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Abstract 
 

Evaluation of forecast optimality in economics and finance has almost exclusively 
been conducted on the assumption of mean squared error loss under which 
forecasts should be unbiased and forecast errors serially uncorrelated at the single 
period horizon with increasing variance as the forecast horizon grows. This paper 
considers properties of optimal forecasts under general loss functions and 
establishes new testable implications of forecast optimality. These hold when the 
forecaster’s loss function is unknown but testable restrictions can be imposed on the 
data generating process, trading off conditions on the data generating process 
against conditions on the loss function. Finally, we propose flexible parametric 
estimation of the forecaster’s loss function, and obtain a test of forecast optimality via 
a test of over-identifying restrictions. 
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1 Introduction

Knowledge of the properties possessed by an optimal forecast is crucial in many areas of economics

and Þnance and is used, inter alia, in tests of the efficient market hypothesis in Þnancial markets

and in tests of the rationality of decision makers in a variety of macroeconomic applications. Almost

without exception empirical work has relied on testing properties that optimal forecasts have under

mean squared error (MSE) loss.1 These properties include unbiasedness of the forecast, lack of

serial correlation in one-step-ahead forecast errors and non-decreasing forecast error variance as

the forecast horizon grows. Although such properties seem sensible, they are in fact established

under a set of very restrictive assumptions on the decision maker�s loss function.

Since the forecaster�s loss function is unknown in most applications, the key question is whether

we can derive testable implications of optimal forecasts under more general families of loss functions.

Irrespective of the loss function and data generating process, a generalized orthogonality principle

must hold provided information is efficiently embedded in the forecast. Implications of this principle

will, however, vary signiÞcantly with assumptions about the underlying loss function and data

generating process (DGP). Most notably, none of the standard properties established in the linear-

quadratic framework survives to a more general setting, c.f. Patton and Timmermann (2004).

This has important implications for empirical work and means that earlier conclusions concerning

the suboptimality of forecasts may have been premature and largely driven by the assumption of

quadratic loss.

The contribution of this paper is to establish some surprising new results that trade off restric-

tions on the forecaster�s loss function against restrictions on the DGP. For example, in situations

where the conditional higher order moments of the forecast variable are constant, we show that

although the optimal forecast may well be biased, the one-step optimal forecast errors are not

serially correlated while the h-step forecast errors at most display serial dependence of order h− 1.
This holds irrespective of the shape of the loss function and offers a new way to test optimality

of forecast errors that is robust to the loss function, but requires restrictions on the underlying

DGP. This result will be useful in the common situation where the shape of the loss function is

1For references to numerous papers on forecast rationality see www.Phil.frb.org/econ/spf/spfbib.html. For ex-

amples of forecast evaluation under objectives other than MSE see West et al. (1993) and Pesaran and Skouras

(2001).
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unknown, whereas the restrictions on the DGP can be tested empirically. We present similar re-

sults that hold when the DGP exhibits heteroskedasticity of a general unknown form, using a new

family of quantile-based tests. We also present a method to test forecast optimality based on a

ßexible model of the loss function, via a test of over-identifying restrictions. Finally, we introduce

a transformation from the usual probability measure to an �MSE-loss probability measure�, under

which the optimal forecasts are unbiased and forecast errors are serially uncorrelated, in spite of

the fact that these properties generally fail to hold under the physical (or �objective�) measure.

The outline of the paper is as follows. Section 2 brießy summarizes the properties of optimal

forecasts under squared error loss, establishes properties of optimal forecasts under general known

loss functions and contains the change of measure result. Section 3 derives some testable properties

of optimal forecasts when the loss function is unknown but testable restrictions can be imposed on

the DGP. Empirical applications to survey forecasts of inßation and output growth are presented

in Section 4. Section 5 concludes. An appendix contains technical details and proofs.

2 Testable Implications under General Known Loss Functions

Suppose that a decision maker is interested in forecasting some univariate time series, Y =

{Yt; t = 1, 2, ...}, h steps ahead given information at time t, Ft. We assume that Y ≡
{Yt : Ω→ R, t = 1, 2, ...} is a stochastic process on a complete probability space (Ω,F , P ), where
Ω = Rm∞ ≡ ×∞t=1Rm, and F = Bm∞ ≡ B (Rm∞), the Borel σ-Þeld generated by Rm∞. Yt is
thus adapted to the information set available at time t, denoted Ft. At a minimum Ft includes the
Þltration generated by {Yt−k; k ≥ 0}, but it may also be expanded to include a set of instruments
Zt ∈ Ft, which have support Zt.2 Let Z = {Zt; t = 1, 2, ...} ,and denote the conditional distribution
of Yt+h given Ft as Ft+h,t, i.e. Yt+h|Ft ∼ Ft+h,t, and the conditional density, if it exists, as ft+h,t.
Point forecasts conditional on Ft are denoted by �Yt+h,t and belong to Y, a compact subset of R,
while forecast errors are given by et+h,t = Yt+h − �Yt+h,t. In general the objective of the forecast

is to minimize the expected value of some loss function, L(Yt+h, �Yt+h,t), which is a mapping from

2The assumption that Yt is adapted to Ft rules out the direct application of the results in this paper to, e.g.,
volatility forecast evaluation. In such a scenario the object of interest, conditional variance, is not adapted to Ft.
Using imperfect proxies for the object of interest can cause difficulties, as pointed out by Hansen and Lunde (2003).
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realizations and forecasts to the real line, L : R×Y→ R.3 That is, in general

�Y ∗t+h,t ≡ argmin
�y∈Y

Et [L (Yt+h, �y)] . (1)

Et[.] is shorthand notation for E[.|Ft], the conditional expectation given Ft. We also deÞne the
conditional variance, Vt = E[(Y −E[Y |Ft])2|Ft] and the unconditional equivalents, E[.] and V (.).

2.1 Properties under MSE Loss

The vast majority of work on optimal forecasts assumes a squared error loss function:

L(Yt+h, �Yt+h,t) = θ
³
Yt+h − �Yt+h,t

´2
, θ > 0. (2)

Under this loss function, optimal forecasts have the following standard properties:

Proposition 1 Let the loss function be

L
³
Yt+h, �Yt+h,t

´
= θ

³
Yt+h − �Yt+h,t

´2
, θ > 0,

and assume that |Et [Yt+h]| <∞ and Et
£
Y 2t+h

¤
<∞ for all t and h. Then

1. The optimal forecast of Yt+h is Et [Yt+h] for all forecast horizons h;

2. The optimal forecast error is conditionally (and unconditionally) unbiased;

3. The optimal h-step forecast error exhibits zero serial covariance beyond lag (h− 1);

If we further assume that Y is covariance stationary, then we obtain:

4. The unconditional variance of the optimal forecast error is non-decreasing as a function of

the forecast horizon.

3The general decision problem underlying a forecast is to maximize the expected value of some utility function,

U(Yt+h,A( �Yt+h,t)), that depends on the outcome of Yt+h as well as on the decision maker�s actions, A( �Yt+h,t), which
in general depend on the full distribution forecast of Yt+h, Ft+h,t. Our focus on properties of point forecasts is largely

dictated by availability of data and need not be very restrictive. For example, Machina and Granger (2004) show

that, under conditions on the second derivatives of U(.), there exists a unique point-forecast equivalent which leads

to the same decision as if a full distribution forecast had been available.
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All proofs are given in the appendix. The proposition shows that the standard properties of

optimal forecasts are generated by the assumption of mean squared error loss alone; in particular,

assumptions on the DGP (beyond covariance stationarity and Þnite Þrst and second moments) are

not required. Properties such as these have been extensively tested in empirical studies of optimality

of predictions or rationality of forecasts, e.g. by testing that the intercept is zero (α = 0) and the

slope is unity (β = 1) in the Minzer-Zarnowitz (1969) regression

Yt+h = α+ β �Yt+h,t + εt+h. (3)

2.2 Properties under General Loss Functions

Under general loss the Þrst order condition for the optimal forecast is4

0 = Et

∂L
³
Yt+h, �Y

∗
t+h,t

´
∂ �Yt+h,t

 = Z ∂L
³
y, �Y ∗t+h,t

´
∂ �Yt+h,t

dFt+h,t (y) . (4)

This condition can be rewritten using what Granger (1999) refers to as the (optimal) generalized

forecast error, ψ∗t+h,t = ∂L
³
Yt+h, �Y

∗
t+h,t

´
/∂ �Yt+h,t,5 so that (4) simpliÞes to

Et[ψ
∗
t+h,t] =

Z
ψ∗t+h,tdFt+h,t (y) = 0. (5)

Under a broad set of conditions ψ∗t+h,t is therefore a martingale difference sequence with respect to

the information set used to compute the forecast, Ft. The generalized forecast error is closely related
to the �generalized residual� often used in the analysis of discrete, censored or grouped variables,

see Gourieroux, et al. (1987) and Chesher and Irish (1987) for example. Both the generalized

forecast error and the generalized residual are based on Þrst-order (or �score�) conditions.

2.2.1 Technical Assumptions

We next turn our attention to proving properties of the generalized forecast error analogous to

those for the standard case. We will sometimes, though not generally, make use of the following

assumption on the DGP for {Y,Z}:
4This result relies on the ability to interchange the expectation and differentiation operators. Assumptions L1-L3

given below are sufficient conditions for this to hold.
5Granger (1999) considers loss functions that have the forecast error as an argument, and so deÞnes the generalised

forecast error as ψ∗t+h,t ≡ ∂L (et+h,t) /∂et+h,t. ψ∗t+h,t can be viewed as the marginal loss associated with a particular
prediction, �Yt+h,t.
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Assumption D1: The data generating process for {Y,Z} is strictly stationary.
The following properties of the loss function are assumed at various points of the analysis:

Assumption L1: The loss function is (at least) once differentiable with respect to its second

argument, except on a set of Ft+h,t-measure zero, for all t and h.

Assumption L2:
R
L (y, �y) dFt+h,t (y|Zt) < ∞ for some �y ∈ Y, for all h and all Zt ∈ Zt,

where Y is a compact subset of R.
Note that assumption L2 implies that E [L (Yt+h, �y)] <∞ for all �y ∈ Y:

E [L (Yt+h, �y)] =

Z
Zt

Z
R
L (y, �y) dFt+h,t (y|Zt) dF (Zt)

=

Z
Zt
E [L (Yt+h, �y) |Zt] dF (Zt)

≤
Z
Zt
sup
zt
(E [L (Yt+h, �y) |zt]) dF (Zt)

= sup
zt
E [L (Yt+h, �y) |zt]

< ∞.

Assumption L2�: An interior optimum of the problem

min
�y∈Y

Z
L (y, �y) dFt+h,t (y)

exists for all t and h.

Assumption L3:
¯̄R
(∂L (y, �y) /∂�y) dFt+h,t (y)

¯̄
<∞ for some �y ∈ Y, for all t, h.

Assumption L4: ∂L (y, �y) /∂�y ≤ (≥) 0 for y ≥ (≤) �y.
Assumption L5: The loss function is solely a function of the forecast error.

Assumption L2 simply ensures that the conditional expected loss from a forecast is Þnite,

for some Þnite forecast. Assumptions L1 and L2� allow us to use the Þrst-order condition of the

minimization problem to study the optimal forecast. One set of sufficient conditions for Assumption

L2� to hold are Assumption L2 and:

Assumption L5�: The loss function is a non-monotone, convex function solely of the forecast

error.

We do not require that L is everywhere differentiable with respect to its second argument, nor

do we need to assume a unique optimum (though this is obtained if we impose Assumption L5�,

with the convexity of the loss function being strict). Assumption L3 is required to interchange

expectation and differentiation: ∂Et [L (Yt+h, �y)] /∂�y = Et [∂L (Yt+h, �y) /∂�y]. The bounds on the
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integral on the left-hand side of this expression are unaffected by the choice of �y, and so two of the

terms in Leibnitz�s rule drop out, meaning we need only assume that the term on the right-hand

side is Þnite. Assumption L4 simply imposes that the loss function is non-decreasing as the forecast

moves further away (in either direction) from the true value, which is a reasonable assumption. It

is common to impose that L (�y, �y) = 0, i.e., the loss from a perfect forecast is zero, but this is

obviously just a normalization and is not required here.

It is possible to show that under general (non-MSE) loss the properties of the optimal forecast

error listed in Proposition 1 can all be violated; see Patton and Timmermann (2004) for an ex-

ample using a regime switching model and the �linex� loss function of Varian (1974). However,

corresponding properties of the generalized forecast error, ψ∗t+h,t, can be shown to hold in general:

Proposition 2 1. Let assumptions L1, L2� and L3 hold. Then the generalized forecast error,

ψ∗t+h,t, has conditional (and unconditional) mean zero.

2. Let assumptions L1, L2� and L3 hold. Then the generalized forecast error from an optimal

h-step forecast made at time t exhibits zero correlation with any function of any element of the time

t information set, Ft, for which second moments exist. In particular, the generalized forecast error
will exhibit zero serial correlation for lags greater than (h− 1).6

3. Let assumptions D1 and L2 hold. Then the unconditional expected loss of an optimal forecast

error is a non-decreasing function of the forecast horizon. The conditional expected loss, however,

need not be a non-decreasing function of the forecast horizon.

This result is useful when the loss function is known since ψ∗t+h,t can then be calculated directly

and gives rise to generalized efficiency tests that project ψ∗t+h,t on period-t instruments and test

the martingale difference property (α = β = 0 for all Zt ∈ Ft):

ψt+h,t = α+ β
0Zt + ut+h. (6)

The above test will not generally be consistent against all departures from forecast optimality. A

consistent test of forecast optimality based on the generalized forecast errors could be constructed

using the methods of Bierens (1990), de Jong (1996) and Bierens and Ploberger (1997).

6Optimal h-step forecast errors under MSE loss are MA processes of order no greater than h− 1. In a non-linear
framework an MA process need not completely describe the dependence properties of the generalized forecast error.

However, the autocorrelation function of the generalized forecast error will match some MA (h− 1) process.
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If the same forecaster reported forecasts for multiple horizons we can conduct a joint test of

forecast optimality across all horizons. Note that we do not require that the loss function is the

same across all horizons, i.e., the one-step ahead forecasting problem may involve a different loss

function to the two-step ahead forecasting problem, even for the same forecaster. A joint test of

optimality across all horizons may be conducted as:
ψt+1,t

ψt+2,t
...

ψt+H,t

 = A+BZt + ut,H (7)

and then testing H0 : A = B = 0 vs. Ha : A 6= 0 ∪ B 6= 0. More concretely, one possibility is to
estimate a vector autoregression (VAR) for the generalized forecast errors:

ψt+1,t

ψt+2,t
...

ψt+H,t

 = A+B1


ψt,t−1

ψt+1,t−1
...

ψt+H−1,t−1

+ ...+BJ

ψt+1−J,t−J

ψt+2−J,t−J
...

ψt+H−J,t−J

+ ut,H . (8)

Since the dependent variable above is only Ft+H-measurable, the appropriate restriction is not that
Bj = 0 for all j; rather one should test that A = Bj = 0 for all j ≥ H, and that the Þrst j columns
of Bj are equal to zero for 1 ≤ j < h.

2.3 Properties under a Change of Measure

In the previous section we showed that by changing our object of analysis from the forecast error

to the �generalized forecast error� we can obtain the usual properties of unbiasedness and zero

serial correlation. We next consider instead changing the probability measure used to compute the

properties of the forecast error. This analysis is akin to the use of risk-neutral densities in asset

pricing, c.f. Harrison and Kreps (1979). In asset pricing one may scale the objective (or physical)

probabilities by the stochastic discount factor (or the discounted ratio of marginal utilities) to

obtain a risk-neutral probability measure and then apply risk-neutral pricing methods. Here we

will scale the objective probability measure by the ratio of the marginal loss, ∂L/∂�y, to the forecast

error, and then show that under the new probability measure the standard properties hold; i.e.,

under the new measure
³
e∗t+h,t,Ft

´
is a martingale difference sequence, when �y = �Y ∗t+h,t. We call
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the new measure the �MSE-loss probability measure�. The resulting method thus suggests an

alternative means of evaluating forecasts made using asymmetric loss functions.

The conditional distribution of the forecast error, Fet+h,t , given Ft and a forecast �y, satisÞes

Fet+h,t (e; �y) = Ft+h,t (�y + e) , (9)

for all
³
e, �Yt+h,t

´
∈ R2 where Ft+h,t is the conditional distribution of Yt+h given Ft. In deÞning

the MSE-loss probability measure we need to make the following assumption:

Assumption L6: 0 < E
h
(Yt+h − �y)−1 ∂L (Yt+h, �y) /∂�y

¯̄̄
Zt

i
<∞ for all h, all �y ∈ Y, and all

Zt ∈ Zt.

DeÞnition 1 Let assumptions L4 and L6 hold and let

Λ (e, �y) ≡ 1

e
· ∂L (y, �y)

∂�y

¯̄̄̄
y=�y+e

(10)

Then the �MSE-loss probability measure�, d �Fet+h,t (·|�y), is deÞned by

d �Fet+h,t (e; �y) =
Λ (e, �y)

Et [Λ (Yt+h − �y, �y)] · dFet+h,t (e; �y) (11)

By construction the MSE-loss probability measure �F (·|�y) is absolutely continuous with respect
to the usual probability measure, F (·|�y), (that is, �F (·|�y) << F (·|�y)). The function

�Λt+h,t (e, �y) ≡ Λ (e, �y)

Et [Λ (Yt+h − �y, �y)] (12)

is the Radon-Nikodým derivative d �Fet+h,t (·|�y) /dFet+h,t (·|�y). If we let u = e−1, then Assumption
L6 requires that ∂L (y, �y) /∂�y|y=�y+1/u = O

¡
u−1

¢
. Note that Λ (e, �y) is well-deÞned at e = 0 for

some common loss functions. For example,

MSE : lim
e→0 Λ (e, �y) = −2

Linex : lim
e→0 Λ (e, �y) = −a

2

PropMSE : lim
e→0 Λ (e, �y) = −2/�y

2

where the Linex and PropMSE loss functions are L (y, �y) = exp(ae)−ae+1 (a 6= 0) and L (y, �y) =
(y/�y − 1)2, respectively. For mean absolute error loss, L (y, �y) = |e|, the limits from both directions
diverge to −∞, meaning that there is no MSE-loss density under MAE in general. However, if the
variable of interest is conditionally symmetrically distributed at all points in time, then the optimal
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forecast under MAE coincides with the optimal forecast under MSE, as the conditional mean is

equal to the conditional median, and so the appropriate Radon-Nikodým derivative is equal to

one.

We now show that under the MSE-loss probability measure the optimal h-step ahead forecast

errors exhibit the properties that we would expect from optimal forecasts under MSE loss:

Proposition 3 1. Let assumptions L1, L4 and L6 hold. Then the �MSE-loss probability measure�,

�Fet+h,t (·|�y), deÞned in equation (11) is a proper probability distribution function for all y ∈ Y.
2. If we further let assumption L2� hold, then the optimal forecast error, e∗t+h,t = Yt+h − �Y ∗t+h,t

has conditional mean zero under the MSE-loss probability measure �Fet+h,t
³
·|�Y ∗t+h,t

´
.

3. The optimal forecast error is serially uncorrelated under the MSE-loss probability measure,

�Fet+h,t

³
·|�Y ∗t+h,t

´
, for all lags greater than h− 1.

4. �V
h
e∗t+h,t

i
, the variance of e∗t+h,t under �Fet+h,t evaluated at �Y

∗
t+h,t, is non-decreasing as a

function of the forecast horizon.

Notice that e∗t+h,t is a martingale difference sequence, with respect to Ft, under �Ft+h,t. Fur-
thermore, although the MSE loss probability measure operates on forecast errors, the result holds

for general loss functions having Yt+h, �Y ∗t+h,t as separate arguments.

It is worth emphasizing that the MSE-loss probability measure is a conditional distribution, and

so obtaining an estimate of it from data is not as simple as it would be if it was an unconditional

distribution. If we assume that the density fet+h,t exists then it is possible, under some conditions,

to obtain a consistent estimate of fet+h,t via semi-nonparametric density estimation, see Gallant

and Nychka (1987). If L is known then Λ is, of course, also known.7 With consistent estimates of

fet+h,t and Λ it is simple to construct an estimator of �fet+h,t.

To illustrate how the MSE-loss error density differs from the objective error density, we present

a simple example in Figure 1 that assumes linex loss with parameter a = 1, and that the DGP is

a simple two-state regime switching process, with Yt+1|Ft being N
³
0, σ2st+1

´
in state st+1, where

σ1 = 0.5 and σ2 = 2, and with Pr [St+1 = 1|St = 1] = 0.95 and Pr [St+1 = 2|St = 2] = 0.90.

This is a special case of the widely-used regime switching model proposed by Hamilton (1989). The

parameters selected for this example are not dissimilar to empirical results frequently obtained when

7If L is unknown, a nonparametric estimate of Λ may be obtained via sieve estimation methods, for example, see

Andrews (1991) or Chen and Shen (1998).
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this model is estimated on Þnancial data, c.f. Patton and Timmermann (2004) for example. Figure

1 shows the objective and MSE-loss error densities, evaluated at �Y ∗t+h,t, for various values of the

state probability vector, �πst,t ≡ [Pr [St = 1|Ft] ,Pr [St = 2|Ft]]0. The shape of the transformation
from f to �f differs depending on the state probabilities, but in all cases probability mass is shifted

to the right in order to remove the (optimal) negative bias that is present under the objective

probability distribution for e due to the high cost associated with positive forecast errors.

3 Testable Implications under Unknown Loss Functions

The results in Proposition 2 can be used to test the optimality of a sequence of forecasts if the

forecaster�s loss function is known, and certain basic conditions hold. In this section we establish

some properties of optimal forecasts that may be tested when the loss function of the forecaster is

unknown. To obtain some of these results we consider a restricted class of DGPs, namely those with

dynamics in the conditional mean and conditional variance, but no dynamics in the remainder of

the conditional distribution. This class of DGPs is quite broad, and includes ARMA processes and

non-linear regressions, possibly with GARCH or stochastic volatility in the conditional variance

process. Throughout, we will use the following notation: µt+h,t ≡ Et [Yt+h] and σ2t+h,t ≡ Vt [Yt+h].

3.1 Conditional mean dynamics only

Consider the class of DGPs that satisfy the following condition:

Assumption D2: The DGP is such that Yt+h = µt+h,t + εt+h, εt+h|Ft ∼ Fε,h
³
0, σ2ε,h

´
, where

Fε,h

³
0, σ2ε,h

´
is some distribution, with mean zero and variance σ2ε,h (which may be inÞnite), that

may depend on h, but does not depend on Ft.
The restriction of dynamics only in the conditional mean implies that the innovation term,

εt+h, is drawn from some distribution, Fε,h, which will generally depend on the forecast horizon,

but is independent of Ft and so is not denoted with a subscript t. We shall concentrate on loss
functions that satisfy assumption L5, i.e. L (y, �y) = L (y − �y) = L (e), ∀ (y, �y) ∈ R×Y. Although
this restriction rules out certain loss functions, many common loss functions are of this form, for

example lin-lin and linex. With these two assumptions we obtain the following serial correlation

property of the optimal forecast error:
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Proposition 4 Let the DGP and loss function satisfy assumptions D2, L2 and L5. Then e∗t+h,t is

independent of all Zt ∈ Ft. In particular, Cov
³
e∗t+h,t, e

∗
t+h−j,t−j

´
= 0 for all j ≥ h and any h > 0.

This proposition shows that under a testable assumption on the DGP, and only one weak

assumption on the loss function, the optimal forecast errors are serially uncorrelated at lags greater

than or equal to the forecast horizon, for any error-based loss function. This implies that given a

sequence of realizations and forecasts,
n
Yt+h, �Yt+h,t

oT
t=1
, we may test for forecast optimality without

knowledge of the forecaster�s loss function by testing the serial correlation properties of the forecast

errors.8 For Þnancial applications the assumption of constant higher-order conditional moments is

clearly too strong, but in some macroeconomic applications the assumption that all dynamics are

driven by the conditional mean may be palatable. In this case, tests of forecast optimality need

not rely on the assumption of MSE loss, or on the assumption that the loss function is known up

to an unknown parameter vector and that the forecast model is linear, as in Elliott, et al. (2002).

Instead forecast optimality can be tested with a large degree of robustness to the loss function of

the forecaster, e.g. by testing β = 0 in regressions such as

et+h,t = α+ β
0Zt + ut+h. (13)

If forecasts with various horizons are available from the same forecaster we may again �stack�

the forecast errors into a vector, and test the optimality of all forecasts jointly:
et+1,t

et+2,t
...

et+H,t

 = A+BZt + ut,H

and then testH0 : B = 0. Alternatively, a VAR structure similar to equation (8) could be employed.

In Patton and Timmermann (2004) it was shown that although the unconditional expected

loss is always a non-decreasing function of the forecast horizon, the unconditional forecast error

variance may or may not be a non-decreasing function of the forecast horizon. We next establish

conditions under which the unconditional forecast error variance is non-decreasing.

8We focus on the testing of the serial correlation property though of course more generally we could test for

complete independence between e∗t+h,t and any Zt ∈ Ft.
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Proposition 5 Let the loss function satisfy assumptions L2, L4 and L5, and the DGP satisfy D2

with σ2ε,h <∞, for some h ≥ 1. Then V
h
e∗t+h,t

i
is a weakly increasing function of h.

Like Proposition 4, this proposition may be used to test forecast optimality in the absence of

information on the forecaster�s loss function under the assumption of mean-only dynamics in the

variable of interest. Given a time series of forecasts with a range of horizons, Proposition 5 makes

it clear that optimality tests based on the variance of the forecast error being weakly increasing in

the forecast horizon require restrictive assumptions either on the loss function (i.e., MSE loss in

particular) or on the DGP (i.e., dynamics in the conditional mean only). This suggests that the

equivalence between unconditional expected loss and unconditional error variance is peculiar to the

MSE loss function, and will not generally be true for other loss functions.

3.2 Conditional mean and conditional variance dynamics

The assumption of constant conditional variance is too restrictive in many applications. We next

provide results for a more general class of conditional scale-location DGPs, that satisfy the following

assumption:

Assumption D3: The DGP is such that Yt+h = µt+h,t + σt+h,tηt+h, ηt+h|Ft ∼ Fη,h (0, 1),

where Fη,h (0, 1) is some distribution with mean zero and variance one that may depend on h, but

does not depend on Ft.
This class of DGPs is very broad and includes most common volatility processes, e.g. ARCH

and stochastic volatility, see Engle (1982) and Shephard (2004). It nests those of Assumption

D2, at the cost that we must be more restrictive on the class of loss functions that we consider.9

SpeciÞcally, we need to make the following assumption:

Assumption L5�: The loss function is a homogeneous function solely of the forecast error.

This assumption implies that L (ae) = g (a)L (e) for some positive function g. Commonly used

loss functions such as lin-lin and asymmetric quadratic loss are of this form while the linex loss

function is excluded. With these two assumptions we obtain the following testable implications of

forecast optimality:

9 It would be possible to extend our analysis to allow ηt+h to have no Þnite moments. In such a case µt+h,t and

σt+h,t would no longer be interpretable as the conditional mean and standard deviation of Yt+h|Ft, and would instead
simply be Ft-measurable location and scale shifters. We do not consider this extension here.
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Proposition 6 Let the DGP and loss function satisfy assumptions D3 and L2, and deÞne the

standardized optimal forecast error as d∗t+h,t = e
∗
t+h,t/σt+h,t. Then:

1. If L5� also holds, the optimal forecast takes the following form:

�Y ∗t+h,t = µt+h,t + σt+h,t · γ∗h (14)

where γh is a constant, depending only upon the forecast horizon, h, and the loss function.

2. If L5� also holds, d∗t+h,t is independent of any element Zt ∈ Ft. In particular,

Cov
³
d∗rt+h,t, d

∗s
t+h−j,t−j

´
= 0 for all j ≥ h and any h > 0 and all r, s for which the covariance

exists. Further, Vt
h
d∗t+h,t

i
= 1 for all h > 0.

3. If L5� does not hold but L5 holds, then

�Y ∗t+h,t = µt+h,t + γ
∗ (σt+h,t, L, h)

where γ∗t+h,t ≡ γ∗ (σt+h,t, L, h) is, in general, time-varying and depends on Ft, h and L.

The second part of Proposition 6 spells out the empirical implications of the result under ho-

mogenous loss. Although the optimal forecast error will not, in general, be unbiased, serially

uncorrelated or homoskedastic, an optimal forecast error scaled by the conditional standard devi-

ation will be independent of any Zt ∈ Ft. This implies that d∗t+h,t will be serially uncorrelated and
homoskedastic. Forecast optimality could therefore be tested, for instance, by estimating

dt+h,t = α0 +

pX
i=0

βidt−i,t−i−h + ut+h (15)

ut+h = σ2u,t+hvt+h, vt+h ∼ (0, 1)

σ2u,t+h = ω0 +

qX
i=1

ωiu
2
t+1−i

and testing that H0 : ω0 = 1 ∩ βi = ωj = 0 ∀ i = 0, 1, 2, ..., p and j = 1, 2, ..., q. As in previous

cases, if forecasts with different horizons are available from the same forecaster we may stack the

standardized forecast errors into a vector and test the optimality of all forecasts jointly.

The above test is easily computed although it requires that an estimate of σ2t+h,t is available.

Under certain conditions, a consistent estimate of this conditional variance can be obtained from

the observed Yt process either by means of parametric methods (e.g. using a GARCH-type model)

or by non-parametric methods, using a realized volatility estimator (see Andersen, et al., 2003) for

example. In contrast, and importantly for empirical work, no estimate of µt+h,t is required.
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If the loss function is not homogenous, part 3 of Proposition 6 shows that the optimal forecast

will, in general, be a function of the time-varying conditional variance, σ2t (Yt+h), and the loss

function, L. Since γt+h,t is time-varying and depends on the unknown loss function this makes

it difficult to design tests of forecast optimality under time-varying Þrst and second moments and

unknown (non-homogeneous) loss.

Researchers will not always have a reliable estimate of σ2t+h,t available, and so it would be

particularly useful to establish under which conditions an optimality test can be based only on

such observables. If we restrict the Þrst and second moment dynamics to be linked then such an

implication may be obtained. This is a case of particular interest in Þnancial applications - i.e.

when the target variable is returns and expected returns are proportional to the level of risk as

measured by the conditional standard deviation, see Engle, et al. (1987).

Assumption D3�: The DGP is such that Yt+h = βσt+h,t + σt+h,tηt+h, ηt+h|Ft ∼ Fη,h (0, 1),
where β ∈ R and Fη,h is some distribution with mean zero and variance one that may depend on
h, but does not depend on Ft.

Proposition 7 Let the DGP and loss function satisfy assumptions D3�, L2 and L5�, and assume

that β 6= −γh. DeÞne d∗t+h,t ≡
³
Yt+h − �Y ∗t+h,t

´
/ �Y ∗t+h,t. Then d∗t+h,t is independent of any element

Zt ∈ Ft. In particular, Cov
³
d∗rt+h,t, d

∗s
t+h−j,t−j

´
= 0 for all j ≥ h and any h > 0 and all r, s for

which the covariance exists.

Note that the assumption that β 6= −γh is easily checked: if this is true then the optimal
forecast is identically zero for all t. Also, note that the unit variance property of the standardized

optimal forecast error in Proposition 6 no longer holds. Under the conditions of Proposition 7 we

may test forecast optimality without speciÞc knowledge of the loss function or any of the moments

of the DGP, by testing that there is no serial correlation beyond lag h − 1 in the d∗t+h,t series,
and/or that the d∗t+h,t series is homoskedastic. This could be done simply via a Mincer-Zarnowitz

regression of powers of d∗t+h,t on a constant and lags of various powers of d
∗
t+h,t of order greater

than or equal to h, as in equation (15).

Under certain conditions, it is possible to show that we can express the optimal forecast as a

conditional quantile of the variable of interest. The usefulness of this result lies in the surprising

Þnding that the optimal forecast is the same quantile at all points in time, though the quantile may
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change with the forecast horizon and is typically unknown as it depends on the loss function. With

such a representation we can obtain an alternative test of forecast optimality using tests of quantile

forecasts without the need to estimate of the conditional variance of the variable of interest.

Proposition 8 Let the DGP and loss function satisfy assumptions D2, L2 and L5, or assumptions

D3, L2 and L5� Then:

1. The optimal forecast is such that, for all t,

Ft+h,t

³
�Y ∗t+h,t

´
= q∗h, (16)

where q∗h ∈ (0, 1) depends only upon the forecast horizon, h, and the loss function, L. If Ft+h,t is
continuous and strictly increasing, then we can alternatively express this as:

�Y ∗t+h,t = F
−1
t+h,t (q

∗
h) (17)

2. Let

I∗t+h,t ≡ 1
³
Yt+h ≤ �Y ∗t+h,t

´
(18)

Then I∗t+h,t is independent of all Zt ∈ Ft. In particular, I∗t+h,t − qh is a martingale difference
sequence with respect to Ft.

Notice how assumptions on the loss function can be traded off against assumptions on the DGP.

This result gives rise to a new test that is applicable even though q∗h is unknown. The test simply

projects the indicator function on elements in Ft and an intercept and tests that β = 0:

I∗t+h,t = α+ βZt + ut+h. (19)

A logit model could instead be used, to better reßect the binary nature of the dependent variable.

Alternatively, the LR test of independence of Christoffersen (1998) could be employed to test for

serial dependence in I∗t+h,t. If q
∗
h is known, it can further be tested that α = q∗h. We may again

stack the indicator variables into a vector and test multiple horizons jointly, if forecasts for multiple

horizons are available.

When D3 fails to hold it is, in general, difficult to obtain results that are easy to test even if

restrictions are imposed on the loss function. To see this, consider the following more general DGP
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Assumption D4: The DGP is such that Yt+h = µt+h,t + σt+h,tηt+h, ηt+h|Ft ∼ Fη,t+h,t (0, 1),
where Fη,t+h,t (0, 1) is some time-varying distribution with mean zero and variance one that depends

on Ft and possibly on h.
This class of DGPs nests those of Assumption D3, as we allow for a time-varying conditional

mean, conditional variance and other properties of the distribution (e.g., time-varying conditional

skew or kurtosis.) If the loss function is assumed to be homogeneous in the forecast error we get

the following result:

Proposition 9 Let the DGP and loss function satisfy assumptions D4, L2 and L5�. Then

�Y ∗t+h,t ≡ argmin
�y

Et [L (Yt+h, �y)] = µt+h,t + σt+h,t · γ∗t+h,t

where γ∗t+h,t is scalar that depends on the loss function, the forecast horizon, and the time-varying

properties of Fη,t+h,t beyond the conditional mean and variance. The standardized optimal forecast

error, d∗t+h,t = e
∗
t+h,t/σt+h,t =

³
ηt+h − γ∗t+h,t

´
, and the indicator variable I∗t+h,t ≡ 1

³
Yt+h ≤ �Y ∗t+h,t

´
,

will both in general be serially correlated beyond lag h− 1.

Thus when dynamics in the conditional distribution beyond those in the conditional mean and

variance are considered we cannot in general obtain a testable restriction on the optimal forecast

error, even if σt+h,t is known (or, more generally, even if Ft+h,t is known) and we restrict the loss

function to satisfy assumption L5�.

3.3 General DGPs and ßexible parametric loss functions

In cases such as those covered by the previous Proposition, the variable of interest may have

dynamics beyond the conditional mean and variance, or the class of loss functions to be considered

will not satisfy the restrictions in assumptions L5 or L5�. In this case it may still be possible to

construct a test based on a ßexible parametric estimate of the Þrst-derivative of the loss function

with respect to �y. Recall the Þrst-order condition: 0 = Et
h
∂L
³
Yt+h, �Y

∗
t+h,t

´
/∂�y

i
, which implies

0 = E
h
∂L
³
Yt+h, �Y

∗
t+h,t

´
/∂�y · Zt

i
for any Zt ∈ Ft.

For notational simplicity, let

λ (y, �y) ≡ ∂L (y, �y)

∂�y
. (20)

We may obtain a ßexible parametric estimate of λ (y, �y) , denoted λ (y, �y; θ), based on a linear spline

model, for example. To see how a linear spline could be employed to approximate the function
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λ (y, �y), assume that λ = λ (e), let (ζ1, ..., ζK) be the nodes and impose that one of the nodes is

zero. We impose that the spline is continuous, though not necessarily differentiable, except possibly

at zero. We could allow further discontinuities in λ at the cost of introducing more parameters to

estimate.

With just a few nodes this class of loss functions is very ßexible, nesting both MSE and MAE

as special cases, as well as the �quad-quad�, �lin-lin�, and the symmetric, non-convex loss function

of Granger (1969). If we further impose that the spline is continuous at zero, then the MSE loss

function is nested without the boundary of the parameter space being hit, at the cost of the MAE

and �lin-lin� loss functions not being nested. In this case the resulting estimated loss function is a

quadratic spline, and is continuous and (once) differentiable everywhere:

∂λ (e; θ)

∂e
=


γ1, for e ≤ ζ1
γi, for ζi−1 < e ≤ ζi, i = 2, ...,K
γK+1, for e > ζK

. (21)

where θ =
£
γ1, γ2, ..., γK+1

¤0
. λ (e; θ) and L (e; θ) are constructed from the above speciÞcation by

imposing that λ (0; θ) = L (0; θ) = 0 and that both λ (e; θ) and L (e; θ) are continuous in e.10 Since

λ (e; θ) is only identiÞed up to a multiplicative constant, some normalization is required to identify

the parameters. Further, it is important to impose constraints on θ so that the resulting estimate

of λ satisÞes the assumptions required for it to be the Þrst derivative of some valid loss function;

for example, assumption L4 requires λ (y, �y) ≤ (≥) 0 for y ≥ (≤) �y.
In applications where we have reason to assume that the loss from a forecast is solely a function

of the forecast error−i.e. assumption L5 is satisÞed−the problem simpliÞes to approximating the

function λ (y − �y) = λ (e). In other cases, such a restriction may not be well-founded and so no

such simpliÞcation is available, c.f. Machina and Granger (2004). In this case we must employ a

more ßexible speciÞcation to approximate the function λ (e, y). Treating λ (y, �y) rather than λ (e, y)

makes it more difficult to impose the conditions necessary for λ to be admissible. We propose the

following speciÞcation, which is centred around MSE loss, so that θ = 0 implies MSE loss.

10 If the number of parameters in the spline grows with the sample size, and the model gets sufficiently ßexible as to

be able to approximate the unknown function arbitrarily well, then the resulting estimate has an interpretation as a

nonparametric estimate, see Andrews (1991) or Chen and Shen (1998), though we do not employ this interpretation

here.
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∂λ (e, y; θ)

∂e
=


γ1 ≡ Γ (ϕ01 + ϕ11y − lnK) , for e ≤ ζ1

γi ≡
³
1−Pi−1

j=1 γj

´
· Γ (ϕ0i + ϕ1iy − lnK) , for ζi−1 < e ≤ ζi, i = 2, ...,K

γK+1 = 1−
PK
j=1 γj , for e > ζK

(22)

where Γ (x) ≡ (1 + e−x)−1 is the logistic transformation. This speciÞcation allows y to affect the
slopes of λ, guarantees that all slopes are weakly positive, and that the sum of the slopes equals

one. Under standard regularity conditions the parameter vector of the approximating function can

be estimated via the generalized method of moments (GMM), in a similar fashion to Elliott, et al.

(2002):

�θT ≡ argmin
θ∈Θ

gT (θ)
0WgT (θ) (23)

gT (θ) ≡ 1

T

TX
t=1

λ
³
et+h,t, �Yt+h,t; θ

´
· Zt,

whereW is a weighting matrix and Θ is a compact set. A test of forecast optimality can be obtained

from a test of over-identifying restrictions if we ensure we have more moment restrictions, k, than

parameters, p:

TgT

³
�θn

´0
�W ∗
T gT

³
�θT

´
⇒ χ2k−p, as T →∞ (24)

where �W ∗
T is a consistent estimate of the optimal weight matrix, c.f. Newey and McFadden (1994).

An important condition for identiÞcation is that the data are not iid. If the data are iid then

we have only a single moment condition from the Þrst-order condition for forecast optimality, and

so we cannot estimate more than a single parameter, and we have no over-identifying restrictions

available to test. Of course, this condition is likely to be satisÞed in most time series applications.

This test of forecast optimality does not rely on any restrictions on the DGP, other than

standard conditions required for GMM estimators to be consistent and asymptotically normal.11

It does, however, rely on the linear spline being sufficiently ßexible to approximate the unknown

loss function. Thus, a rejection of forecast optimality may be due either to a true failure of forecast

optimality or to a failure of the approximation of the forecaster�s loss function.
11One important GMM regularity condition is that the optimal value of the parameter θ lies in the interior of the

set of possible values, Θ. A Taylor series approximation of order greater than one will nest MSE loss, but the MSE

loss case lies on the boundary of Θ. If the true loss function is MSE this invalidates the use of standard asymptotic

theory, though methods of dealing with this have been proposed, see Andrews (2001). This issue does not arise with

our linear spline approximation.
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4 Empirical tests of forecast optimality

We next apply the proposed tests to data sets comprised of forecasts and realizations of two key

macroeconomic variables: inßation and output growth. We shall use the results of Section 3 which

are applicable when the loss function is unknown to the econometrician. In both cases the data set

comes from the Survey of Professional Forecasters and is maintained by the Federal Reserve Bank of

Philadelphia. To obtain a sufficient number of observations we test the optimality of the consensus

forecasts of these variables, deÞned as the median values of all forecasts available each quarter.

By testing the consensus forecast, which of course need not equal the forecast of any individual

forecaster, we are testing whether there exists a loss function that would make the forecasts of a

�representative forecaster� optimal.

4.1 Inßation Forecasts

We Þrst study quarterly forecasts and realizations of inßation over the period 1983 to 2003, giving

84 observations. Data prior to 1983 was not used due to the well-known change in monetary policy

and inßation dynamics over the period 1979-1982.

Under MSE loss, a simple test of optimality would be to test whether the unconditional mean of

the forecast errors is zero. The unconditional mean (t-statistic) over this period is −0.35 (−4.73),
which is signiÞcantly different from zero at the 1% level.12 Thus we have evidence against optimality

of this forecast under MSE loss. However, the presence of asymmetry in the loss function may make

the presence of such bias optimal. Engle�s (1982) LM test for ARCH in the forecast errors for this

series, using four lags, found no evidence of heteroskedasticity in the forecast errors (p-value of

0.80), and thus assumption D2 may apply to this series. Further, simple tests of serial correlation

in higher powers of the forecast error, in the spirit of Diebold, et al. (1998), support assumption

D2 for this series, see Table 1.

In this case, we know that if we can further impose that the loss function is only a function of

the forecast error (i.e., assumption L5) then an optimal forecast will generate forecast errors with

zero serial correlation. A Ljung-Box test indicated no signiÞcant serial correlation in the forecast

12This is true whether we control for serial correlation in the residuals or not. Under the null of forecast optimality

under MSE loss the forecast errors are serially uncorrelated, though they may be heteroscedastic. We control for

heteroscedasticity using White�s (1980) variance estimator; the p-value is unchanged if we instead use the Newey-West

(1987) variance estimator which also controls for serial correlation.
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errors for any lag up to lag 12. Thus we conclude that while we have evidence that the consensus

inßation forecasts are not optimal under MSE loss, there is no evidence against optimality under

some other, unknown, loss function.

We can also apply two quantile-based tests of forecast optimality presented in Proposition 8. In

the Þrst test we regress the indicator variable 1
³
Yt+1 ≤ �Yt+1

´
on a constant, the forecast, and the

lagged value of inßation and the indicator variable. A test that all parameters but the constant are

equal to zero yields a p-value of 0.44, and thus we fail to reject forecast optimality. For the second

test we apply the test of Christoffersen (1998), who proposes testing the null that the indicator

variable is iid Bernoulli with some constant success probability q∗h, against an alternative that the

indicator variable is Þrst-order Markov. This test yields a p-value of 0.79, and so we again fail to

reject the optimality of the inßation forecasts.

Rather than imposing assumption D2 we may instead test optimality using the ßexible loss

function models presented in Section 3.3. We use a linear spline model for ∂L/∂�y, initially imposing

assumption L5. We employ three nodes, [−0.5, 0, 0.5], which correspond to the 0.44, 0.67 and 0.90
quantiles of the empirical distribution of inßation forecast errors. Assumption L4 can be satisÞed

by noting that with just three nodes we must have γi ≥ 0 for all i for λ to be admissible (with

more nodes some γi may be negative). We normalize the function by imposing
PK+1
i=1 γi = 1.

As instruments for the moment conditions we use a constant, the contemporaneous value of the

forecast, and two lags each of the forecast error and actual inßation. Thus we have six moment

conditions and three free parameters. The resulting estimated loss function and derivative are

presented in the top panel of Figure 2, along with what would be obtained under MSE loss.

The test of forecast optimality with respect to some loss function in the class spanned by our

approximation in equation (21) is conducted as a test of over-identifying restrictions and yielded a

test statistic (p-value) of 0.99 (0.80) . Thus we cannot reject the null that all moment conditions are

satisÞed at the optimal parameter. This is consistent with forecast optimality under the estimated

loss function.

To examine whether the level of inßation (or, equivalently, the forecast of inßation) affects

∂L/∂�y, we also estimate the more general speciÞcation in equation (22). This speciÞcation involves

three more parameters than the benchmark model, and so we included three more instruments: one

additional lag of the level of inßation and two additional lags of the forecast error. Not surprisingly,

the test of forecast optimality based on this more general model also fails to reject the null of forecast
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optimality (test statistic and p-value of 2.92 and 0.40). More interesting, though, is the resulting

estimated loss function, which is displayed in the second and third panels of Figure 2. Only when

inßation is low by historic standards (when it is equal to its 0.10 quantile) is the best-Þtting loss

function approximately symmetric. For inßation equal to its unconditional median or 0.90 quantile

the best-Þtting loss function is asymmetric, penalizing positive forecast errors (under-predictions)

more heavily than negative forecast errors (over-predictions).

4.2 Output Growth Forecasts

We next turn to the forecasts of quarterly nominal output growth over the period 1968 to 2001,

yielding 133 observations. The unconditional mean (t-statistic) of the forecast errors over this

period is 0.17 (3.20), which is again signiÞcant at the 1% level, though of the opposite sign to the

previous example. This suggests that these forecasts are not optimal under MSE loss. Engle�s LM

test for ARCH in the forecast errors, using four lags, yielded a p-value of less than 0.01, i.e. strong

evidence of heteroskedasticity. Thus assumption D2 does not apply, but assumption D3, which

allows for dynamic conditional means and variances but rules out any dynamics in higher-order

moments, may be reasonable. If we further assume that the loss function satisÞes assumption L5�

then we know that the optimal forecast error will be of the following form:

e∗t+1,t = γ∗1σt+1,t + σt+1,tηt+1 (25)

ηt+1|Ft ∼ Fη (0, 1)

If we knew σt+1,t we could construct dt+1,t ≡ et+1,t/σt+1,t which we showed in Proposition 6 to

be serially uncorrelated and homoskedastic. In order to implement a test we propose imposing

assumption D3 and modelling σ2t+1,t as a simple GARCH(1,1) process, allowing for the GARCH-

in-mean effects implied by Proposition 6.13 This makes this test of forecast optimality a joint test

of forecast optimality and correct volatility model speciÞcation. Furthermore, the estimation error

13For some variables, such as returns on some stocks or exchange rates, a nonparametric measure of the volatility

may be available via the �realized variance� estimator, see Andersen et al. (2003) for example. Unfortunately, the

data required for this estimator is not available for most macroeconomic time series, including the two under analysis

here. Further, general nonparametric estimation of a conditional volatility model for this time series is not feasible

given the short sample size available. We use instead a simple, parsimonious, GARCH model, which has been shown

to work well in numerous other studies of macroeconomic and Þnancial time series. Of course, the possibility remains

that this model is mis-speciÞed and that this affects our conclusions.
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in the volatility model must be taken into account when conducting inference. The GARCH-in-

mean term was signiÞcant (with a p-value of less than 0.01). As this term is Ft-measurable this
violates the zero predictability property of optimal forecast errors under MSE loss. Simple tests for

serial correlation in higher powers of the standardized forecast error, presented in Table 1, support

assumption D3 for this series.

Given the short sample size available for this data set and relative complexity of the model

being estimated, we used simulations rather than asymptotic theory to obtain a test of fore-

cast optimality with estimated conditional variance. We estimate the small sample distributions

of [Corr
£
d∗t+1,t, d∗t,t−1

¤
, [Corr

£
d∗2t+1,t, d∗2t,t−1

¤
and [Corr

£
d∗t+1,t, d∗t,t−1

¤2
+ [Corr

£
d∗2t+1,t, d∗2t,t−1

¤2 under
the null that the forecast error satisÞes equation (25) and that the conditional volatility fol-

lows a GARCH(1,1) process with normal innovations. We test the optimality of the forecasts

of output growth by comparing the observed values for these three statistics with their simu-

lated distributions under the null of forecast optimality. We generate the simulated distribu-

tions by simulating a data set of the same length as the original one using the estimated pa-

rameters, re-estimating the GARCH-in-mean model on the simulated data set, and computing

[Corr
£
d∗t+1,t, d∗t,t−1

¤
, [Corr

£
d∗2t+1,t, d∗2t,t−1

¤
and [Corr

£
d∗t+1,t, d∗t,t−1

¤2
+ [Corr

£
d∗2t+1,t, d∗2t,t−1

¤2. We re-
peat the simulation 10,000 times. The observed values of all three of these statistics lie within

their 95% conÞdence bounds (with p-values of 0.47, 0.85, and 0.68 respectively) and we conclude

that while these forecasts are not optimal under MSE loss, we have no evidence that they are not

optimal for some other unknown loss function satisfying assumption L5�.14

The two quantile-based tests of forecast optimality presented in Proposition 8 are also applied.

In the Þrst test we regress the indicator variable 1
³
Yt+1 ≤ �Yt+1

´
on a constant, the forecast, and

the lagged value of GDP growth and the indicator variable. The test that all parameters but the

constant are equal to zero yields a p-value of 0.12, so we fail to reject forecast optimality. The test

of Christoffersen (1998) yields a p-value of 0.98, and so we again fail to reject the optimality of the

GDP growth forecasts.

We again use a continuous linear spline model for ∂L/∂�y, with nodes equal to [−0.5, 0, 0.5] ,
which correspond to the 0.14, 0.42 and 0.73 quantiles of the empirical distribution of GDP forecast

14We also estimated the small sample distribution of these statistics assuming a standardised Student�s t distribution

for the innovations, with degrees of freedom set to 6 and 10. The p-values on the test statistics changed by less than

0.03 in all cases.
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errors. As instruments for the moment conditions we use a constant, the contemporaneous value

of the forecast, and two lags each of the forecast error, actual GDP growth and the generalized

forecast error, so we have eight moment conditions and three free parameters. The estimated loss

function for GDP growth, and its derivative, are presented in the top panel of Figure 3. The test

of forecast optimality yields a test statistic (p-value) of 7.05 (0.22) . Thus we cannot reject the

null that the GDP growth forecasts are optimal under the estimated loss function. A test that the

estimated loss function is equal to MSE loss yields a p-value of 0.01, indicating a rejection of this

restriction at the 5% level.

We Þnally estimated the more general loss function model, (22), using as additional instruments

one additional lag of the level of GDP growth, the forecast error and the generalized forecast error.

Again, the test of forecast optimality based on this more general model failed to reject the null of

forecast optimality (test statistic and p-value of 5.69 and 0.34). Further, a test of the restrictions

that this more general loss function is equal to the simpler loss function presented in the top panel

of Figure 3, or equal to MSE loss, leads to p-values of less than 0.01 in both cases, indicating that

this more general loss function is signiÞcantly different from both. The estimated loss function

and an alternative view are presented in the middle and lower panels of Figure 3. This Þgure

shows that the type of asymmetry exhibited by the loss function changes depending on the level

of GDP growth and the size of the forecast error. For small forecast errors (those less than about

0.75 in absolute value) the lower panel of Figure 3 shows that negative forecast errors (i.e., over-

predictions) are more heavily penalized than positive forecast errors (under-predictions). However,

for large forecast errors (those greater than 0.75) the relative penalty applied to positive or negative

forecast errors depends on the realized level of GDP growth: for GDP growth equal to its median

the loss function is almost symmetric, penalizing negative forecast errors just slightly more than

positive forecast errors. For high GDP growth, the loss function penalizes over-prediction more

strongly than under-prediction. For low GDP growth the opposite is true. Assuming that forecast

users tend to expand (reduce) economic activity when faced with high (low) forecasts of output

growth, a possible explanation for this Þnding is that adjustment costs are asymmetric: when GDP

growth runs high it is particularly costly to over-predict and increase economic activity (e.g., due

to over-heating and capacity constraints), while when GDP growth is low, reducing activity is

similarly costly (due to costs of layoffs etc.).
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5 Conclusion

This paper demonstrated that the properties of optimal forecasts that are almost always tested in

the empirical literature hold only under very restrictive assumptions. We provided intuitive results

on properties of a �generalized forecast error� that may be tested when the forecaster�s loss function

is known, and derived testable implications of forecast optimality under general (but unknown) loss

function and restrictions on the data generating process. We also proposed a test of optimality

based on a ßexible parametric estimate of the unknown loss function.

Finally, we introduced a change of measure, analogous to the change of measure from objective

to risk-neutral commonly employed in asset pricing. Under the new probability measure, which

we call the �MSE-loss probability measure�, the optimal h-step forecast error for any general loss

function has zero conditional mean and zero serial correlation for all lags greater than h − 1, i.e.,
the same properties as an optimal forecast under MSE loss. This is a novel line of analysis, and

one that may lead to new ways of testing forecast optimality.

We have deliberately constrained our analysis in this paper to ignore parameter estimation

uncertainty, although considerable progress has been made on evaluating forecasts in the presence

of such effects, c.f. West (1996), McCracken (2000) and Corradi and Swanson (2002). We have

also ignored decision theoretical issues. In general decision problems the forecasting and decision

problem cannot be separated and an examination of the decision maker�s action rule and full density

forecast is required to test rationality, c.f. Diebold, Gunther and Tay (1998). Thus, if the object of

the analysis is to derive a decision maker�s optimal actions, in general the entire forecast density

matters rather than simply the point forecast. However, there are cases where certainty equivalence

can still be established for risk-averse or risk-seeking decision makers, c.f. Whittle�s (1983) risk-

sensitive optimal control method. Alternatively, one can think of situations where the forecast is

the decision, as in the case of information services that provide a single forecast for multiple users

(e.g., Þnancial analysts or international organizations such as the IMF or OECD).

In our empirical study of the Survey of Professional Forecasters data, consistent with earlier

studies, we found strong and signiÞcant evidence against forecast optimality under MSE loss.

However, when allowing for the possibility of non-MSE loss we found no such evidence. This serves

as a concrete example of our claim that previous reports of irrationality or sub-optimality may have

relied heavily on the strong assumption that the forecaster�s loss function is of the MSE type.
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Appendix

Proof of Proposition 1. This proof follows directly from the proof of Proposition 2 below, when

one observes the relation between the forecast error and the generalized forecast error, ψ∗t+h,t, for the mean

squared loss case: e∗t+h,t = −1
2ψ

∗
t+h,t, and noting that the MSE loss function satisÞes assumptions L1, L3

and L5� which implies a unique interior optimum.

Proof of Proposition 2. 1. Assumptions L1 and L2� allow us to analyze the Þrst-order condition

for the optimal forecast, and assumption L3 permits the exchange of differentiation and expectation in the

Þrst-order condition, giving us, by the optimality of �Y ∗t+h,t,

Et
£
ψ∗t+h,t

¤
= Et

∂L
³
Yt+h, �Y

∗
t+h,t

´
∂ �Yt+h,t

 = 0.
E
£
ψ∗t+h,t

¤
= 0 follows from the law of iterated expectations.

To prove point 2, since (Yt, Yt−1, ...) ⊆ Ft by assumption we know that ψ∗t+h−j,t−j =

∂L
³
Yt+h−j , �Y ∗t+h−j,t−j

´
/∂�y is an element of Ft for all j ≥ h. Assumptions L1 and L2� again allow

us to analyze the Þrst-order condition for the optimal forecast, and assumption L3 permits the exchange of

differentiation and expectation in the Þrst-order condition. We thus have

E
£
ψ∗t+h,t|Ft

¤
= E

 ∂L
³
Yt+h, �Y

∗
t+h,t

´
∂ �Y

¯̄̄̄
¯̄Ft

 = 0,
which implies E

£
ψ∗t+h,t · φ (Zt)

¤
= 0 for all Zt ∈ Ft and all functions φ for which this moment exists. Thus

ψ∗t+h,t is uncorrelated with any function of any element ofFt. This implies thatE
£
ψ∗t+h,t · ψ∗t+h−j,t−j

¤
= 0,

for all j ≥ h, and so ψ∗t+h,t is uncorrelated with ψ∗t+h−j,t−j .
To prove point 3, note that assumption (D1) of strict stationarity for {Yt+h, Zt} yields the strict sta-

tionarity of
³
Yt+h, �Y

∗
t+h,t

´
since �Y ∗t+h,t is a time-invariant function of Zt. Thus for all h and j we have

E
h
Et

h
L
³
Yt+h, �Y

∗
t+h,t

´ii
= E

h
Et−j

h
L
³
Yt+h−j , �Y ∗t+h−j,t−j

´ii
and so the unconditional expected loss only depends on the forecast horizon, h, and not on the period when

the forecast was made, t. By the optimality of the forecast �Y ∗t+h,t we also have, ∀j ≥ 0,

Et

h
L
³
Yt+h, �Y

∗
t+h,t−j

´i
≥ Et

h
L
³
Yt+h, �Y

∗
t+h,t

´i
E
h
L
³
Yt+h, �Y

∗
t+h,t−j

´i
≥ E

h
L
³
Yt+h, �Y

∗
t+h,t

´i
E
h
L
³
Yt+h+j , �Y

∗
t+h+j,t

´i
≥ E

h
L
³
Yt+h, �Y

∗
t+h,t

´i
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where the second line follows using the law of iterated expectations and the third line follows from strict

stationarity. Hence the unconditional expected loss is a non-decreasing function of the forecast horizon.

To show that the conditional expected loss may be an increasing or a decreasing function of the forecast

horizon we need only construct an example. Consider the DGP and loss function used to generate Figure

1: if �πst,t = [0.95, 0.05]
0 it can be shown that the conditional expected loss for h = 1 is less than that for

h = 2; if �πst,t = [0.05, 0.95]
0 the reverse is true.

To prove Proposition 3 we prove the following lemma, for the ��L-loss probability measure�, which nests

the MSE-loss probability measure as a special case. We will require the following generalization of assumption

L6:

Assumption L6�: Given two loss functions, L and �L, 0 < E
h
∂L(Yt+h,�y)/∂�y

∂ �L(Yt+h,�y)/∂�y

¯̄̄
Zt
i
<∞ for all h, all

�y ∈ Y, and all Zt ∈ Zt.

Lemma 1 Let L and �L be two loss functions, and let �Y ∗t+h,t and �Y
∗
t+h,t be the optimal forecasts of

Yt+h at time t under L and �L respectively.

1. Let assumptions L1, L4 and L6� hold for L and �L. Then the univariate ��L-loss probability

measure�, �Fet+h,t, deÞned below is a proper probability distribution function.

d �Fet+h,t (e; �y) =
Λ (e, �y)

Et [Λ (Yt+h − �y, �y)] · dFet+h,t (e; �y)

where Λ (e, �y) ≡ ∂L (y, �y) /∂�y|y=�y+e
∂ �L (y, �y) /∂�y

¯̄̄
y=�y+e

≡ ψ (�y + e, �y)
�ψ (�y + e, �y)

2. If we further let assumption L2� hold, then the generalized forecast error under �L evaluated

at �Y ∗t+h,t, �ψ
³
Yt+h, �Y

∗
t+h,t

´
= ∂ �L

³
Yt+h, �Y

∗
t+h,t

´
/∂�y, has conditional mean zero under the �L-loss

probability measure.

3. The generalized forecast error under �L, evaluated at �Y ∗t+h,t, is serially uncorrelated under the

�L-loss probability measure for all lags greater than h− 1.
4. �E

h
�L
³
Yt+h, �Y

∗
t+h,t

´i
is non-decreasing as a function of the forecast horizon when evaluated

at �Y ∗t+h,t.

Proof of Lemma 1. We Þrst need to show that d �Fet+h ≥ 0 for all possible values of e, and thatR
d �Fet+h,t (u; �y) du = 1. By assumption L4 we have Λ (e, �y) > 0 for all e where Λ (e, �y) exists. (Note that

assumption L6� implies that Λ · dFet+h,t exists for all e and all �y.) Thus Λ · dFet+h,t is non-negative, and
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Et [Λ] is positive (and Þnite by assumption L6�), so d �Fet+h,t

³
e; �Yt+h,t

´
≥ 0, if dFet+h,t

³
e; �Yt+h,t

´
≥ 0.

By the construction of d �Fet+h,t it is clear that it integrates to 1.

To prove part 2, note that, from the optimality of �Y ∗t+h,t under L,

�Et

h
�ψ
³
Yt+h, �Y

∗
t+h,t

´i
∝

Z
�ψ
³
Yt+h, �Y

∗
t+h,t

´
Λ
³
e, �Y ∗t+h,t

´
· dFet+h,t

³
e; �Y ∗t+h,t

´
=

Z
ψ
³
Yt+h, �Y

∗
t+h,t

´
· dFet+h,t

³
e; �Y ∗t+h,t

´
= 0.

The unconditional mean of �ψ
³
Yt+h, �Y

∗
t+h,t

´
is also zero by the law of iterated expectations.

In the proof of part 3 we make reference to the bivariate �L-loss probability measure, but do not need to

explicitly deÞne it in order to obtain the result. Since �E
h
�ψ
³
Yt+h, �Y

∗
t+h,t

´i
= 0, we need only show that

�E
h
�ψ
³
Yt+h, �Y

∗
t+h,t

´
· �ψ
³
Yt+h+j , �Y

∗
t+h+j,t+j

´i
= 0 for j ≥ h. By part 2,

�Et

h
�ψ
³
Yt+h, �Y

∗
t+h,t

´
· �ψ
³
Yt+h+j , �Y

∗
t+h+j,t+j

´i
= �Et

h
�ψ
³
Yt+h, �Y

∗
t+h,t

´
·Et+j

h
�ψ
³
Yt+h+j , �Y

∗
t+h+j,t+j

´ii
for j ≥ h

= 0.

�E
h
�ψ
³
Yt+h, �Y

∗
t+h,t

´
· �ψ
³
Yt+h+j , �Y

∗
t+h+j,t+j

´i
= 0 follows by the law of iterated expectations.

For part 4 note that �Et
h
�ψ
³
Yt+h, �Y

∗
t+h,t

´i
= 0 is the Þrst-order condition of min

�y

�Et

h
�L (Yt+h, �y)

i
, so

�Et

h
�L
³
Yt+h, �Y

∗
t+h,t

´i
≤ �Et

h
�L
³
Yt+h, �Y

∗
t+h,t−j

´i
∀ j ≥ 0, and so �E

h
�L
³
Yt+h, �Y

∗
t+h,t

´i
≤

�E
h
�L
³
Yt+h, �Y

∗
t+h,t−j

´i
= �E

h
�L
³
Yt+h+j , �Y

∗
t+h+j,t

´i
by the law of iterated expectations and the assump-

tion of strict stationarity. Note that the assumption of strict stationarity for {Yt+h, Zt} suffices here since
�Y ∗t+h,t and the change of measure, �Λt+h,t

³
e, �Y ∗t+h,t

´
, are time-invariant functions of Zt.

Proof of Proposition 3. Follows from the proof of Lemma 1 setting �L (y, �y) = (y − �y)2 and
noting that assumption L6 satisÞes L6� for this loss function.

Proof of Proposition 4. Under assumptions L2 and L5 the optimal forecast may be written as

�Y ∗t+h,t = µt+h,t + α
∗
t+h,t, so that the optimal forecast error is e

∗
t+h,t = Yt+h − �Y ∗t+h,t = εt+h − α∗t+h,t,

where α∗t+h,t solves minαt+h,t

R
L(εt+h−αt+h,t)dFε,h. By assumption D2, Fε,h only depends on h and not on

t, so we have α∗t+h,t = α
∗
h, c.f. Granger (1969) and Christoffersen and Diebold (1997). Since αh is constant

for Þxed h, we thus have e∗t+h,t is independent of all Zt ∈ Ft.
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Proof of Proposition 5. Consider h > 0 and j > 0. Let

Yt+h+j = Et [Yt+h+j ] + ηt+h+j , ηt+h+j |Ft ∼ Fε,h+j
¡
0, σ2ε,h+j

¢
Yt+h+j = Et+j [Yt+h+j ] + εt+h+j , εt+h+j |Ft ∼ Fε,h

¡
0, σ2ε,h

¢
Let σ2ε,h <∞ and further assume that σ2ε,h+j <∞. Using again that �Y ∗t+h,t = Et [Yt+h]+αh, so e∗t+h+j,t =
ηt+h+j − αh+j , and e∗t+h+j,t+j = εt+h+j − αh,where αh and αh+j are constants. Thus Vt

h
e∗t+h+j,t

i
=

Vt
£
ηt+h+j

¤
= σ2ε,h+j , and Vt

h
e∗t+h+j,t+j

i
= σ2ε,h, where these moments are independent of t by assumption

D2. Note also that V
h
e∗t+h+j,t

i
= E

h
Et

h
η2t+h+j

ii
= σ2ε,h+j , and similarly V

h
e∗t+h+j,t+j

i
= σ2ε,h. Now

we seek to show that σ2ε,h+j ≥ σ2ε,h.

V
£
e∗t+h+j,t

¤
= Vt [Yt+h+j −Et [Yt+h+j ]]
= Vt [εt+h+j + (Et+j [Yt+h+j ]−Et [Yt+h+j ])]
= σ2ε,h+j + Vt [Et+j [Yt+h+j ]] + 2Covt [εt+h+j , Et+j [Yt+h+j ]−Et [Yt+h+j ]]
≥ σ2ε,h+j

= V
£
e∗t+h,t

¤
.

The Þrst equality follows from the equality of the conditional and unconditional variance of the forecast error

under D2; the third equality follows from the fact that Et [Yt+h+j ] is constant given Ft; the weak inequality
follows from the non-negativity of Vt [Et+j [Yt+h+j ]] and Et+j [εt+h+j · φ (Zt+j)] = 0; the Þnal equality

follows from the fact that Fε,h does not change with t. The cases where h = 0 and/or j = 0 are trivial.

Thus V
h
e∗t+h+j,t

i
≥ V

h
e∗t+h,t

i
∀h, j ≥ 0 if V

h
e∗t+h+j,t

i
<∞. If σ2ε,h <∞ but σ2ε,h+j is inÞnite then

the proposition holds trivially.

Proof of Proposition 6. Part 1: By homogeneity,

�Y ∗t+h,t ≡ argmin
�y

Z
L (y − �y) dFt+h,t (y)

= argmin
�y

Z
g

µ
1

σt+h,t

¶
L

µ
1

σt+h,t
(y − �y)

¶
dFt+h,t (y)

= argmin
�y

Z
L

µ
1

σt+h,t
(y − �y)

¶
dFt+h,t (y)

= argmin
�y

Z
L

µ
1

σt+h,t

¡
µt+h,t + σt+h,tηt+h − �y

¢¶
dFη,h (η)

Let us represent a forecast as �Yt+h,t = µt+h,t + σt+h,t · �γt+h,t, so
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�Y ∗t+h,t = µt+h,t + σt+h,t · argmin
�γ

Z
L

µ
1

σt+h,t

¡
µt+h,t + σt+h,tηt+h − µt+h,t − σt+h,t�γ

¢¶
dFη,h (η)

= µt+h,t + σt+h,t · argmin
�γ

Z
L
¡
ηt+h − �γ

¢
dFη,h (η)

= µt+h,t + σt+h,t · γ∗h,

where the last line follows from the fact that Fη,h is time-invariant under assumption D3.

Part 2: This result follows from noting that d∗t+h,t = ηt+h − γ∗h, where γ∗h is a constant and, by
assumption D3, ηt+h is independent of all elements in Ft and has unit variance.

Part 3: Following the steps in the proof of Part 1, we Þnd

�Y ∗t+h,t = µt+h,t + argmin
�γ

Z
L
¡
σt+h,t

¡
ηt+h − �γ

¢¢
dFη,h (η)

≡ µt+h,t + γ
∗ ¡σ2t+h,t, L, h¢ .

That is, γ∗t+h,t ≡ γ∗
¡
σ2t+h, L, h

¢
.

Proof of Proposition 7. Under assumptions D3�, L2 and L5� we have from Proposition 6

that �Y ∗t+h,t = σt+h,t (β + γ
∗
h) . Thus d

∗
t+h,t ≡ e∗t+h,t/ �Y

∗
t+h,t =

¡
ηt+h − γ∗h

¢
/ (β + γ∗h), i.e., an affine

transformation of ηt+h. The result follows by noting that ηt+h is independent of all Zt ∈ Ft.

Proof of Proposition 8. 1. Under assumptions D2, L2 and L5, or assumptions D3, L2 and L5�,

we know from above that

Y ∗t+h,t = µt+h,t + σt+h,t · γ∗h
with σt+h,t constant under assumption D2. γ

∗
h depends only upon the loss function and the forecast horizon.

Now notice that Ft+h,t
³
�Y ∗t+h,t

´
≡ Pr

h
Yt+h ≤ �Y ∗t+h,t|Ft

i
= Pr

£
µt+h,t + σt+h,tηt+h ≤ µt+h,t + σt+h,t · γh|Ft

¤
=

Pr
£
ηt+h ≤ γh|Ft

¤ ≡ q∗h ∀ t. Thus �Y ∗t+h,t is the q∗h conditional quantile of Yt+h|Ft ∀ t. Note that q∗h is
only a function of the loss function and the forecast horizon.

2. Since I∗t+h,t is a binary random variable and Pr
h
I∗t+h,t = 1|Ft

i
= Pr

h
Yt+h ≤ �Y ∗t+h,t|Ft

i
= q∗h ∀ t,

we thus have that I∗t+h,t is independent of all Zt ∈ Ft.

Proof of Proposition 9. Following the steps in the proof of Proposition 6 we Þnd:

�Y ∗t+h,t = µt+h,t + σt+h,t · argmin
�γ

Z
L
¡
ηt+h − �γ

¢
dFη,t+h,t (η)

= µt+h,t + σt+h,t · γ∗t+h,t.

Hence γ∗t+h,t will be a function of the loss function and Fη,t+h,t, the latter depending on time-varying

properties of the conditional distribution of Yt+h|Ft beyond the conditional mean and variance.
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Table 1
Tests for higher-order dynamics

Inßation
forecast errors

Power 1 lag 4 lags
2 0.674 0.971
3 0.781 0.962
4 0.660 0.951

Standardized
output growth
forecast errors

Power 1 lag 4 lags
3 0.506 0.748
4 0.745 0.945

Notes: this table presents p-values on Ljung-Box tests of the hypothesis of zero serial correlation
up to k lags, where k = 1 or 4. The dependent variables are the second through fourth powers of
inßation forecast errors, and the third and fourth powers of standardized output growth forecast
errors.
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Figure 1: Objective and �MSE-loss� error densities for a regime switching process, one-step forecast
horizon, for various values of the state probability vector, �πst,t.
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Figure 2: Estimates of the loss function for inßation based on linear splines with nodes [0.5, 0, 0.5].
The top panel is the estimate obtained under assumption L5. The second panel is the estimate
obtained when allowing the level of inßation to also affect the loss function; the estimated loss
function is evaluated for inßation equal to its 0.1, 0.5 and 0.9 quantiles. The lower panel is the
ratio of the estimated loss function evaluated at e and −e, for inßation equal to its 0.1, 0.5 and
0.9 quantiles.
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Figure 3: Estimates of the loss function for GDP growth based on linear splines with nodes
[0.5, 0, 0.5]. The top panel is the estimate obtained under assumption L5. The second panel is
the estimate obtained when allowing the level of GDP growth to also affect the loss function; the
estimated loss function is evaluated for GDP growth equal to its 0.1, 0.5 and 0.9 quantiles. The
lower panel is the ratio of the estimated loss function evaluated at e and −e, for GDP growth equal
to its 0.1, 0.5 and 0.9 quantiles.
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