
1 Introduction

Stochastic volatility models are of considerable interest in empirical …nance. There are many types
of parametric volatility model following the seminal work of Engle (1982); these models are typically
nonlinear, which poses di¢culties both in computation and in deriving useful tools for statistical
inference. Parametric models are prone to misspeci…cation, especially when there is no theoretical
reason to prefer one speci…cation over another. Nonparametric models can provide greater ‡exibility.
However, the greater generality of these models comes at a cost - including a large number of lags
requires estimation of a high dimensional smooth, which is known to behave very badly [Silverman
(1986)]. The curse of dimensionality puts severe limits on the dynamic ‡exibility of nonparametric
models. Separable models o¤er an intermediate position between the complete generality of non-
parametric models, and the restrictiveness of parametric ones. These models have been investigated
in cross-sectional settings as well as time series ones.

In this paper, we investigate a generalized additive nonlinear ARCH model (GANARCH);

yt =m (yt¡1; yt¡2; : : : ; yt¡d) + ut; ut = v1=2 (yt¡1; yt¡2; : : : ; yt¡d) "t; (1.1)

m (yt¡1; yt¡2; : : : ; yt¡d) = Fm

Ã
cm +

dX

®=1

m®(yt¡®)

!
; (1.2)

v (yt¡1; yt¡2; : : : ; yt¡d) = Fv

Ã
cv +

dX

®=1

v®(yt¡®)

!
; (1.3)

where m® (¢) and v® (¢) are any smooth but unknown function, while Fm (¢) and Fv (¢) are known
monotone transformations [whose inverses are Gm (¢) and Gv (¢), respectively].1 The error process,
f"tg, is assumed to be a martingale di¤erence with unit scale, i.e., E("tjFt¡1) = 0 andE("2t jFt¡1) = 1,
where Ft is the ¾-algebra of events generated by fykgtk=¡1. Under some weak assumptions, the time
series of nonlinear autoregressive models can be shown to be stationary and strongly mixing with
mixing coe¢cients decaying exponentially fast. Auestadt and Tjøstheim (1990) used ®-mixing or
geometric ergodicity to identify the nonlinear time series model. Similar results were obtained for
the additive nonlinear ARCH process by Masry and Tjøstheim (1997), see also Cai and Masry (2000)
and Carrasco and Chen (2002). We follow the same argument as Masry and Tjøstheim (1997), and
will assume all the necessary conditions for stationarity and mixing property of the process fytgnt=1

in (1.1). The standard identi…cation for the components of the mean and variance is made by

E [m® (yt¡®)] = 0 and E [v® (yt¡®)] = 0 (1.4)
1The extension to allow the F transformations to be of unknown functional form is considerably more complicated,

but see Horowitz (1999).
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for all ® = 1; : : : ; d: The notable aspect of the model is additivity via known links for conditional
mean and volatility functions. As will be shown below, (1.1)-(1.3) includes a wide variety of time
series models in the literature. See Horowitz (2001) for a discussion of generalized additive models
in a cross-section context.

In a much simpler univariate setup, Robinson (1983), Auestadt and Tjøstheim (1990), and Här-
dle and Vieu (1992) studied the kernel estimation of conditional mean function, m (¢) in (1.1). The
so-called CHARN (Conditionally Heteroscedastic Autoregressive Nonlinear) model is the same as
(1.1) except that m(¢) and v(¢) are univariate functions of yt¡1. Masry and Tjøstheim (1995) and
Härdle and Tsybakov (1997) applied the Nadaraya-Watson and local linear smoothing methods,
respectively, to jointly estimate v(¢) together with m (¢). Alternatively, Fan and Yao (1996) and
Ziegelmann (2002) proposed local linear least square estimation for volatility function, with the ex-
tension given by Avramidis (2002) based on local linear maximum likelihood estimation. Also, in a
nonlinear VAR context, Härdle, Tsybakov and Yang (1996) dealt with the estimation of conditional
mean in a multilagged extension similar to (1.1). Unfortunately, however, introducing more lags
in nonparametric time series models has unpleasant consequences, more so than in the parametric
approach. As is well known, smoothing method in high dimensions su¤ers from a slower conver-
gence rate - the “curse of dimensionality”. Under twice di¤erentiability of m (¢), the optimal rate is
n¡2=(4+d), which gets rapidly worse with dimension. In high dimensions it is also di¢cult to describe
graphically the function m:

Additive structure has been proposed as a useful way to circumvent these problems in multi-
variate smoothing. By assuming the target function to be a sum of functions of covariates, say,
m(yt¡1; yt¡2; : : : ; yt¡d) = cm +

Pd
®=1m®(yt¡®), we can e¤ectively reduce the dimensionality of a re-

gression problem and improve the implementability of multivariate smoothing up to that of the
one-dimensional case. Stone (1985,1986) showed that it is possible to estimate m®(¢) and m(¢) with
the one-dimensional optimal rate of convergence - e.g., n2=5 for twice di¤erentiable functions - re-
gardless of d. The estimates are now easily illustrated and interpreted. For these reasons, since the
eighties, additive models have been fundamental to nonparametric regression among both econo-
metricians and statisticians. Regarding the estimation method for achieving the one-dimensional
optimal rate, the literature suggests two di¤erent approaches: back…tting and marginal integration.
The former, originally suggested by Breiman and Friedman (1985), Buja, Hastie and Tibshirani
(1989), and Hastie and Tibshirani (1987,1991) is to execute iterative calculations of one-dimensional
smoothing, until some convergence criterion is satis…ed. Though appealing to our intuition, the sta-
tistical properties of back…tting algorithm were not clearly understood until the very recent works
by Opsomer and Ruppert (1997) and Mammen, Linton, and Nielsen (1999). They developed speci…c
(linear) back…tting procedures and established the geometric convergence of their algorithms and
the pointwise asymptotic distributions under some conditions. However, one disadvantage of these
procedures is the time consuming iterations required for implementation. Also, the proofs for the
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linear case can’t be easily generalized to nonlinear cases like Generalized Additive Models.
A more recent approach, called marginal integration (MI), is theoretically more manipulable - its

statistical properties are easy to derive, since it simply uses averaging of multivariate kernel estimates.
Developed independently by Newey (1994), Tjøstheim and Auestadt (1994a), and Linton and Nielsen
(1995), its advantage of theoretical convenience inspired the subsequent applications such as Linton,
Wang, Chen, and Härdle (1997) for transformation models and Linton, Nielsen, and van de Geer
(2003) for hazard models with censoring. In the time series models that are special cases of (1.1) and
(1.2) with Fm being the identity, Chen and Tsay (1993 a,b) and Masry and Tjøstheim (1997) applied
back…tting and MI, respectively, to estimate the conditional mean function. Mammen, Linton,
and Nielsen (1999) provided useful results for the same type of models, by improving the previous
back…tting method with some modi…cation and successfully deriving the asymptotic properties under
weak conditions. The separability assumption was also used in volatility estimation by Yang, Härdle,
and Nielsen (1999), where the nonlinear ARCH model is of additive mean and multiplicative volatility
in the form of

yt = cm +
dX

®=1

m®(yt¡®) +

Ã
cv

dY

®=1

v®(yt¡®)

!1=2

"t: (1.5)

To estimate (1.5), they relied on marginal integration with local linear …ts as a pilot estimate, and
derived asymptotic properties.

This paper features two contributions to the additive literature. The …rst concerns theoretical
development of a new estimation tool called local instrumental variable method for additive models,
which was outlined for simple additive cross-sectional regression in the paper Kim, Linton, and
Hengartner (1999). The novelty of the procedure lies in the simple de…nition of the estimator based
on univariate smoothing combined with new kernel weights. That is, adjusting kernel weights via
conditional density of the covariate enables an univariate kernel smoother to estimate consistently the
corresponding additive component function. In many respects, the new estimator preserves the good
properties of univariate smoothers. The instrumental variable method is analytically tractable for
asymptotic theory and can be easily shown to attain the optimal one-dimensional rate as required.
Furthermore, it is computationally more e¢cient than the two existing methods (back…tting and
MI), in the sense that it reduces the computations up to a factor of n smoothings. The other
contribution relates to the general coverage of the model we work with. The model in (1.1) through
(1.3) extends ARCH models to a generalized additive framework where both the mean and variance
functions are additive after some known transformation [see Hastie and Tibshirani (1990)]. All the
time series models in our discussion above are regarded as a subclass of the data generating process for
fytg in (1.1) through (1.3). For example, setting Gm to be an identity and Gv a logarithmic function
reduces our model to (1.5). Similar e¤orts to apply transformation were made in a parametric ARCH
models. Nelson (1991) considered a model for the log of the conditional variance - the Exponential
(G)ARCH class, to embody the multiplicative e¤ects of volatility. It was also argued to use the
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Box-Cox transformation for volatility which is intermediate between linear and logarithm. Since it
is hard to tell a priori which structure of volatility is more realistic and it should be determined by
real data, our generalized additive model provides useful ‡exible speci…cations for empirical work.
Additionally, from the perspective of potential misspeci…cation problems, the transformation used
here alleviates the restriction imposed by additivity assumption, which increases the approximating
power of our model. Note that when the lagged variables in (1.1) through (1.3) are replaced by
di¤erent covariates and the observations are i.i.d., the model becomes the cross sectional additive
model studied by Linton and Härdle (1996). Finally, we also consider more e¢cient estimation along
the lines of Linton (1996, 2000).

The rest of the paper is organized as follows. Section 2 describes the main estimation idea in
a simple setting. In section 3, we de…ne the estimator for the full model. In section 4 we give our
main results including the asymptotic normality of our estimators. Section 5 discusses more e¢cient
estimation. Section 6 reports a small Monte Carlo study. The proofs are contained in the appendix.

2 Nonparametric Instrumental Variables: The Main Idea

This section explains the basic idea behind the instrumental variable method and de…nes the estima-
tion procedure. For ease of exposition, this will be carried out using an example of simple additive
models with i.i.d. data. We then extend the de…nition to the generalized additive ARCH case in
(1.1) through (1.3).

Consider a bivariate additive regression model for i.i.d. data (y; X1;X2),

y =m1 (X1) +m2 (X2) + ";

where E("jX) = 0 with X = (X1; X2); and the components satisfy the identi…cation conditions
E [m® (X®)] = 0; for ® = 1;2 [the constant term is assumed to be zero, for simplicity]. Letting
´ =m2 (X2) + ", we rewrite the model as

y = m1 (X1) + ´; (2.6)

which is a classical example of “omitted variable” regression. That is, although (2.6) appears to take
the form of a univariate nonparametric regression model, smoothing y on X1 will incur a bias due
to the omitted variable ´; because ´ contains X2, which in general depends on X1. One solution to
this is suggested by the classical econometric notion of instrumental variable. That is, we look for
an instrument W such that

E (W jX1) 6= 0 ; E (W´jX1) = 0 (2.7)
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with probability one.2 If such a random variable exists, we can write

m1 (x1) =
E(WyjX1 = x1)
E(W jX1 = x1)

: (2.8)

This suggests that we estimate the function m1 (¢) by nonparametric smoothing of Wy on X1 and
W on X1. In parametric models the choice of instrument is usually not obvious and requires some
caution. However, our additive model has a natural class of instruments ¡ p2 (X2) =p (X) times any
measurable function of X1 will do, where p (¢) ; p1 (¢) ; and p2 (¢) are the density functions of the
covariates X;X1; and X2, respectively. It follows that

E(WyjX1)
E(W jX1)

=

R
W (X)m(X) p(X)p1(X1)

dX2
R
W (X) p(X)p1(X1)

dX2
=

R
W (X)m(X)p(X)dX2R
W (X)p(X)dX2

=
R
m(X)p2(X2)dX2R
p2(X2)dX2

=
Z
m(X)p2(X2)dX2

as required. This formula shows what the instrumental variable estimator is estimating when m is
not additive - an average of the regression function over the X2 direction, exactly the same as the
target of the marginal integration estimator. For simplicity we will take

W (X) =
p2 (X2)
p (X)

(2.9)

throughout.3

Up to now, it was implicitly assumed that the distributions of the covariates are known a priori.
In practice, this is rarely true, and we have to rely on estimates of these quantities. Let bp (¢) ; bp1 (¢) ;
and bp2 (¢) be kernel estimates of the densities p (¢) ; p1 (¢) ; and p2 (¢), respectively. Then, the feasible
procedure is de…ned with a replacement of the instrumental variable W by cW = bp2 (X2) =bp (X) and
taking sample averages instead of population expectations. Section 3 provides a rigorous statistical

2Note the contrast with the marginal integration or projection method. In this approach one de…nes m1 by some
unconditional expectation

m1(x1) = E[m(x1;X2)W(X2)]

for some weighting function W that depends only on X2 and which satis…es

E [W(X2)] = 1 ; E[W(X2)m2(X2)] = 0:

3 If instead we take
W(X) =

p1(X1)p2 (X2)
p (X)

:

This satis…es E (W jX1) = 1 and E(W´jX1) = 0. However, the term p1(X1) cancels out of the expression and is
redundant.
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treatment for feasible instrumental variable estimators based on local linear estimation. See Kim,
Linton, and Hengartner (1999) for a slightly di¤erent approach.

Next, we come to the main advantage that the local instrumental variable method has. This is
in terms of the computational cost. The marginal integration method actually needs n2 regression
smoothings evaluated at the pairs (X1i; X2j); for i; j = 1; : : : ; n; while the back…tting method requires
nr operations-where r is the number of iterations to achieve convergence. The instrumental variable
procedure, in contrast, takes at most 2n operations of kernel smoothings in a preliminary step for
estimating instrumental variable, and another n operations for regressions. Thus, it can be easily
combined with bootstrap method whose computational costs often becomes prohibitive in the case
of marginal integration.

Finally, we show how the instrumental variable approach can be applied to generalized additive
models. Let F (¢) be the inverse of a known link function G (¢) and let m (X) = E(yjX): The model
is de…ned as

y = F (m1 (X1) +m2 (X2)) + "; (2.10)

or equivalently G (m (X)) = m1 (X1) + m2 (X2). We maintain the same identi…cation condition,
E [m® (X®)] = 0. Unlike in the simple additive model, there is no direct way to relate Wy to
m1 (X1), here, so that (2.8) cannot be implemented. However, under additivity

m1(X1) =
E [WG(m (X))jX1]

E [W jX1]
(2.11)

for the W de…ned in (2.9). Since m (¢) is unknown, we need consistent estimates of m (X) in a
preliminary step, and then the calculation in (2.11) is feasible. In the next section we show how
these ideas are translated into estimators for the general time series setting.

3 Instrumental Variable Procedure for GANARCH

We start with some simplifying notations that will be used repeatedly throughout the paper. Let xt be
the vector of d lagged variables until t¡1, that is, xt = (yt¡1; : : : ; yt¡d), or concisely, xt = (yt¡®; yt¡®),
where y

t¡® = (yt¡1; : : : ; yt¡®¡1; yt¡®+1; : : : ; yt¡d). De…ningm®(yt¡®)=
Pd
¯=1; 6=®m¯(yt¡¯) and v®(yt¡®)

=
Pd
¯=1; 6=® v¯(yt¡¯), we can reformulate (1.1) through (1.3) with a focus on the ®th components of

mean and variance as

yt = m (xt) + v1=2 (xt) "t;

m (xt) = Fm
³
cm +m®(yt¡®) +m®(yt¡®)

´
;

v (xt) = Fv
³
cv + v®(yt¡®) + v®(yt¡®)

´
:
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To save space we will use the following abbreviations for functions to be estimated:

H® (yt¡®) ´ [m® (yt¡®) ; v® (yt¡®)]
T ; H®(yt¡®) ´

h
m®(yt¡®); v®(yt¡®)

iT
;

c ´ [cm ; cv]T ; zt ´ H (xt) = [Gm (m (xt)) ;Gv (v (xt))]T

'®(y®) = c+H®(y®):

Note that the components [m®(¢); v®(¢)]T are identi…ed, up to constant, c, by '® (¢), which will be our
major interest in estimation. Below, we examine some details in each relevant step for computing
the feasible nonparametric instrumental variable estimator of '® (¢). The set of observations is given
by Y = fytgn

0

t=1, where n0 = n+ d:

3.1 Step I. Preliminary Estimation of zt =H (xt)

Since zt is unknown, we start with computing the pilot estimates of the regression surface by a local
linear smoother. Let em(x) be the …rst component of (ea;eb) that solves

min
a;b

n0X

t=d+1

Kh(xt ¡ x) fyt ¡ a ¡ b (xt ¡ x)g2 ; (3.12)

where Kh(x) = ¦di=1K(xi=h)=hd and K is a one-dimensional kernel function and h = h(n) is a
bandwidth sequence. In a similar way, we get the estimate of the volatility surface, ev (¢), from (3.12)
by replacing yt with the squared residuals, e"2t = (yt ¡ em (xt))2. Then, transforming em and ev by the
known links will leads to consistent estimates of ezt,

ezt = eH (xt) = [Gm (em (xt)) ;Gv (ev (xt))]T :

3.2 Step II: Instrumental Variable Estimation of Additive Components

This step involves the estimation of '® (¢), which is equivalent to [m® (¢) ; v® (¢)]T , up to the constant
c: Let p (¢) and p® (¢) denote the density functions of the random variables (yt¡®; yt¡®) and y

t¡®;
respectively. De…ne the feasible instrument as

cWt =
bp®(yt¡®)

bp(yt¡®; yt¡®)
;

where bp® (¢) and bp (¢) are computed using the kernel function L (¢) ; e.g., bp(x) = Pn
t=1

Qd
i=1 Lg(xit ¡

xi)=n with Lg (¢) ´ L(¢=g)=g. The instrumental variable local linear estimates b'®(y®) are given as
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(a1; a2)T through minimizing the localized squared errors elementwise

min
aj ;bj

n0X

t=d+1

Kh (yt¡® ¡ y®)cWt fezjt ¡ aj ¡ bj (yt¡® ¡ y®)g2 ; (3.13)

where ezjt is the j-th element of ezt: The closed form of the solution is

b'®(y®)T = eT1
¡
YT¡KY¡

¢¡1YT¡KeZ; (3.14)

where e1 = (1; 0)T ; Y¡ = [¶; Y¡], K = diag[Kh(yd+1¡® ¡ y®)cWd+1; : : : ; Kh(yn0¡® ¡ y®)cWn0 ]; and eZ
= (ezd+1; : : : ; ezn0)T , with ¶ = (1; : : : ; 1)T and Y¡ = (yd+1¡® ¡ y®; : : : ; yn0¡® ¡ y®)T .

4 Main Results

Let Fab be the ¾-algebra of events generated by fytgba and ® (k) the strong mixing coe¢cient of fytg
which is de…ned by

® (k) ´ sup
A2F0

¡1; B2F1k
jP (A \ B) ¡ P (A)P (B)j :

Throughout the paper, we assume

C1. fytg1t=1 is stationary and strongly mixing with a mixing coe¢cient, ®(k) = ½¡¯k; for some
¯ > 0.

C.1 is a standard mixing condition with a geometrically decreasing rate. However, the asymptotic
theory for the instrumental variable estimator is developed based on a milder condition on the mixing
coe¢cient - as was pointed out by Masry and Tjøstheim (1997),

P1
k=0 k

a f®(k)g1¡2=º <1; for some
º > 2 and 0 < a < (1¡2=º). It is easy to verify that this condition holds under C.1. Some technical
conditions for regularity are stated.

C2. The additive component functions, m®(¢), and v®(¢), for ® = 1; : : : ; d, are continuous and twice
di¤erentiable on their compact supports.

C.3 The link functions, Gm and Gv, have bounded continuous second order derivatives over any
compact interval.

C4. The joint and marginal density functions, p(¢), p® (¢), and p®(¢), for ® = 1; : : : ; d, are continuous,
twice di¤erentiable with bounded (partial) derivatives, and bounded away from zero on the
compact support.

C5. The kernel functions, K (¢) and L(¢), are a real bounded nonnegative symmetric function on
compact support satisfying

R
K (u) du =

R
L (u)du = 1,

R
uK (u) du =

R
uL (u) du = 0. Also,

assume that the kernel functions are Lipschitz-continuous, jK(u) ¡K(v)j · Cju¡ vj:
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C6. (i) g ! 0, ngd ! 1, and (ii) h ! 0; nh ! 1. (iii) The bandwidth satis…es
pn
h®(t(n)) !

0;where ft(n)g be a sequence of positive integers, t(n) ! 1 such that t(n) = o(
p
nh):

Conditions C.2 through C.5 are standard in kernel estimation. The continuity assumption in
C2 and C4, together with the compact support, implies that the functions are bounded. The ad-
ditional bandwidth condition in C.6(iii) is necessary to control the e¤ects from the dependence of
mixing processes in showing the asymptotic normality of instrumental variable estimates. The proof
of consistency, however, does not require this condition for bandwidths. De…ne D2f (x1; : : : ; xd) =Pd
l=1 @

2f (xl)=@2x and [rGm (t) ;rGv(t)] = [dGm (t) =dt; dGv (t)=dt]. Let (K¤K)i(u) =
R
K(w)K(w+

u)widw, a convolution of kernel functions, and ¹2K¤K =
R
(K ¤ K)0(u)u2du; while jjKjj22 denotesR

K2 (u) du. The asymptotic properties of the feasible instrumental variable estimates in (3.14) are
summarized in the following theorem whose proof is in the Appendix. Let ·3(y®; z®) = E["3t jxt =
(y®; z®)]; and ·4(y®; z®) = E[("2t ¡ 1)2 jxt = (y®; z®)]. A¯B denotes the matrix Hadamard product.

Theorem 1 Assume that conditions C.1 through C.6 hold. Then,
p
nh[b'®(y®) ¡ '®(y®) ¡B®] d! N [0;§¤

®(y®)];

where

B®(y®) =
h2

2
¹2KD

2'®(y®)

+
h2

2

Z
[¹2K¤KD

2'®(y®) + ¹
2
KD

2'®(z®)] ¯ [rGm(m(y®; z®));rGv(v(y®; z®))]T p®(z®)dz®

+
g2

2
¹2K

Z
[D2p®(z®) ¡ p®(z®)

p(y®; z®)
D2p(y®; z®)]H®(z®)dz®;

§¤
®(y®) = jjKjj22

Z p2®(z®)
p(y®; z®)

"
m2
®(z®)

m®(z®)v®(z®)
m®(z®)v®(z®)
v2®(z®)

#
dz®

+jj(K ¤K)0jj22
Z p2®(z®)
p(y®; z®)

"
rGm(m)2v

(rGmrGv)(·3v3=2)
(rGmrGv)(·3v3=2)

rGv(v)2·4v2

#
(y®; z®)dz®:

Remarks. 1. To estimate [m®(y®); v®(y®)]T ; we can use the following recentered estimates,
b'®(y®) ¡ bc; where bc = [bcm; bcv] = 1

n[
P
t yt;

P
te"2t ]T and e"t = yt ¡ em (xt). Since bc = c + Op (1=

p
n),

the bias and variance of [bm®(y®); bv®(y®)]T are the same as those of b'®(y®). For y = (y1; : : : ; yd), the
estimates for the conditional mean and volatility are de…ned by

[bm(y); bv(y)] ´
"
Fm [¡ (d ¡ 1)bcm +

dX

®=1

b'®1(y®)]; Fv[¡ (d ¡ 1) bcv +
dX

®=1

b'®2(y®)]
#
:
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Let rF (y) ´ [rFm(m(y));rFv(v(y))]T . Then, by Theorem 1 and the Delta method, their asymp-
totic distribution satis…es

p
nh [ bm(y) ¡m(y) ¡ bm(y); bv(y) ¡ v(y) ¡ bv(y)]T d¡! N [0;§¤(y)] ;

where [bm(y); bv(y)]T = rF (y)¯Pd
®=1 B®(y®), and §¤(y) = [rF (y)rF (y)T ]¯[§¤

1(y1)+: : :+§¤
d(yd)].

It is easy to see that b'®(y®) and b'¯(y¯) are asymptotically uncorrelated for any ® and ¯, and the
asymptotic variance of their sum is also the sum of the variances of b'®(y®) and b'¯(y¯).

2. The …rst term of the bias is of the standard form, depending only on the second derivatives
as in other local linear smoothing. The last term re‡ects the biases from using estimates for density
functions to construct the feasible instrumental variable, bp®(yt¡®)=bp (xt). When the instrument
consisting of known density functions, p®(yt¡®)=p (xt), is used in (3.13), the asymptotic properties
of IV estimates are the same as those from Theorem 1 except that the new asymptotic bias now
includes only the …rst two terms of B®(y®).

3. The convolution kernel (K ¤ K) (¢) is the legacy of double smoothing in the instrumental
variable estimation of ‘generalized’ additive models, since we smooth [Gm( em (¢)), Gv(ev (¢))] with
em (¢) and ev (¢) given by (multivariate) local linear …ts. When Gm(¢) is the identity, we can directly
smooth y instead of Gm(em (xt)) to estimate the components of the conditional mean function. Then,
as the following theorem shows, the second term of the bias of B® does not arise, and the convolution
kernel in the variance is replaced by a usual kernel function.

Suppose that Fm(t) = Fv(t) = t in (1.2) and (1.3). The instrumental variable estimate of the
®-th component, [cM®(y®); bV®(y®)], is now the solution to the adjusted-kernel least squares in (3.13)
with a modi…cation that the (2£1) vector ezt is replaced by [yt;e"2t ]T with e"t de…ned in step I of section
2.2. Theorem 2 shows the asymptotic normality of these instrumental variable estimates. The proof
is almost the same as that of Theorem 1 and is thus omitted.

Theorem 2 Under the same conditions as Theorem 1,

i)
p
nh[cM®(y®) ¡M®(y®) ¡ bm® ]

d! N [0; ¾m® (y®)];

where

bm® (y®) =
h2

2
¹2KD

2m®(y®) +
g2

2
¹2K

Z
[D2p®(z®) ¡ p®(z®)

p(y®; z®)
D2p(y®; z®)]m®(z®)dz®;

¾m® (y®) = jjKjj22
Z p2®(z®)
p(y®; z®)

[m2
®(z®) + v(y®; z®)]dz®;

and
ii)

p
nh[bV®(y®) ¡ V®(y®) ¡ bv®]

d! N[0; ¾v®(y®)];
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where

bv®(y®) =
h2

2
¹2KD

2v®(y®) +
g2

2
¹2K

Z
[D2p®(z®) ¡ p®(z®)

p(y®; z®)
D2p(y®; z®)]v®(z®)dz®;

§v®(y®) = jjKjj22
Z p2®(z®)
p(y®; z®)

[v2®(z®) + ·4(y®; z®)v
2(y®; z®)]dz®:

Although the instrumental variable estimators achieve the one-dimensional optimal convergence
rate, there is room for improvement in terms of variance. For example, compared to the marginal
integration estimators of Linton and Härdle (1996) or Linton and Nielsen (1995), the asymptotic
variances of the instrumental variable estimates for m1 (¢) in Theorem 1 and 2 include an additional
factor ofm2

2(¢). This is because the instrumental variable approach treats ´ = m2 (X2)+" in (2.6) as
if it were the error term of the regression equation for m1(¢). Note that the asymptotic covariance in
Theorem 1 is the same as that in Yang, Härdle, and Nielsen (1999), where they only considered the
case with additive mean and multiplicative volatility functions. The issue of e¢ciency in estimating
an additive component was …rst addressed by Linton (1996) based on ‘oracle e¢ciency’ bounds of
infeasible estimators under the knowledge of other components. According to this, both instrumental
variable and marginal integration estimators are ine¢cient, but they can attain the e¢ciency bounds
through one simple additional step, following Linton (1996, 2000) and Kim, Linton, and Hengartner
(1999).

5 More E¢cient Estimation

5.1 Oracle Standard

In this section we de…ne a standard of e¢ciency that could be achieved in the presence of certain
information, and then show how to achieve this in practice. There are several routes to e¢ciency
here, depending on the assumptions one is willing to make about "t:We shall take an approach based
on likelihood, that is, we shall assume that "t is i.i.d. with known density function f like the normal
or t with given degrees of freedom. It is easy to generalize this to the case where f contains unknown
parameters, but we shall not do so here. It is also possible to build an e¢ciency standard based on
the moment conditions in (1.1)-(1.3). We choose the likelihood approach because it leads to easy
calculations and links with existing work, and is the most common method for estimating parametric
ARCH/GARCH models in applied work.

There are several standards that we could apply here. First, suppose that we know (cm; fm¯(¢) :
¯ 6= ®g) and (cv; fv®(¢) : ®g); what is the best estimator we can obtain for the function m® (within
the local polynomial paradigm)? Similarly, suppose that we know (cm; fm®(¢) : ®g) and (cv;fv¯(¢) :
¯ 6= ®g); what is the best estimator we can obtain for the function v®? It turns out that this standard
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is very high and can’t be achieved in practice. Instead we ask: suppose that we know (cm ;fm¯(¢) :
¯ 6= ®g) and (cv; fv¯(¢) : ¯ 6= ®g); what is the best estimator we can obtain for the functions (m®; v®):
It turns out that this standard can be achieved in practice. Let ¼ denote ‘¡ log f (¢)’, where f(¢) is
the density function of "t. We use zt to denote (xt; yt), where xt = (yt¡1; : : : ; yt¡d), or more concisely,
xt = (yt¡®; yt¡®). For µ = (µa; µb) = (am; av; bm ; bv), we de…ne

l¤t (µ; °®) = l¤(zt; µ; °®) = ¼

Ã
yt ¡ Fm(°1®(yt¡®) + am + bm(yt¡® ¡ y®))
F 1=2
v (°2®(yt¡®) + av + bv(yt¡® ¡ y®))

!

+
1
2
logFv(°2®(yt¡®) + av + bv(yt¡® ¡ y®)),

lt(µ; °®) = l(zt; µ; °®) = Kh(yt¡® ¡ y®)l¤(zt;µ; °®);

where °®(yt¡®) = (°1®(yt¡®); °2®(yt¡®)) = (cm +m®(yt¡®); cv + v®(yt¡®)) = (cm +
Pd
¯ 6=®m¯(yt¡¯),

cv+
Pd
¯ 6=® v¯(yt¡¯)). With lt(µ; °®) being the (negative) conditional local log likelihood, the infeasible

local likelihood estimator bµ = (bam; bav ;bbm;bbv) is de…ned by the minimizer of

Qn(µ) =
n0X

t=d+1

lt(µ; °0®),

where °0®(¢) = (°01®(¢); °02®(¢)) = (c0m +m0
®(¢); c0v + v0®(¢)). From the de…nition for the score function;

s¤t (µ; °®) = s¤(zt; µ; °®) =
@l¤(zt; µ; °®)

@µ

st(µ; °®) = s(zt; µ; °®) =
@l(zt; µ;°®)
@µ

the …rst order condition for bµ is given by

0 = sn(bµ;°0®) =
1
n

n0X

t=d+1

st(bµ; °0®).

The asymptotic distribution of local MLE has been studied by Avramidis (2002). For y = (y1; : : : ; yd)
= (y®; y®), de…ne

V® = V®(y®) =
Z
V (y;µ0; °0®)p(y)dy®; D® = D(y®) =

Z
D(y; µ0; °0®)p(y)dy®,

where

V (y; µ; °®) = E[s
¤(zt;µ; °®)s

¤(zt; µ;°®)
0jxt = y];D(y; µ;°®) = E(rµs¤t (zt;µ; °®)jxt = y).

With a minor generalization of the results by Avramidis (2002, Theorem 2), we obtain the following
asymptotic properties for the infeasible estimators, b'®(y®) = [bm®(y®); bv®(y®)] = [bam;bav].
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Theorem 3 Under Assumption B in the appendix, it holds that
p
nh[b'®(y®) ¡ '®(y®) ¡B®] d! N [0;¤

®(y®)];

where B® = 1
2h

2¹2K[m00
®(y®); v00®(y®)]T , and ¤

®(y®) = jjKjj22D¡1
® V®D¡1

® .

Remarks.
A more speci…c form for the asymptotic variance can be calculated. For example, suppose that

the error density function, f (¢), is symmetric. Then, the asymptotic variance of the volatility function
is given by

!22(y®) =

R
f
R
g2(y)f (y)dyg(rFv=Fv)2(Gv(v(y)))p(y)dy®

[
R
f
R
q(y)f (y)dyg(rFv=Fv)2(Gv(v(y)))p(y)dy®]2

;

where g(y) = f 0(y)f¡1(y)y+ 1, and q(y) = [y2f 00(y)f(y) + yf 0(y)f (y) ¡ y2f 0(y)2] f¡2(y).
When the error distribution is Gaussian, we can further simplify the asymptotic variance; i.e.,

!11(y®) =
·Z
v¡1(y)rF 2

m(Gm(m(y))p(y)dy®

¸¡1

; !12 = !21 = 0;

!22(y®) = 2
·Z
v¡2(y)rF 2

v (Gv(v(y))p(y)dy®

¸¡1

.

In this case, one can easily …nd the infeasible estimator to have lower asymptotic variance than the
IV estimator. To see this, we note that rGm = 1=rFm and jjKjj22 · jj(K ¤ K)0jj22, and apply the
Cauchy-Schwarz inequality to get

jj(K ¤ K)0jj22
Z p2®(y®)
p(y®; y®)

rGm(m)2v(y®; y®)dy®

¸ jjKjj22
·Z
v¡1(y®; y®)rF

2
m(Gm(m))p(y®; y®)dy®

¸¡1

.

In a similar way, from ·4 = 3 due to the gaussianity assumption on ", it follows that

jj(K ¤K)0jj22·4
Z p2®(z®)
p(y®; z®)

rGv(v)2v2(y®; y®)dy®

¸ 2
·Z
v¡2(y)rF 2

v (Gv(v(y))p(y)dy®

¸¡1

.

These, together with ·3 = 0, imply that the second term of §¤
®(y®) in Theorem 1 is greater than

¤
®(y®) in the sense of positive de…niteness, and hence §¤

®(y®) ¸ ¤
®(y®), since the …rst term of §¤

®(y®)
is a nonnegative matrix. The infeasible estimator is more e¢cient than the IV estimator, because
the former uses more information concerning the mean-variance structure.
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5.2 Feasible Estimation

Let (ecm ;fem¯(¢) : ¯ 6= ®g) and (ecv; fev¯(¢) : ¯ 6= ®g)] be the estimators de…ned in the previous sections.
De…ne the feasible local likelihood estimator bµ¤ = (ba¤m; ba¤v;bb¤m ;bb¤v) as the minimizers of

eQn(µ) =
n0X

t=d+1

lt(µ; e°®),

where e°®(¢) = (e°1®(¢); e°2®(¢)) = (ecm + em®(¢); ecv + ev®(¢)). Then, the …rst order condition for bµ¤ is
given by

0 = sn(bµ
¤
;e°®) =

1
n

n0X

t=d+1

st(bµ
¤
; e°®). (5.15)

Let bm¤
®(y®) = ba¤m and bv¤®(y®) = ba¤v: We have the following result.

Theorem 4 Under Assumption A and B in the appendix, it holds that
p
nh[b'¤®(y®) ¡ b'®(y®)]

p! 0:

This results shows that the oracle e¢ciency bound is achieved by the two-step estimator.

6 Numerical Examples

A small-scale simulation is carried out to investigate the …nite sample properties of both the IV and
two-step estimators. The design in our experiment is Additive Nonlinear ARCH(2)

yt = [0:2 + v1(yt¡1) + v2(yt¡2)]"t;

v1(y) = 0:4©N (j2yj)[2 ¡ ©N (y)]y2;

v2(y) = 0:4
n
1=

p
1 + 0:1y2 + ln(1 + 4y2) ¡ 1

o
;

where ©N (¢) is the (cumulative) standard normal distribution function, and "t is i.i.d. with N(0;1).
Fig.1(solid lines) depicts the shapes of the volatility functions de…ned by v1(¢) and v2(¢). Based on
the above model, we simulate 500 samples of ARCH processes with sample size n = 500. For each
realization of the ARCH process, we apply the IV estimation procedure in (3.13) with ezt = y2t to
get preliminary estimates of v1(¢) and v2(¢). Those estimates then are used to compute the two-step
estimates of volatility functions based on the feasible local MLE in section 5.2, under the normality
assumption for the errors. The infeasible oracle-estimates are also provided for comparisons. The
gaussian kernel is used for all the nonparametric estimates, and bandwidths are chosen according to
the rule of thumb (Härdle, 1990), h = chstd(yt)n¡1=(4+d), where std(yt) is the standard deviation of yt.
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We …x ch = 1 for both the density estimates (for computing the instruments,W ) and IV estimates in
(3.13), and ch = 1:5 for the (feasible and infeasible) local MLE. To evaluate the performance of the
estimators, we calculate the mean squared error, together with the mean absolute deviation error,
for each simulated data ; for ® = 1;2;

e®;MSE =

(
1
50

50X

i=1

[v®(yi) ¡ bv®(yi)]2
)1=2

,

e®;MAE =
1
50

50X

i=1

jv®(yi) ¡ bv®(yi)j;

where fy1; ::; y50g are grid points on [¡1; 1). The grid range covers about 70% of the whole observa-
tions on average. The following table gives averages of e®;MSE ’s and e®;MAE ’s from 500 repetitions.

Table 1: Averages MSE and MAE for three volatility estimators

e1;MSE e2;MSE e1;MAE e2;MAE
oracle est. :07636 :08310 :06049 :06816
IV est. :08017 :11704 :06660 :09725
two-step :08028 :08524 :06372 :07026

Table 1 shows that the infeasible oracle estimator is the best out of the three, to one’s expectation.
The performance of the IV estimator seems to be reasonably good, compared to the local MLE’s, at
least in estimating the volatility function of the …rst lagged variable. However, the overall accuracy
of the IV estimates is improved by the two-step procedure which behaves almost as well as the
infeasible one, con…rming our theoretical results in Theorem 4. For more comparisons, Fig.1 shows
the averaged estimates of volatility functions, where the averages are made, at each grid, over 500
simulations. In Fig.2, we also illustrate the estimates for three typical (consecutive) realizations of
ARCH processes.

A Appendix

A.1 Proofs for Section 4

The proof of Theorem 1 consists of three steps. Without loss of generality we deal with the case ® =
1; below we will use the subscript ‘2’, for expositional convenience, to denote the nuisance direction.
That is, p2(yk¡1

) = p1(yk¡1
) in the case of density function. For component functions, m2(yk¡1

),
v2(yk¡1

), and H2(yk¡1
) will be used instead of m1(yk¡1

), v1(yk¡1
), and H1(yk¡1

), respectively. We
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start by decomposing the estimation errors, b'1(y1)¡'1(y1), into the main stochastic term and bias.
Use Xn ' Yn to mean Xn = Yn f1 + op (1)g in the following. Let vec(X) denote the vectorization of
the elements of the matrix X along with columns.

Step I: Decompositions and Approximations

Since b'1(y1) is a column vector, the vectorization of eq. (3.14) gives

b'1(y1) = [I2  eT1
¡
YT¡KY¡

¢¡1]
¡
I2 YT¡K

¢
vec

³
eZ
´
:

A similar form is obtained for the true function, '1(y1),

[I2  eT1
¡
YT¡KY¡

¢¡1]
¡
I2 YT¡K

¢
vec

¡
¶'T1 (y1) + Y¡r'T1 (y1)

¢
;

by the identity,
'1(y1) = vecfeT1

¡
YT¡KY¡

¢¡1YT¡K[¶'T1 (y1) + Y¡r'T1 (y1)]g;
since

eT1
¡
YT¡KY¡

¢¡1YT¡K¶ = 1; eT1
¡
YT¡KY¡

¢¡1 YT¡KY¡ = 0:

By de…ning Dh = diag (1; h) and Qn =D¡1
h YT¡KY¡D¡1

h , the estimation errors are

b'1(y1) ¡ '1(y1) = [I2  eT1Q¡1
n ]¿n;

where
¿n =

¡
I2 D¡1

h YT¡K
¢
vec[eZ¡ ¶'T1 (y1)¡Y¡r'T1 (y1)]:

Observing

¿n =
1
n

n0X

k=d+1

K
cWk
h (yk¡1 ¡ y1) [ezk ¡ '1(y1) ¡ (yk¡1 ¡ y1)r'1(y1)]  (1;

yk¡1 ¡ y1
h

)T ;

where K
cWk
h (y) = Kh(y)cWk; it follows by adding and subtracting zk = '1 (yk¡1) +H2(yk¡1) that

¿n =
1
n

n0X

k=d+1

K
cWk
h (yk¡1 ¡ y1) [ezk ¡ zk +H2

³
yk¡1

´
]  (1;

yk¡1 ¡ y1
h

)T

+
1
n

n0X

k=d+1

KcWk
h (yk¡1 ¡ y1) ['1 (yk¡1) ¡ '1(y1) ¡ (yk¡1 ¡ y1)r'1(y1)] (1;

yk¡1 ¡ y1
h

)T :

Due to the boundedness condition in C.2, the Taylor expansion applied to [Gm(em (xk)), Gv(ev (xk))]
at [m (xk) ; v (xk)] yields the …rst term of ¿n as

e¿n ´ 1
n

n0X

k=d+1

K
cWk
h (yk¡1 ¡ y1) [euk  (1;

yk¡1 ¡ y1
h

)T ];
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where euk ´ ez1k + ez2k +H2(yk¡1
),

ez1k ´ frGm (m (xk)) [ em (xk) ¡m (xk)];rGv (v (xk)) [ev (xk) ¡ v (xk)]gT

ez2k ´ 1
2
fD2Gm (m¤ (xk)) [em (xk) ¡m (xk)]2; D2Gv (v¤ (xk)) [ev (xk) ¡ v (xk)]2gT ;

and m¤ (xk) [v¤ (xk)] is between em (xk) [ev (xk)] and m (xk)[v(xk), respectively]. In a similar way, the
Taylor expansion of '1 (yk¡1) at y1 gives the second term of ¿n as

s0n =
h2

2
1
n

n0X

k=d+1

KcWk
h (yk¡1 ¡ y1) (

yk¡1 ¡ y1
h

)2[D2'1(y1)  (1;
yk¡1 ¡ y1
h

)T ](1 + op (1)):

e¿n continues to be simpli…ed by some further approximations. De…ne the marginal expectation
of estimated density functions, bp2(¢) and bp(¢) as follows

p(yk¡1; yk¡2) ´
Z
Lg(z1 ¡ yk¡1)Lg(z2 ¡ yk¡2)p(z1; z2)dz1dz2;

p2(yk¡2
) ´

Z
Lg(z2 ¡ y

k¡2
)p2(z2)dz2:

In the …rst approximation, we replace the estimated instrument, cW , by the ratio of the expectations of
the kernel density estimates, p2(yk¡1

)=p(xk), and deal with the linear terms in the Taylor expansions.

That is, e¿n is approximated with an error of op
³
1=

p
nh

´
by t1n + t2n:

t1n ´ 1
n

n0X

k=d+1

Kh (yk¡1 ¡ y1)
p2(yk¡1

)

p(xk)
[ez1k  (1;

yk¡1 ¡ y1
h

)T ];

t2n ´ 1
n

n0X

k=d+1

Kh (yk¡1 ¡ y1)
p2(yk¡1

)

p(xk)
[H2(yk¡1

)  (1;
yk¡1 ¡ y1
h

)T ];

based on the following results:
(i) 1n

Pn0

k=d+1Kh (yk¡1 ¡ y1)
bp2(yk¡1)

bp(xk) [ez2k  (1; yk¡1¡y1
h )T ] = op

³
1p
nh

´
;

(ii) 1
n

Pn0
k=d+1Kh (yk¡1 ¡ y1) [

bp2(yk¡1
)

bp(xk) ¡ p2(yk¡1)

p(xk)
][H2(yk¡1

)  (1; yk¡1¡y1h )T ] = op
³

1p
nh

´
;

(iii) 1
n

Pn0
k=d+1Kh (yk¡1 ¡ y1) [

bp2(yk¡1)

bp(xk) ¡ p2(yk¡1)

p(xk)
][ez1k  (1; yk¡1¡y1

h )T ] = op
³

1p
nh

´
:

To show (i), consider the …rst two elements of the term, for example, which are bounded elemen-
twise by

max
k

jem (xk) ¡m (xk)j2 £

1
2
1
n

X

k

Kh (yk¡1 ¡ y1)
bp2(yk¡1)
bp(xk)

D2Gm (m (xk)) (1;
yk¡1 ¡ y1
h

)T

= op
³
1=

p
nh

´
:

17



The last equality is direct from the uniform convergence theorems in Masry (1992) that

max
t

j em (xt) ¡m (xt)j = Op
³
log n=

p
nhd

´
; (A.16)

and 1
n

P
kKh (yk¡1 ¡ y1)

bp2(yk¡1
)

bp(xk) D
2Gm (m (xk)) (1;

yk¡1¡y1
h )T = Op (1). The proof for (ii) is given in

Lemma A.1. The negligibility of (iii) follows in a similar way from (ii), considering (). While
the asymptotic properties of s0n and t2n are relatively easy to derive, additional approximation is
necessary to make t1n more tractable. Note that the estimation errors of local linear …ts, em (xk) ¡
m (xk) of ez1k, are decomposed into

1
n

X

l

Kh (xl ¡ xk)
p(xl)

v1=2 (xl) "l + the remaining bias

from the approximation results for local linear smoother in Jones, Davies and Park(1994). A similar
expression holds for volatility estimates, ev (xk)¡v (xk), with a stochastic term of 1

n

P
l
Kh(xl¡xk)
p(xl)

v (xl)("2l
-1). De…ne

Jk;n (xl)

´ 1
nhd

X

k

K (yk¡1 ¡ y1=h)K (xl ¡ xk=h)
p(xl)

p2(yk¡1
)

p(xk)
[diag(rGm ;rGv)  (1;

yk¡1 ¡ y1
h

)T ];

and let J (xl) denote the marginal expectation of Jk;n with respect to xk. Then, the stochastic term
of t1n, after rearranging its the double sums, is approximated by

et1n =
1
nh

X

l

J (xl) [(v1=2 (xl) "l; v (xl) ("2l ¡ 1))T  I2];

since the approximation errors from J (Xl) is negligible, i.e.,
1
nh

X

l

(Jk;n ¡ J)[(v1=2 (Xl) "l; v (Xl) ("2l ¡ 1))T  I2]T = op
³
1=

p
nh

´
;

applying the same method as in Lemma A.1. A straightforward calculation gives

J (Xl) ' 1
h

Z
K (u1 ¡ y1=h)K (u1 ¡ yl¡1=h)

Z
1
hd¡1K

³
y
l¡1

¡ u2=h
´ p2(u2)
p(xl)

£

[diag(rGm(u);rGv(u))  (1;
u1 ¡ y1
h

)T ]du2du1

' 1
h

Z
K (u1 ¡ y1=h)K (u1 ¡ yl¡1=h)

p2(y l¡1
)

p(xl)
£

[diag(rGm(u1; yl¡1
);rGv(u1; yl¡1

))  (1;
u1 ¡ y1
h

)T ]du1

'
p2(yl¡1

)

p(xl)
[diag(rGm(y1; y l¡1

);rGv(y1; yl¡1
))

((K ¤K)0

µ
yl¡1 ¡ y1
h

¶
; (K ¤ K)1

µ
yl¡1 ¡ y1
h

¶
)T ];
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where
(K ¤K)i

µ
yl¡1 ¡ y1
h

¶
=

Z
wi1K (w1)K

µ
w1 +

yl¡1 ¡ y1
h

¶
dw:

Observe that (K ¤ K)i
¡ yl¡1¡y1

h

¢
in J (Xl) is actually a convolution kernel and behaves just like a

one dimensional kernel function of yl¡1. This means that the standard method (CLT, or LLN) for
univariate kernel estimates can be applied to show the asymptotics of

et1n =
1
nh

X

l

p2(yl¡1
)

p(xl)

("
rGm(y1; yl¡1

)v1=2 (Xl) "l
rGv(y1; yl¡1

)v (Xl) ("2l ¡ 1))

#


"
(K ¤K)0

¡yl¡1¡y1
h

¢

(K ¤K)1
¡yl¡1¡y1

h

¢
#)
:

If we de…ne es1n as the remaining bias term of t1n, the estimation errors of b'1(y1)¡'1(y1), consist of
two stochastic terms, [I2  eT1Q¡1

n ]
¡et1n + et2n

¢
, and three bias terms, [I2  eT1Q¡1

n ] (s0n + s1n + s2n) ;
where

et2n =
1
n

n0X

k=d+1

Kh (yk¡1 ¡ y1)
p2(yk¡1)
p(Xk)

[H2(yk¡1)  (1;
Yk¡1 ¡ y1
h

)T ];

s2n = t2n ¡ et2n:

Step II: Computation of Variance and Bias

We start with showing the order of the main stochastic term,

et¤n = et1n + et2n =
1
n

X

k

»k ;

where »k = »1k + »2k ;

»1k =
p2(yk¡1

)

p(yk¡1; yk¡1)

("
rGm(y1; yk¡1

)v1=2 (Xk) "k
rGv(y1; yk¡1

)v (Xk) ("2k ¡ 1))

#


"
1
h (K ¤ K)0

¡ yk¡1¡y1
h

¢

0

#)

»2k =
p2(yk¡1

)

p(yk¡1; yk¡1)

8
<
:

2
4 m2

³
y
k¡1

´

v2
³
yk¡1

´
3
5 

"
1
hK

¡yk¡1¡y1
h

¢
1
hK

¡yk¡1¡y1
h

¢ ¡yl¡1¡y1
h

¢
#9
=
; ;

by calculating its asymptotic variance. Dividing a normalized variance of et¤n into the sums of variances
and covariances gives

var
³p
nhet¤n

´
= var

Ãp
hp
n

X

k

»k

!
=
h
n

X

k

var (»k) +
h
n

XX

k 6=l
cov (»k; » l)

= hvar
³
e»k

´
+

X

k

·
n¡ k
n

¸
h

£
cov

¡
»d; »d+k

¢¤
;

where the last equality comes from the stationarity assumption.
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We claim that
(a) hvar (»k) ¡! §1(y1);
(b)

P
k

£
1 ¡ k

n

¤
hcov

¡
»d; »d+k

¢
= o(1), and

(c) nhvar
¡et¤n

¢
¡! §1(y1);

where

§1(y1) = f
Z
p22(z2)
p(y1; z2)

"
rGm(y1; z2)2v(y1; z2)

(rGm ¢ rGv)(·3 ¢ v3=2)(y1; z2)
(rGm ¢ rGv)(·3 ¢ v3=2)(y1; z2)
rGv(y1; z2)2·4(y1; z2)v2(y1; z2)

#
dz2


"

jj(K ¤ K)0jj22
0

0
0

#
g

+
Z
p22(z2)
p(y1; z2)

H2 (z2)HT2 (z2) dz2 
"

jjKjj22
0

0R
K2 (u) u2du

#

Proof of (a). Noting E (»1k) = E (»2k) = 04£1 and E
¡
»1k»

T
2k

¢
= 04£4,

hvar (»k) = hE
¡
»1k»

T
1k

¢
+ hE

¡
»2k»

T
2k

¢
,

by the stationarity assumption. Applying the integration with substitution of variable and Taylor
expansion, the expectation term is

hE
¡
»1k»

T
1k

¢
= f

Z
p22(z2)
p(y1; z2)

"
rGm(y1; z2)2v(y1; z2)

(rGm ¢ rGv)(·3 ¢ v3=2)(y1; z2)
(rGm ¢ rGv)(·3 ¢ v3=2)(y1; z2)
rGv(y1; z2)2·4(y1; z2)v2(y1; z2)

#
dz2


"

jj(K ¤K)0jj22
0

0
0

#
g;

and

hE
¡
»2k»

T
2k

¢
=

Z
p22(z2)
p(y1; z)

"
m2

2 (z2)
m2 (z2) v2 (z2)

m2 (z2) v2 (z2)
v22 (z2)

#
dz2 

"
jjKjj22
0

0R
K2 (u) u2du

#
+ o (1) ;

where ·3(y1; z2) = E["3t jxt = (y1; z2)] and ·4(y1; z2) = E[("2t ¡ 1)2 jxt = (y1; z2)].

Proof of (b). SinceE
¡
»1k»

T
1j

¢
jj 6=k = E

¡
»1k»

T
2j

¢
jj 6=k = 0, cov

¡
»d+1; »d+1+k

¢
= cov

¡
»2d+1; »2d+1+k

¢
.

By setting c(n)h! 0; as n ! 1; we separate the covariance terms into two parts:
c(n)X

k=1

·
1 ¡ k
n

¸
hcov

¡
»2d+1; »2d+1+k

¢
+

n0X

k=c(n)+1

·
1 ¡ k
n

¸
hcov

¡
»2d+1; »2d+1+k

¢
:

To show the negligibility of the …rst part of covariances, consider that the dominated convergence
theorem used after Taylor expansion and the integration with substitution of variables gives

¯̄
cov

¡
»2d+1; »2d+1+k

¢¯̄

' j
Z
H2

³
y
d

´
HT2

³
y
d+k

´ p(y1; yd; y1; yd+k)
p1j2(y1jyd)p1j2(y1jyd+k)

d(y
d
; y
d+k

)j 
"
1
0

0
0

#
:
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Therefore, it follows from the assumption on the boundedness condition in C.2 that

¯̄
cov

¡
»2d+1; »2d+1+k

¢¯̄
· E

¯̄
¯H2

³
y
d

´¯̄
¯E

¯̄
¯HT2

³
y
d+k

´¯̄
¯
Z p(y1; yd; y1; yd+k)

p1j2(y1jyd)p1j2(y1jyd+k)
d(y

d
; y
d+k

) 
"

1
0

0
0

#

´ A¤:

where `A · B’ mean aij · bij ; for all element of matrices A and B: By the construction of c(n);
c(n)X

k=1

·
1 ¡ k
n

¸
hcov

¡
»2d+1; »2d+1+k

¢

· 2c(n)
¯̄
hcov

¡
»2d+1; »2d+1+k

¢¯̄
· 2c(n)hA¤ ¡! 0; as n! 1:

Next, we turn to the negligibility of the second part of the covariances,
n0X

k=c(n)+1

·
1 ¡ k
n

¸
hcov

¡
»2d+1; »2d+1+k

¢
:

Let »i2k be i-th element of »2k ; for i = 1; : : : ;4. Using Davydov’s lemma (in Hall and Heyde 1980,
Theorem A.5), we obtain

¯̄
hcov

¡
» i2d+1; »

j
2d+1+k

¢¯̄
=

¯̄
¯cov

³p
h» i2d+1;

p
h»j2d+1+k

´¯̄
¯ · 8

£
®(k)1¡2=v¤

·
max
i=1;:::;4

E
³p
h

¯̄
»i2k

¯̄v´
¸2=v
;

for some v > 2: The boundedness of E(
p
h

¯̄
»12k

¯̄v), for example, is evident from the direct calculation
that

»2k =
p2(yk)
p(xk)

8
<
:

2
4 m2

³
yd

´

v2
³
y
d

´
3
5 

"
1
hK

¡yk¡1¡y1
h

¢
1
hK

¡yk¡1¡y1
h

¢ ¡ yk¡1¡y1
h

¢
#9
=
;

E
³¯̄
¯
p
h»12k

¯̄
¯
v´

' hv=2

hv¡1

Z
pv2(z2)

pv¡1(y1; z2)
jmv2 (z2)j dz2

= O(
hv=2

hv¡1) = O(
1

hv=2¡1 ):

Thus, the covariance is bounded by
¯̄
hcov

¡
»2d+1; »2d+1+k

¢¯̄
· C

·
1

hv=2¡1

¸2=v £
®(k)1¡2=v¤ :

This implies
n0X

k=c(n)+1

·
1 ¡ k
n

¸
hcov

¡
»2d+1; »2d+1+k

¢

· 2
1X

k=c(n)+1

¯̄
hcov

¡
»2d+1; »2d+1+k

¢¯̄
· C0

·
1

h1¡2=v

¸ 1X

k=c(n)+1

£
®(k)1¡2=v¤

= C 0
1X

k=c(n)+1

·
1

h1¡2=v

¸ £
®(k)1¡2=v¤ · C0

1X

k=c(n)+1

ka
£
®(k)1¡2=v

¤
;
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if a is such that
ka ¸ (c(n) + 1)a ¸ c(n)a = 1

h1¡2=v ;

for example, c(n)ah1¡2=v = 1; which implies c(n) ! 1: If we further restrict a such that

0 < a < 1 ¡ 2
v
;

then,
c(n)ah1¡2=v = 1 implies c(n)ah1¡2=v = [ c(n)h]1¡2=v c(n)¡± = 1; for ± > 0:

Thus, c(n)h! 0 as required. Therefore,

n0X

k=c(n)+1

·
1 ¡ k
n

¸
hcov

¡
»2d+1; »2d+1+k

¢
· C0

1X

k=c(n)+1

ka
£
®(k)1¡2=v¤ ! 0;

as n goes to 1:
The proof of (c) is immediate from (a) and (b).

Next, we consider the asymptotic bias. Using the standard result on kernel weighted sum of
stationary series, we …rst get,

s0n
p! h2

2
[D2'1(y1)  (¹2K; 0)

T ];

since

1
n

n0X

k=d+1

KcW
h (yk¡1 ¡ y1) (

yk¡1 ¡ y1
h

)2[D2'1(y1)  (1;
yk¡1 ¡ y1
h

)T ]

! p
Z
KcW
h (z1 ¡ y1) (

z1 ¡ y1
h

)2[D2'1(y1)  (1;
z1 ¡ y1
h

)T ]p (z) dz

'
Z
Kh (z1 ¡ y1) p2 (z2) (

z1 ¡ y1
h

)2[D2'1(y1)  (1;
z1 ¡ y1
h

)T ]dz

=
Z
Kh (z1 ¡ y1) (

z1 ¡ y1
h

)2[D2'1(y1)  (1;
z1 ¡ y1
h

)T ]dz1

= [D2'1(y1) 
Z
Kh (z1 ¡ y1) (

z1 ¡ y1
h

)2(1;
z1 ¡ y1
h

)Tdz1]

= [D2'1(y1)  (¹2K ; 0)
T ]:

For the asymptotic bias of es1n, we again use the approximation results in Jones, Davies and Park(1994).
Then, the …rst component of es1n, for example, is

1
n

X

k

Kh (yk¡1 ¡ y1)
p2(yk¡1

)
p(xk)

rGm (m (xk)) f1
2
1
n

X

l

Kh (xl ¡ xk)
p(xl)

dX

®=1

(yl¡® ¡ yk¡®)2
@2m(xk)
@y2k¡®

g;
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and converges to

h2

2

Z
p2(z2)rGm(m(y1; z2))[¹2K¤KD2m1(y1) + ¹2KD

2m2(z2)]dz2;

based on the argument for convolution kernel in the above. A convolution of symmetric kernels is sym-
metric, so that

R
(K ¤K)0 (u) udu = 0, and

R
(K ¤ K)1 (u) u

2du =
R R
wK (w)K (w + u)u2dwdu =

0. This implies that

es1n p! h2

2

Z
p2(z2)f[rGm(m(y1; z2));rGv(v(y1; z2))]T ¯ [¹2K¤KD

2'1(y1)+¹
2
KD

2'2(z2)]g (1;0)Tdz2:

To calculate es2n, we use the Taylor series expansion of
p2(yk¡1)

p(Xk)
:

"
p2(yk¡1

) ¡
p2(yk¡1)p(Xk)
p(Xk)

#
1
p(Xk)

=

"
p2(yk¡1) ¡

p2(yk¡1
)p(Xk)

p(Xk)

#
1
p(Xk)

£
·
1 ¡ p(Xk) ¡ p(Xk)

p2(Xk)
+ : : :

¸

=
p2(yk¡1

)

p(Xk)
¡
p2(yk¡1

)p(Xk)

p2 (Xk)
+ op (1) :

Thus,

es2n =
1
n

n0X

k=d+1

Kh (yk¡1 ¡ y1) [
p2(yk¡1

)
p(Xk)

¡
p2(yk¡1

)
p(Xk)

][H2(yk¡1)  (1;
yk¡1 ¡ y1
h

)T ]

p!
Z
Kh (z1 ¡ y1) [

p2(z2)
p(z)

¡ p2(z2)
p(z)

][H2(z2)  (1;
z1 ¡ y1
h

)T ]p (z) dz

'
Z
Kh (z1 ¡ y1)

·
p2(z2)
p(z)

¡ p2(z2)p(z)
p2 (z)

¸
[H2(z2)  (1;

z1 ¡ y1
h

)T ]p (z) dz

=
Z
Kh (z1 ¡ y1)

·
p2(z2)
p(z)

¡ p2(z2)
p (z)

¸
[H2(z2)  (1;

z1 ¡ y1
h

)T ]p (z) dz

+
Z
Kh (z1 ¡ y1)

·
p2(z2)p(z)
p2(z)

¡ p2(z2)p(z)
p2 (z)

¸
[H2(z2)  (1;

z1 ¡ y1
h

)T ]p (z) dz

' g2

2
[
Z
D2p2 (z2)H2(z2)dz2  (¹2K; 0)

T ]

¡g
2

2
[
Z
p2(z2)
p (y1; z2)

D2p(y1; z2)H2(z2)dz2  (¹2K ; 0)
T ]:

Finally, for the probability limit of [I2  eT1Q¡1
n ], we note that

Qn = D¡1
h YT¡KY¡D¡1

h = [bqni+j¡2(y1; h)](i;j)=1;2
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with bqni = 1
n

Pn
k=dK

cW
h (Yk¡1 ¡ y1)

¡yk¡1¡y1
h

¢i
; for i = 0;1; 2, and

bqni p¡!
Z
Kh (z1 ¡ y1)

µ
z1 ¡ y1
h

¶i
p2 (z2) dz =

Z
K (u1) ui1du1

Z
p2 (z2) dz2

=
Z
K (u1) ui1du1 ´ qi;

where q0 = 1; q1 = 0 and q2 = ¹2K :

Thus, Qn !
"

1 0
0 ¹2K

#
; Q¡1

n ! 1
¹2K

"
¹2K 0
0 1

#
, and eT1Q

¡1
n ! eT1 . Therefore,

B1n(y1) = [I2  eT1Q¡1n ] (s0n + s1n + s2n)

=
h2

2
¹2KD

2'1(y1)

h2

2

Z
[¹2K¤KD

2'1(y1) + ¹
2
KD

2'2(z2)]¯ [rGm(m(y1; z2));rGv(v(y1; z2))]T p2(z2)dz2

+
g2

2
¹2K

Z
Dp2 (z2)H2(z2)dz2 ¡ g

2

2
¹2K

Z
p2(z2)
p (y1; z2)

D2p(y1; z2)H2(z2)dz2

+op
¡
h2

¢
+ op

¡
g2

¢
:

Step III: Asymptotic Normality of et¤n

Applying the Cramer-Wold device, it is su¢cient to show

Dn ´ 1p
n

X

k

p
he»k

D¡! N
¡
0; ¯T§1¯

¢
;

for all ¯ 2 R4; where e»k = ¯T »k. We use the small block-large block argument-see Masry and
Tjøstheim (1997). Partition the set fd; d+ 1; : : : ;ng into 2k + 1 subsets with large blocks of size
r = rn and small blocks of size s = sn where

k =
·
n1

rn + sn

¸

and [x] denotes the integer part of x: De…ne

´j =
j(r+s)+r¡1X

t=j(r+s)

p
he»t; !j =

(j+1)(r+s)¡1X

t=j(r+s)+r

p
he»t; 0 · j · k ¡ 1;

&k =
nX

t=k(r+s)

p
he»t;
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then,

Dn =
1p
n

Ã
k¡1X

j=0

´j +
k¡1X

j=0

!j + &k

!
´ 1p

n
(S 0n + S

00
n + S

000
n ) :

Due to C.6., there exist a sequence an ! 1 such that

ansn = o
³p
nh

´
and an

p
n=h® (sn) ! 0; as n! 1; (A.18)

and de…ne the large block size as

rn =

"p
nh
an

#
: (A.19)

It is easy to show by (A.18) and (A.19) that as n! 1 :

rn
n

! 0;
sn
rn

! 0;
rnp
nh

! 0; (A.20)

and
n
rn
® (sn) ! 0:

We …rst show that S00n and S 000n are asymptotically negligible. The same argument used in Step II
yields

var (!j ) = s £ var
³p
he»t

´
+ 2s

s¡1X

k=1;

µ
1 ¡ k
s

¶
cov

³p
he»d+1;

p
he»d+1+k

´
(A.21)

= s¯T§1¯ (1 + o (1)) ;

which implies
k¡1X

j=0

var (!j ) = O (ks) » nsn
rn + sn

» nsn
rn

= o (n) ;

from the condition (A.20). Next, consider

k¡1X

i;j=0;
i 6=j

cov (!i; !j ) =
k¡1X

i;j=0;
i 6=j

sX

k1=1

sX

k2=1

cov
³p
he»Ni+k1 ;

p
he»Nj+k2

´
;

where Nj = j(r+ s) + r. Since jNi ¡Nj + k1 ¡ k2j ¸ r; for i 6= j; the covariance term is bounded by

2
n¡rX

k1=1

nX

k2=k1+r

¯̄
¯cov

³p
he»k1 ;

p
he»k2

´¯̄
¯

· 2n
nX

j=r+1

¯̄
¯cov

³p
he»d+1;

p
he»d+1+j

´¯̄
¯ = o (n) :
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The last equality also follows from Step II. Hence, 1
nE f(S00n)2g ! 0; as n! 1: Repeating a similar

argument for S000n , we get

1
n
E

©
(S000n )

2ª · 1
n
[n¡ k (r + s)] var

³p
he»d+1

´

+2
n¡ k (r + s)

n

n¡k(r+s)X

j=1

cov
³p
he»d+1;

p
he»d+1+j

´

· rn + sn
n
¯T§1¯ + o (1)

! 0; as n! 1:

Now, it remains to show 1p
nS

0
n =

1p
n

Pk¡1
j=0 ´j

D¡! N
¡
0; ¯T§1¯

¢
.

Since ´j is a function of
n
e»t;

oj(r+s)+r¡1

t=j(r+s)+1
which is Fj(r+s)+r¡1

j(r+s)+1¡d -measurable, the Volkonskii and

Rozanov’s lemma in the appendix of Masry and Tjøstheim(1997) implies that, with esn = sn¡ d+ 1,

jE[exp(it 1p
n

k¡1X

j=0

´j)]¡
k¡1Y

j=0

E
¡
exp

¡
it´j

¢¢
j

· 16k® (esn ¡ d+ 1) ' n
rn + sn

® (esn) ' n
rn
® (esn) ' o (1) ;

where the last two equalities follows from hold (A.20). Thus, the summands
©
´j

ª
in S0n are asymp-

totically independent. Since the similar operation to (A.21) yields

var
¡
´j

¢
= rn¯T§1¯ (1 + o (1)) ;

and hence

var(
1p
n
S0n) =

1
n

k¡1X

j=0

E
¡
´2j

¢
=
knrn
n
¯T§1¯ (1 + o (1)) ! ¯0§¤¯:

Finally, due to the boundedness of density and kernel functions, the Lindeberg-Feller condition for
the asymptotic normality of S0n holds,

1
n

k¡1X

j=0

E
·
´2jI

½¯̄
´j

¯̄
>

p
n±

q
¯T§1¯

¾¸
! 0;

for every ± > 0: This completes the proof of Step III.

From eT1Q¡1
n

p! eT1 , the Slutzky Theorem implies
p
nh[I2  eT1Q¡1

n ]et¤n
d! N (0;§¤

1), where §¤
1 =

[I2  eT1 ]§1[I2  e1]. In sum,
p
nh(b'1(y1) ¡ '1(y1) ¡Bn) d! N (0;§¤

1), with §¤
1(y1) given by

Z
p22(z2)
p(y1; z2)

jj(K ¤ K)0jj22

"
rGm(y1; z2)2v(y1; z2)

(rGm ¢ rGv)(·3 ¢ v3=2)(y1; z2)
(rGm ¢ rGv)(·3 ¢ v3=2)(y1; z2)
rGv(y1; z2)2·4(y1; z2)v2(y1; z2)

#
dz2

+
Z
p22(z2)
p(y1; z2)

jjKjj22H2 (z2)HT2 (z2) dz2.
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Lemma A.1 Assume the conditions in C.1, C.4. through C.6. For a bounded function, F (¢),
it holds that

(a) r1n =
p
hp
n

nX

k=d

Kh (yk¡1 ¡ y1) (bp2(yk¡2
) ¡ p2(yk¡2

))F (xk) = op (1) ;

(b) r2n =
p
hp
n

nX

k=d

Kh (yk¡1 ¡ y1) (bp(xk) ¡ p(xk))F (xk) = op (1)

Proof. The proof of (b) is almost the same as (a). So, we only show (a). By adding and
subtracting Lljk (yl¡2jyk¡2), the conditional expectation of Lg

³
y
l¡2

¡ y
k¡2

´
given y

k¡2
in r1n, we get

r1n = »1n + »2n, where

»1n =
1
n2

nX

k=d

nX

l=d

Kh (yk¡1 ¡ y1)F (xk) [Lg
³
y
l¡2

¡ y
k¡2

´
¡ Lljk (yl¡2jyk¡2)]

»2n =
1
n2

X

k

X

l

Kh (yk¡1 ¡ y1)F (xk) [Lljk (yl¡2jyk¡2) ¡ p2(yk¡2
)]

Rewrite »2n as

1
n2

X

k

X

s<k¤(n)

Kh (yk¡1 ¡ y1)F (xk) [Lk+sjk (yk+s¡2jyk¡2) ¡ p2(yk¡2)]

+
1
n2

X

k

X

s¸k¤(n)
Kh (yk¡1 ¡ y1)F (xk) [Lk+sjk (yk+s¡2jyk¡2) ¡ p2(yk¡2

)];

where k¤ (n) is increasing to in…nity as n ! 1. Let

B = EfKh (yk¡1 ¡ y1)F (xk) [Lk+sjk (yk+s¡2jyk¡2) ¡ p2(yk¡2
)]g;

which exists due to the boundedness of F (xk). Then, for a large n, the …rst part of »2n is asymptot-
ically equivalent to 1

nk
¤ (n)B. The second part of »2n is bounded by

sup
s¸k¤ (n)

jpk+sjk(yk+s¡2jyk¡2) ¡ p (yk¡2) j1
n

nX

k

Kh (yk¡1 ¡ y1) jF (xk) j

· ½k(n)Op(1):

Therefore,
p
nh»2n · Op(

p
hp
nk

¤ (n)) + Op
³
½¡k¤ (n)

p
nh

´
= op(1), for k (n) = logn, for example.

It remains to show »1n = op
³

1p
nh

´
. Since E (»1n) = 0 from the law of iteration, we just compute

E
¡
»21n

¢
=

1
n4

nX

k 6=l

nX nX

i 6=j

nX
EfKh (yk¡1 ¡ y)Kh (yi¡1 ¡ y)F (xk)

F (Xl)
h
Lg

³
y
l¡2

¡ y
k¡2

´
¡ Lljk(yk¡2

)
i h
Lh

³
y
j¡2

¡ y
i¡2

´
¡ Ljji(yi¡2

)
i
g:
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(1) Consider the case k = i and l 6= j:
1
n4

nX

k

nX

l6=j

nX
EfK2

h (yk¡1 ¡ y)F 2 (xk)

h
Lg

³
y
l¡2

¡ y
k¡2

´
¡ Lljk(yk¡2

)
i h
Lg

³
y
j¡2

¡ y
k¡2

´
¡ Ljjk(yk¡2

)
i
g

= 0;

since, by the law of iteration and the de…nition of Ljjk(yk¡2
) ,

Ejk;l
h
Lg

³
yj¡2 ¡ yk¡2

´
¡ Ljjk(yk¡2)

i

= Ejk
h
Lg

³
y
j¡2

¡ y
k¡2

´
¡Ljjk(yk¡2

)
i
= Ejk

h
Lg

³
y
j¡2

¡ y
k¡2

´i
¡ Lj jk(yk¡2) = 0

(2) Consider the case l = j and k 6= i:
1
n4

nX

k6=i

nX nX

l

EfKh (yk¡1 ¡ y)Kh (yi¡1 ¡ y)F (xk)F (xi) £
h
Lg

³
y
l¡2

¡ y
k¡2

´
¡ Lljk(yk¡2

)
ih
Lg

³
y
l¡2

¡ y
i¡2

´
¡ Llji(yi¡2

)
i
g

We only calculate

1
n4

nX

k 6=i

nX nX

l

EfKh (yk¡1 ¡ y)Kh (yi¡1 ¡ y)Lg
³
y
l¡2

¡ y
k¡2

´
Lg

³
y
l¡2

¡ y
i¡2

´
F (xk)F (xi)g

(A.22)
since the rest of the triple sum consist of expectations of standard kernel estimates and are O (1=n).
Note that

Ej(i;k)Lg
³
y
l¡2

¡ y
k¡2

´
Lg

³
y
l¡2

¡ y
i¡2

´

' (L ¤ L)g
³
y
k¡2

¡ y
i¡2

´
plj(k;i)

³
y
k¡2

jy
k¡2
; y
i¡2

´
;

where (L ¤ L)g (¢) = (1=g)
R
L (u)L (u + ¢=g) is a convolution kernel. Thus, (A.22) is

1
n4

nX

k 6=i

nX nX

l

E[Kh (yk¡1 ¡ y)Kh (yi¡1 ¡ y) (L ¤ L)g
³
y
k¡2

¡ y
i¡2

´
£

F (xk)F (xi)plj(k;i)
³
yk¡2jyk¡2; yi¡2

´

= O
µ
1
n

¶
;

(3) Consider the case with i = k; j = m:

1
n4

nX

k 6=l

nX
EfK2

h (yk¡1 ¡ y)F 2(xk)
h
Lg (yl¡2 ¡ yk¡2) ¡ Lljk(yk¡2

)
i2

= O
µ

1
n2hg

¶
= o

µ
1
nh

¶
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(4) Consider the case k 6= i; l 6= j:

1
n4

nX

k 6=l

nX nX

i 6=j

nX
EfKh (yk¡1 ¡ y)Kh (yi¡1 ¡ y)F (xk)F (xi)

h
Lg

³
y
l¡2

¡ y
k¡2

´
¡ Lljk(yk¡2

)
i h
Lg

³
y
j¡2

¡ y
i¡2

´
¡ Lj ji(yi¡2

)
i
g

= 0;

for the same reason as in (1).

A.2 Proofs for Section 5

Recall that xt = (yt¡1; : : : ; yt¡d) = (yt¡®; yt¡®), and zt = (xt; yt). In a similar context, let x =
(y1; ::; yd) = (y®; y®), and z = (x; y0). For the score function s¤(z; µ; °®) = s¤(z; µ; °®(y®)), we de…ne
its …rst derivative with respect to the parameter µ by

rµs¤(z; µ; °®) =
@s¤(z; µ; °®)

@µ
,

and use s¤(µ; °®) and rµs¤(µ;°®) to denote E[s¤(zt; µ; °®)] and E[rµs¤(zt; µ; °®)], respectively. Also,
the score function s¤(z; µ; ¢) is said to be Frechet di¤erentiable (with respect to the sup norm jj ¢ jj1),
if there is S¤(z; µ; °®) such that for all °® with jj°® ¡ °0®jj1 small enough,

jjs¤(z; µ; °®) ¡ s¤(z; µ; °0®) ¡ S¤(z; µ; °0®(y®))(°® ¡ °0®)jj · b(z)jj°® ¡ °0®jj2, (A.23)

for some bounded function b(¢). S¤(z; µ; °0®) is called the functional derivative of s¤(z; µ; °®) with
respect to. °®. In a similar way, we de…ne r°S¤(z; µ; °®) to be the functional derivative of S¤(z; µ; °®)
with respect to. °®.

Assumption A
Suppose that (i) rµs¤(µ0) is nonsingular; (ii) S¤(z; µ; °®(y®)) and r°S¤(z; µ; °®(y®)) exist and

have square integrable envelopes S
¤
(¢) and r°S¤(¢), satisfying

jjS¤(z; µ; °®(y®))jj · S¤(z), jjr°S¤(z; µ; °®(y®))jj · r°S¤(z),

and (iii) both s¤(z; µ; °®) and S¤(z; µ; °®) are continuously di¤erentiable in µ, with derivatives bounded
by square integrable envelopes.

Note that the …rst condition is related to identi…cation condition of component functions, while
the second concerns Frechet di¤erentiability (up to the second order) of the score function and
uniform boundedness of the functional derivatives. For the main results in section 5, we need the
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following conditions. Some of the assumptions are stronger than their counterparts in Assumption
C in section 4. Let h0 and h denotes the bandwidth parameter used for the preliminary IV and the
two step estimates, respectively, while g is the bandwidth parameter for the kernel density.

Assumption B

1. fytg1t=1 is stationary and strongly mixing with a mixing coe¢cient, ®(k) = ½¡¯k ; for some
¯ > 0, and E("4t jxt) <1, where "t = yt ¡ E(ytjxt).

2. The joint density function, p(¢), is bounded away from zero, and q-times continuously di¤eren-
tiable on the compact supports, X = X®£X®, with Lipschitz continuous remainders, i.e., there exists
C <1 such that for all x, x0 2 X , jD¹xp(x)¡D¹xp(x0)j · Cjjx¡ x0jj, for all vectors ¹ = (¹1; : : : ; ¹d)
with

Pd
i=1 ¹i · q.

3. The component functions, m®(¢), and v®(¢), for ® = 1; : : : ; d, are q-times continuously di¤er-
entiable on X® with Lipschitz continuous q-th derivative.

4. The link functions, Gm and Gv, are q-times continuously di¤erentiable over any compact
interval of the real line.

5. The kernel functions, K (¢) and L(¢), are of bounded support, symmetric about zero, satisfyingR
K (u) du =

R
L (u) du = 1, and of order q, i.e.,

R
uiK (u) du =

R
uiL (u) du = 0, for i = 1; : : : ; q¡1.

Also, the kernel functions are q-times di¤erentiable with Lipschitz continuous q-th derivative.
6. The true parameters µ0 = (m®(y®); v®(y®);m0

®(y®); v0®(y®)) lie in the interior of the compact
parameter space £.

7. (i) g ! 0, ngd ! 1, and (ii) h0 ! 0; nh0 ! 1.
8. (i)

nh20
(logn)2h

! 1, and
p
nhhq0 ! 0;

and for some integer ! > d=2,

(ii) n(h0h)2!+1= log n! 1; hq¡!0 h¡!¡1=2 ! 0

(iii) nhd+(4!+1)
0 = logn! 1; q ¸ 2! + 1.

Some facts about empirical processes are useful in the sequel. De…ne the L2-Sobolev norm (of
order q ) on the class of real-valued function with domain W0,

jj¿jjq;2;W0 = (
X

j¹j·q

Z

W0

(D¹x¿(x))
2dx)1=2;

where, for x 2 W0 ½ Rkand a k-vector ¹ = (¹1; : : : ;¹k) of nonnegative integers,

D¹¿ (x) =
@§ki=1¹i¿ (x)
@¹1x1 ¢ ¢ ¢ @¹kxk

,
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and q ¸ 1 is some positive integer. Let X®be an open set in R1 with minimally smooth boundary
as de…ned by, e.g., Stein (1970), and X = £d¯=1X¯, with X® = £d¯=1(6=®)X¯. De…ne T1 be a class
of smooth functions on X® = £d¯=1(6=®)X¯ whose L2-Sobolev norm is bounded by some constant;
T1 = f¿ : jj¿ jjq;2;X® · Cg. In a similar way, T2 = f¿ : jj¿ jjq;2;X · Cg.

De…ne (i) an empirical process, v1n(¢), indexed by ¿ 2 T1:

v1n(¿ 1) =
1p
n

nX

t=1

[f1(xt; ¿ 1) ¡ Ef1(xt; ¿ 1)] ; (A.24)

with pseudometric ½1(¢; ¢) on T1:

½1(¿ ; ¿
0) =

·Z

X
(f1(w; ¿ (w®)) ¡ f1(w; ¿ 0(w®)))2p(w)dw

¸1=2
,

where f1(w; ¿ ) = h¡1=2K(w®¡y®h )S¤(w; °0®)¿1(w®);
and (ii) an empirical process, v2n(¢; ¢), indexed by (y®; ¿ 2) 2 X® £ T2 :

v2n(y®; ¿2) =
1p
n

nX

t=1

[f2(xt; y®; ¿ 2) ¡ Ef2(xt;y®; ¿ 2)] ; (A.25)

with pseudometric ½2(¢; ¢) on T2:

½2((y®; ¿ 2)(y
0
®; ¿

0
2) =

·Z

X
(f2(w; y®; ¿ 2) ¡ f2(w; y0®; ¿ 02))2p(w)dw

¸1=2
,

where f2(w;y®; ¿2) = h
¡1=2
0 K

³
w®¡y®
h0

´
p®(w®)
p(w) G

0
m (m (w)) ¿ 2(w).

We say that the process fº1n(¢)g and fº2n(¢; ¢)g are stochastically equicontinuous at ¿ 01 and (y0®,¿
0
2),

respectively, (with respect to the pseudometric ½1(¢; ¢) and ½2(¢; ¢), respectively ), if

8 "; ´ > 0; 9 ± > 0 s:t:

___
lim
T!1
P ¤

"
sup

½1(¿ ;¿0)<±
jº1n(¿ 1) ¡ º1n(¿ 01)j > ´

#
< ", (A.26)

and
___
lim
T!1
P ¤

"
sup

½2((y®;¿ 2);(y0®;¿ 02))<±
jº2n(y®; ¿ 2) ¡ º2n(y0®; ¿02)j > ´

#
< ", (A.27)

respectively, where P ¤ denotes the outer measure of the corresponding probability measure.

Let F1 be the class of functions such as f1(¢) de…ned above. Note that (A.26) follows, if Pollard’s
entropy condition is satis…ed by F1 with some square integrable envelope F 1;see Pollard (1990)
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for more details. Since f1(w; ¿ 1) = c1(w)¿ 1(w®) is the product of smooth functions ¿ 1 from an
in…nite dimensional class (with uniformly bounded partial derivatives up to order q) and a single
unbounded function c(w) = [h¡1=2K(w®¡y®h )S¤(w; °0®)], the entropy condition is veri…ed by Theorem
2 in Andrews (1994) on a class of functions of type III. Square integrability of the envelope F 1 comes
from Assumption A(ii). In a similar way, we can show (A.27), by applying the “ mix and match”
argument of Theorem 3 in Andrews (1994) to f2(w; y®; ¿ 2) = c2(w)h¡1=2K (w®¡y®h0

)¿ 2(w), where K(¢)
is Lipschitz continuous in y®, i.e., a function of type II.

Proof of Theorem 4. We only give a sketch, since the whole proof is lengthy and relies on
the similar arguments to Andrews (1994) or Gozalo and Linton (1995) for i.i.d case. Expanding the
FOC in (5.15) and solving for (bµ¤ ¡ µ0) yields

bµ¤ ¡ µ0 = ¡[
1
n

n0X

t=d+1

rµs(zt; µ; e°®)]¡1 1
n

n0X

t=d+1

s(zt; e°®),

where µ is the mean value between bµ and µ0, and s(zt; e°®) = s(zt; µ0; e°®). By the uniform law of large
numbers in Gozalo and Linton (1995), we have supµ2£ jQn(µ)¡E(Qn(µ))j p! 0, which, together with
(i) uniform convergence of e°® by Lemma A.3, and (ii) uniform continuity of the localized likelihood
function, Qn(µ;°®) over ££ ¡®, yields supµ2£ j eQn(µ) ¡ E(Qn(µ))j p! 0, and thus consistency of bµ¤ .
Based on the ergodic theorem on the stationary time series and a similar argument to Theorem 1 in
Andrews (1994), consistency of bµ¤ as well as uniform convergence of e°® imply

1
n

n0X

t=d+1

rµs(zt; µ; e°®)
p! E[rµs(zt; µ0; °0®)] ´ D®(y®), (A.28)

For the numerator, we …rst linearize the score function. Under Assumption A(ii), s¤(z; µ; °®) is
Frechet di¤erentiable and (A.23) holds, which, due to

p
nhjje°® ¡ °0®jj21

p! 0 (by Lemma A.3 and
B.8(i)), yields a proper linearization of the score term;

1
n

n0X

t=d+1

s(zt;e°®) =
1
n

n0X

t=d+1

Kh(yt¡® ¡ y0®)s¤(zt; °0®)

+
1
n

n0X

t=d+1

Kh(yt¡® ¡ y0®)S¤(zt; °0®(yt¡®))[e°®(yt¡®) ¡ °0®(yt¡®)] + op(1=
p
nh),

where S¤(zt; °0®(yt¡®)) = S
¤(zt; µ0; °0®(yt¡®)). Or equivalently, by letting

S¤(y; °0®(y®)) = E[S
¤(zt; °0®(yt¡®))jxt = y]
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and ut = S¤(xt; °0®(yt¡®)) ¡ E[S¤(xt; °0®(yt¡®))jxt = y], we have

p
nh
n

n0X

t=d+1

s(zt;e°®) =
p
hp
n

n0X

t=d+1

Kh(yt¡® ¡ y0®)s¤(zt; °0®)

+
p
hp
n

n0X

t=d+1

Kh(yt¡® ¡ y0®)S¤(xt; °0®(yt¡®))[e°®(yt¡®) ¡ °0®(yt¡®)]

+
p
hp
n

n0X

t=d+1

Kh(yt¡® ¡ y0®)ut[e°®(yt¡®) ¡ °0®(yt¡®)] + op(1)

´ T1n + T2n + T3n + op(1):

Note that the asymptotic expansion of the infeasible estimator is equivalent to the …rst term of
the linearized score function premultiplied by the inverse Hessian matrix in (A.28). Due to the
asymptotic boundedness of (A.28), it su¢ces to show the negligibility of the second and third terms.

To calculate the asymptotic order of T2n, we make use of stochastic equicontinuity results above.
For a real-valued function ±(¢) on X® and T = f± : jj±jj!;2;X® · Cg, we de…ne an empirical process

vn(y®; ±) =
1p
n

n0X

t=d+1

[f(xt; y®; ±) ¡ E(f (xt;y®; ±))],

where f(xt; y®; ±) = K( yt¡®¡y®h )h!S¤(xt; °0®(yt¡®))±(yt¡®), for some integer ! > d=2. Let e± =
h¡!¡1=2[e°®(yt¡®) ¡ °0®(yt¡®)]. From the uniform convergence rate in Lemma A.3 and the bandwidth
condition of B.8(ii), it follows that

jje±jj!;2;X® = Op(h¡!¡1=2

"r
logn
nh0(2!+1) + h

q¡!
0

#
) = op(1):

Sinceb± is bounded uniformly over X®, with probability approaching one, it holds that Pr(b± 2 T ) ! 1.
Also, since, for some positive constant C <1,

½2((y®;b±); (y®;0)) · Ch¡(2!+1)jje°® ¡ °0®jj2!;2;X® = op(1),

we have ½((y®;b±); (y®; 0)) p! 0. Hence, following Andrews (1994, p.2257), the stochastic equicontinu-
ity condition of vn(y®; ¢) at ±0 = 0, implies that jvn(y®;b±) ¡ ºn(y®; ±0j = jvn(y®;b±)j = op(1); i.e., T2n
is approximated (with an op(1) error) by

T ¤2n =
p
nh

Z
Kh(y® ¡ y0®)S¤(x; °0®)[e°®(y®) ¡ °0®(y®)]p(x)dx.

We proceed to show negligibility of T ¤n2. From integrability condition on S¤(z; °0®(y®)), it follows, by
change of variables and the dominated convergence theorem, that

R
Kh(y®¡y0®)S¤(z; °0®(y®))dF0(z) =
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R
S¤[(y; y0®; y®); °

0
®(y®)]p(y; y

0
®; y®)d(y,y®) <1, which, together with

p
n-consistency of bc = (bcm; bcv)0,

means that (bc¡ c)
p
nh

R
Kh(y® ¡ y0®)S¤(z; °0®(y®))dF0(z) = op(1). Since

e°®(y®) ¡ °0®(y®) =
dX

¯=1; 6=®
(b'¯(y¯) ¡ '0¯(y¯)) ¡ (d ¡ 2)(bc¡ c),

this yields

T ¤2n =
dX

¯=1; 6=®

p
nh

Z
Kh(y® ¡ y0®)S¤(x; °0®)(b'¯(y¯) ¡ '0¯(y¯))p(x)d(x) + op(1);

From Lemma A.3,

b'¯(y¯) ¡ '¯(y¯) = hq0b¯(y¯) +
1
n

X

t

(K ¤K)h0 (yt¡¯ ¡ y¯)
p2(yt¡¯)

p(xt)
(rG(x¯; yt¡¯) ¯ »t)

+
1
n

X

t

Kh0 (yt¡¯ ¡ y¯)
p2(yt¡¯)

p(xt)
°¤0® (yt¡¯) +Op(½

2
n) + op(n

¡1=2),

where »t = ("t; ("2t ¡ 1))T , rG(xt) =[rGm(y¯; yt¡¯)v (xt)
1=2, rGv(y¯; yt¡¯)v (xt))]

T , and °¤0® (yt¡¯) =

°0®(yt¡¯) ¡ c0. Under the condition B.8(i),
p
nhhq0 = o(1), integrability of the bias function b¯(y¯)

and S¤(z; µ0; °0®(y®)) implies
T ¤2n = S1n + S2n + op(1),

where S1n =

dX

¯=1; 6=®

p
nh

Z
Kh(y® ¡ y0®)S¤(x; °0®)

1
n

X

t

(K ¤K)h0 (yt¡¯ ¡ y¯)
p2(yt¡¯)

p(xt)
(rG(x¯; yt¡¯) ¯ »t)p(x)dx;

and

S2n =
dX

¯=1; 6=®

p
nh

Z
Kh(y® ¡ y0®)S¤(x; °0®)

1
n

X

t

Kh0 (yt¡¯ ¡ y¯)
p2(yt¡¯)

p(xt)
°¤0® (yt¡¯)p(x)dx:

Let S i1n and Si2n be the i-th element of S1n and S2n, respectively, with S¤ij(¢) being the (i; j) element
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of S¤(¢). By the dominated convergence theorem and the integrability condition, we have

Si1n =
p
hp
n

X

t

p2(yt¡¯)

p(xt)
v (xt)

1=2 "t £
"Z
Kh(y® ¡ y0®)Si1¤(x; °0®)

dX

¯=1;6=®
(K ¤K)h0 (y¯ ¡ yt¡¯)rGm(y¯ ; yt¡¯)p(x)dx

#

+
p
hp
n

X

t

p2(yt¡¯)

p(xt)
v (xt) ("2t ¡ 1) £

"Z
Kh(y® ¡ y0®)Si2¤(x; °0®)

dX

¯=1;6=®
(K ¤K)h0 (y¯ ¡ yt¡¯)rGv(y¯ ; yt¡¯)p(x)dx

#

=
p
hp
n

X

t

p2(yt¡¯)

p(xt)

h
v (xt)

1=2$1
i1(xt)"t + v (xt)$

1
i2(xt)("

2
t ¡ 1)

i
+ op(1),

where

$1
ij (xt) = rGj (y0®; yt¡®)

dX

¯=1; 6=®

Z
Sij¤[(y0®; yt¡¯; y(®;̄ )); °

0
®]p(y

0
®; yt¡¯ ; y(®;¯))dy(®;¯);

and rGj (¢) = rGm(¢), for j = 1;rGv(¢), for j = 2. Since p2(¢)=p(¢) and $ij(¢) are bounded under
the condition of compact support, applying the law of large numbers for i.i.d errors »t = ("t; ("2t¡1))T

leads to S i1n = op(1), and consequently, S1n = op(1). Likewise,

S i2n =
p
hp
n

X

t

p2(yt¡¯)

p(xt)
°¤01®(yt¡¯)

"Z
Kh(y® ¡ y0®)S i1¤(x; °0®)

dX

¯=1; 6=®
Kh (yt¡¯ ¡ y¯) p(x)dx

#

+
p
hp
n

X

t

p2(yt¡¯)

p(xt)
°¤02®(yt¡¯)

"Z
Kh(y® ¡ y0®)Si2¤(x; °0®)

dX

¯=1;6=®
Kh (yt¡¯ ¡ y¯) p(x)dx

#

=
p
hp
n

X

t

p2(yt¡¯)

p(xt)

h
$2
i1(xt)m®(yt¡®) +$

2
i1(xt)v®(yt¡®)

i
+ op(1),

where

$2
ij(xt) =

dX

¯=1; 6=®

Z
S ij¤[(y0®; yt¡¯; y(®;¯)); °

0
®]p(y

0
®; yt¡¯ ; y(®;¯))dy(®;̄ ),

and, for the same reason as above, we get S i2n = op(1), and S2n = op(1), since E(m®(yt¡®)) =
E(v®(yt¡®)) = 0.

We …nally show negligibility of the last term;

T3n =
p
hp
n

n0X

t=d+1

Kh(yt¡® ¡ y0®)ut[e°®(yt¡®) ¡ °0®(yt¡®)].
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Substituting the error decomposition for e°®(yt¡®)¡°
0
®(yt¡®) and interchanging the summations gives

T3n =
dX

¯=1;6=®

p
h

n
p
n

X

t

X

s(6=t)
Kh(yt¡® ¡ y0®)Kh0 (ys¡¯ ¡ y¯)

p2(ys¡¯)

p(xs)
°¤0® (ys¡¯)ut°

¤0
® (ys¡¯)

+
dX

¯=1; 6=®

p
h

n
p
n

X

t

X

s( 6=t)
Kh(yt¡® ¡ y0®) (K ¤K)h0 (ys¡¯ ¡ y¯)

p2(ys¡¯)

p(xs)
(rG(x¯; ys¡¯) ¯ ut»s)

+op(1);

where the op(1) errors for the remaining bias terms holds under the assumption that
p
nhh20 = o(1).

For

¼i;¯n (zt; zs) =Kh(yt¡®t ¡ y0®)Kh0 (ys¡¯ ¡ y¯)
p2(ys¡¯)

p(xs)
ut°¤0® (ys¡¯)

p
h=(n

p
n);

we can easily check that E(¼i;¯1n (zt; zs)jzt) = E(¼i;̄1n (zt; zs)jzs) = 0, for t 6= s, implying that
P P

t 6=s
¼i;¯n (zt; zs) is a degenerate second order U-statistic. The same conclusion also holds for the second
term. Hence, the two double sums are mean zero and have variance of the same order as

n2 £
©
E¼i;¯n (zt; zs)2 + E¼i;¯n (zt; zs)E¼i;¯n (zs; zt)

ª
,

which is of order n¡1h¡1. Therefore, T3n = op(1). ¥

Lemma A.2 (Masry, 1996) Suppose that Assumption B hold. Then, for any vector ¹ =
(¹1; : : : ; ¹d)0 with j¹j = §j¹j · !;

(a) sup
x2X

jD¹xbp (x) ¡D¹xp (x) j = Op(
s

logn
ng(2j¹j+d)

) + Op(gq¡j¹j)

(a) sup
x2X

jD¹x em (x) ¡D¹xm (x) j = Op(
s

logn

nh(2j¹j+d)0

) + Op(h
q¡j¹j
0 ) ´ ½n(¹)

(c) sup
x2X

j em (x) ¡m (x) ¡ eL(x)j = Op(½2n), where

eL(x) = 1
n

X

s 6=t

Kh0 (xs¡ x)
p(xs)

v1=2 (xs)"s + hq0bn(x).

Lemma A.3 Suppose that Assumption B hold. Then, for any vector ¹ = (¹1; ::;¹d)0 with
j¹j = §j¹j · !,

(a) sup
x®2X®

jD¹b'®(y®) ¡D¹'®(y®)j = Op(
r

logn
nh(2j¹j+1) ) + Op(h

q¡j¹j) + Op(½2n(¹))
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(b) sup
x®2X®

jb'®(y®) ¡ '®(y®) ¡ bL'(y®)j = Op(½2n) + op(n¡1=2),

where

bL'(y®) =
1
n

X

t

(K ¤K)h (yt¡® ¡ y®)
p®(yt¡®)

p(xt)

"
G0m(m(y®; yt¡®))v (xt)

1=2

G0v(v(y®; yt¡®)v (xt))

# "
"t;
"2t ¡ 1

#

+
1
n

X

t

Kh (yt¡® ¡ y®)
p2(yt¡®)

p(xt)

h
m®

³
y
t¡®

´
; v®

³
y
t¡®

´iT
+ hqb®(y®)

Proof We …rst show (b). For notational simplicity, the bandwidth parameter h (only in this
proof) abbreviates h0. From the decomposition results for the IV estimates,

b'®(y®) ¡ '®(y®) = [I2  eT1Q¡1
n ]¿n,

where Qn = [bqni+j¡2(y®)](i;j)=1;2, with bqni = 1
n

Pn
t=dKh (yt¡® ¡ y®)

bp®(yt¡®)
bp(xt)

¡yt¡®¡y®
h

¢i ; for i = 0;1; 2,

and ¿n = 1
n

P
tKh (yt¡® ¡ y®)

bp®(yt¡®)
bp(xt) [ezt ¡'®(y®) ¡ (yt¡® ¡ y®)r'®(y®)]  (1; yt¡®¡y®h )T . By C-S

inequality and Lemma A.2. applied with Taylor expansion, it holds that

sup
x®2X®

1
n

nX

t=d

Kh (yt¡® ¡ y®)
"

bp®(yt¡®)
bp(xt)

¡
p®(yt¡®)

p(xt)

# µ
yt¡® ¡ y®
h

¶i

· sup
x2X

¯̄
¯̄ bp®(y®)

bp(x) ¡
p®(y®)
p(x)

¯̄
¯̄ sup
x®2X®

1
n

nX

t=d

Kh (yt¡® ¡ y®)
¯̄
¯̄yt¡® ¡ y®

h

¯̄
¯̄
i

= Op(sup
x2X

jbp(x) ¡ p(x)j) ´ Op(½n),

where the boundedness condition of B.2 is used for the last line. Hence, the standard argument of
Masry (1996), implies that supx®2X® jbqni ¡ qij = op(1), where qi =

R
K (u1) ui1du1. From q0 = 1;

q1 = 0 and q2 = ¹2K , we get the following uniform convergence result for the denominator term, i.e.,
eT1Q¡1

n
p! eT1 , uniformly in y® 2 X®. For the numerator, we show the uniform convergence rate of

the …rst element of ¿n, since the other terms can be treated in the same way. Let ¿1n denote the …rst
element of ¿n, i.e.,

¿ 1n =
1
n

X

t

Kh (yt¡® ¡ y®)
bp®(yt¡®)

bp(xt)
[Gm(em(xt)) ¡M®(y®) ¡ (yt¡® ¡ y®)m0

®(y®)] ,

or alternatively,

¿ 1n =
1
n

X

t

Kh (yt¡® ¡ y®) r(xt; bg),

where

r(xt; g) =
g2(yt¡®)

g3(xt)
[Gm(g1(xt)) ¡M®(y®) ¡ (yt¡® ¡ y®)m0

®(y®)]

g(xt) = [g1(xt); g2(yt¡®); g3(xt)] = [m(xt); p®(yt¡®); p(xt)]

bg = bg(xt) = ( em(xt); bp®(yt¡®); bp(xt)]
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Since p®(¢)=p(¢) is bounded away from zero and Gm has a bounded second order derivative, the
functional r(xt; g) is Frechet di¤erentiable in g, with respect to the sup norm jj ¢ jj1, with the
(bounded) functional derivative R(xt;g) = @r(xt ;g)

@g

??y
g=g(xt)

. This implies that for all g with jjg¡g0jj1
small enough, there exists some bounded function b(¢) such that

jjr(xt; g) ¡ r(xt; g0) ¡R(xt; g0)(g ¡ g0)jj1 · b(xt)jjg ¡ g0jj21.

By Lemma A.2, jjbg ¡ g0jj21 = Op(½2n), and consequently, we can properly linearize ¿ 1n as

¿1n =
1
n

X

t

Kh (yt¡® ¡ y®) r(xt;g0) +
1
n

X

t

Kh (yt¡® ¡ y®)R(xt;g0)(bg ¡ g0) + Op(½2n)

where the Op(½2n) error term is uniformly in x®. After plugging in Gm(m(xt)) = cm+§1·¯·dm¯ (yt¡¯)
into r(xt; g0), a straightforward calculation shows that

¿ 1n =
1
n

X

t

Kh (yt¡® ¡ y®) & t[1 + Op(½n)]

+
1
n

X

t

Kh (yt¡® ¡ y®)
p®(yt¡®)
p(xt)

G0m (m (xt)) [em (xt) ¡m (xt)]

+
hq

q!
¹q(k)b1®(y®) + op(h

q), (A.29)

where & t =
p2(yt¡®)

p(xt)
M®(yt¡®), and M®(yt¡®) = §1·¯·d;( 6=®)m¯

³
y
t¡®

´
. Note that due to the identi-

…cation condition, E[&tjyt¡®] = 0, and consequently, the …rst term is of a standard stochastic term
appearing in kernel estimates. For a further asymptotic expansion of the second term of ¿ 1n, we use the
stochastic equicontinuiuty argument to the empirical process fvn(¢; ¢)g, indexed by (y®; ±) 2 X®£ T ,
with T = f± : jj±jj!;2;X® · Cg, such that

vn(y®; ±) =
1p
n

n0X

t=d+1

[f(xt; y®; ±) ¡ E(f (xt;y®; ±))];

where f (xt; y®; ±) =K( yt¡®¡y®h )h!
p®(yt¡®)
p(xt) G

0
m (m (xt))±(yt¡®), for some positive integer ! > d=2. Let

e± = h¡!¡1=2[em (xt) ¡ m (xt)]. By the same similar argument in the proof of Theorem 5.2, it holds
under B.8(iii) and Lemma A.2 that jje±jj!;2;X = Op( h¡!¡1=2[

q
logn

nh(2!+d)+h
q¡!])= op(1), leading to

(i) Pr(b± 2 T ) ! 1 and (ii) ½((y®;b±); (y®; ±0)) p! 0, where ±0 = 0. These conditions and stochastic
equicontinuity of vn(¢; ¢) at (y®; ±0) yields supy®2X® jvn(y®;b±)¡ºn(y®; ±0j = supx®2X® jvn(y®;b±)j = op(1).
Thus, the second term of ¿ 1n is approximated with an op(1=

p
n) error (uniform in y®) by

Z
Kh (yt¡® ¡ y®)

p®(yt¡®)
p(xt)

G0m (m (xt)) [em (xt) ¡m (xt)]p(xt)dxt,
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which, by substituting eL(xt) for em (xt) ¡m (xt), is given by

1
n

X

s

(K ¤K)h

µ
ys¡® ¡ y®
h

¶
p®(ys¡®)G

0
m(m(y®; ys¡®))

v1=2 (xs) "s
p(xs)

(A.30)

+
hq

q!
¹q(k)b2®(y®),

where (K ¤K) (¢) is actually a convolution kernel as de…ned before. Hence, by letting b®(y®) summa-
rize two bias terms appearing in (A.29) and (A.30), Lemma A.3(b) is shown. The uniform convergence
results in part (a) then follow by the standard arguments of Masry(1996), since two stochastic terms
in the asymptotic expansion of b'®(y®) ¡ '®(y®) consist of only univariate kernels. ¥
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