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Abstract 
 

Support for many R&D and technology policies relies on empirical 
evidence that R&D “spills over” between firms.  But there are two 
countervailing R&D spillovers: positive effects from technology spillovers 
and negative effects from business stealing by product market rivals.  We 
develop a general framework showing that technology and product market 
spillovers have testable implications for a range of performance indicators, 
and exploits these using distinct measures of a firm’s position in technology 
space and product market space.  We show using panel data on U.S. firms 
between 1981 and 2001 that both technology and product market spillovers 
operate, but that net social returns are several times larger than private 
returns.  The spillover effects are also revealed when we analyze three high-
tech sectors in detail – pharmaceuticals, computer hardware and 
telecommunication equipment.  Using the model we evaluate three R&D 
subsidy policies and show that the typical focus of support for small and 
medium firms may be misplaced. 
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1. Introduction

Knowledge spillovers have been a major topic of economic research over the last

thirty years. Theoretical studies have explored the impact of research and develop-

ment (R&D) on strategic interaction among firms and long run growth1, and while

many empirical studies appear to support the presence of technological spillovers,

there remains a major problem at the heart of the literature. This arises from the

fact that R&D generates at least two distinct types of "spillover" effects. The first

is technology (or knowledge) spillovers which increase the productivity of other

firms that operate in similar technology areas, and the second type of spillover is

the product market rivalry effect of R&D. Whereas technology spillover are ben-

eficial to firms, R&D by product market rivals has a negative effect. Despite a

large amount of theoretical research on product market rivalry effects of R&D

(including patent race models), there has been very little empirical work on such

effects, in large part because it is difficult to distinguish the two types of spillovers

using existing empirical strategies.

It is important to identify the empirical impact of these two types of spillovers.

Econometric estimates of technology spillovers in the literature may be severely

contaminated by product market rivalry effects, and it is difficult to ascertain the

direction and magnitude of potential biases without building a model that incor-

porates both types of spillovers. Furthermore, even if there is no such bias, we need

estimates of the impact of product market rivalry in order to asses whether there

is over- or under-investment in R&D. If product market rivalry effects dominate

technology spillovers, the conventional wisdom that there is under-investment in

R&D could be overturned.

This paper develops a methodology to identify the separate effects of technol-

1See, for example, Romer (1991), Aghion and Howitt (1992), Spence (1984), and Reinganum
(1989); and Griliches (1992) and Keller (2004) for surveys of the literature.
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ogy and product market spillovers and implements this methodology on a large

panel of U.S. companies. Our approach is based on two features. First, using a

general analytical framework we develop the implications of technology and prod-

uct market spillovers for a range of firm performance indicators (market value,

patents, productivity and R&D). The predictions differ across performance indica-

tors, thus providing identification for the technology and product market spillover

effects. Second, we empirically distinguish a firm’s positions in technology space

and product market space using information on the distribution of its patenting

(across technological fields) and its sales activity (across different four digit in-

dustries). This allows us to construct distinct measures of the distance between

firms in the technology and product market dimensions2. The significant variation

in these two dimensions allows us to distinguish between technology and rivalry

spillovers3.

Applying this approach to a panel of U.S. firms for a twenty year period (1981-

2001) we find that both technological and product market spillovers are present

and quantitatively important, but the social returns from R&D are still positive

and the former dominates the latter. To a first approximation the social returns to

R&D are about 3.5 times the private returns. We also find that R&D by product

market rivals is a strategic complement for a firm’s own R&D. Using parameter

estimates from the model we evaluate the aggregate productivity effects of three

different R&D subsidy policies and show that the typical focus of R&D support

2In an earlier study Jaffe (1988) assigned firms to technology and product market space,
but did not examine the distance between firms in both spaces. In a related paper, Bransetter
and Sakakibara (2002) make an important contribution by empirically examining the effects of
technology closeness and product market overlap on patenting in Japanese research consortia.

3Examples of well-known companies in our sample that illustrate this variation include IBM,
Apple, Motorola and Intel, who are all close in technology space (revealed by their patenting and
confirmed by their research joint ventures), but only IBM and Apple compete in the PC market
and only Intel and Motorola compete in the semi-conductor market, with little product market
competition between the two pairs. Appendix C has more details on this and other examples.
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for medium and small firms may be misplaced.

Our paper has its antecedents in the empirical literature on knowledge spillovers.

The dominant approach has been to construct a measure of outside R&D (the

"spillover pool") and include this as an extra term in addition to own ‘inside’ R&D

in a production, cost or innovation function. The simplest version is to measure

the spillover pool as the stock of knowledge generated by other firms in the indus-

try (e.g. Bernstein and Nadiri, 1989). This assumes that firms only benefit from

R&D by other firms in their industry, and that all such firms are weighted equally

in the construction of the spillover pool. Unfortunately, This makes identifica-

tion of the strategic rivalry effect of R&D from technological spillovers impossible

because industry R&D reflects both influences4. A more sophisticated approach

recognizes that a firm is more likely to benefit from the R&D of other firms that are

‘close’ to it, and models the spillover pool available to firm i as Gi = Σj,j 6=iwijGj

where wij is some ‘knowledge-weighting matrix’ applied to the R&D stocks (Gj)

of other firms j. All such approaches impose the assumption that the interaction

between firms i and j is proportional to the weights (distance measure) wij, and

there are many approaches to constructing the knowledge-weighting matrix. Best

practice is probably the method first used by Jaffe (1986), exploiting firm-level

data on patenting (or R&D spending) in different technology classes to locate

firms in a multi-dimensional technology space. A weighting matrix is constructed

using the uncentered correlation coefficients between the location vectors of dif-

ferent firms. We follow this idea but extend it to the product market dimension

by using line of business data from multiproduct firms to construct an analogous

distance measure in product market space5.

4The same is true for papers that use "distance to the frontier" as a proxy for the potential
size of the technological spillover. In these models the frontier is the same for all firms in a given
industry (e.g. Acemoglu, Aghion and Ziblotti, 2003).

5Without this additional variation between firms within industries, the degree of product
market closeness is not identified from industry dummies in the cross section.
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Two caveats are in order about the scope of this paper. First, we focus on

technology and product market spillovers, rather than "rent spillovers" that arise

from mismeasured input prices6. Second, even in the absence of rent spillovers and

strategic effects, it is not easy to distinguish a spillovers interpretation from the

possibility that positive interactions are “just a reflection of spatially correlated

technological opportunities” (Griliches, 1998). If new research opportunities arise

exogenously in a given technological area, then all firms in that area will do more

R&D and may improve their productivity, an effect which may be erroneously

picked up by a spillover measure. This issue is an example of the "reflection prob-

lem" discussed by Manski (1991). A necessary condition for identification is prior

information that specifies the relevant reference group and this is the role played

by a knowledge weighting matrix. Beyond that, we place parametric structure on

the nature of interactions through our firm specific pairings in technology space

and product market space to achieve identification. In addition, we attempt to

mitigate the reflection problem by exploiting the panel structure of our data us-

ing lagged variables and controls for the unobserved shocks (such as firm specific

effects and measures of industry demand).

The paper is organized as follows. Section 2 outlines our analytical framework.

Section 3 describes the data and Section 4 discusses the main econometric issues.

The econometric findings are presented in Section 5. In Section 6 we use the

preferred estimates to evaluate the social returns generated by three R&D subsidy

policies. The concluding remarks summarize the key results and directions for

future research.
6As Griliches (1979) points out, rent spillovers occur when R&D-intensive inputs are pur-

chased from other firms at less than their full ‘quality-adjusted’ price. Such spillovers are simply
consequences of conventional measurement problems and essentially mis-attribute the produc-
tivity gains to firms that purchase the quality-improved inputs rather than to the firms that
produce them.
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2. Analytical Framework

We consider the empirical implications of a non-tournament model of R&D with

technological spillovers and strategic interaction in the product market7. In Ap-

pendix A we analyze a tournament model of R&D with an identical product

market structure to the one analyzed here, and find the qualitative predictions

are similar.

We study a two-stage game. In stage 1 firms decide their R&D spending and

this produces knowledge (patents) that are taken as pre-determined in the second

stage. There may be technology spillovers in this first stage. In stage 2, firms

compete in some variable, x, conditional on knowledge levels k. We do not restrict

the form of this competition except to assume Nash equilibrium. What matters

for the analysis is whether there is strategic substitution or complementarity in

the product market. Even in the absence of technology spillovers, product market

interaction would create an indirect link between the R&D decisions of firms

through the anticipated impact of R&D induced innovation on product market

competition in the second stage.

There are three firms, labelled 0, τ and m. Firms 0 and τ interact only in

technology space (production of innovations, stage 1) but not in the product

market (stage 2); firms 0 and m compete only in the product market.

Stage 2

Firm 00s profit function is π(x0, xm, k0). We assume that the function π is

common to all firms. Innovation output k0 may have a direct effect on profits, as

well as an indirect (strategic) effect working through x. For example, if k0 increases

7This approach has some similarities to Jones and Williams (1998) who examine an endo-
geneos growth model with business stealing, knowledge spillovers and congestion externalities.
Their focus, however, is on the biases of an aggregate regression of productivity on R&D as a
measure of technological spillovers. Our method, by contrast, seeks to inform micro estimates
through separately identifying the business stealing effect of R&D from technological spillovers.
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the demand for firm 0 (e.g. product innovation), its profits would increase for any

given level of price or output in the second stage.8

The best response for firms 0 and m are given by x∗0 = argmax π(x0, xm, k0)

and x∗m = argmax π(xm, x0, km), respectively. Solving for second stage Nash

decisions yields x∗0 = f(k0, km) and x∗m = f(km, k0). First stage profit for firm

0 is Π(k0, km) = π(k0, x
∗
0, x

∗
m), and similarly for firm m. If there is no strategic

interaction in the product market, π(k0, x∗0, x
∗
m) does not vary with xm and thus

Π0 do not depend on km.

We assume that Π(k0, km) is increasing in k0, decreasing in km and concave9.

Stage 1

Firm 0 produces innovations with its own R&D, possibly benefitting from

spillovers from firms that it is close to in technology space: k0 = φ(r0, rτ) where we

assume that the knowledge production function φ is non-decreasing and concave

in both arguments. This means that if there are knowledge spillovers, they are

necessarily positive. We assume that the function φ is common to all firms.

Firm 0 solves the following problem:

max
r0

V 0 = Π(φ(r0, rτ ), km)− r0. (2.1)

Note that km does not involve r0.The first order condition is:

Π1φ1 − 1 = 0

where the subscripts denote partial derivatives with respect to the different argu-

8We assume that innovation by firm m affects firm 00s profits only through xm, which is
plausible in most contexts.

9The assumption that Π(k0, km) declines in km is reasonable unless innovation creates a
strong externality through a market expansion effect. Certainly at km ' 0 this derivative must
be negative, as monopoly is more profitable than duopoly.
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ments.10 By comparative statics,

∂r∗0
∂rτ

= −{Π1φ1τ +Π11φ1φτ}
A

(2.2)

where A = Π11φ1+Π1φ11 < 0 by the second order conditions. If φ1τ > 0, firm 0
0s

R&D is positively related to the R&D done by firms in the same technology space,

as long as diminishing returns in knowledge production are not "too strong." On

the other hand, if φ1τ = 0 or diminishing returns in knowledge production are

strong (i.e. Π1φ1τ < −Π11φ1φτ) then R&D is negatively related to the R&D done
by firms in the same technology space. Consequently the marginal effect of ∂r∗0

∂rτ
is

formally ambiguous.

Comparative statics also yield

∂r∗0
∂rm

= −Π12φ1
A

(2.3)

Thus firm 00s R&D is an increasing (respectively decreasing) function of the R&D

done by firms in the same product market if Π12 > 0 — i.e., if k0 and km are

strategic complements (respectively substitutes).11

We also get obtain12

∂k0
∂rτ

= φ2 > 0 and
∂k0
∂rm

= 0 (2.4)

10If we allowed for firms in τ and m to overlap, there would be an additional term reflecting
the fact that the R&D spillover to firm τ also affects km and thus has a negative strategic effect
on its own profits.
11It is worth noting that most models of patent races embed the assumption of strategic

complementarity because the outcome of the race depends on the gap in R&D spending by
competing firms. This observation applies both to single race models (e.g., Loury, 1979; Lee and
Wilde, 1980; Reinganum, 1982) and more recent models of sequential races (Aghion, Harris and
Vickers, 1997; and Aghion et al, 2005). There are patent race models where this is not the case,
but they involve a "discouragement effect" whereby a follower may give up if the R&D gap gets
so wide that it does not pay to invest to catch up.
12One qualification should be noted. Strictly speaking, the result ∂k0

∂rm
= 0 holds if k measures

the stock of knowledge. But in practice we will measure k by using patenting information. If
the patenting decision is based on the potential market value of the innovation,then we would
expect ∂k0

∂rm
< 0, because the firm will choose to patent fewer inventions.
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We summarize these results in Table 1

[Table 1 about here]

Two points about identification from the table should be noted. First, the em-

pirical identification of strategic complementarity or substitution comes only from

the R&D equation. Identification cannot be obtained from the patents (knowl-

edge) or value equations because the predictions are the same for both forms of

strategic rivalry. Second, the presence of spillovers can in principle be identi-

fied from the R&D, patents and value equations. Using multiple outcomes thus

provides a stronger test than we would have from any single indicator.

3. Data

We use firm level accounting data (sales, employment, capital, etc.) and market

value data from U.S. Compustat 1980-2001 and match this into the U.S. Patent

and Trademark Office data from the NBER data archive. This contains detailed

information on almost 3 million U.S. patents granted between January 1963 and

December 1999 and all citations made to these patents between 1975 and 1999

(over 16 million)13. Since our method requires information on patenting, we kept

all firm years with a positive patent stock (so firms which had no patents at all in

the 36 year period were dropped), leaving an unbalanced panel of 736 firms with

at least four observations between 1980 and 2001. Appendix B provides details

on all datasets.

3.1. Calculating Product Market Closeness

Our measure of product market closeness uses Compustat data on the sales and

4-digit SIC codes of the major line of business by firm from 1993 onwards. On
13See Hall, Jaffe and Trajtenberg (2001).We also constructed a cite weighted firm patent count

as a quality adjusted measure of the raw patent count.
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average each firm reports 4.7 different lines of business covering 5.4 different 4-

digit SIC codes, spanning 597 industries across the sample. We use average share

of sales per SIC code within each firm over the period as our measure of activity

by product market, Si = (Si,1, Si,2, ...Si,597), where Si,j is the share of sales of

firm i in the 4-digit SIC code j.14 The product market closeness measure, SICi,j

(i 6= j), is then calculated as the uncentered correlation between all firms pairings

following Jaffe (1986):

SICi,j =
(SiS

0
j)

(SiS
0
i)

1
2 (SjS

0
j)

1
2

This ranges between zero and one, depending on the degree of product market

overlap, and is symmetric to firm ordering so that SICi,j = SICj,i. We construct

the pool of product-market R&D for firm i in year t, SPILLSICit,as:

SPILLSICit = Σj,j 6=iSICijGjt (3.1)

where Gjt is the stock of R&D by firm j in year t.

3.2. Patent Data and Technological Closeness

The technology market information is provided by the allocation of all patents by

the USPTO into 426 different technology classes (labelled N-Classes). We use the

average share of patents per firm in each technology class over the period 1970

to 1999 as our measure of activity by technology market, Ti = (Ti,1, Ti,2, ...Ti,426),

where Ti,j is the share of patents of firm i in technology class j. The techno-

logical closeness measure, TECHi,j (i 6= j), is also calculated as the uncentered

14The breakdown by SIC code was unavailable prior to 1993, so we pool data 1993-2001. This
is a shorter period than for the patent data, but we perform several experiments with different
timings of the patent technology distance measure to demonstrate robustness to the exact timing
(see below).
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correlation between all firms pairings:

TECHi,j =
(TiT

0
j )

(TiT
0
i )

1
2 (TjT

0
j)

1
2

This ranges between zero and one, depending on the degree of technology market

overlap15 We construct the pool of technological spillover R&D for firm i in year

t, SPILLTECHit,as

SPILLTECHit = Σj,j 6=iTECHijGjt. (3.2)

Table 2 provides some basic descriptive statistics for the accounting and patenting

data, and the technology and product market closeness measures, TECH and

SIC. The sample firms are large (mean employment is about 18,000), but with

heterogeneity in size, R&D intensity, patenting activity and market valuation.

The two closeness measures also differ widely across firms16.

[Table 2 about here]

3.3. Identification of Product Market versus Technology Distance

In order to distinguish between the effects of technology spillovers and product

market interactions we need variation in the distance metrics in technology and

product market space. To gauge this we do three things. First, we calculate

the raw correlation between the measures SIC and TECH, which is 0.47, sug-

gesting these do reflect some differential characteristics of firms. After weight-

ing with R&D stocks following equations (3.2) and (3.1) the correlation between

15We pooled across the entire sample period and also experiemented with sub-samples. Using
a pre-sample period (e.g. 1970-1980) reduces the risk of endogeneity, but increases the measure-
ment error due to timing mismatch if firms exogenously switch technology areas. Using a period
more closely matched to the data has the opposite problem (i.e. greater risk of endogeneity
bias). In the event, the results were reasonably similar and (since firms only shift technology
area slowly). The larger sample enabled us to pin down the firm’s position more accurately.
16The absolute level of these measures will, of course, depend on the degree of aggregation of

the underlying patent and product market classes.
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SPILLTECH and SPILLSIC is 0.42, and for estimation with fixed effects the

relevant correlation in the change of SPILLTECH and SPILLSIC is only 0.17.

Second we plot SIC against TEC in Figure 1 from which it is apparent that the

positive correlation we observe is caused by a dispersion across the unit box rather

than a few outliers. Finally, in Appendix C we discuss examples of well-known

firms that are close in technology but distant in product market spaces, and close

in product market but distant in technology space.

4. Econometrics

4.1. Generic Issues

There are three main equations of interest that we wish to estimate: a market

value equation, an R&D equation, and a patents equation17. There are generic

econometric issues with all three equations which we discuss first before turning

to specific problems with each equation. We are interested in investigating the

relationship

yit = x0itβ + uit (4.1)

where the outcome variable for firm i at time t is yit, the variables of interest

(especially SPILLTECH and SPILLSIC) are xit and the error term, whose

properties we will discuss in detail, is uit.

First, we have the problem of unobserved heterogeneity. We will present esti-

mates with and without controlling for correlated fixed effects (through including

a full set of firm specific dummy variables). The time dimension of the company

panel is relatively long, so the "within groups bias" on weakly endogenous vari-

ables (see Nickell, 1981) is likely to be small, subject to the caveats we discuss

17For an example of this multiple equation approach to identify the determination of techno-
logical change, see Griliches, Hall and Pakes (1991).
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below.18 Second, we have the issue of the endogeneity due to transitory shocks.

To mitigate these we condition on a full set of time dummies and a distributed

lag of industry sales19. Furthermore we lag all the other variables on the right

hand side of equation (4.1) by one period to overcome any immediate feedback

effects20. Third, the model in (4.1) is static, so we experiment with more dynamic

forms. In particular we present specifications including a lagged dependent vari-

able. Finally, there are inherent non-linearities in the models we are estimating

(such as the patent equation) which we discuss next.

4.2. Market Value equation

We adopt a simple linearization of the value function proposed by Griliches (1981)21

ln

µ
V

A

¶
it

= lnκit + ln

µ
1 + γv

µ
G

A

¶
it

¶
(4.2)

where V is the market value of the firm, A is the stock of tangible assets, G is

the stock of R&D, and the superscript v indicates that the parameter is for the

market value equation. The deviation of V/A (also known as "Tobin’s average

Q") from unity depends on the ratio of the R&D stock to the tangible capital

stock (G/A) and κit. We parameterize this as

lnκit =βv1 lnSPILLTECHit + βv2 lnSPILLSICit + Zv0
it β

v
3 + ηvi + τ vt + υvit

18We have between 4 and 21 years of continuous firm observations in our sample. In the R&D
equation, for example, the mean number of observations is 18.
19The industry sales variable is constructed in the same way as the SPILLSIC variable. We

use the same distance weighting technique, but instead of using other firms’ R&D stocks we
used rivals’ sales. This ensures that the SPILLSIC measure is not simply reflecting demand
shocks at the industry level.
20This is a conservative approach as it is likely to reduce the impact of the variables we are

interested in. An alternative (in the absence of obvious external instruments) to explicitly use
the lags as instruments - we report some experiments using these GMM based approaches in
the results section.
21See also Jaffe (1986), Hall et al (2000) or Lanjouw and Schankerman (2004).
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where ηvi is the firm fixed effect, τ vt a full set of time dummies, Z
v
it denotes other

control variables such as industry demand, and υvit is an idiosyncratic error term.

If γv(G/A) was "small" then we could approximate ln
¡
1 + γv

¡
G
A

¢
it

¢
by γv

¡
G
A

¢
it
.

But this will not be a good approximation for many high tech firms and, in

this case, equation (4.2) should be estimated directly by non-linear least squares

(NLLS). Alternatively one can approximate ln
¡
1 + γv

¡
G
A

¢
it

¢
by a series expan-

sion with higher order terms (denote this by φ(G
A
)), which is more computationally

convenient when including fixed effects. Empirically, we found that a sixth order

series expansion was satisfactory. Taking into consideration the generic econo-

metric issues over endogeneity discussed above, our basic empirical market value

equation is:

ln

µ
V

A

¶
it

= φ((G/A)it−1) + βv1 lnSPILLTECHit−1 + βv2 lnSPILLSICit−1

+Zv0
it β

v
3 + ηvi + τ vt + υvit (4.3)

4.3. R&D equation

We write the R&D equation as:

lnRit = αr lnRit−1+β
r
1 lnSPILLTECHit−1+β

r
2 lnSPILLSICit−1+Z

r0
itβ

r
3+η

r
i+τ

r
t+υ

r
it

(4.4)

The main issue to note is that the contemporaneous value of SPILLTECH

and SPILLSIC would be particularly difficult to interpret in equation (4.4) due

to the reflection problem (Manski, 1991). A positive correlation could either reflect

strategic complementarity or common unobserved shocks that are not controlled

for by the other variables in equation (4.4). Our (admittedly partial) defence

against this problem are that we lag the independent variables by a year and we

include a variety of controls to account for the other factors driving this correlation

(such as a distributed lag in industry sales).
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4.4. Patent Equation

We use a version of the Negative Binomial model to analyze our patent count

data. Models for count data assume a first moment of the form22

E(Pit|Xit, Pit−1) = exp(x
0
itβ

p)

where E(.|.) is the conditional expectations operator and Pit is a (possibly cite

weighted) count of the number of patents. In our analysis we want to allow both

for dynamics and fixed effects, and to do so we use a Multiplicative Feedback

Model (MFM). The conditional expectation of the estimator is:

E(Pit|Xit, Pit−1) = exp{δ1Dit lnPit−1 + δ2Dit + βp1 lnSPILLTECHit−1 +

βp2 lnSPILLSICit−1 + Zp0
itβ

p
3 + ηpi + τ pt} (4.5)

where Dit is a dummy variable which is unity when Pit−1 > 0 and zero otherwise.

The variance of the Negative Binomial under our specification is:

V (Pit) = exp(x
0
itβ

p) + α exp(2x0itβ
p)

where the parameter, α, is a measure of "overdispersion", relaxing the Poisson

restriction that the mean equals the variance (α = 0 ).

We introduce firm fixed effects into the count data model using the "mean

scaling" method of Blundell, Griffith and Van Reenen (1999). This relaxes the

strict exogeneity assumption underlying Hausman, Hall and Griliches (1984). Es-

sentially, we exploit the fact that we have a long pre-sample history (of up to 15

years per firm) on patenting behaviour to construct its pre-sample average. This

can then be used as an initial condition to proxy for unobserved heterogeneity if

the first moments of the variables are stationary. Although there will be some

22See Blundell, Griffith and Van Reenen (1999) and Hausman, Hall and Griliches (1984) for
discussions of count data models of innovation.
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finite sample bias Monte Carlo evidence shows that this pre-sample mean scaling

estimator performs well compared to alternative econometric estimators for dy-

namic panel data models with weakly endogenous variables (see Blundell, Griffith

and Windmeijer (2002)).

4.5. Production Function

Although the production function is implicit in theoretical structure outlined

above it is useful for evaluating the impact of policies on social returns to R&D.

Although we consider more complex forms, the basic production function is of the

R&D augmented Cobb-Douglas form:

lnYit = βy1 lnSPILLTECHit−1+β
y
2 lnSPILLSICit−1+Z

y0
it β

y
3+η

y
i+τ

y
t+υ

y
it (4.6)

where Y is real sales. The key variables in Zy0
it are the other inputs into the

production function - labour, capital, and the own R&D stock. If we measured

output correctly then the predictions of the marginal effects of SPILLTECH and

SPILLSIC in equation (4.6) would be the same as that in the patent equation

(i.e. βy1 > 0 and βy2 = 0). Technology spillovers improve total factor productivity

(TFP), whereas R&D in the product market should have no impact on TFP

(conditional on own R&D and other inputs). In practice, however, we measure

output as "real sales" - firm sales divided by an industry price index. Because we

do not have information on firm-specific prices, this induces measurement error.

If R&D by product market rivals depresses own prices (as we would expect), the

coefficient on SPILLSIC will be negative and the predictions for equation (4.6)

are the same as those of the market value equation. Controlling for industry sales

dynamics (see Klette and Griliches, 1996) and fixed effects should go a long way

towards dealing with the problem of firm-specific prices. In the results section,
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we show that that the negative coefficient on SPILLSIC essentially disappears

when we control for these additional factors.

5. Empirical Results

[Tables 4,5,6 about here]

5.1. Market Value Equation

Table 3 summarizes the results for the market value equation. We present spec-

ifications with and without fixed effects. As noted in Section 4, we use a series

expansion in the own R&D stock to tangible capital stock ratio to capture the

nonlinearity in the value equation because it is easier to incorporate fixed effects in

this specification. The coefficients of the other variables in column (1) were close

to those obtained from nonlinear least squares estimation23. In this specification

without any firm fixed effects, the product market spillover variable, SPILLSIC,

has a positive impact on market value of the firm and SPILLTECH is insignif-

icant. These are both contrary to the predictions of the theory. Finally, we find

that the growth of industry sales affects the firm’s market value (the coefficients

are fairly close to each other but of opposite signs), which probably reflects unob-

served demand factors.

Recall that we include a sixth-order series of the ratio of own-R&D stock to

tangible capital, G/A, in order to capture the nonlinearity in the value equation.

Using the parameter estimates on these G/A terms, we obtain an elasticity of

market value with respect to own R&D of 0.241 (at the mean). A ten percent

23For example, using non-linear least squares (NLLS), the coefficients (standard errors) on
SPILLTECH and SPILLSIC were -0.036 (0.008) and 0.039 (0.004), respectively (compared
to -0.040 (0.012) and 0.038 (0.007) in OLS). Using OLS and just the first order term of G/A,
the coefficient (standard errors) on G/A was 0.284 (0.011), as compared to 0.826 (0.037) under
NLLS. This suggests that a first order approximation is not valid since G/A is not "small" - the
mean is close to 50% (see Table 2).
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increase in the stock of R&D for the firm is associated with an increases in its

market value of about 2.4 percent. Evaluated at the sample means, this implies

that an extra dollar of R&D is worth about $1.18 in market value. This represents

the return net of the cost of the R&D, of course (if the private returns just covered

the cost of the R&D, market value would not increase). This estimate is higher

than the 86 cent figure obtained by Hall, Jaffe and Trajtenberg (2001) over an

earlier sample period24.

When we allow for fixed effects, the estimated coefficient on SPILLTECH

switches signs and becomes positive and significant as compared to column (1)25.

A ten percent increase in SPILLTECH is associated with a 2.4 percent in-

crease in market value. At sample means, this implies that an extra dollar of

SPILLTECH is associated with an increase in the recipient firm’s market value

by 4.32 cents. That is if another firm with perfect overlap in technology areas

(TEC = 1) raised its R&D by one dollar the firms market value would rise by

4.32 cents. Comparing this figure to the return from own-R&D ($1.18), we con-

clude that the private value of a dollar of technology spillover is only worth (in

terms of market value) about 3.6 percent as much as a dollar of own R&D.

With fixed effects, the estimated coefficient on SPILLSIC is now negative and

significant at the five percent level. Evaluated at the sample means, a ten percent

increase in SPILLSIC generates a 0.67 percent reduction in market value. This

implies that an extra dollar of SPILLSIC is associated with a reduction of a

firm’s market value by 4.36 cents. Interestingly, the negative impact of an extra

dollar of product market rivals’ R&D is very similar in magnitude to the positive

impact of a dollar of technology (R&D) spillovers. Of course, the net effect of

24If we re-estimate over the sample period in Hall et al (2000) we find a similar average private
return to the one they obtain.
25The fixed effects are highly jointly significant, with a p-value < 0.001. The Hausman test

also rejects the null of random effects plus three digit dummies vs. fixed effects (p-value=0.02).
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R&D spending by other firms will depend on the product market and technological

distance between those firms (TECH and SIC). Using our parameter estimates,

we can compute the effect of an exogenous change in R&D for any specific set of

firms (see Section 6).

In short, once we allow for unobserved heterogeneity in the specification of the

market value equation, the signs of the two spillover coefficients are consistent with

the prediction from the theory outlined in Section 2. Conditional on technology

spillovers, R&D by a firm’s product market rivals should depress its stock market

value, as investors expect that rivals will capture future market share and/or

depress prices.

It is also worth noting that, if we do not control for the product market rivalry

effect, the estimates of the technology spillover variable is biased toward zero.

Column (3) presents the estimates when SPILLSIC is omitted. The coefficient

on SPILLTECH declines and becomes statistically insignificant at the 5 per

cent level. Failing to control for product market rivalry could lead us to miss the

impact of technology spillovers on market value. The same bias is illustrated for

SPILLSIC - if we failed to control for technological spillovers we would find no

statistically significant impact of product market rivalry (column (4)). It is only

by allowing for both "spillovers" simultaneously that we are able to identify their

individual impacts.

Attenuation bias is exacerbated by fixed effects, but classical measurement

error should bias the coefficients towards zero. This suggests that the change in

the coefficients on the spillover variables between columns (1) and (2) when we

introduce fixed effects is not due to classical measurement error as the coefficients

become larger in absolute magnitude. Instead, it is likely that unobserved hetero-

geneity obscures the true impact of the spillover variables on market value. This

could arise if we have not controlled sufficiently for firms who are closely clustered
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in high tech sectors - they will tend to have high value of SPILLSIC and high

Tobin’s Q (since R&D will not perfectly control for intangible knowledge stocks).

This will drive a positive correlation between the SPILLSIC term and market

value even in the absence of any technological or product market interactions.

Fixed effects control for these correlated effects26.

5.2. Patents Equation

We turn next to the patents equation (Table 4). Column (1) presents the estimates

in a static model with no controls for correlated individual effects. Unsurprisingly,

larger firms and those with larger R&D stocks are much more likely to have more

patents27. SPILLTECH has a positive and highly significant association with

patenting, indicating the presence of technological spillovers. By contrast, the

product market rivalry term has a much smaller coefficient and is not significant

at the 5% level. The overdispersion parameter is highly significant here, rejecting

the Poisson model in favour of the Negative Binomial.

In column (2) we control for firm fixed effects using the Blundell et al (1999)

method of conditioning on the pre-sample patent stock (these controls are highly

significant). Compared to column (1), the coefficient on the R&D stock falls but

remains highly significant. A ten percent increase in the stock of own R&D gen-

erates a 2.8 percent increase in patents. The estimated elasticity of 0.28 points to

more sharply diminishing returns than most previous estimates in the literature,

but the earlier studies do not typically control for technology spillovers or the level

26We also tried an alternative specification that introduces current (not lagged) values of
the two spillover measures, and estimate it by instrumental variables using lagged values as
instruments. This produced similar results. For example estimating the fixed effects specification
in column (2) in this manner (using instruments from t−1) yielded a coefficient (standard error)
on SPILLTECH of 0.281 (0.091 ) and on SPILLSIC of -0.075 (0.029 ).
27We also tried weighting the patent counts by future citations, but this made little difference

to the main results. We do, however, report these in experiments for specific high tech industries
below.
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of sales to capture demand factors. At sample means, our estimate implies that

an increase in own-R&D stock of one dollar would generate 0.007 extra patents

— equivalently, the cost of the marginal patent produced by own R&D is about

$133,000. Turning to our key variables, allowing for fixed effects reduces the coef-

ficient on SPILLTECH, but it remains positive and significant at the 5% level.

Evaluated at the sample means, the estimates for SPILLTECH imply that an

extra dollar of technology spillovers generates 0.00022 extra patents. Comparing

this figure to the figure for own-R&D, we conclude that a dollar of technology

spillovers is only worth 3 percent as much to a firm as a dollar of its own R&D (in

terms of extra patents generated). Note, that our qualitative findings do not de-

pend on the precise distributional assumptions underlying the Negative Binomial

model. Using a GMM estimator that relies only on the first moment condition

leads to similar results28.

Finally, in column (3) we present our preferred specification, which includes

both firm fixed effects and lagged patent counts29. Not surprisingly, we find

strong persistence in patenting (the coefficient on lagged patents is highly signif-

icant). In this model SPILLSIC is insignificant at conventional levels whereas

SPILLTECH retains a large and significant coefficient.

To summarize, patents are a knowledge output and should be affected by

technological spillovers but not strategic rivalry (at least in our simple models).

The empirical results are consistent with these predictions.

28For example, we used the specification model in column (2) but instrumented firm R&D and
firm sales with their own lagged values dated t− 2 to t− 4. SPILLTECH had a positive and
significant coefficient (0.698 with a standard error of 0.333) and SPILLSIC had an insignificant
coefficient (0.023 with a standard error of 0.089).
29The pre-sample estimator assumes we can capture all of the fixed effect bias by the long

pre-sample history of patents (up to 15 years). To check this assumption, we also included the
pre-sample averages of the other independent variables. Since we have a shorter pre-sample
history of these we conditioned on the sample which had at least 10 years of continuous time
series data. Only the pre-sample sales variable was significant at 5% and this did not change
any of the main results.
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5.3. R&D Equation

We now turn to the coefficient estimates for the R&D equation (Table 5). In

the static specification without firm fixed effects (column (1)), we find that both

technology and product market spillovers are present30. The positive coefficient

on SPILLSIC indicates that own and product market rivals’ R&D (knowledge

stocks) are strategic complements. We control for the level of industry sales,

which picks up common demand shocks and is positively associated with company

R&D spending. We also find that the coefficient on lagged firm sales is large

(elasticity of 0.80) and highly significant. When we include firm fixed effects

(column (2)), the coefficient on SPILLSIC declines substantially (to a third

of its earlier value) but remains positive and highly significant, again indicating

strategic complementarity. The coefficient on SPILLTECH also falls sharply and

becomes insignificant. When we include dynamics (lagged R&D) SPILLSIC is

still significant at the 10% level and the implied, long run effect are slightly lower

than the static specification (0.082). Dropping the insignificant SPILLTECH

in column (4) improves the precision on SPILLSIC which is now significant at

conventional levels31.

To summarize, we find evidence that R&D spending by a firm and its product

market rivals are strategic complements, even after we controlling for industry

30The fixed effects are highly significant (p-value under .001). A Hausman Test of random
effects with three digit industry dummies is rejected in favour of fixed effects (p-value=0.022).
31We checked that the results were robust to allowing sales and lagged R&D to be endoge-

nous by re-estimating the R&D equation using the Blundell and Bond (1998) GMM "system"
estimator. The qualitative results were the same. We used lagged instruments dated t-2 to t-8
in the differenced equation and lagged differences dated t-1 in the levels equations. In the most
general dynamic specification of column (3) the coefficient (standard error) on SPILLSIC
was 0.096(0.017 ) and the coefficient (standard error) on SPILLTECH was -0.024 (0.020 ).
Since the lagged dependent variable took a coeffiicent of 0.819(0.032), however, this implies a
larger magnitude of the effect of SPILLSIC on R&D than the main OLS specifications. The
instruments were valid at the 5% level.
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level demand and firm fixed effects32.

5.4. Production Function

Table 6 contains the results from the production function. The OLS results in

column (1) suggest that we cannot reject constant returns to scale in the firm’s

own inputs (the sum of the coefficients on capital, labor and own R&D is 0.995).

The spillover terms are perversely signed however, with a positive and signifi-

cant coefficient on SPILLSIC and a negative sign on the technological spillover

term, SPILLTECH. Including fixed effects in column (2) changes the results -

SPILLTECH is positive and significant and SPILLSIC becomes insignificant -

this is consistent with the simple theory that the marginal effects of spillovers on

TFP should be qualitatively the same as the marginal effects of spillovers on inno-

vative output (as measured by patents). The third column drops the insignificant

SPILLSIC term and is our preferred specification.

One might be concerned that there are heterogeneous technologies across in-

dustries, so we investigated allowing all inputs (labor, capital and R&D) to have

different coefficients in each two-digit industry. Even in this demanding specifi-

cation SPILLTECH remained positive and significant at conventional levels33.

We also experimented with using a proxy for value added instead of real sales as

the dependent variable (following the same procedure as Bresnahan et al. (2002)

- see Appendix B for details). This led to a similar pattern of results34.

32There are only two papers that empirically test for patent races, one on pharmaceuticals
and the other on disk drives (Cockburn and Henderson, 1994; Lerner, 1997), and the evidence
is mixed. However, neither of these papers allows for both technology spillovers and product
market rivalry.
33SPILLTECH took a coefficient of 0.089 and a standard error of 0.045 and SPILLSIC

remained insignificant (coefficient of 0.015 and a standard error of 0.123). Including a full set of
two digit industry time trends also lead to the same findings. The coefficient (standard error)
on SPILLTECH was 0.085 (0.047).
34When using value added as the dependent variable the coefficient (standard error) on

SPILLTECH was 0.189(0.053 ) and on SPILLSIC was -0.016(0.012 ). Including materials on
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[Tables 7, 8, 9 about here]

5.5. Implications of the Results

To summarize our main findings concisely, Table 7 compares the predictions from

the model with the empirical results from Tables 3-5. The match between the the-

oretical predictions and the empirical results is quite close. It gives some reason for

optimism that this kind of approach, based on using multiple performance mea-

sures, can help disentangle the role of technology spillovers and product market

rivalry.

The qualitative implications of our simple theory appear to be supported by

the data. But what are their quantitative implications?. We solve the system of

equations in the model (see Appendix D) to calculate the long-run equilibrium

response of R&D, patents, productivity and market value to an exogenous stimulus

to R&D.

We begin with a unit stimulus to the R&D spending of all firms, which we call

"autarky." This stimulus is then "amplified" by the strategic complementarity in

the R&D equation. The magnitude of this amplification depends on how closely

linked the firm is to its product market competitors, i.e. on the size of its average

SIC. This long run response of R&D, for each firm, then contributes to the value

of SPILLTECH and SPILLSIC, which further amplifies the impact of the

stimulus.

Table 8 summarizes the direct (autarky) effect and the amplification effects

of a one percent R&D stimulus to all firms on each of the endogenous variables.

As row 1 shows, strategic complementarity amplifies the original stimulus by 9.8

percent, so that the 1% stimulus generates 1.098% more R&D. The amplification

the right hand side generated a coefficient (standard error) on SPILLTECH of 0.127(0.038 )
and on SPILLSIC of -0.005(0.009 ).
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effects on patents, market value and productivity are all much larger. The ampli-

fication effect for patents is more than twice as large as the autarky effect (0.502

versus 0.231). Since we found that the coefficient on SPILLSIC in the preferred

specification of the patent equation was not significant, the amplification is coming

from technology spillovers and strategic complementarity in R&D. The amplifica-

tion effect on market value is about one-third the direct effect (0.270 versus 0.728).

Finally, the amplification effect of spillovers on productivity is particularly large

- about two and a half times the size of the direct effect.

To a first approximation, this finding for productivity suggests that the social

returns to R&D are about 3.5 times larger than the private returns. Thus when we

allow for both technology spillovers and product market rivalry effects of R&D, we

find that the former strongly dominate the latter. This confirms the conventional

wisdom of under-investment in private R&D, and thus a role for policy support

for R&D.

5.6. Econometric results for three high-tech industries

We have used both cross firm and cross-industry variation (over time) to identify

the technology spillover and product market rivalry effects. An obvious criticism is

that pooling across industries disguises heterogeneity and an interesting extension

of the methodology outlined here is to examine particular industries in much

greater detail. This is difficult to do given the size of our dataset. Nevertheless, it

would be worrying if the basic theory was contradicted in the high-tech sectors,

as this would suggest our results might be due to biases induced by pooling across

heterogenous sectors. To investigate this, we examine in more detail the three most

R&D intensive sectors where we have a reasonable number of firms to estimate our

key equations - Pharmaceuticals, Computer Hardware and Telecommunications

Equipment. The results from these experiments are summarized in Table 9.
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The results from Computer Hardware (Panel A) are qualitatively similar to the

pooled results. Despite being estimated on a much smaller sample, SPILLTECH

has a positive and significant association with market value and SPILLSIC a neg-

ative and significant association. There is also evidence of technology spillovers in

the production function and the patenting equation (especially when we weight by

patent citations35). Consistent with the theory there is no evidence of SPILLSIC

in the patents equation or in the production function. There is some indication

of strategic complementarity in the R&D equation, as the SPILLSIC term is

positive; however it is not statistically significant. The pattern in Pharmaceuti-

cals is similar, with significant technology spillovers and product market rivalry in

the market value equation. Technology spillovers are also found in the production

function and the patents equation when we weight by citations (intellectual prop-

erty is particularly important in this industry36). As in the computer hardware

sector, the spillover terms are all insignificant in the R&D equation. The results

are slightly different in the Telecommunications Equipment industry. Although

we do observe significant technology spillover effects in the market value equation,

the production function and cite-weighted patents equations, we do not observe

any evidence of significant product market rivalry (i.e. the SPILLSIC term is

negative but small and insignificant in the value equation)37.

35Weighting made no difference to the results in the overall sample, but seems to be more
important in these high-tech sectors.
36For example, Austin (1993) found evidence of rivalry effects through the market value impact

of pharmaceutical patenting. See also Klock and Megna (1993) on semi-conductors.
37We also calculated "rates of return to R&D" (own and spillovers) calculated at the industry

specific sample means. The return to a dollar of own R&D was reasonably similar to the
overall sample ($1.18) in Computers ($0.77) and Telecoms ($1.23). It was much higher in
Pharmaceuticals ($3.65) - a result also found in Lanjouw and Schankerman (2004). The return
to a dollar of SPILLTECH is higher in each of the three high-tech industries ($0.247, $0.864
and $0.144 in Pharmaceuticals, Computers and Telecom respectively), as compared to the return
in the sample as a whole ($0.043). The rivalry effect of a dollar of SPILLSIC is stronger in
Pharmaceuticals (-$0.82) and Computers (-$0.236) than in the overall sample (-$0.044). It is
lower in Telecoms (-$0.008).

26



Overall, the results from these high-tech sectors indicate that our main results

are present in precisely those R&D intensive industries where we would expect our

theory to have most bite. There are two caveats. First, we do see some hetero-

geneity - although technology spillovers are found in all three sectors, significant

product market rivalry effects of R&D are only evident in two of the three in-

dustries studied. Second, it is difficult to determine whether R&D is a strategic

complement or substitute from these sectors, possibly due to the smaller sample

size. We leave for future research a more detailed analysis of particular industries

using our approach.

[Table 10 about here]

6. Policy Simulations

The model can also be used to evaluate the spillover effects of R&D subsidy

policies. Throughout the policy experiments we consider a binary treatment (a

firm is either eligible or not eligible) and assume that the proportionate increase in

R&D is the same across all the eligible firms. We alter this proportionate increase

so that it sums to the aggregate increase in the baseline case ($870m). This allows

us to compare the cost effectiveness of alternative policies.

Four policy experiments are considered (Panel A, Table 10). For the first

(row 1) each firm is given a one percent stimulus to R&D. Given the average

R&D spending in the sample this “costs” $870 million. Working out the full

amplification effects in the model this generates an extra $95.0 million of R&D

(for a total R&D increase of $965.0 million). This is associated with an extra

$2,717 million in output. The other three experiments consider a stimulus of the

same aggregate size ($870m) but distribute it in different ways.

The second experiment (row 2 in Panel A) is calibrated to a stylized version
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of the current U.S. R&D tax credit to determine the eligible group (40% of all

firms in this case)38. This policy generates very similar spillovers for R&D and

productivity as the overall R&D stimulus in row 1. The reason is that the firms

eligible for the tax credit have very similar average linkages in the technology and

product markets as those in the sample as a whole (compare rows 1 and 2 in Panel

B, Table 10).

The third experiment gives an equi-proportionate increase in R&D only to

firms below the median size, as measured by employment averaged over the 1990’s

(about 3,500 employees). The fourth experiment does the same for firms larger

than the median size. Splitting by firm size is interesting because many R&D

subsidy and other technology policies are targeted at SMEs (small and medium

sized enterprise).39 These last two policy simulations show a striking result: the

social returns, in terms of spillovers, of subsidizing "smaller" firms are much lower

than from subsidizing larger firms. The stimulus to larger firms generates $2.8

billion of extra output, as compared to only $1.6 billion when the R&D subsidy

is targeted on "smaller" firms. As Panel B shows, this difference arises because

large firms are much more closely linked to other firms in technology space and

thus generate (and benefit from) greater technology spillovers. The average value

of TEC for large firms is 0.130 as compared to 0.074 for "smaller" firms40. That

38We keep to a simple structure in order to focus on the main policy features rather than
attempt a detailed evaluation of actual existing tax credit systems (see Bloom et al, 2002 for a
detailed analysis of R&D policies). We treat a firm as eligible in our simulation if it was eligible
to receive any R&D tax credit for a majority of the 1990’s.
39In practice, policies are typically targetted at firms much smaller than the median firm in

our sample. We also tried conducting the experiment for the lowest and highest quartiles of the
size distribution, but there was not enough R&D conducted by the lowest employment quartile
to make the analysis sensible (i.e., the required percentage increase in their R&D was too large
to justify the linear approximation of the model used for the simulations).
40We were concerned that our econometric results may be under-estimating the spillovers

of smaller firms. For example, relative to large firms, smaller companies may be less able to
appropriate the benefits of technology spillovers, and thus be more likely to pass on technology
spillovers to consumers in the form of lower prices. We tested this idea by interacting the size
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is, smaller firms are more likely to operate in technology niches generating lower

average spillovers.

This finding should caution against over-emphasis on small and medium sized

firms by some policy makers. Of course, appropriate policy design would have to

take into account many caveats in terms of the simplicity of the model (e.g. we

have abstracted from credit constraints that might be worse for smaller firms).

7. Conclusions

Firm performance is affected by two countervailing R&D spillovers: positive ef-

fects from technology spillovers and negative "business stealing" effects from R&D

by product market rivals. We develop a general framework showing that tech-

nology and product market spillovers have testable implications for a range of

performance indicators, and then exploit these using distinct measures of a firm’s

position in technology space and product market space. Using panel data on U.S.

firms between 1981 and 2001 we show that both technology and product market

spillovers operate, but social returns still exceed private returns to a large degree.

We also find that R&D by product market rivals is (on average) a strategic comple-

ment for a firm’s own R&D. Using the model we evaluate the net spillovers (social

returns) from three R&D subsidy policies which suggested that R&D policies that

were tilted towards the smaller firms in our sample would be unwise.

There are various extensions to this line of research. First, while we examined

heterogeneity across industries by looking at three high-tech sectors, much more

could be done within our framework using detailed, industry-specific datasets.

Second, it would be useful to develop and estimate more structural, dynamic

models of patent races. Finally, the semi-parametric approach in Pinkse et al

dummy with SPILLTECH in the production function (Table 6, column 2). This interaction
was negative, as expected, but insignificant (coefficient of -0.019 with a standard error of 0.026).
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(2002) could be used to construct alternative spillover measures.

Despite the need for these extensions, we believe that the methodology offered

in this paper offers a fruitful way to analyze the existence of these two distinct

types of R&D spillovers that are much discussed but rarely subjected to rigorous

empirical testing.
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FIGURE 1 – 
 SIC AND TEC CORRELATIONS 

 
Notes: This figure plots the pairwise values of SIC (closeness in product market space between 
two firms) and TEC (closeness in technology space) for all pairs of firms in our sample. 
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TABLE 1 - 
 

THEORETICAL PREDICTIONS FOR MARKET VALUE, PATENTS AND R&D 
UNDER DIFFERENT ASSUMPTIONS OVER TECHNOLOGICAL SPILLOVERS AND 

STRATEGIC COMPLEMENTARITY/SUBSTITUTABILITY OF R&D 
 
Comparative 
static 
prediction 

Empirical  
counterpart 

No 
Technological 
Spillovers 

No 
Technological 
Spillovers 

Some 
Technological 
Spillovers 

Some 
Technological 
Spillovers 
 

  Strategic 
complements 

Strategic 
Substitutes 

Strategic 
complements 

Strategic 
Substitutes 
 

∂V0/∂rτ Market value 
with 
SPILLTECH 
 

Zero Zero Positive Positive 

∂V0/∂rm Market value 
with 
SPILLSIC 
 

Negative Negative Negative Negative 

∂k0/∂rτ Patents with 
SPILLTECH 
 

Zero Zero Positive Positive 

∂k0/∂rm Patents with 
SPILLSIC 
 

Zero Zero Zero Zero 

∂r0/∂rτ  R&D with 
SPILLTECH 
 

Zero Zero Ambiguous Ambiguous 

∂r0/∂rm R&D with 
SPILLSIC 
 

Positive Negative Positive Negative 

 
 
Notes: See text for full derivation of these comparative static predictions 
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TABLE 2 - 
 DESCRIPTIVE STATISTICS 

 
variable Mnemonic Mean Median Standard 

deviation 
 

Tobin’s Q V/A 2.33 1.39 2.96 
Market Value, $m V 3,929 424 15,841 
R&D Stock, $m G 605 28 2,723 
R&D stock/fixed 
capital 

G/A 0.47 0.17 0.94 

R&D flow, $m R 90 3 434 
Technological 
spillovers, $m 

SPILLTECH 21,873 17,390 17,622 

Product market 
rivalry, $m 

SPILLSIC 6,069 1,912 9,498 

Patent flow, # P 16 1 74 
Sales, $m Y 3,133 494 9,741 
Fixed capital, $m A 1,182 103 4,111 

 
     
 
Notes: The means, medians and standard deviations are taken over all non-missing observations 
between 1981 and 2001. $ figures in 1996 values.
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TABLE 3 -  

COEFFICIENT ESTIMATES FOR TOBIN’S-Q EQUATION 
 

 (1) (2) (3) (4) 
Dependent variable: 
Ln (V/A) 

No individual 
Effects 

Fixed Effects Fixed Effects 
(drop 

SPILLSIC) 
 

Fixed Effects 
(drop 

SPILLTEC) 

Ln(SPILLTECHt-1) -0.040 
(0.012) 

0.240 
(0.104) 

0.186 
(0.100) 

 

Ln(SPILLSICt-1) 0.038 
(0.007) 

-0.067 
(0.031) 

 -0.047 
(0.031) 

Ln(Industry Salest) 0.434 
(0.068) 

0.294 
(0.044) 

0.298 
(0.044) 

0.299 
(0.044) 

Ln(Industry Salest-1) -0.502 
(0.067) 

-0.170 
(0.045) 

-0.176 
(0.045) 

-0.164 
(0.043) 

 
Polynomial terms in lagged (R&D Stock/Capital Stock) 
 

 

Ln(R&D Stock/Capital 
Stock)t -1 

0.898 
(0.154) 

0.801 
(0.197) 

0.792 
(0.198) 

0.800 
(0.199) 

[Ln(R&D Stock/Capital 
Stock)t -1]2 

-0.218 
(0.214) 

-0.385 
(0.222) 

-0.374 
(0.222) 

-0.374 
(0.223) 

[Ln(R&D Stock/Capital 
Stock)t -1]3 

-0.006 
(0.111) 

 0.120 
(0.103) 

0.115 
(0.103) 

0.115 
(0.104) 

[Ln(R&D Stock/Capital 
Stock)t -1]4 

-0.010 
(0.025) 

-0.029 
(0.022) 

-0.020 
(0.022) 

-0.020 
(0.022) 

[Ln(R&D Stock/Capital 
Stock)t -1]5 

-0.001 
(0.003) 

-0.002  
(0.002) 

0.002  
(0.002) 

0.002  
(0.002) 

[Ln(R&D Stock/Capital 
Stock)t -1]6 

0.005 a 
(0.009) 

-0.007a 
(0.007) 

-0.006a 
(0.008) 

-0.006 a 
(0.008) 

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  No Yes Yes Yes 
No. Observations 10,011 10,011 10,011 10,011 
     
 

a coefficient and standard error have been multiplied by 100 
 
Notes: Tobin’s Q = V/A is defined as the market value of equity plus debt, divided by the stock of 
fixed capital. The equations are estimated by OLS (standard errors in brackets are robust to 
arbitrary heteroskedacity and first order serial correlation using the Newey-West correction). A 
dummy variable is included for observations where lagged R&D stock equals zero.  
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TABLE 4 -  

COEFFICIENT ESTIMATES FOR THE PATENT EQUATION 
 
 (1) (2) (3) (4) 
Dependent variable: 
Patent Count 

No initial 
conditions: 
Static 
 

Initial 
Conditions: 
Static 

Initial 
Conditions: 
Dynamics 

Initial 
Conditions: 
Dynamics 

Ln(SPILLTECH)t-1 0.403 
(0.086) 

0.295 
(0.066) 

0.192 
(0.037) 

0.194 
(0.037) 

Ln(SPILLSIC)t-1 0.044 
(0.032) 

0.049 
(0.031) 

0.024 
(0.019) 

 

Ln(R&D Stock)t-1 0.495 
(0.044) 

0.282 
(0.046) 

0.105 
(0.027) 

0.104 
(0.027) 

Ln(Sales)t-1 0.338 
(0.052) 

0.258 
(0.047) 

0.138 
(0.027) 

0.140 
(0.027) 

Ln(Patents)t-1   0.550 
(0.026) 

0.550 
(0.026) 

Pre-sample fixed effect  0.450 
(0.049) 

0.175 
(0.028) 

0.174 
(0.028) 

     
Over-dispersion (alpha) 0.954 

(0.067) 
0.814 
(0.046) 

0.402 
(0.029) 

0.402 
(0.029) 

Year dummies Yes Yes Yes Yes 
Firm fixed effects  No Yes Yes Yes 
4 digit industry 
dummies 

Yes Yes Yes Yes 

No. Observations 9,122 9,122 9,122 9,122 
Log Pseudo Likelihood -20,559 -20,178 -18,697 -18,699 
     
 
Notes: Estimation is conducted using the Negative Binomial model. Standard errors (in brackets) 
are robust to arbitrary heteroskedacity and allow for serial correlation through clustering by firm. 
A full set of four digit industry dummies are included in all columns. A dummy variable is 
included for observations where lagged R&D stock equals zero (all columns) or where lagged 
patent stock equals zero (columns (3) and (4)). The initial conditions effects in columns (3) and 
(4) are estimated through the “pre-sample mean scaling approach” of Blundell, Griffith and Van 
Reenen (1999) – see text. 
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TABLE 5 –  
COEFFICIENT ESTIMATES FOR THE R&D EQUATION 

 
 (1) (2) (3) (4) 

Dependent variable: 
ln(R&D) 

No Effects Fixed Effects Fixed Effects + 
Dynamics 

Fixed Effects + 
Dynamics 

 
Ln(SPILLTECH) t-1 0.224 

(0.017) 
0.115 

(0.071) 
0.039 

(0.039) 
 

Ln(SPILLSIC) t-1 0.291 
(0.012) 

0.110 
(0.026) 

0.025 
(0.014) 

0.030 
(0.013) 

Ln(Sales) t-1 0.797 
(0.009) 

0.801 
(0.017) 

0.218 
(0.015) 

0.217 
(0.015) 

Ln(R&D) t-1   0.695 
(0.015) 

0.695 
(0.015) 

Ln(Industry Sales) t 0.698 
(0.083) 

0.133 
(0.030) 

0.133 
(0.022) 

0.134 
(0.022) 

Ln(Industry Sales) t-1 -0.879 
(0.083) 

-0.085 
(0.031) 

-0.110 
(0.023) 

-0.108 
(0.022) 

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  No Yes Yes Yes 
No. Observations 8565 8565 8395 8395 
R2 0.769 0.968 0.984 0.984 

 
 
Notes: Estimation is by OLS. Standard errors (in brackets) are robust to arbitrary heteroskedacity 
and serial correlation using Newey-West corrected standard errors. The sample includes only 
firms which performed R&D continuously in at least two adjacent years.  
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TABLE 6 –  
COEFFICIENT ESTIMATES FOR THE PRODUCTION FUNCTION 

 
 (1) (2) (3) 
Dependent variable: 
 Ln(Sales) 
 

No Fixed Effects 
 

Fixed effects Fixed effects 

Ln(SPILLTECH) t-1 -0.038 
(0.009) 

0.104 
(0.046) 

0.111 
(0.045) 

Ln(SPILLSIC) t-1 -0.008 
(0.004) 

0.009 
(0.012) 

 

Ln(Capital) t-1 0.291 
(0.009) 

0.164 
(0.012) 

0.165 
(0.012) 

Ln(Labour) t-1 0.646 
(0.012) 

0.628 
(0.015) 

0.627 
(0.015) 

Ln(R&D Stock) t-1 0.059 
(0.005) 

0.045 
(0.007) 

0.045 
(0.007) 

Ln(Industry Sales) t 0.208 
(0.040) 

0.197 
(0.021) 

0.198 
(0.021) 

Ln(Industry Sales) t-1 -0.105 
(0.040) 

-0.040 
(0.022) 

-0.040 
(0.022) 

    
    
Year dummies Yes Yes Yes 
Firm fixed effects  No Yes Yes 
No. Observations 10,092 10,092 10,092 
R2 0.945 0.989 0.989 

 
Notes: Estimation is by OLS. Standard errors (in brackets) are robust to arbitrary heteroskedacity 
and allow for first order serial correlation using the Newey-West procedure.  Industry price 
deflators are included and a dummy variable for observations where lagged R&D equals to zero.  
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TABLE 7 –  
COMPARISON OF EMPIRICAL RESULTS TO MODEL WITH TECHNOLOGICAL 

SPILLOVERS AND STRATEGIC COMPLEMENTARITY 
 
 
 
 Partial 

correlation of: 
 

Theory Empirics Consistency? 

∂V0/∂rτ Market value 
with 
SPILLTECH 
 

Positive 0.240* Yes 

∂V0/∂rm Market value 
with SPILLSIC 
 

Negative -0.067* Yes 

∂k0/∂rτ Patents with 
SPILLTECH 
 

Positive 0.192* Yes 

∂k0/∂rm Patents with 
SPILLSIC 
 

Zero 0.024 Yes 

∂r0/∂rτ  R&D with 
SPILLTECH 
 

Ambiguous 0.039 - 

∂r0/∂rm R&D with 
SPILLSIC 

Positive 0.025* Yes 

 
Notes: The theoretical predictions are for the case of technological spillovers with product market 
rivalry (strategic complements and non-tournament R&D) - this is the third column of Table 1. 
The empirical results are from the most demanding specifications for each of the dependent 
variables (i.e. dynamic fixed effects for patents and R&D, and fixed effects for market value). A * 
denotes significance at the 10% level (note that coefficients are as they appear in the relevant 
tables, not marginal effects). 
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TABLE 8 – 
 AUTARKY, SPILLOVER AND TOTAL EFFECTS OF AN R&D SHOCK 

 
 
   (1) (2) (3) 
 Variable Amplification Mechanism Autarky Effect Amplification 

Effect  
Total Effect 

(amplification + 
Autarky) 

 
1 R&D  1 

 
0.098 

(0.053) 
1.098 

(0.053) 
2 Patents TECH, SIC and R&D 0.231 

(0.028) 
0.502 

(0.091) 
0.734 

(0.119) 
3 Market Value TECH, SIC and R&D 0.728 

(0.161) 
0.270 

(0.112) 
0.998 

(0.212) 
4 Productivity TECH, SIC and R&D 0.050 

(0.007) 
0.123 

(0.049) 
0.173 

(0.049) 
 
Notes: Calculated in response to a 1% direct stimulus to R&D in all firms – see text. All numbers 
are percentages. Results are calculated using preferred estimation results (i.e. Table 3 column (2), 
Table 4 column (4), Table 5 column (4) Table 6 column (3)). Standard errors in brackets 
calculated using the delta method.   
 
“Autarky effect” (in column (1)) refers to the impact on the outcomes solely from the firm’s 
initial increase in R&D. “Amplification Effects” (in column (2)) reports the additional impact 
from product market and technology space spillovers. “Total effect” (column (3)) reports the total 
effect from summing autarky and spillover effects (i.e. column (1) plus column (2)).  
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TABLE 9 – 
 ECONOMETRIC RESULTS FOR SPECIFIC HIGH TECH INDUSTRIES 

 
A. Computer Hardware  
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

R&D Real Sales 

Ln(SPILLTECH)t-1 1.302 
(0.622) 

0.151 
(0.090) 

0.338 
(0.146) 

0.263 
(0.199) 

0.685 
(0.213) 

Ln(SPILLSIC)t-1 -0.476 
(0.145) 

-0.005 
(0.153) 

0.157 
(0.342) 

0.039 
(0.026) 

-0.092 
(0.085) 

Lagged dependent 
variable 

 0.717 
(0.065) 

0.427 
(0.084) 

0.684 
(0.056) 

 

Observations 358 279 279 390 343 
 
B. Pharmaceuticals 
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

R&D Real Sales 

Ln(SPILLTECH)t-1 1.628 
(0.674) 

-0.273 
(0.326) 

1.056 
(0.546) 

0.407 
(0.225) 

0.445 
(0.208) 

Ln(SPILLSIC)t-1 -1.342 
(0.612) 

-0.106 
(0.194) 

-0.087 
(0.174) 

-0.395 
(0.452) 

-0.391 
(0.227) 

Lagged dependent 
variable 

 0.218 
(0.091) 

0.269 
(0.089) 

0.590 
(0.147) 

 

Observations 334 265 265 381 313 
 
C. Telecommunication Equipment  
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

R&D Real Sales 

Ln(SPILLTECH)t-1 2.255 
(0.870) 

0.368 
(0.202) 

0.658 
(0.368) 

0.140 
(0.246) 

0.526 
(0.304) 

Ln(SPILLSIC)t-1 -0.087 
(0.446) 

0.036 
(0.110) 

-0.010 
(0.217) 

0.033 
(0.118) 

0.147 
(0.156) 

Lagged dependent 
variable 

   0.590 
(0.063) 

 

Observations 405 
 

353 353 429 390 

Notes: Each column corresponds to a separate equation for the industries specified. The 
regression specification is the most general one used in the pooled regressions. Tobin’s Q 
(column 1) corresponds to the specification in column (2) of Table 3; Patents (column 2) 
corresponds to column (3) of Table 4; cite-weighted patents (column 3) is identical to the 
precious column but replaces all patent counts with their forward cite weighted equivalents; R&D 
(column (4)) corresponds to column (3) of Table 5; Sales (column 5) corresponds to column (2) 
of Table 6. Each Panel (A,B,C) are has results from separate industries (see Data Appendix)  
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TABLE 10 – 
 POLICY SIMULATIONS: SPILLOVER IMPACTS ACROSS DIFFERENT GROUPS OF 

FIRMS 
 
Panel A 
 
 (1) (2) (3) 
Target Group Total R&D 

Stimulus, $m 
Total R&D 
Spillovers, $m  

Total Productivity 
Spillovers, $m  
 

1. All Firms 870 95.0 2,717 
2. US R&D Tax Credit (firms 
eligible in median year) 

870 94.9 2,747 

3. Smaller Firms (smallest 50%) 870 91.2 1,581 
4. Larger Firms (largest 50%) 870 95.1 2,767 
 
Panel B 
 
 (1) (2) (3) 
Target Group % firms Average SIC 

 
Average TEC 

1. All Firms 100 0.046 0.127 
2. US R&D Tax Credit (firms 
eligible in median year) 

40 0.052 0.131 

3. Smaller Firms (smallest 50%) 50 0.041 0.074 
4. Larger Firms (largest 50%) 50 0.050 0.130 
 
Notes: All numbers in 1996 prices and simulated across all firms who reported non-zero R&D at 
least once over the 1990-2001 period. In Panel A we consider four different experiments. The 
first row gives every firm 1% extra R&D. Given average R&D spending in the sample this 
“costs” $870m (column (1)). We predict (column (2)) that incorporating dynamics and spillovers 
this will generate an extra $95.0m of R&D (a total $965.0m). This is associated with an extra 
$2,717m increase in production (column 3)). 
 
The other rows consider a stimulus of the same aggregate size ($870m) but distributed in different 
ways (column (1) of Panel B gives the proportion of firms affected). Row 2 is calibrated to a 
stylized version of the current US R&D tax credit (see text for details) to determine the eligible 
group (40% of firms) and assumes all eligible firms increase R&D by the same proportionate 
amount (capping the total at $870m). The final column again shows the impact on R&D and 
productivity. Row 3 considers an experiment that gives an equi-proportionate increase in R&D to 
the smallest 50% of firms (by mean 1990s employment size). Row 4 does the same for the largest 
50% of firms. 
 
In panel B, the SIC and TEC average values have been calculated after weighting by the R&D of 
the spillover receiving firm times the R&D of the spillover generating firm. This accounts for the 
average closeness of difference groups of firms and also the absolute size of the spillovers.  



Appendices

A. Tournament Model of R&D Competition with Techno-
logical Spillovers

In this appendix we analyze a stochastic patent race model with spillovers (see
Section 2 for a non-tournament model). We do not distinguish between competing
firms in the technology and product markets because the distinction does not make
sense in a simple patent race (where the winner alone gets profit). For generality
we assume that n firms compete for the patent.
Stage 2
Firm 0 has profit function π(k0, x0, xm). As before, we allow innovation output

k0 to have a direct effect on profits, as well as an indirect (strategic) effect working
through x. In stage 1, n firms compete in a patent race (i.e. there are n−1 firms in
the set m). If firm 0 wins the patent, k0 = 1, otherwise k0 = 0. The best response
function is given by x∗0 = argmax π(x0, xm, km). Thus second stage profit for firm
0, if it wins the patent race, is π(x∗0, x

∗
m; k0 = 1), otherwise it is π(x

∗
0, x

∗
m; k0 = 0).

We can write the second stage Nash decision for firm 0 as x∗0 = f(k0, km) and
first stage profit as Π(k0, km) = π(k0, x

∗
0, x

∗
m). If there is no strategic interaction

in the product market, πi does not vary with xj and thus x∗i and Πi do not
depend directly on kj.Recall that in the context of a patent race, however, only
one firm gets the patent — if kj = 1, then ki = 0. Thus Πi depends indirectly
on kj in this sense. The patent race corresponds to an (extreme) example where
∂Πi(ki, kj)/∂kj < 0.

Stage 1
We consider a symmetric patent race between n firms with a fixed prize (patent

value) F = π0(f(1, 0), f(0, 1); k0 = 1)− π0(f(0, 1), f(1, 0); k0 = 0). The expected
value of firm 1 can be expressed as

V 0(r0, rm) =
h(r0, (n− 1)rm)F − r0

h(r0, (n− 1)rm) + (n− 1)h(rm, (n− 1)rm + r0) +R
(A.1)

where R is the interest rate, rm is the R&D spending of each of firm 00s rivals, and
h(r0, rm) is the probability that firm 0 gets the patent at each point of time given
that it has not done so before (hazard rate). We assume that h(r0, rm) is increasing



and concave in both arguments. It is rising in rm because of spillovers.1 We also
assume that hF − R ≥ 0 (expected benefits per period exceed the opportunity
cost of funds).
The best response is r∗0 = argmax V 0(r0, rm).Using the shorthand h0 =

h(r0, (n − 1)rm) and subscripts on h to denote partial derivatives, the first or-
der condition for firm 0 in the patent race is

(h1F − 1){h0 + (n− 1)hm +R}− (h0F − r1){h01 + (n− 1)hm2 } = 0 (A.2)

Imposing symmetry and using comparative statics, we obtain

sign

µ
∂r0
∂rm

¶
= sign{h12(hF (n− 1) + rF −R}+ {h1(n− 1)(h1F − 1)}

−{h22(n− 1)(hF −R)}− h2{(n− 1)h2F − 1}} (A.3)

We assume h12 ≥ 0 (spillovers do not reduce the marginal product of a firm’s
R&D) and h1F − 1 ≥ 0 (expected net benefit of own R&D is non-negative).
These assumptions imply that the first three bracketed terms are positive. Thus
a sufficient condition for strategic complementarity in the R&D game ( ∂r0

∂rm
> 0)

is that (n−1)h2F −1 ≤ 0. That is, we require that spillovers not be ‘too large’. If
firm 0 increases R&D by one unit, this raises the probability that one of its rivals
wins the patent race by (n− 1)h2. The condition says that the expected gain for
its rivals must be less than the marginal R&D cost to firm 0.
Using the envelope theorem, we get ∂V 0

∂rm
< 0. The intuition is that a rise in rm

increases the probability that firm m wins the patent. While it may also generate
spillovers that raise the win probability for firm 0, we assume that the direct
effect is larger than the spillover effect. For the same reason, ∂V 0

∂km
|k0 = 0. As in

the non-tournament case, ∂r0
∂rm

> 0 and ∂V 0

∂rm
|r0 < 0. The difference is that with a

simple patent race, ∂V 0

∂km
|k0 is zero rather than negative because firms only race for

a single patent.2.

1The probability that firm 1 gets the patent might be decreasing in rm in the absence of
spillovers (it is normally assumed to be independent). The spillover term in our formulation can
be thought of as net of any such effect.

2In this analysis we have assumed that k = 0 initially, so ex post the winner has k = 1 and
the losers k = 0. The same qualitiative results hold if we allow for positive initial k.

2



B. Data Appendix

The main firm level data sample is generated through the combination of several
datasets
The Compustat North-America dataset providing full accounts data for

over 25,000 US firms from 1980 to 2001. This provides information on the key
accounting information of R&D, fixed assets, employment, sales, etc.
The Compustat line of business dataset which provides details of sales

broken down by into four digit SIC codes for 10,500 U.S. firms between 1993 and
2001 (checked by Compustat staff for accuracy). Prior to 1993 this information
was not published by Compustat which explains why previous researchers have
not used it (Compustat merely gave a main four digit SIC classification). Some
firms have a further sub-division of their multiple lines of business data into a
"primary" four digit SIC and a "secondary" four digit SIC classification . When
this is the case we assumed that 75% of the sales was in the primary SIC and 25%
in the secondary SIC. The results appear robust to alternative ways of dividing
sales between primary and secondary classifications (for example, assuming that
67% was in the primary and 33% in the secondary SIC).
The NBERUSPTOpatents database described providing detailed patent-

ing and citation information for around 2,500 firms (as described in Hall, Jaffe
and Trajtenberg (2001)).
We started by matching the Compustat accounting data to the USPTO data,

and kept only patenting firms leaving a sample size of 1,865. These firms were then
matched into the line of business data, keeping only the 795 firms with data on
both patents and sales by line of business, although these need not be concurrent.
For example, a firm which patented in 1985, 1988 and 1989, had line of business
data from 1993 to 1997, and accounting data from 1980 to 1997 would be kept
in our dataset for the period 1985 to 1997. Finally, this dataset was cleaned
to remove accounting years with extremely large jumps in sales, employment or
capital signalling merger and acquisition activity. When we removed a year we
treat the firm as a new entity and give it a new identifier (and therefore a new
fixed effect) even if the firm identifier (CUSIP reference) in Compustat remained
the same. This is more general than including a full set of firm fixed effects as
we are allowing the fixed effect to change over time in a non-parametric way. We
also removed firms with less than four consecutive years of data. This left a final
estimating sample of 736 firms with accounting data for at least some of the period
1980 to 2001 and patenting data for at least some of the period between 1970 and
1998. The panel is unbalanced as we keep new entrants and exiters in the sample.
The book value of capital is the net stock of property, plant and equipment
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(Compustat Mnemonic PPENT); Employment is the number of employees (EMP).
R&D (XRD) is used to create R&D capital stocks calculated using a perpetual
inventory method with a 15% depreciation rate (Hall et al, 2000). We use sales
as our output measure (SALE). Material inputs were constructed following the
method in Bresnahan et al. (2002). We start with costs of good sold (COGS)
less depreciation (DP) less labor costs (XLR). For firms who do not report labor
expenses expenditures we use average wages and benefits at the four-digit industry
level (Bartelsman, Becker and Gray, 2000, until 1996 and then Census Average
Production Worker Annual Payroll by 4-digit NAICS code) and multiply this
by the firm’s reported employment level. This constructed measure is highly
correlated at the industry level with materials. Obviously there are problems
with this measure of materials (and therefore value added) because we do not
have a firm specific wage bill for most firms which is why we focus on the real
sales (rather than value added) based production functions.
For Tobin’s Q firm value is the sum of the values of common stock, pre-

ferred stock, total debt net of current assets (Mnemonics MKVAF, PSTK, DT
and ACT). Book value of capital includes net plant, property and equipment,
inventories, investments in unconsolidated subsidiaries and intangibles other than
R&D (Mnemonics PPENT, INVT, IVAEQ, IVAO and INTAN). Tobin’s Q was
set to 0.1 for values below 0.1 and at 20 for values above 20. See also Lanjouw
and Schankerman (2004).
The construction of the spillover variables is described in Section 3 above in

detail. About 80% of the variance of SPILLTECH and SPILLSIC is between firm
and 20% is within firm. When we include fixed effects we are, of course, relying on
the time series variation for identification. Industry sales were constructed from
total sales of the Compustat database by 4-digit SIC code and year, and weighted
up to the firm level in our panel using each firms distribution of sales across 4-digit
SIC codes.
Industry price deflators were taken from (Bartelsman, Becker and Gray, 2000,

until 1996 and then the BEA 4-digit NAICS Shipment Price Deflators afterwards).
In Table 9 the industries we consider are the following. Computer hardware in

Panel (A) covers SIC 3570 to 3577 (Computer and Office Equipment (3570), Elec-
tronic Computers (3571), Computer Storage Devices (3572), Computer Terminals
(3575), Computer Communications Equipment (3576)and Computer Peripheral
Equipment Not Elsewhere classified (3577). Pharmaceuticals in Panel B includes
Pharmaceutical Preparations (2834) and In Vitro and In Vivo Diagnostic Sub-
stances (2835). Telecommunications Equipment covers Telephone and Telegraph
Apparatus (3661), Radio and TV Broadcasting and Communications Equipment
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(3663) and Communications Equipment not elsewhere classified (3669)

C. Case Studies

There are numerous case studies in the business literature of how firms can be
differently placed in technology space and product market space. Consider first
firms that are close in technology but sometimes far from each other in product
market space (the bottom right hand quadrant of Figure 1). Table A1 shows IBM,
Apple, Motorola and Intel: four high highly innovative firms in our sample. These
firms are close to each other in technology space as revealed by their patenting.
IBM, for example, has a TECH correlation of 0.8 with Intel, 0.6 with Apple and
0.5 with Motorola (the overall average TECH correlation in the whole sample is
0.13 - see Table 10). The technologies that IBM uses for computer hardware are
closely related to those used by all these other companies. If we examine SIC,
the product market closeness variable, however, there are major differences. IBM
and Apple are product market rivals with a SIC of 0.32 (the overall average SIC
correlation in the whole sample is 0.05 - see Table 10). They both produce PC
desktops and are competing head to head. Both have presences in other product
markets of course (in particular IBM’s consultancy arm is a major segment of
its business) so the product market correlation is not perfect. By contrast IBM
(and Apple) have a very low SIC correlation with Intel and Motorola (0.01 to
0.02) because the latter firms mainly produce semi-conductor chips not computer
hardware. IBM is not really competing with Intel and Motorola for customers.
The SIC correlation between Intel and Mototrola is, as expected, rather high
(0.35) because they are both competitors in supplying chips.
At the other end of the diagonal (top left hand corner of Figure 1) there

are many firms who are in the same product market but using quite different
technologies. One example from our dataset is Gillette and Valance Technologies
who compete in batteries giving them a product market closeness measure of 0.33.
Gillette owns Duracell but does no R&D in this area (its R&D is focused mainly
personal care products such as the Mach 3 razor and Braun electronic products).
Valence Technologies uses a new phosphate technology that is radically improving
the performance of standard Lithium ion battery technologies. As a consequence
the two companies have little overlap in technology space (TECH = 0.01).
A third example is the high end of the hard disk market, which are sold to

computer manufacturers. Most firms base their technology on magnetic technolo-
gies, such as the market leader, Segway. Other firms (such as Phillips) offer hard
disks based on newer, holographic technology. These firms draw their technologies

5



from very different areas, yet compete in the same product market. R&D done
by Phillips is likely to pose a competitive threat to Segway, but it is unlikely to
generate useful knowledge spillovers for Segway.

D. Policy Experiments

The general specification of the empirical model can be written

lnRit = α1 lnRit−1 + α2 ln
X
j 6=i

TECHijGj,t−1 + α3 ln
X
j 6=i

SICijGj,t−1 + α4X1,it

lnPit = β1 lnPit−1 + β2 lnGit−1 + β3 ln
X
j 6=i

TECHijGj,t−1

+β4 ln
X
j 6=i

SICijGj,t−1 + β5X2it

ln(V/A)it = γ1 ln(G/A)it + γ2 ln
X
j 6=i

TECHijGj,t−1 + γ3 ln
X
j 6=i

SICijGj,t−1 + γ4X3,it

lnYit = ϕ1 lnGit + ϕ2 ln
X
j 6=i

TECHijGj,t−1 + ϕ3 ln
X
j 6=i

SICijGj,t−1 + ϕ4X4,it

where R is the flow of R&D expenditure flow, G is the R&D stock, P is patent
flow, V/A is Tobin’s Q, Y is output and X1, X2, X3 and X4 are vectors of control
variables. We actually use a sixth order series in ln(G/A) but suppress that here
for notational simplicity.
We examine the long run effects in the model, and so set Rit = Rit−1 and

Gj =
Rj

r+δ
where r is the discount rate and δ is the depreciation rate used to

construct G. Then the model is

lnRi = α0 +
α2

1− α1
ln
X
j 6=i

TECHijRj +
α3

1− α1
ln
X
j 6=i

SICijRj +
α4

1− α1
X1i

lnPi = β0 +
β2

1− β1
lnRi +

β3
1− β1

ln
X
j 6=i

TECHijRj +
β4

1− β1
ln
X
j 6=i

SICijRj +
β5

1− β1
X2i

ln(V/A)i = γ0 + γ1 ln(R/A)i + γ2 ln
X
j 6=i

TECHijRj + γ3 ln
X
j 6=i

SICijRj + γ4X3i

lnYit = ϕ0 + ϕ1 lnRi + ϕ2 ln
X
j 6=i

TECHijRj,t−1 + ϕ3 ln
X
j 6=i

SICijRj,t−1 + ϕ4X4i
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where α0 = − α2+α3
(1−α1) ln(r+δ), β0 = −

β2+β3+β4
(1−β1)

ln(r+δ), γ0 = −(γ1+γ2+γ3) ln(r+
δ), and ϕ0 = −(ϕ1 + ϕ2 + ϕ3) ln(r + δ)
We take a first order expansion of ln [

P
j 6=i TECHijRj] and ln [

P
j 6=i SICijRj]

in order to approximate them in terms of lnR around some point, call it lnR0.
Take first f i = ln [

P
j 6=i TECHijRj] = ln [

P
j 6=i TECHij exp(lnRj)]. Approxi-

mating this nonlinear function of lnR,

f i ' { ln
X
j 6=i

TECHijR
0
j −

X
j 6=i
(

TECHijR
0
jP

j 6=i TECHijR0j
) lnR0j}+

X
j 6=i
(

TECHijR
0
jP

j 6=i TECHijR0j
) lnRj

≡ ai +
X
j 6=i

bij lnRj

where ai reflects the terms in large curly brackets and bij captures the terms in
parentheses in the last terms.
Now consider the term gi = ln [

P
j 6=i SICijRj].By similar steps we get

gi ' { ln
X
j 6=i

SICijR
0
j −

X
j 6=i
[

SICijR
0
jP

j 6=i SICijR0j
] lnR0j}+

X
j 6=i
(

SICijR
0
jP

j 6=i SICijR0j
) lnRj

≡ ci +
X
j 6=i

dij lnRj

Define

λi = α0 +
α2

1− α1
ai +

α3
1− α1

ci (D.1)

θij =
α2

1− α1
bij +

α3
1− α1

dij (D.2)

Using these approximations, we can write the R&D equation as

lnRi = λi +
X
j 6=i

θij lnRj +
α4

1− α1
X1i

Let λ, lnR and X1 be Nx1 vectors, and define the NxN matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎝
0 θ12 θ13 . . θiN
θ21 0 θ23 θ2N
θ31 θ32 0 θ34 . θ3N
. .
. .

θN1 θN2 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠
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Then the R&D equation can be expressed in matrix form

lnR = Ω−1λ+
α4

1− α1
Ω−1X1

=⇒
d lnR = Ω−1

α4
1− α1

dX1

where Ω = I −H.
This enables us to evaluate the firm-level distributional and macro aggregate

impact of introducing shocks to any sub-group of firms.

D.1. Amplification Effects

D.1.1. R&D equation

Using the restrictions
P

j 6=i bij =
P

j 6=i dij = 1, it can be shown that Ω × i =

(1− α2+α3
1−α1 ) ι where ι is a column vector of ones. It follows that the macro R&D

response to a unit stimulus to R&D of each firm ( α4
1−α1dX1 = 1 ) is

Ω−1 × ι =
1− α1

1− α1 − α2 − α3
x ι

In the absence of technology and product market spillovers, R&D would increase
by one percent. Thus we define the amplification effect as 1−α1

1−α1−α2−α3 − 1.

D.1.2. Patents equation

Using the approximations above, the patents equation is (ignoring constants)3

lnPi =
β2

1− β1
lnRi +

X
j 6=i

ρij lnRj +
β5

1− β1
X2i

where ρij =
β3
1−β1

bij +
β4
1−β1

dij. By similar reasoning, we define the NxN matrix

3In this experiment we assume that the only forcing variable is X1. If X2 in the patents
equation is the same as X1 (e.g. industry sales), then we need to add the direct effect of the
change in X1 on patents as well as the induced effect via R&D.
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W =

⎛⎜⎜⎜⎜⎜⎜⎝
0 ρ12 ρ13 . . ρiN
ρ21 0 θ23 ρ2N
ρ31 ρ32 0 ρ34 . ρ3N
. .
, .

ρN1 ρN2 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠
Letting d lnR and d lnP be Nx1 vectors, we get

d lnP =
β2

1− β1
d lnR+ [W × d lnR]

Using the result from the R&D amplification effect d lnR = 1−α1
1−α1−α2−α3 × ι,

we get the macro response of patents to a unit stimulus to R&D of each firm

d lnP =
1− α1

1− α1 − α2 − α3
(

β2
1− β1

× ι× ι0 +W )× ι

=
1− α1

1− α1 − α2 − α3
(
β2 + β3 + β4
1− β1

)× ι

Thus the amplification effect on patents equals 1−α1
1−α1−α2−α3 (

β2+β3+β4
1−β1

)− β2
1−β1

.

D.1.3. Tobin’s-Q and productivity equations

The calculations are completely analogous. For brevity, we do not repeat the
details here.
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APPENDIX TABLES 
 
 

TABLE A1 –  
AN EXAMPLE OF SPILLTEC AND SPILLSIC FOR FOUR MAJOR FIRMS 

 
 Correlation IBM Apple Motorola Intel 
IBM SIC 

TECH  
1 
1 

0.32 
0.64 

0.01 
0.47 

0.01 
0.76 

Apple SIC 
TECH 

 1 
1 

0.02 
0.17 

0.01 
0.47 

Motorola SIC 
TECH 

  1 
1 

0.35 
0.46 

Intel SIC 
TECH 

   1 
1 

 
Notes: The cell entries are the values of SICij = (Si S’j)/[(Si Si’)1/2(Sj S’ j)1/2] (in normal script) and 
TECHij = (Ti T’j)/[(Ti Ti’)1/2(Tj T’ j)1/2] (in bold italics) between these pairs of firms. 
 




