OPTIMAL PATENT RENEWALS'

by

Francesca Cornelli
London Business School and CEPR

and

AMavl, Cahanliavuann

Ata, citation and similar papers at core.ac.uk brought to yo

provided by Research Pape

The Toyota Centre

Suntory and Toyota International Centres for
Economics and Related Disciplines

London School of Economics and Political Science

Discussion Paper Houghton Street
No.EI/13 London WC2A 2AE
January 1996 Tel.: 020 — 7955 6674

We would like to thank Leonardo Felli, Nancy Gallini, Ed Green, Bronwyn Hall, Paul
Klemperer, Ariel Pakes and Jean Tirole for comments. We also thank participants in
seminars at LSE, UCL, NBER, Tel Aviv, CREST-LEI, Studienzentrum Gertzensee, Toulouse
and the 1995 European Economic Association meetings in Prague. Orli Arav provided
excellent research assistance. All errors remain our own. Part of this work was done while
Francesca Cornelli was visiting CREST-LEI and Tel Aviv University, whose hospitality is
gratefully acknowledged.


https://core.ac.uk/display/7119495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

When firms have different R&D productivities, it may be welfare increasing to
differentiate patent lives across inventions. The reason is that any uniform patent life
provides excessive incentives to do R&D to the low productivity firms and insufficient
incentives to the high productivity firms. Such a differentiated scheme is
implementable through renewal fees, which endogenously determine an optimal
pattern of patent lives. We characterise the optimal pattern of patent life-spans and
show how it depends on key features of the economic environment, such as the
degree of heterogeneity in R&D productivity across firms, the ability of patentees to
appropriate the potential rents generated by R&D and the learning process about the
value of the innovation. We illustrate the potential welfare gains associated with

optimal renewal schemes through simulation analysis.
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1. Introduction

Most patent systems require that patentees pay annual renewal fees
in order to maintain patent protection up to a statutory patent life.
Failure to pay the renewal fees permanently cancels patent protection.
Despite the fact that these fees are relatively low (though they do vary
considerably across countries and rise with patent age), more than half
of patents are voluntarily canceled within ten years after the date of
patent application. Econometric studies of patent renewal data have
quantified the value of property rights embodied in patent protection
and have shown clearly that patentees respond to renewal fees in their
decision whether to maintain patent protection (Schankerman and
Pakes 1986, Pakes 1986, Schankerman 1991 and Lanjouw 1992). Even
though all countries impose a uniform statutory patent life, patent
renewal fees have effectively created de facto differentiation in patent

lives.

However, in practice patent renewal fees are used simply as a fiscal
device (to fund patent offices} and there is no reason to believe that
the variation in effective patent life produced by these fee schedules
is welfare-improving. The theoretical literature focuses on the deter-
mination of the optimal uniform patent life and, more recently, on
other dimensions such as the width of the patent (Nordhaus 1969,
Klemperer 1990, Gilbert and Shapiro 1990). This paper argues that
patent renewal fees can and should be designed strategically by the
government in order to increase welfare. We derive conditions that

characterize optimal (welfare maximizing) patent renewal fee sched-



ules, which endogenously determine an optimal pattern of patent lives.
We show how the optimal pattern of patent life-spans depends on key
features of the economic environment, including the effectiveness of
R&D (in generating product quality improvements or cost reduction),
the degree of heterogeneity in R&D productivity across firms, and the
ability of patentees to appropriate the potential rents generated by
R&D. These features may be expected to differ across industries, so
that the paper provides analytical grounds for differentiating optimnal

patent renewal schemes across industries.

The analysis is based on the observation that variations across firms
in their R&D productivity imply that it may be welfare increasing to
differentiate patent lives across firms (i.e. inventions). The reason is
that any uniform patent life provides excessive incentives to do R&D
to the low productivity firms and insufficient incentives to high pro-
ductivity firms. The consequence is both a socially suboptimal level
of R&D and distribution of R&D across firms. The latter, in turn,
implies that there are excessive social costs of inducing R&D activity

(i.e., the deadweight loss from patent protection can be lowered for

any given level of R&D).

The theoretical problem, and policy challenge, is to find an instru-
ment which can be used to differentiate patent lives optimally. This
problem must be addressed in the context of asymmetric information,
since the use of patents as a policy instrument only makes sense if the
government has incomplete information about the cost and value of
inventions (Wright 1983). This asymmetry of information requires

an implementable revelation mechanism. The key observation in this



paper is that renewal fees can be used precisely for this purpose.

The government derives the optimal patent life conditional on the
firm’s R&D productivity parameter (taking into account the required
R&D incentive). The government does not observe the firm’s pro-
ductivity parameter and sets the incentive compatible fee schedule
in order to implement this differentiated patent-life scheme. This is
equivalent to the government offering a menu of patent life-spans and
associated fees so that a firm, when applying for a patent, selects its
preferred life-span/fee combination. Alternatively, the government
can offer an annual renewal fee schedule and firms make a sequence of
renewal decisions. If firms face no uncertainty about the profitability
of their inventions, once they have been produced, these two indirect
mechanisms are equivalent. However if there is post-invention uncer-
tainty (i.e. private information is only about expected profits), then

we show that the annual renewal scheme is the superior mechanism.

We use simulation analysis to show how the optimal patent mecha-
nism can be easily implemented and to illustrate the potential welfare
gains associated with optimal renewal schemes. The welfare implica-
tions of the optimal renewal scheme are compared (under various pa-
rameterizations ) to an “optimal” uniform patent life without renewal
fees. We show that the optimal patent length for “high” R&D pro-
ductivity firms is considerably longer than existing statutory patent
lives, that optimal renewal fees should rise much more sharply with
patent length than the existing statutory fee schedules, and that the

optimal patent mechanism can yield significant welfare gains.

We introduce the model in Section 2. Section 3 derives the opti-



mal uniform patent life, while Section 4 considers the simpler case in
which firms are not ex ante heterogeneous. The main result is pre-
sented in Section 5: the optimal scheme, with differentiated patent
lives, when firms have different R&D productivity. Section 6 uses sim-
ulation analysis to characterise the optimal patent mechanism and to
illustrate the associated welfare gains. Section 7 and 8 extend the
analysis to the case in which firms learn more about the value of the
invention after obtaining the patent and the case in which firms dif-
fer in their ability to appropriate the rents from patents. Section 9

provides concluding remarks and directions for future research.

2. The model

The timing of the model is the following: at the beginning of period
0 firms invest in R&D, which yields an invention at the end of the
period. At the beginning of period 1 firmms may apply for a patent of
length T. After they obtain the patent, there is an infinite number of
periods in which the innovation is used (protected by the patent or

not, since the patent will eventually expire).

It is important to characterize precisely the information structure
of the problem because, as we will show, different sources of infor-
mation affect the design of patent policy in very different ways. We
distinguish between heterogeneity, which refers to firm-specific char-
acteristics that are private information, and wuncertainty which refers
to the stochastic elements in the production and marketing of inven-

tions which are known only to the firm after their realization. Ez ante



(pre-invention), firms are heterogeneous in terms of their productivity.
Ez post, the value of inventions will be heterogeneous both because
of ex ante heterogeneity and the stochastic R&D outcome. We will
show that ex ante heterogeneity makes it optimal and feasible for the
government to differentiate patent lengths. However, this result does
not hold if the ex post heterogeneity arises only from the stochastic
R&D process.!

We let 4 denote the “size” of the innovation. This could parame-
terize the cost of producing a good, in the case of a process invention,
or the level or elasticity of demand, in the case of a product inven-
tion. For simplicity, we analyze the case in which u affects the level
of demand: given p the demand in each period is given by Q(p | 1),
with %ﬁt > 0. The analysis requires specification of the appropriability
environment in which the patent holder operates. For presentational
simplicity we assume that during the patent lifetime the innovating
firm is a monopolist charging a uniform price and that competitive
pricing prevails after patent expiration. The analysis which follows
also holds for more sophisticated forms of appropriation, such as price
discrimination and licensing of the invention, but the functions would

be more complicated. A more general treatment of appropriability is

given in Section 8.

Assuming for simplicity that the marginal production cost is zero,

the firm with a patent sets p in each period in order to maximize

! There is an additional source of (ex post) uncertainty which arises when the firm learns
about the value of its invention after the patent decision. This issue is explored in Section
7.



pQ(p | p). Define
p(u) = argmax pQ(p | p)

Then the profits per period during the patent life are given by

) = p ()QP (k) | 1) (1)

The total welfare per period (profits plus consumer surplus) during

the patent lifetime is given by

w(w) = [ Qp | ndp+ n(u) (2)

The profits and total welfare per period after the patent is expired
will depend on the market structure that arises thereafter. We assume
that the market is perfectly competitive after the patent expires, so

that profits are zero and welfare is given by:
B(w) = [ Qp | wdp (3)
The total welfare maximized by the government is therefore given by
W(T, ) = [ d(u)edt + S B(uyertar (4)

It is easily confirmed that the function x(u) given in equation (1) is
monotonic increasing. By the envelope theorem, j—: = p*(u)g% > 0.
This means we can invert the function and express the size of the

invention as a function of the level of (maximized) profits as follows:

p= g(r) = n~'()



Substituting for u we can write
w(r) = w(g())

B(r) = B(g(r))
W(T,7) = W(T, g(x))

where it is important to recall that = refers to the profits per period
the innovating firm earns during the patent lifetime. The total profits

maximized by the firm are given by
— A — E . o—rT
(r,T) = [ medt = (1~ (5)

The assumptions that the market structure is perfectly competitive
after patent expiration and that the marginal cost is zero can be
relaxed, but the functions would be considerably more complex. What
matters for the analysis is that it is possible to express welfare as a

monotonic function of .

Notice that we can write
B(7) = w(m) + D(r)

where
D(m) = /Op*(ﬂ) Qplpdp—7 (6)

is the deadweight loss. It can be easily verified that %ﬂ cannot be
signed, so “larger” inventions may be associated with either higher
or lower deadweight loss. However, we assume that “larger” inven-

tions do generate higher social benefits after patent expiration - i.e.,



%’g—(ﬁ) > (.

Using these expressions we write the government’s objective func-

tion as

W(T,x) = [ w(r)edt+ [ [B(r) —w(m)edt  (7)
wm) | D(n)

r T

'The interpretation of the objective function is as follows: the first
term represents the present value of consumer surplus and profits
which accrue each period (after patent expiration, profits accrue as
surplus). The second term is the additional gain (formerly deadweight

loss) which begins from period T, when the patent expires.

The next step is to describe the R&D process generating inven-
tions. In what follows we refer to the profit # as the output of the
R&D activity. In fact R&D produces an invention of size u, from
which the maximum profits 7 are uniquely determined. Hence 7 is a
summary statistic for the product of R&D, given the appropriability

environment.

We characterise the R&D process in the following way:
T =20z (8)

where z is the R&D input, which could be effort or the amount of
R&D resources, and € is the marginal productivity of such input.
The parameter § summarizes two stages of the innovation process:

the ability of the firm to produce inventions (R&D productivity) and



the ability of the firm to appropriate returns from its patented inven-
tion (market efficiency). For brevity we will refer to 8 as the R&D
parameter. A firm characterised by a high 8 is more efficient in the
R&D process.

In general both stages of the R&D process are stochastic, but for
simplicity we assume that the firm has perfect control in the choice
of the size of the innovation, and hence in 7, and knows its R&D
parameter. We show later that this assumption does not involve any
loss of generality. However, the government does not observe the value
of the invention 7. Since we are assuming that the R&D process is
deterministic, this implies that the government does not know 6, but
it is assumed to know that 6 is drawn from the distribution function

G(-), defined over the interval [0, 8], with density g(-).

Finally, the disutility of effort z (or the cost of R&D resources) is
given by a function (z) such that ¢/ > 0 and 3" > 0.2

3. The optimal length of a patent

If the government knew 8 it could compute the first-best level of effort.

The first best level of effort is defined by:
B(8z)

r

~ 9(z)} (9)

Z2**(8) = argmax{

However, the first best is not achievable because the government

2 The specification used here involves linear profits and convex costs in z. Alterna-
tively, we could use a concave “R&D production function” minus resource costs. The latter
specification is technically more difficalt to handle.



cannot observe the firm’s effort and therefore must provide mcentives
to induce R&D by issuing patents. Let us begin by assuming that
the government is limited to setting the optimal uniform length of a
patent. Given a patent of length T, the firm sets its R&D to niaximize
expected net profits

(62,T) = [ 6ze~dt - (z)

which yields

1 {0
#(0.7) = ¢ (- ) (10
Notice that 2* increases as T rises. The socially optimal T is given by
w(ﬂ-) 1 —rT
Iningg { [ -+ D(?T):;E — ¢(z)] } (11)
s.t. 0
T = ! (;(1 - e-f’f)) (12)

Substituting equation (12) in (11), the first order condition yields:

92é¢’—1 dw  _r0D]| _ /00!
Eg{-r- - [é;m 37]}_.59{1@9 . +D(7r)}. (13)

Determination of the optimal (uniform) patent life involves equat-
ing the marginal social benefit and cost of extending T'. To highlight
this intuition, we multiply both sides of the first order condition by

e~ T and rewrite it as follows:

dB dr 9 dz .
apary _ p 9% %% | pimer
B\ dT} Ey |5, a7 T P(me



The left hand side is the expected marginal benefit from extending
the patent life 7. This reflects both the incentive effect on R&D
and hence the size of the invention (profits), and the marginal social
valuation of larger inventions. The right hand side is the expected
marginal social cost, comprised of the additional resource cost induced
by the increase in T and the discounted value of the additional period’s
deadweight loss created by the patent.

To simplify the analysis, we focus in the rest of this paper on the
special case of quadratic R&D costs 1(z) = %z? The results would
carry over to the more general specification. Even with quadratic
costs, in general there is no closed form solution for the optimal patent
life. A very simple benchmark case which does yield a closed form
is the linear specification of welfare and deadweight loss: w(7w) = arn

and D(7) = B=. In this case the optimal length is

Ty = ~{In(1 +26) ~In(1 + f - o) (14)

Note that in this special case the optimal (uniform) patent life is
independent of the distribution of the productivity parameter 8. This

does not hold in general.’

It is easy to verify that all firms find it optimal to do at least
some R&D as long as > 0 and Ty > 0. This is so because, with a
deterministic R&D process, a firm can always do very little R&D and

3 The linear specification requires the additional restriction that 8 > a — 1. This means
that the (constant) marginal loss in deadweight loss must exceed the gain in consumer
surplus per period from an increase in patent length. If the equality holds, the socially
optimal (uniform) patent life is infinite.



obtain a small invention. Since the function #(-) is convex it will not
be costly to do a very small amount of R&D. However, the challenge
for the government is to design a mechanism which both induces the
optimal overall amount of R&D and the optimal distribution of R&D
across firms which are heterogeneous in terms of the productivity

parameter 8. We turn next to this issue.

4. Can renewal fees screen?

In this section we consider the conditions under which it is feasible to
use patent renewals to screen among different firms (inventions). The
standard approach in the literature is to model optimal patent policy
under the constraint that firms need to obtain a specified level of profit
to compensate for the R&D cost. This approach indirectly takes into
consideration the issue of R&D incentives, but it does not recognize
heterogeneity across firms in R&D productivity. In specifying the
 same required compensation, it is implicitly assumed that all firms
have the same value of 6. In other words, the standard approach
only allows for ez post heterogeneity across firms. All the firms are
identical ez ante, and it is only because of the stochastic nature of the
R&D process that firms will obtain inventions of different sizes. An
equivalent interpretation is that the government knows the level of

R&D productivity of a firm, but not the actual product of the R&D

process.

We begin the analysis from this point of view. In such a case,

the government faces a number of firms with inventions of different



values 7 and private information about those values.? We examine
whether it is feasible and socially desirable to screen (i.e., differentiate
patent length} among different inventions. The government can offer
a schedule {T', f}, where T is the length of the patent and f is the
fee paid, in order to discriminate among different innovations. The
uncertainty about the values 7 is modeled by assuming that = is
distributed according to the distribution G(#) in the interval [0, 7].
The optimal schedule would be defined by the problem

max : [W?(_”) + Dq(:r) e T | dG () (15)

s.t.%
S wertdt — f(T(r) = ~(1— e = f(T(m) 2 V, Vr (16)

and
7 =argmax —:—(1 — e _ f(T(7)), Y, Vi (17)

Equation (16) is the individual rationality constraint which guarantees
that firms actually undertake R&D. Equation (17) is the incentive
compatibility constraint which ensures that the government is able to

screen. From the usual transformation (see Myerson 1981) we find

4 An equivalent interpretation is that the government faces one firm with an invention

whose value 7 i1s unknown.
5 Note that we are considering the individual rationality constraint for each ez post 7,

and not on average. From one perspective, the expected utility over all 7 is relevant since
that is what it matters when firms are investing in R&D. However, when the firm applies
for the patent, the ez post individual rationality constraint must be introduced because the
firm must be guaranteed enough profits in order not to bypass the patent (and protect it
by second best means). For simplicity we follow the literature in focusing on the ez post
individual rationality constraints.



that the fee schedule which guarantees incentive compatibility is

w8

fm)==(1—e) - [7=

To satisfy the second order conditions for incentive compatibility it is

(1-e™)ds -V (18)

necessary that p
LU
drn —

Because the level of 7 is not endogenized here, it is clear that the

(19)

unconstrained maximization of equation (15) would lead the govern-
ment to set T = 0. More generally, the maximization of (15) subject
to individual rationality constraint (16) shows that the optimal fee
schedule is decreasing in #—i.e. (df/dn) < 0. Since this violates
equation (19), in this case welfare maximization implies that the gov-
ernment chooses a unique patent length and does not discriminate

across inventions.

The intuition behind this result is straightforward. in this setting,
the government would like to set T as low as possible in order to
minimize the deadweight loss. The more valuable is the invention,
7, the lbwer i1s the T necessary to guarantee minimum profits V.
Therefore, welfare maximization requires that the optimal schedule is
decreasing with 7. However, such a fee schedule can never be incentive
compatible, regardless of the level of the fees f(7). A firm would
always under-represent its true 7 since it would obtain a longer patent

at a lower cost.

This result depends partly on the assumption that patent fees do

not enter the government objective function: in other words, fees are



treated as transfers among different agents that do not affect social
welfare. We can easily relax this assumption by treating proceeds from
patent fees as a substitute for public funds that have a shadow cost (as
in Laffont and Tirole, 1993). However, for a sufficiently high shadow
cost, the government would always find it optimal to discriminate
because the distortionary effect of increasing patent lengths would be
lower than the use it can make of the funds in other sectors. Therefore,
to separate the determination of optimal patent policy from more
general public finance issues, we assume that fees do not enter the

objective function without any loss of generality.

5. Differentiating patent life-spans

In the previous section, the reason it is not optimal for the government
to differentiate patent length is that there i1s no ex ante heterogeneity
in the R&D process. If firms do not differ in their ability to perform
R&D, there is no incentive effect and no welfare gain from differen-
tiating patent life-spans. When firms do differ, both the overall level
and the distribution of R&D across firms are subject to policy influ-
ence. In Section 2 we model the R&D process by assuming that firms
are characterized by a different parameter 6, which summarizes both

R&D productivity and market efliciency.

A larger # represents higher marginal productivity in the R&D pro-
cess. If the government recognizes that firms are heterogeneous (even
if it does not know the value of 8 for each firm), it may want to pro-

vide an incentive structure that shifts the distribution of R&D effort



toward the high # (low cost) firms. Note that informational asym-
metry about the value of the invention, =, can arise not only from
the stochastic nature of the R&D process, but also from Incomplete
information of the government about the abilities of firms to perform
R&D. We believe that this is a realistic characterization of the R&D
process. The existing literature typically focuses on ez post variation
in the value of invention without specifying its source. However, in
Section 4 we showed that the source of ez post heterogeneity makes
an important difference. If it arises only from uncertainty in the R&D
process, but firms are equally good in performing R&D (and the gov-
ernment knows how good they are) then there is no point in screening
and a uniform patent life is optimal. In this section we show that if
firms differ in their R&D productivity (or the government is uncertain
about their productivity), then it is optimal for the government to set

differentiated patent lengths.

The intuition is simple. With a given Ty, a firm with a higher 6
already obtains higher profits during the patent lifetime. But is it
sufficient? The answer is no: in setting a uniform patent length, the
government averages across firms with different productivity levels,
without taking into account the ez ante heterogeneity. Thus it pro-
vides too few incentives to the more productive firms, and at the same
time too much incentive to less productive firms. The consequence is

that the social cost of doing R&D is not minimised.

In what follows we focus on ex ante heterogeneity. The R&D pro-
cess 1s assumed to be deterministic, so that if the government knew 6

then it would have perfect information. Of course this is not realistic,



but we lose no generality in doing so. In Section 4 we showed that ez
ante uncertainty will not induce any screening, so for the purpose of

finding the optimal schedule we can ignore it.°

Let us assume now that the government can use differént patent
length associated with fees and derive the optimal schedule. In this
section we consider a mechanism in which the government offers to
the firm the choice among different patent lengths, where each length
is associated with a different up-front payment. In the framework
used in this section, this mechanism will prove to be equivalent to one
in which the firm decides each period whether to renew the patent for
a stipulated renewal fee schedule. In the next section we introduce
ex post uncertainty about the future profits of an invention, and we

show that the patent renewal scheme is actually superior to a lump

sum payment scheme.

By the Revelation Principle, we can restrict attention to the direct
mechanism where the firm announces 8 and the revelation mechanism
is {T(6), f(8)}. The firm facing the this schedule will choose z in order

to maximize expected net profits. The privately optimal amount of

§ Making the R&D process stochastic would not change the argument in favor of differ-
entiating patent lengths, but it would modify the form of the optimal patent schedule. For
example, suppose the firm is risk neutral and 7 = 8z + «. The profit maximizing level of
R&D in equation (20), z", would be unchanged, but the welfare maximization problem in

equation (21) would become

Wz +€) DO+ 1) _ lz*z] dF(8)
. .

]
max F, [
o T T

T.f

For a given distribution of ¢, standard simulation technigues could be used to solve this
problem. We intend to pursue this line of research in future work.



R&D is given by

2*(8,6) = g(l ~ =T (20)
Therefore the welfare maximization problem becomes:
o [W(82") D(8z") —rT(8) 1 . 7
max J, [ " + m— — 5% dF(0) (21)
subject to

a g 1 ~
U©,0)= [ bzedt - SEVR-f@)20,v8  (22)

and
§ =argmaxU(6,6), V0,0 (23)
é

From the usual transformation, we obtain the fee schedule that
guarantees incentive compatibility (see Appendix):
92

F(8) = 5a(1 — e TOPR - | "S- e TO) s (24)

This fee is set equal to the maximized present value of profits (net of
R&D costs) minus the information rent which must be left to the firm
to induce revelation of §. Once we have found the optimal schedule of
patent lengths, T(8), the fee schedule f(6) in equation (24) guarantees
that it is implementable. The second order condition for incentive

compatibility implies that

7 As in the previous section, we assume that fees do not enter the objective function.
However, as we will show later, if fees are negative we may want to introduce them.



Equation (24) is monotonic increasing in 8, but for low values of 6 it
could take negative values. The intuition is as follows: to ensure that
the optimal patent schedule is incentive compatible, the government
must increase the patent life-span with 8. If the government does not
want patents which are “too long”, it could start from a very short
length and subsidize the less efficient firms. However, this may be
optimal only because we have assumed that fees do not enter the wel-
fare function. We explained earlier why this is the best assumption for
positive fees—essentially, we do not want the optimal patent policy to
be driven by government revenue considerations. However, when neg-
ative fees are allowed, this may be more questionable for two reasons.
First, it may then become necessary for the government to ensure
that the firms receiving subsidies are actually producing inventions
(and such monitoring may be costly). Second, raising public funds
may involve a shadow cost because of distortionary taxation. We can
easily take the shadow cost of funds into account, either by adding
a non-negativity constraint on fees or by incorporating the cost of
negative fees directly into the objective function. As a result, it may
not be optimal for the government to provide a patent to inventions
of less than a minimum size (equivalently, to firms of sufficiently low
R&D productivity). In the present context, this can be interpreted

as the government imposing a minimum standard for patentability.®

3 Tf we constrain the fees to be non negative or introduce explicitly the costs of subsidizing
into the objective function, then the present framework-—which has a non-stochastic R&D
process—implies that low productivity firms (with 8 < 8*) will choose not to do R&D since
their invention will not generate sufficient profits to cover the minimum patent fee. Since
the government can only discriminate on the basis of the outcome of the R&D process, in
a more general framework with a stochastic R&D process, some high productivity firms
may also produce inventions which do not meet the threshold. However, this will occur



To obtain the socially optimal patent schedule we maximize the
objective function (21). The first order conditions have the same
form as those in equation (13), except that we now allow T to vary

with 6 (and specialize for quadratic specification of effort costs):

0> (0w  _ 0D _, |
R(T,0)= — |5 +e T—a?—(l—e TOY — D(T(8)) =0 (25)

The interpretation is similar to the one in (13), but now we must
check whether the optimal patent schedule is incentive compatible,
i.e. T(0) is increasing in 6.

From the implicit function theorem we know that % has the same

sign as g‘;z, which can be written as:

aw —rT a‘D —rT 92 —rT 32w -—?‘T82
8_+(2 —1)5;—'(1_6 )+‘;"'(].—B ) W+e a ) (26)

Using the first order condition (25) we obtain

>0 (27)

3D 92 8w oD
(] —e"T o Ty | TW 70"

If T(f) is increasing in @ the government finds it optimal to give
a longer patent to “larger” inventions. In such a case we know that
the optimal differentiated patent schedule is implementable, using the
corresponding fees given by equation (24). However, if T(6) is decreas-

ing in €, welfare maximization requires that a uniform patent length

less frequently than for low productivity firms (in a stochastic dominance sense) and only
firms below the productivity threshold will choose not to undertake R&D. In other words,
there will be (second-best) ez ante efficiency, but ez post inefficiency caused by asymmetric
information.



be set. If T(6) is non monotonic, then the optimal schedule will have

a flat part where T(#) is non monotonic.’

The sign of the expression in (27) depends on how welfare and
deadweight loss vary with profits (size of the invention). Thus the
shapes of these functions determine whether it is optimal for the gov-
ernment to differentiate patent lengths. While not surprising, this
make clear that optimal patent policy depends heavily on how the
private and social benefits of invention are modeled , and this may

vary across industries.

If B"(x) > 0 the bracketed terms in expression (27) are more likely
to be positive, and vice versa. The convexity of B(r) can arise from
two general sources. First, “larger” inventions may be more likely
to generate or be more intensive in R&D spillovers.!® Modeling this
important extension is beyond the scope of the paper, however. Sec-
ond, the demand elasticity for products derived from larger inventions
may be lower than for more marginal inventions. In the absence of
full appropriation by the inventor, this can generate a convex welfare
function. For example, in the pharmaceutical industry it may be ar-
gued that a few new drugs targeted at large markets (new cures) are
socially more valuable than many smaller improvements on existing
drugs that generate the same total private returns to the firm. This

implies a convex B(#) and makes it more likely that the government

% Guesnerie and Laffont (1984) show how the optimal mechanism is obtained.

20 The empirical literature documents R&D spillovers (e.g. Jaffe, 1986; Bernstein and
Nadiri, 1989; Jaffe, Henderson and Trajtenberg, 1993}, but there is no yet any evidence on
whether the wedge between social and private returns is positively related to the level of
private returns.



should set differentiated patent lengths. By allowing longer patents
and hence more than proportional increases in profits for larger inven-
tions, such a policy induces firms to tilt their R&D activity toward

producing such inventions.

The other key determinant is how the deadweight loss varies with
the size of the invention. This is closely linked to the pricing behaviour
of the patentees, which depends partly on government restrictions on
patent licensing and other factors affecting the appropriability envi-

ronment. These issues are explored in Section 8.

6. Implementation of the Optimal Mechanism by Simulation

Analysis

We have emphasised that the optimal patent mechanism proposed in
this paper can be a practical policy tool. Implementation of the mech-
anism requires that the government know only three key components:
the welfare function, the deadweight loss function, and the distribu-
tion of the R&D productivity parameter. Moreover, it is important
to recognise that setting the optimal uniform patent length would re-
quire this same information, so that the optimal patent mechanism
imposes no additional informational requirements. We believe that
it is possible in practice to obtain (at least approximations) to this

information and thus to implement the optimal mechanism.!! This

11 We recognise that the welfare and deadweight loss functions, and the distribution of 8,
may vary across industry groups (reflecting differences in technology, demand and appro-
priability). Thus the government might wish to tailor the specifics of the mechanism (i.e.,
the optimal patent length and fee schedules) across industries, if the necessary information
were available and the government could enforce such differences.



section uses simulation analysis to illustrate how the optimal patent
mechanism can easily be implemented. The analysis is conducted on
the model, using various parameterisations of the welfare and dead-
weight loss functions and the distribution of .12 We compare the
optimal patent and fee schedules from these simulations with existing
statutory patent lengths and renewal fees in France, Germany and
the United Kingdom. In addition, we compute the welfare gains gen-
erated by the optimal patent mechanism with differentiated patent
lengths, compared with an optimal uniform patent system (with no

renewal fees).

The welfare and deadweight loss functions are specified as W(r) =
7% and D(w} = Bn7. Experimentation indicated that incentive com-
patibility and second order conditions are more easily satisfied when
a > 1, a >y and § is sufficiently large (depending on o). Thus, the
simulations were run for a wide variety of (o, 3,7y) parameters that
satisfy these conditions.’® The simulation procedure is as follows. For
each value of the R&D parameter, 8, the optimal patent length T'(6)
is solved from the first order condition (25), and the second order and
incentive compatibility conditions are checked. The optimal fee sched-
ule f(6) is computed from equation (24). The total welfare generated
by the invention, W (T, 7), is then computed from equation (21). Fi-

12 A more complete simulation and policy analysis, incorporating the learning and ap-
propriability issues discussed in Section 7 and 8, will be developed in another paper.

> We examined in detail the range of parameters a € (1.0,2.0), 4 € (2,10) and
v € (0.5,2.0). Combinations of parameters satisfying incentive compatibility and second
order conditions were identified by experimentation. This range of parameters encompasses
diverse economic characteristics, including the degree of convexity of the welfare function
(o), the ratio of the deadweight loss to profits (8 and 7), and the way in which this ratio
varies with the size of the invention (7).
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nally, we calibrate the distribution of 8 to be broadly consistent with
the observed distribution in American manufacturing industries. Re-
call that 8 is the ratio of profits to R&D, 8 = 2. The distribution
of € is assumed to be skewed to the right, reflecting a tail of highly
R&D productive firms, with a mean value of 3.75. This mean is very
close to the (weighted) average ratio of cash flow to R&D in US man-
ufacturing for the period 1983-87 (based on Compustat data), which
is 3.7."* The mean value corresponds to an average ratio of R&D to
profits of about 25%.

Figures 1-3 summarise the results for selected parameter values,
but we emphasise that the key findings reported here are robust to
variations within the parameter range examined. For each set of pa-
rameters we present: (1) the optimal patent schedule T°(8), (2) the
optimal patent fees f{7"), and (3) the ratio of f(T') to the optimised
present value of profits for each patent length, which we denote (7).
In addition, we report the optimal uniform patent length, 7y, and the
percentage improvement in welfare (aggregated over all values of 6)

from introducing the optimal patent mechanism, denoted by AW.

Note first that the simulations indicate an optimal uniform patent
length of between 15 and 19 years, which is similar to the statutory
life-spans in most countries. This provides some support for the plau-

sibility of the parameterisations used here. Turning to the optimal

4 Two points should be noted. First, cash flow is defined here as operating income plus
depreciation minus taxes. For details see Hall (1992). Second, we represent the distribution
of @ by a series of five uniform distributions over the range # € (0,30). Specifically, we
put 20% of the mass between 0.2 and 2, 55% between 2 and 4, 20% between 4 and 6, and
the remaining 5% beiween 6 and 30. The simulation are conducted over the grid of # at
intervals of 0.2.



differentiated patent schedules, the simulations identify three striking
features which are not sensitive to the choice of parameters. First,
there is a minimum patent length (about 7 years), even for very low
values of . This reflects the fact that, while the social value is low for
such small patents, so too is the deadweight loss and the R&D induce-
ment effect justifies the patent protection. Second, for the bulk of the
distribution of 8, the range of optimal patent lives is actually quite
narrow, typically between 8 and 15 years. However, the third feature
is that optimal patent lives are much longer for very high values of
0. All existing patent systems impose a maximum life of 20 years
or less. While the simulations suggest that there may be relatively
few patents which warrant longer optimal patent lives, these are the
patents with the greatest contribution to welfare. Aggregate welfare
is raised by about 2 to 6% by the introduction of the optimal patent
mechanism, compared to the optimal uniform patent length. More-
over, the welfare gain rises sharply with the convexity of the welfare
function, o, and with the rate at which the welfare to deadweight loss
ratio declines with profits, @ — v, and was in excess of 10% for some

parameter values examined.

The optimal (lump-sum) patent fees rise sharply with the patent
length. The gradient of Figure 2 corresponds to the annual renewal
fee, which is seen to rise rapidly for patent lengths up to about 20.
This feature is qualitatively consistent with existing statutory renewal
fees schedules (see Schankerman and Pakes, 1986). However, the opti-
mal patent fees rise more rapidly than the associated profits from the

patent, with the consequence that the optimal “tax” on profits from
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patents, ¢(T'), is sharply progressive, as shown by Figure 3. This im-
portant feature of the optimal patent mechanism is sharply violated
by existing renewal fees schedules. In order to make the comparison,
we use the estimates of the value of patent rights from Schankerman
and Pakes (1986) to derive the ratio between actual cumulative re-
newal fees and the associated profits from patent rights for France,
Germany and the United Kingdom.'® Figure 4 shows that, for all
three countries, the actual “tax” on profits from patents is sharply re-
gressive, declining from about 50% for patents canceled at early ages

to less than 1% for those kept until the statutory limit.

In short, two central conclusions emerge from this simulation anal-
ysis. First, optimal patent lengths should extend beyond the typical
statutory maximum values. Second, optimal renewal fees should rise
much more sharply with patent length than the existing statutory fee

schedules.

7. Post-Patent Learning

In the previous sections we assumed that firms have perfect informa-

tion on the profits they can obtain from their innovation at the time

!5 Following the procedure in Schankerman and Pakes (1986), the parameter estimates
from their patent renewal model (column 2 in Table 3, for each country) are used to char-
acterise the distribution of initial returns to patent protection. We take 500 random draws
from this distribution and, using the estimated depreciation rate and the observed renewal
fees, compute for each draw the optimal cancellation date (or the statutory maximum,
whichever is earlier}. We then compute the ratio between the present value of the renewal
fees and the returns from patent protection until that cancellation date. The weighted av-
erage of this ratio for all patent renewed to each given patent length is reported in Figure
4. Note that renewal fees are required from patent ages 2-20 in France, 3-18 in Germany
and 5-16 in UK.



when they apply for the patent. In other words, there is no addi-
tional uncertainty once the patent is obtained. However, in reality
firms do not have perfect information about the value of their inven-
tion: they only have a prior distribution on their returns which they
update as they learn during the early life of the patent. Econometric
studies document such post-patent learning and indicate that learning
is largely completed within four or five years (Pakes 1986, Lanjouw
1992). In this section we introduce this element in a simple way and
show, first, that in such case a patent renewal scheme 1s superior to
one in which the firm has to choose patent length and pay a lump
sum fee up front , and second, that the optimal renewal fee schedule

will depend on the stochastic process governing ez post profits.!

'To do this we modify the timing of the model in the following way.
In period 1 firms apply for the patent, but they do not know exactly
the profits per period that they will be able to obtain with the patent;
7 therefore represents only the ezpected profits per period. To simplify
the analysis, we assume that after a period of length 7 firms learn
with certainty the value of the profits per period, which we denote by
79.17 We also assume that 7y is correlated with = and is distributed
according to the conditional distribution function Ga(my | 7), with
density go(me | 7), in the interval [0,7]. A high 7 makes a high my

more likely, in the sense of first-order stochastic dominance: %—Gﬁ <0

18 The setup in this section also covers the case of “obsolescence”, where there is some
(exogenous) probability each period that the firm’s revenues from the invention fall to
zero. Lanjouw (1992) provides the first econometric estimates of obsolescence using patent

renewal data.
17 For simplicity, we will call the period starting after  period 2. The analysis could

be extended to allow for continuous learning in a multiperiod framework, at the cost of
considerable complexity. The basic conclusions in this section would remain unchanged.



The Revelation Principle holds also in this setting (see Townsend,
1982) and therefore we can focus on the direct mechanism. The gov-
ernment sets up at the beginning of period 0 a mechanism in which
each agent makes announcements 0 in period 1—and therefore the
related 7—and %5 in period 2. The mechanism specifies a fee fl(é)
to be paid in order to have a patent for the length 73 (9), and in the
second period lengths T: 5(8, #2) and fees fo(8, 72). For the sake of sim-
plicity, we restrict the mechanism so that 7} (6) < 7. In other words,
the firm can either choose a length shorter than r—in which case the
issue of renewal never arises—or it has to choose whether to renew or

not at date 7.18

A firm therefore will choose z in order to maximize its net profits.
A firm will first choose whether the length will be longer or shorter
than 7. Let us focus on the case in which the firm chooses to arrive at

least to 7 (the other case will be identical to what has already been

done in the previous sections):
me;x /T Oze "'dt — f1(6) — 122 + (28)
z 0 2

n [Oﬁ LTz(G,ﬂz) (WQe*rtdt —_ fg(g, 71'2)) g(7r2 | 11')] dms

The first order condition is

9 ™ a —rT —rTo(8,7

Sl e [ (m— ol ) e = T Vimy| — 2 =0
(29)

which defines the optimal 2*(0, T3, g%) The difference with the previ-

18 In a more general model, where firms learn over time, the issue of the timing of the
renewal arises. However, this issue is beyond the scope of the paper.



ous sections is that the optimal R&D effort also depends on how much
the ez post level of profits is correlated with the ez ante (expected)
profit which depends directly on 2. Therefore, the optimal schedule
will depend on gﬁ, i.e. the stochastic process generating returns to

invention.

Since the purpose of this section is simply to show that the renewal
system is superior and to give an example of how the optimal schedule
modifies, we do not develop this general framework, but illustrate the
line of argument by focusing instead on a special case.l® Let us assume
that profits in the second period take two possible values, zero with
probability % or 2 with probability % It is also quite natural to
assume that w(0) = B(0) = D(0) = 0. Then we can rewrite (28) as

mgi.x/{: fze "dt — f1(6) — ——fg(ﬁ 0) - —z +
+ s [ [7 ameat — fy(60,2m)

1 1
= gz(l - e_’"Tz(g’%)) — f1(8) — 2 [£2(8,0) + J2(8,27)] — §z2
from which we obtain

2* = g(l _ e—rT3(9,21r)) (30)
T

% A general solution, for a different application, can be found in Laffont and Tirole,
1894.



The welfare maximization problem becomes

e [ [1[2207°0) | DE0:(6)) .
T:fl:fZ 0 2 T r

) z*(ﬁ')} } dF(6)
(31)

subject to the individual rationality constraint of the second period

T —rr —r T
— e = e BT — £3(0,m5) 2 0 (32)

and of the first period

~ 2 - ~
EU(9,0) = %(1 — e MO _ £1(9) + (33)
- 3 [R6.0+ 50,20] > 0

and the truthtelling constraints. The second period incentive compati-
bility constraint requires that the firm has no incentive to misrepresent

79 given its report of 9.
f2(6,27) > f5(6,0) vé (34)

and

27 [o~rTa(dam — e OO > f(,2m) - f(6,0) V8 (35)

r

The first period incentive compatibility requires that the firm has no
incentive to misrepresent 8 given that it anticipates to report truth-

fully in period 2.
0 =argmax EU(9, 6) (36)
é

The individual rationality constraint of the second period for 7y =

0 implies that fg(é,O) = 0. Moreover, T(é, 0) appears only in the



incentive compatibility constraint in equation (35), and it is clear from
there that it is optimal to set it equal to 7 (i.e. to renew the patent
for zero periods), since it relaxes the constraint and has no effect on
the welfare function. Then we are left to determine f,(8), f,(0,27)
and T5(#,2r). Before doing so, however, note that since the optimal
direct mechanism involves setting fs (é, 0) = 0, the implementation of
this mechanism requires that the government leaves firms the option
to abandon their patent in case the profits turn out to be low. In
other words, it is optimal for the government to use a patent renewal

scheme rather than an er ante payment scheme.?

We next characterize the associated renewal fee. From both equa-

tions (32) and (35) we can obtain that

F2(8,27) = 2_92 (e—r‘r _ e-rTg(é,Qar)) (1 — e—rTz(é,Qw)) (37)

)
We want to see how post-patent learning changes the optimal fee
schedule . We focus on firms with values of 8 such that in the first

period they will all choose a length of at least 7.2! Then for these

firms % = 0 and from the maximization in equation (36) we obtain

d 62
% — 2";:_ (1 — e—rTg(H,Q‘Jr)) e—TTz(G,Qﬂ') (38)

%0 One interesting theoretical extension is to allow firms to have different information
about the value of their invention at the patenting date. Firms that have relatively more
initial information, or learn more quickly, would prefer to trade off large payments in earlier
periods for lower renewal fees later. Thus the optimal mechanism might involve offering a
menu of renewal fee schedules from which firms choose.

2L If they declare a # such that T}(#) < r then nothing changes with respect to the case
with no post-patent learning.
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Compared with the case without learning, the optimal renewal fees
rise twice as quickly with the patent length.?” In more general setups,
the optimal fee schedule will also be more sharply graduated when
there is post-patent learning, compared to the non-learning case. This
scheme provides the firm with the option not to renew when the real-
1zation of profits is low, but in exchange patent fees rise more sharply
for those who choose to renew and allow the government to extract

part of the additional information rent that accrues through learning.

8. Appropriability Environment

The analysis thus far has been conducted for a given appropriability
environment. This section examines how variations in appropriabil-
ity affect optimal patent policy. Appropriability is heavily influenced
by antitrust policy, especially by the treatment of patent licensing
(see Gallini and Trebilcock, 1995). Limitations on the licensing ar-
rangements used by patentees reduce the R&D incentive provided by
patents but may, if properly designed, increase the use of the inven-
tion and hence reduce ez post deadweight loss. Whether this occurs
depends on the licensing restriction (for discussion see Gallini and Tre-
bilcock, 1995). In the extreme case, a perfectly price discriminating
patentee would create no deadweight loss at all, and license restric-
tions will create such losses as well as blunt R&D incentives. But in

other cases, such as refusal by a patentee to license, restrictions can

22 From the maximization in equation (24)), we obtain for the no-learning case, & =

£(1 - e TO))e~rTi8),



yield offsetting static efficiency gains. It is therefore not clear a pri-
ori how such limitations, and the appropriability environment more

generally, would affect the design of optimal patent life-spans.

The degree of appropriability is defined here as a parameter A which
affects the fraction of the social benefits generated by the invention
which is received by the firm: %, where 0 < A < 1. In the first
approach to this question we assume that X is common to all firms
and, for simplicity, that it does not vary with the size of the invention.
Firm-specific differences in appropriability are already captured in the

R&D productivity parameter, 4.

The model requires two modifications, the specification of the R&D
process and the welfare and deadweight loss functions. We modify
the R&D process as follows: m = Afz. The appropriability parameter
operates like a “tax” on the returns to R&D. Note that this mul-
tiplicative specification implies that greater appropriability increases

the incentive to do R&D more strongly for higher productivity firms.2

The deadweight loss and the social benefits during the patent life
will depend both on the size of the invention (as before) and the ap-
propriability parameter. The total benefits B(u) do not depend on
the degree of appropriability A, given the size of the invention. This
implies that as A changes, the function W and D should change in
the opposite directions. For a given invention, greater appropriation

increases welfare and reduces deadweight loss, except in the unlikely

# Following the earlier analysis, the firm chooses R&D level z* = 5}(1 ~¢e7"T), and the

2 -
present value of maximized profits net of R&D costs are 7™ = %%—(1 — ¢ 7). Hence, %’i—

1s increasing in 8.



case where the increase in rents to the firm comes only from infra-
marginal users of the invention (in which case the deadweight loss
does not decrea.se) We therefore write the functions as W(,u, A) and
D(p, A, w1th W > 0 and &2 3x < 0. As in the previous sections, we
can invert the functlon 7(A, 1), so that the reduced form welfare and
deadweight loss function can be written as W(w, A) and D(x, ). No-

4 OWdr g dD

tice that the signs of % = %—‘f 5= 4 and == are ambiguous and

depend on 3W and aD

Following the same analysis as in Section 5, we obtain the first

order condition for the socially optimal patent schedule

(A9)2 a_w+e—rTaD

R(T,8,3) = 7 |5 5

= 0

— (1= — D(T(6)) (39)

which is a minor modification of equation (25). By the implicit func-
tion theorem, the sign of % is the same as the sign of %—*}. Using

equation (26) (with 6 replaced by Af), this can be expressed as

2 2
dR R A{[@W _,.TaDJ_ r aD} (40

dx " 20 T2\|arax T arox| T (e ox
We want to know how the optimal patent schedule changes if the
government chooses to screen a.mong different firms. Therefore, we
assurne that 2 > 0. Since & —~ < 0 we conclude that dT > 0 unless
the expression in square bra.ckets 1s strongly negative. ThlS sign de-
pends on how the marginal impact of appropriability on welfare and
deadweight loss varies with the size of the invention. If this interac-

tion is either non-negative, or “small”, then a stronger appropriability



environment increases the socially optimal length of patents.

This result may appear counterintuitive. From an ez post perspec-
tive (where a specified level of compensation must be paid to the
firm), one would expect stronger appropriability to imply shorter op-
timal patent lives. However, the analysis shows that the incentive
aspects of appropriability cut the other way, and can well dominate

in this framework.

9. Conclusions

In this paper we have shown how the government can modify its use
of patent renewal fees in order to provide incentives to R&D more ef-
ficiently. Our approach emphasizes how different types of uncertainty
and of heterogeneity among firms are crucial in determining the op-
timal use of patent fees. We show that the derivation of the optimal
patent fees (and differentiation in patent length which they induce)
requires an explicit specification of the R&D process and informa-
tion structure. We also illustrate with simulation analysis how such

information can be used to implement the optimal patent mechanism.

The basic findings in this paper are relevant beyond the particular
focus and specification in this paper. The general methodology used
in this paper, in particular the application of optimal regulation under
various forms of asymmetric information, can be extended to policy
design in many other contexts (e.g., see Laffont and Tirole, 1994, for
an application to pollution regulation). We intend to explore this in

other papers.



The model in this paper has been deliberately simplified to bring
out the key intuition. The basic reasoning we use to show how socially
optimal differentiation can be derived and implemented is robust to
the specification, even if the particular indirect mechanism discussed
in this paper would be modified. Several important extensions in this
line of research are worth noting. First, post-patent learning about
the profitability of inventions is an important feature, as documented
in the empirical literature. In a simplified setting, we have shown
how the optimal mechanism can be modified to incorporate that con-
sideration without affecting the central results in this paper. More
detailed study of this issue is warranted. The simulation analysis de-
veloped in Section 6 can be extended to study how the parameters
of post-patent learning, and uncertainty in the R&D process, affect
the optimal patent mechanism. Second, we emphasised in the paper
that appropriability conditions are an important determinant of the
incentives to do R&D and hence of the optimal mechanism. These
conditions are in part idiosyncratic to the firm but also depend criti-
cally on the institutional environment in which the firm operates, most
importantly antitrust regulations and competition policy more gener-
ally. These other policies can directly influence the appropriability of
returns from invention and hence indirectly the optimal mechanism.
This interaction was discussed briefly in the paper, but we intend to
model it more explicitly and explore its implications for coordinated

policy-making in future research.



Appendix

Derivation of equation (24)
Define
U(6) = max U (4,6)
6

By the envelope theorem

C;g 5 (l ‘-—T‘T(B))Q
T

Reintegrating this equation we obtain

U() = /

where K is a constant of integration. Using the individual rationality
constraint (U(0) = 0) and equating U(#, 8) (defined in equation (22)),
computed at § = 6, to U () obtained above, we obtain equation (24)
in the text.

8 s

(- e TN2ds + K

The second order condition of the maximization in (23) are
20 —rT(8)\ —rT(8) 4L
Upg = (1= e D)0 > 0
and can be rewritten as

92 (9210 TagD 3D
— = -r -2 = -1<
[8%2 te on? } 2 on 1<0

This condition implies that dT > 0.
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