short memory": H = :5, �t � t2

TABLE 6.1: Monte Carlo BIASES for the Gaussian semiparametric estimate of long memory applied to white noise

with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID -0.018 -0.027 -0.019 -0.024 -0.018 -0.010 -0.017 -0.009 -0.006

ARCH -0.043 -0.047 -0.042 -0.042 -0.039 -0.037 -0.036 -0.032 -0.034

GARCH -0.047 -0.042 -0.035 -0.051 -0.048 -0.040 -0.055 -0.047 -0.038

LMARCH -0.036 -0.038 -0.032 -0.040 -0.034 -0.028 -0.047 -0.038 -0.028

VLMARCH -0.042 -0.036 -0.037 -0.052 -0.043 -0.037 -0.054 -0.048 -0.037

TABLE 6.2: Monte Carlo ROOT MSE for the Gaussian semiparametric estimate of long memory applied to white

noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.35 0.25 0.16 0.26 0.16 0.10 0.16 0.10 0.07

ARCH 0.33 0.26 0.23 0.24 0.21 0.20 0.17 0.17 0.19

GARCH 0.35 0.31 0.26 0.31 0.28 0.24 0.28 0.26 0.23

LMARCH 0.36 0.29 0.23 0.30 0.25 0.21 0.28 0.24 0.20

VLMARCH 0.35 0.30 0.25 0.31 0.27 0.23 0.29 0.26 0.22

TABLE 6.3: 95% COVERAGE PROBABILITIES for the Gaussian semiparametric estimate of long memory applied

to white noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.68 0.81 0.87 0.80 0.88 0.91 0.87 0.91 0.93

ARCH 0.74 0.78 0.71 0.83 0.78 0.65 0.86 0.76 0.56

GARCH 0.68 0.67 0.62 0.66 0.57 0.53 0.59 0.50 0.42

LMARCH 0.65 0.71 0.70 0.67 0.65 0.62 0.59 0.55 0.50

VLMARCH 0.68 0.68 0.65 0.66 0.61 0.56 0.58 0.50 0.45

TABLE 6.4: RELATIVE EFFICIENCY of the log periodogram estimate compared to the Gaussian semiparametric

estimate of long memory applied to white noise with �ve speci�ed error structures.

n=64 n=128 n=256

MODEL m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64

IID 0.61 0.76 0.79 0.78 0.80 0.78 0.83 0.80 0.77

ARCH 0.64 0.75 0.79 0.77 0.81 0.81 0.81 0.83 0.83

GARCH 0.62 0.73 0.78 0.73 0.80 0.83 0.78 0.82 0.84

LMARCH 0.60 0.74 0.80 0.74 0.81 0.84 0.80 0.85 0.86

VLMARCH 0.61 0.73 0.80 0.73 0.80 0.84 0.78 0.83 0.85
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