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Abstract

We examine the sensitivity of estimates and inequality indices to
extreme values, in the sense of their robustness properties and of their
statistical performance. We establish that these measures are very
sensitive to the properties of the income distribution. Estimation and
inference can be dramatically affected, especially when the tail of the
income distribution is heavy.
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1 Introduction

There is a folk wisdom about inequality measures concerning their empirical performance.
Some indices are commonly supposed to be particularly sensitive to specific types of change
in the income distribution and may be rejected a prior: in favour of others that are presumed
to be “safer”. This folk wisdom is only partially supported by formal analysis and it is
appropriate to examine the issue by considering the behaviour of inequality measures with
respect to extreme values. An extreme value is a observation that is highly influential on
the estimate of an inequality measure. It is clear that an extreme value is not necessarily
an error or some form of contamination. It could in fact be an informative observation
belonging to the true distribution — a high leverage observation. In this paper, we study
sensitivity of different inequality measures to extreme values, in both cases of contamination
and of high leverage observations.

What is a “sensitive” inequality measure? This issue has been addressed in ad hoc discus-
sion of individual measures in terms of their empirical performance on actual data (Braulke
1983). Some of the welfare-theoretical literature focuses on transfer sensitivity (Shorrocks
and Foster 1987) ! and related concepts. But it is clear that informal discussion is not a
satisfactory approach for characterising; furthermore the welfare properties of inequality
measures in terms of the relative impact of a transfer at different income levels will not
provide a reliable guide to the way in which the measures may respond to extreme values.
We need a general and empirically applicable tool.

The principal tool that we use for evaluating the influence of observations on estimates is the
influence function (IF'), taken from the theory of robust estimation. If the IF' is unbounded
for some values of z it means that the index estimate may be catastrophically affected by
an extreme value close to z. Cowell and Victoria-Feser (1996) show that “if the mean has
to be estimated from the sample then all scale independent or translation independent and
decomposable measures have an unbounded /F” and that inequality measures are typically
not robust to data contamination. However we will show that the [F' has a role to play
beyond the consideration of contamination on empirical estimates of inequality.

In section 2, we present some key inequality measures and their influence functions. In
section 3, we study sensitivity of these inequality measures to contamination in the data,
both in high and small incomes: we calculate the rates of increase to infinity of their
influence functions. In section 4, we study the sensitivity of inequality measures to high
leverage observations. We investigate Monte Carlo simulations to study the error in the
probability rejection of a test in finite samples. Section 5 concludes.

!Consider a small transfer from a person with income y to one with income 3’ < y: if the inequality
index I satisfies the principle of transfers then this change in the distribution reduces inequality, by an
amount AT; if the same small income transfer were to take place from a person with income y + k to one
with income y' + k (k > 0) then the inequality-reduction AT would be smaller if I satisfies the principle of
transfer-sensitivity.



2 Inequality Measure and Influence Function

Let y be a random variable — for example income — and F' its probability distribution. We
define the two moments

e = / ydF(y) and  vp= / b(y) dF (y) (1)

An inequality measure fulfilling the property of decomposability can be written as

I(F) = / F(, 1) dF (y)

where f is a function IR? — IR which is monotonic increasing in its first argument in order
to respect the principle of transfers — see Cowell and Victoria-Feser (1996). We can also
express most of the commonly-used indices as a function of the two moments pr and vp,

I(F)=¢ (vr; pr) (2)

where ¢ and 1 are functions IR? — IR and 1/ is monotonic increasing in its first argument.
For example this is true for the Generalised Entropy, Theil, Mean Logarithmic Deviation
and Atkinson measures. However, the Gini index does not belong to the class of decompos-
able measure and cannot be reduced to the form (2): this important index will be treated
separately below.

The influence function? is defined as the effect of an infinitesimal proportion of “bad”
observations on the value of the estimator. Let us define the following mixture distribution

Ge=(1—-¢F+eH (3)

where 0 < € < 1 and H is some perturbation distribution; we consider that H is the
cumulative distribution function which puts a point mass 1 at an arbitary income level z:

H(y) =u(y > 2) (4)

where +(.) is a Boolean indicator — it takes the value 1 if the argument is true and 0 if
it is false. The influence of an infinitesimal model deviation on the estimate is given by
lim_,o[(L(Ge) — I(F)) /€], or 0I(G,)/0¢€|c—o when the derivative exists. Then, the influence
function for an inequality measure defined as (2), is given by

o v, 0% Opg,

IF (z;1,F) =
(231, F) Ovg, 0€ le=0  Oug, Oe le=0

2The use of the IF to assess the robustness properties of any estimator originated in the work of
Hampel (1968, 1974) and further developed in Hampel et al. (1986). Cowell and Victoria-Feser (1996)
used it to study robustness properties of inequality measures.



From (1) and (3), we have

ve.=(1-9 [S)dF@) +eoz)  and g, =(1-9 [ydF@) e ()
Then, using (5) in (2) leads to
L

(91/F

[6() — ve] + 22 [z — ] (6)

IF (z;1,F) = 5
Hp

If IF is unbounded for some value of z it means that the estimate of the index may be
catastrophically affected by data-contamination at income values close to z. In standard
asymptotic theory (see econometric manuals), the dominant power of the sample size n of
an asymptotic expansion is commonly used as an indicator of the rate of convergence of an
estimator. Similarly, as an indicator of the rate of increase of IF' to infinity, we can use
the dominant power of z in (6).

In the light of this consider the impact of an extreme value on inequality. To assess this
we require the influence function for an observation at arbitrary point z and the rate of
increase to infinity of I[F' for specific inequality measures.

e Generalised Entropy class (« # 0,1)

= sy l() = erw = o (e ) @

where v = [ y*dF(y). From (6) we can derive its influence function,

IF (12) = [za - V] . WI/MW [z - u} 8)

It is clear that for any fixed value of « the influence function is unbounded and we have
the following situations. If @ > 1: [F' tends to infinity when 2z — oo at the rate of 2. If
0 < a < 1: IF tends to infinity when z — oo at the rate of z. If @« < 0: IF tends to
infinity when z — co at the rate of z, and when z — 0 at the rate of 2°.

e Theil index: this is the special case of the Generalised Entropy class where o« = 1,

= L1og (£) ar() =~ ~og (9)

where v = [ylogydF(y). From (6) we can derive its influence function,

IF (I) = %[zlogz - 1/} — V/-;’u[z—u] (10)

This influence function tends to infinity at the rate of z when z — oc.

e Mean Logarithmic Deviation : this is the special case of the Generalised Entropy



class where a = 0,
I = —/log <Q) dF(y) =logyu — v (11)
W
where v = [logy dF(y). From (6) we can derive its influence function,

1
IF (I}) = — [logz - 1/} + — [z — ,u} (12)
I
This influence function tends to infinity, at the [F' rate of z when z — 0o, and at the rate
of logz when z — 0.
e Atkinson class of measures (¢ > 0)

=1- [/ (%)1_5 dF(y)] ey v e#£1 (13)

where v = [ y' *dF(y). From (6) we can derive its influence function,

_£& 1
Yl--¢

)= [zl—f - u} + ”; [z - u] (14)

This influence function is unbounded and we have the following situations. If 0 < ¢ < 1:
IF tends to infinity when z — oo at the rate of z. If ¢ > 1: IF tends to infinity when
2z — 00 at the rate of 2z, and when z — 0 at the rate of z! .3

For ¢ = 1, the Atkinson index is equal to

Ih=1- elh=1-% where v= /logde(y) (15)
U
and then, its influence function is
1 e’ e’
F)=-% [logz - u} + = [z - u] (16)
7 7

which tends to infinity, when z — oo at the rate of z, and when z — 0 at the rate of log z.

e Logarithmic Variance

Iy = / [log (%)]QdF(y) =vy —2vylogu + (log p)? (17)

3Note that the Atkinson index I§ is ordinally equivalent to the Generalised Entropy index I for
e=1—a >0, and is a non-linear transformation of the latter:

I5=1-[(a® - )Ig +1]=



where v1 = [(logy)?dF(y) and v = [logy dF(y). By extension of (6) to three parameters,
we derive its influence function as

IF (Iv) = [(log2)® — v1] — 2log p[logz — vo] — %(VQ —log 1) [z — (18)

which tends to infinity at the rate of 2 when z — oo, and when z — 0 at the rate of (log 2)?.

e Gini index: there are several equivalent forms of this index, the most useful here is
1
Igmi=1—2R(F)  with  R(F) =~ / C(F:q)dg (19)
K Jo

where, for all 0 < ¢ < 1, the Quantile function Q(F’; ¢) and the Cumulative income function
C(F;q) are respectively defined by

Q(Fq)
QF;q) = inf{y|F(y) > ¢} and  C(Fiq) = /0 ydF(y) (20)

The IF of I, is given by (see e.g. Monti 1991)

IF (Igimi) = 2 |R(F) — C(F; F(2)) + i(R(F) - (1- F(z)))} (21)

which tends to infinity at the rate of z when z — oc.

3 Data contamination

We can briefly summarise the different rates of increase to infinity of the influence function
for the different class of measures in the following table?:

Measure || Generalised Entropy, I Atkinson, 15§ LogVar || Gini
a>1  0<all a=0 a<0 || 0<e<1 e=1 e>1

Z — 00 2 z z Z Z Z z z z

z2—0 - - logz 2¢ - logz 2'7¢ | (log2)? || -

Table 1: Rates of increase to infinity of the influence function

First of all, we can see that all the inequality measures discussed here have an influence
function which tends to infinity when z tends to infinity. Clearly, the measures are not
robust to data contamination in high incomes — see Cowell and Victoria-Feser (1996).
However, we can go further and see that the rate of increase of IF' to infinity, when z tends
to infinity, is faster for the Generalised Entropy measures with o > 1. In other words:

4A “” in the table corresponds to the case where IF converges to a constant coefficient.
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Remark 1: Generalised Entropy measures with o > 1 are very sensitive to high incomes
in the data.

Furthermore, we can see that, for some measures, IF' tends to infinity when z tends to zero:
the rate of increase is faster for the Generalised Entropy measures with @ < 0 and for the
Atkinson measures with € > 1. This results suggests that,

Remark 2: Generalised Entropy measures with o < 0, and Atkinson measures with
e > 1 are very sensitive to small incomes in the data.

Based on the rates of convergence from table 1, we cannot compare the speed of increase
of IF' for different values of 0 < @ < 1 and 0 < ¢ < 1. If we do not know the income
distribution, we cannot compare influence functions of different class of measures, because
the IF's are functions of moments. However, we can choose an income distribution and then
plot and compare their influence functions for this special case. Let us take the distribution
proposed by Singh and Maddala (1976), which is a member of the Burr family (type 12),
and can quite successfully mimic observed income distributions in various countries, as
shown by Brachman, Stich, and Trede (1996). The cumulative distribution function, or
CDF, of the Singh-Maddala distribution is

1

S T

(22)

We use the parameter values a = 100, b = 2.8, ¢ = 1.7, which closely mirrors the net
income distribution of German households, apart from a scale factor. It can be shown that
the moments of the distribution with CDF (22) are

J— F(1+ab™)T(c—ab™)
['(c)

B = [ vdF) - (23)
0

where I'(z) is the gamma function (see e.g. McDonald 1984). Using (23) in (7) gives

us true values of Generalised Entropy measures for the Singh-Maddala distribution, from

which we can derive true values of Theil (9) and Mean Logarithmic Deviation (11) measures

by I’Hopital’s rule, we obtain

E(ylogy) = pupb ' (Y(b~" +1) = ¢p(c = b7") — loga)
E(logy) = b~ ((1) — ¢(c) — loga)

where 1(z) = I'(2)/T'(2) is the digamma function. With these moments, we can compute
true values of Generalized Entropy measures. For our choice of parameter values, we
have 12 = 0.162037, I}, = 0.140115, I%° = 0.139728, I% = 0.146011, I;' = 0.189812,
1152 = 0.386647. In addition, we approximate true values of Logarithmic Variance and
Gini measures from a sample of 10 millions observations drawn from the Singh-Maddala
distribution: Iy = 0.332128 and Ig;,; = 0.288714.
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Figure 1: IFs of Generalised Entropy If; Figure 2: IFs of Atkinson I

In order to compare different IF's we need to normalize them: we divide the influence
function by its index: IF (I(F))/I(F), that we call relative influence function. In figure 1,
we plot the relative influence functions for different Generalised Entropy measures, with
a=2,1,0.5,0,—1, -2, and for Gini index, as functions of z in the z-axis. For Generalised
Entropy measures, we can see that, when z increases, IF' increases faster with high values
of o ; when z tends to 0, IF' increases faster with small values of . IF of Gini index
increases slower than others but is larger for moderate values of z. In figure 2, we plot
relative influence functions for different Atkinson measures, with ¢ = 2,1,0.5,0.05, for
the Logarithmic Variance and for the Gini index. For Atkinson measures, we can see an
opposite relation: when z increases, IF' increases as quickly as ¢ is positive and small ;
when z tends to 0 [F' increases as quickly as ¢ is large. IF of Logarithmic Variance
increases slowly as z tends to infinity, but quickly as z tends to zero. Once again, the IF
of Gini index increases slower and is larger for moderate values of z.

Comparison of the Gini index with the Logarithmic Variance, Generalised Entropy or Atkin-
son influence functions does not lead to clear conclusions. We used a simulation study to
evaluate the impact of a contamination in large and small observations for different mea-
sures of inequality. We simulated 100 samples of 200 observations from the Singh-Maddala
distribution. Then, we contaminated one observation chosen randomly by multiplying it
by 10 in the case of contamination in high values, and by dividing it by 10 in the case of
contamination in small values. Let Y;, 2 =1,..., N, be an IID sample from the distribution
F, F'is the empirical distribution function of this sample and £* the empirical distribution
function of the contaminated sample. Then, for each sample, we compute the quantity

RC(I) = % (24)
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which evaluates the relative impact of a contamination on the index [ (ﬁ’ ). We can then
plot and compare realizations of RC(I) for different measures. In order to have a plot that
is easy to interpret, we sorted the samples such that realizations of RC(I) for one chosen
measure are increasing.

Figure 3 plots realizations of RC(I) for the Gini index, the Logarithmic Variance index
and the Generalised Entropy measures with o = 2,1,0.5,0,—1,2, when contamination is
in high values. The y-axis is RC(I) and the z-axis is the 100 different samples, sorted such
that Gini realizations are increasing. Figure 4 plots realizations of RC(I) for the same
measures when contamination is in small values. We can see from figures 3 and 4 that Gini
index is less affected by contamination than Generalised Entropy measures. However, the
impact of the contamination on Logarithmic Variance and Generalised Entropy measures
with 0 < a <1 is relatively small compared to measures with o < 0 or @ > 1. In addition,
the Generalised Entropy measures with 0 < o < 1 is less sensitive to contamination in
high values if o is small. Finally, the Logarithmic Variance index is slightly less sensitive to
high incomes than the Gini, but nearly as sensitive to small incomes than the Generalised
Entropy with o = —1. These results suggest that,

Remark 3: The Gini index is less sensitive to contamination in high incomes than the
Generalised Entropy class of measures, which is less sensitive as « is small.

Similarly to the Generalised Entropy class of measures, we find the same results for the
Atkinson class of measures with an opposite relation to its parameter (¢ = 1 — «).



4 High leverage observations

An extreme value is not necessarily an error or some sort of contamination: it could be
an observation belonging to the true distribution and that conveys important information.
This observation is extreme in the sense that its influence on the inequality measure estimate
is very important. Such observations can have important consequences on the statistical
performance of the measure. Davidson and Flachaire (2001) showed that, even in very
large samples, the error in the rejection probability, or ERP, of an asymptotic or bootstrap
test based on the Theil index, can be significant and that tests are therefore not reliable.
They investigated three main causes of these bad performances. First, almost all indices
are nonlinear functions of sample moments, thereby inducing biases and nonnormality in
estimates of these indices. Second, estimates of the covariances of the sample moments
used to construct indices are often very noisy. Third, the indices are often extremely
sensitive to the exact nature of the tails of the distribution, with the result that a bootstrap
sample in which nothing is resampled from the tail can have properties very different from
those of the population. Their simulation experiments show that the third cause is often
quantitatively the most important. Our remark 3 suggests that statistical performance
should be better with the Mean Logarithmic Deviation index and Generalised Entropy
measures with 0 < « < 1, than with Theil index. In this section, we study statistical
performance of different measures based on Monte Carlo simulation, we study ERPs of
asymptotic and bootstrap tests for different measures of inequality.

IfY;,2=1,...,N,is an IID sample from the distribution F', then the empirical distribution
function of this sample is

>

1 N
:NZLY<y (25)
i=1

A decomposable inequality measure can be estimated by using the sample moments

1 & 1 &
Hp = —ZY;, and Vi = —Z (26)
N i=1 N i=1
which are consistent and asymptotically normal, and
I(F) =9 (ve; pg) (27)

This estimate is also consistent and asymptotically normal, with asymptotic variance that
can be calculated by the delta method. Specifically, if ¥ is the estimate of the covariance



matrix of v and %, the variance estimate for I(F) is

(28)

o | 1 [8Y/ovg
VI(F)) = [0/ov;; 0¢/ops] X [WmMJ

Using the estimate (27) and the estimate (28) of its variance, it is possible to test hypotheses
about I(F) and to construct confidence intervals for it. The obvious way to proceed is to
base inference on asymptotic ¢ statistics computed using (27) and (28). Consider a test of
the hypothesis that I(F) = I, for some given value I5. The asymptotic ¢ statistic for this
hypothesis, based on I = I(F), is

W= (I - L)/(V(I))"?, (29)

where by V(I) we denote the variance estimate (28). We compute an asymptotic P value
based on the standard normal distribution or on the Student distribution with N degree
of freedom. For the particular case of the Gini index, its estimate is computed by

L DX
Ioimi=—Y_ Y |[Yi-Yj| (30)
Pi 5= j=1

and its standard deviation is computed as defined by Cowell (1989). Then, an asymptotic
P value is calculated from (29).

In order to construct a bootstrap test, we resample from the original data. Since the test
statistic we have looked at so far is asymptotically pivotal, bootstrap inference should be
superior to asymptotic inference because of Beran’s (1988) result on prepivoting. After
computing W from the observed sample, one draws B bootstrap samples, each of the same
size N as the observed sample, by making N draws with replacement from the N observed
incomes Y;, i = 1,..., N, where each ¥; has probability 1/N of being selected on each draw.
Then, for bootstrap sample j, j = 1,..., B, a bootstrap statistic W} is computed in exactly
the same way as W from the original data, except that I in the numerator (29) is replaced
by the index I estimated from the original data. This replacement is necessary in order
that the hypothesis that is tested by the bootstrap statistics should actually be true for
the population from which the bootstrap samples are drawn, that is, the original sample.
Details of the theoretical reasons for this replacement can be found in many standard
references, such as Hall (1992). This method is known as the percentile-t or bootstrap-t
method. The bootstrap P value is just the proportion of the bootstrap samples for which
the bootstrap statistic is more extreme than the statistic computed from the original data.

5Then, ¥ is a symmetric 4 x 4 matrix with arguments calculated as: £1; = N™' N (4(Y;) — v)?,
Yoy = N1 Zfil(y; — /1,13,)2 and Y19 = Y91 = Nt EZI\LI(Y; - /1/13')(¢(}/Z) - VF)'
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Thus, for the usual two-tailed test, the bootstrap P value, P*, is
1B
Pr= =S ulwil > W), (31)
7j=1

where ¢(.) is the indicator function. For the investigation carried out here, it is more
revealing to consider one-tailed tests, for which rejection occurs when the statistic is too
negative.

Figure 5 shows ERPs of asymptotic tests at the nominal level 0.05, that is, the difference
between the actual and nominal probabilities of rejection, for different Generalised Entropy
measures, for Logarithmic Variance index and for the Gini index, when the sample size
increases®. The plot for a statistic that yields tests with no size distortion coincides with
the horizontal axis. Let us take an example from figure 5: for N = 2,000 observations,
the ERP of the Generalised Entropy measure with o = 2 (GE2) is approximately equal
to 0.11: it means that asymptotic test over-rejects the null hypothesis and that the actual
level is 16%, when the nominal level is 5%. In our simulations, the number of replications
is 10,000. From Figure 5, it is clear that the error in the rejection probabilities, or ERP,
of asymptotic tests is very large in moderate samples and decreases very slowly as the
sample size increases; the distortion is still significant in very large samples. We can see
that the Gini index, Logarithmic Variance index and Generalised Entropy measure with
a = 0 perform similarly. We investigate additional experiments with two extremely large
samples, 50,000 and 100,000 observations. The results are shown in table 2 from which we
can see that the actual level is still nearly twice the nominal level for Generalised Entropy

SN = 100; 500; 1,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; 9,000; 10,000

11



Measure Iz I}, I%5 1o I;!
N=50,000 | 0.0492 0.0096 0.0054 0.0024 0.0113
N=100,000 | 0.0415 0.0096 0.0052 0.0043 0.0125

Table 2: ERP of asymptotic tests at nominal level 5% in huge sample.

measures with o = 2. The distortion is very small in this case only for v = 0, 0.5.

Figure 6 shows the ERPs of bootstrap tests. Firstly, we can see that distortions are reduced
for all measures when we use the bootstrap. However, ERP of the Generalised Entropy
measure with o = 2 is still very large even in large samples, ERPs of Generalised Entropy
measure with a = 1,0.5, —1 is small only for large samples. The Generalised Entropy
measure with @ = 0, or Mean Logarithmic Deviation index, performs better than others
and its ERP is quite small for 500 or more observations. These results suggest that,

Remark 4: The rate of convergence to zero of the error in the rejection probability
of asymptotic and bootstrap tests is very slow. Tests based on Generalised Entropy
measures can be unreliable even in large samples.

Computations for the Gini index are very time-intensive and we computed ERPs of this
index only for N = 100; 500; 1,000 observations: we found similar ERPs with Generalised
Entropy index with o« = 0. Experiments on Logarithmic Variance index show that it
performs similarly to the Gini index and the Generalised Entropy measure with o = 0.
Moreover, additional experiments have been done for the Atkinson class of measures, we
find similar results with an opposite relation to . These results lead us to conclude that,

Remark 5: Generalised Entropy with o = 0, Atkinson with € = 1, Logarithmic Vari-
ance and Gini indezes perform similarly in finite samples.

In practice, we can detect extreme values by considering the sensitivity of the index estimate
to influential observations, in the sense that deleting them would change the estimate
substantially. The effect of a single observation on I can be seen by comparing I with
I the estimate of I(F) that would be obtained if we used a sample from which the it!
observation was omitted. Let us define IF ; as a measure of the influence of observation i,
as follows:

IF; = (I-19)/1 (32)

Figure 7 plots the values of F ; for different inequality measures and for the 10 highest,
the 10 in the middle and the 10 smallest observations of a sorted sample of N = 5,000
observations drawn from the Singh-Maddala distribution. We can see that observations
in the middle of the sorted sample don’t affect estimates compared to smallest or highest
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Figure 7: Influential observations

observations. Moreover, we can see that highest values are more influential than smallest
values. Furthermore, we can see that the highest value is very influential for the Generalised
Entropy measure with o = 2, its estimate should be modified by nearly 0.018 if we remove
it, respectively more influential than for « = 1, « = 0.5, « = 0, @ = —1 and Gini
index. On the other hand, we can see that the Generalised Entropy index with a = —1 is
highly influenced by the smallest observation. Finally, this plot can be extremely useful in
practice to identify extreme values which may affect estimates substantially, and to select
an inequality measure more or less sensitive to these outliers relatively to our preceding
study and remarks.

5 Income distribution

Results of preceding sections are based on a specific choice of the income distribution:
Singh-Maddala distribution with special choice of parameters. In this section, we extend
our preceding results to other choice of parameters and distributions. In addition to the
Singh-Maddala, we use the Pareto and the Lognormal distributions with different choices
of parameters.

The CDF of the Singh-Maddala distribution is defined in (22). In our simulation, we
use a = 100, b = 2.8 and ¢ = 0.7,1.2,1.7. Singh-Maddala distributions for these different
values of ¢ are plotted in figure 8, we can see that the upper tail is thicker and longer as ¢
decreases.
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The CDF of the Pareto distribution (type I) is defined by

(i 0) =1~ (%) (33)

where y; > 0 is a scale parameter and o > 0. The formulas for Theil and Mean Logarithmic
deviation measures, given that the underlying distribution is Pareto, are respectively

and I(Il) = —— — log

(34)

see Cowell (1977). In our simulation, we use y; = 0.1 and « = 1.5, 2,2.5. Pareto distribu-
tions for these different values of o are plotted in figure 10, we can see that the upper tail
is thicker and longer as « decreases.

The CDF of the Lognormal distribution is defined by

Yy
Ay; 1, 02) =/
0

1 ( 1 9

exp| — —|logz — ) dx 35
5 cp| — g zllog T — 4 (35)
The formulas for Theil and Mean Logarithmic deviation measures, given that the underlying
distribution is Lognormal, are both equal to

Ig(A) = Ig(A) = 0*/2 (36)

see Cowell (1977). In our simulation, we use 4 = —2 and o = 1,0.7,0.5. Lognormal
distributions for these different values of o are plotted in figure 12, we can see that the
upper tail is thicker and longer as o increases.

As described in section 3 at figure 3, we use a similar simulation study to evaluate the
impact of a contamination in large observations for the Mean Logarithmic Deviation
index and for the different underlying distributions described above. Respectively, figures 9,
11 and 13 plot results of our three different choices of parameters for Singh-Maddala, Pareto
and Lognormal distributions. In all cases, we can see that the Mean Logarithmic Deviation
index is more sensitive to contamination when the upper tail is heavy, it is to say thick
and long (¢ = 0.7, « = 1.5, 0 = 1), and less sensitive when the upper tail is thin and short
(c=17, aa=25,0=0.5)

Remark 6: Mean Logarithmic Deviation index is more sensitive to contamination in
high incomes when the underlying distribution upper tail is heavy.

As described in section 4, we study statistical performance of Theil and Mean Logarithmic
Deviation measures for the different underlying distributions described above. Table 3 gives
result of ERPs of asymptotic test for Mean Logarithmic Deviation index. The column 4,
Singh-Maddala with ¢ = 1.7 is similar to GFEy curve in figure 5. First, we can see that in
many cases ERP is quite large and decreases slowly as the number of observations increases.
In addition, if we compare columns, we can see that ERPs are more significant with heavy
upper tails (¢ = 0.7, @ = 1.5, ¢ = 1) than with thin and shorter upper tails (¢ = 1.7,
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a = 2.5, 0 = 0.5). Finally, ERPs are smaller with Lognormal than with Singh-Maddala
distributions, which ERPs are smaller than with Pareto distributions. Lognormal upper
tail are known to decrease faster, as exponential function, than Singh-Maddala and Pareto
distributions, which decrease as power function. Table 4 presents ERPs of bootstrap tests
for Mean Logarithmic Deviation index.

Tables 5 and 6 present respectively ERPs of asymptotic and bootstrap tests for Theil index.
We can see the same results from all those tables,

Remark 7: Error in the rejection probability, or ERP, of an asymptotic and bootstrap
test based on the Mean Logarithmic Deviation or Theil index, s more significant when
the underlying distribution upper tail s heavy.

In addition, we can see that bootstrap tests largely improve numerical performance.

6 Conclusion

Extreme values are important for the empirical analysis of income distribution. This is
already known in the case of data-contamination, but it is also true in cases where the
extreme values “really belong” to the data. Very large incomes matter both in principle
and practice when it comes to inequality judgments.

A careful analysis of the behaviour of inequality indices using standard statistical techniques
yields a number of insights into their performance with respect to extreme values. We can
summarise some of the main points that emerge from our approach by focusing on two
issues that often arise in the context of applied work on income distribution

1. Why use the Gini coefficient? Apart from its intrinsic attractions (for example its
undeniable intuitive appeal) there is sometimes a supposition that it is going to
be less prone to the influence of outliers than some of the alternative candidate
inequality indices. As might be expected the Gini coefficient is indeed less sensitive
than Generalised entropy indices to contamination in high incomes. However, in terms
of performance in finite samples there is little to choose between the Gini coefficient
and I% the GE index with o = 0 (or equivalently the Atkinson index with ¢ = 1).
There is also little to choose between the Gini and the logarithmic variance.

2. There is piece of folk wisdom which suggests that “the bootstrap will get you out of
trouble.” Our results make clear that the bootstrap performs better than asymptotic
methods, but does it perform well enough? From Figure 6 we see that, in terms of
the ERP, the bootstrap does well only for the Gini, I% and the logarithmic variance.
Furthermore if we use a distribution with a heavy upper tail (Singh-Maddala with a
low value of ¢ and Pareto with low value of the Pareto coefficient) Table 4 shows that
the bootstrap performs poorly in the case of I, even in large samples.
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Singh-Maddala Pareto Lognormal
Nobs || ¢c=0.7 ¢=12 ¢=17|a=15 a=2 a=25|0c=1 =07 =05

100 || 0.2504 0.1030 0.0711 | 0.4078 0.2876 0.2392 | 0.0947 0.0712  0.0581

500 || 0.1749 0.0578 0.0308 | 0.3226 0.1894 0.1427 | 0.0418 0.0238  0.0186
1000 || 0.1553 0.0503  0.0244 | 0.2933 0.1647 0.1188 | 0.0390 0.0248  0.0207
2000 || 0.1345 0.0350 0.0173 | 0.2753 0.1392 0.0958 | 0.0225 0.0134  0.0088
3000 || 0.1163 0.0285 0.0129 | 0.2625 0.1243 0.0785 | 0.0208 0.0125  0.0094
4000 || 0.1135 0.0236 0.0083 | 0.2607 0.1168 0.0741 | 0.0140 0.0071  0.0048
5000 || 0.1033 0.0222 0.0110 | 0.2509 0.1080 0.0655 | 0.0134 0.0042  0.0028

Table 3: ERP of asymptotic tests at nominal level 5%, MLD measure (I%).

Singh-Maddala Pareto Lognormal
Nobs || ¢=0.7 ¢=12 ¢=17|a=15 a=2 a=25| =1 =07 oc=0.5

100 || 0.1378 0.0370 0.0160 | 0.2155 0.1399 0.1097 | 0.0398 0.0197 0.0118

500 || 0.0957 0.0251 0.0067 | 0.1859 0.0940 0.0654 | 0.0136 0.0041 -0.0020
1000 (| 0.0886 0.0236 0.0059 | 0.1742 0.0862 0.0566 | 0.0164 0.0070  0.0051
2000 || 0.0767 0.0127 0.0031 | 0.1655 0.0755 0.0455 | 0.0073  0.0007 -0.0024
3000 || 0.0668 0.0116 0.0016 | 0.1644 0.0637 0.0380 | 0.0030 -0.0001 -0.0009
4000 || 0.0677 0.0073 -0.0016 | 0.1639 0.0652 0.0374 | -0.0001 -0.0024 -0.0027
5000 || 0.0629 0.0090 0.0029 | 0.1566 0.0623 0.0334 | -0.0013 -0.0034 -0.0045

Table 4: ERP of bootstrap tests at nominal level 5%, MLD measure (I%).

Singh-Maddala Pareto Lognormal
Nobs || c=0.7 ¢=12 ¢=17|a=15 a=2 a=25|0c=1 0c=07 o0c=0.5

100 || 0.4527 0.2008 0.1108 | 0.6567 0.4478 0.3549 | 0.1990 0.1234  0.0880

500 || 0.3476 0.1315 0.0647 | 0.5497 0.3413 0.2442 | 0.1109 0.0588  0.0357
1000 || 0.3099 0.1121 0.0553 | 0.5265 0.3011 0.2086 | 0.0907 0.0518  0.0325
2000 || 0.2823 0.0938 0.0406 | 0.4982 0.2722 0.1792 | 0.0620 0.0326  0.0184
3000 || 0.2661 0.0773 0.0338 | 0.4830 0.2544 0.1620 | 0.0584 0.0277  0.0175
4000 || 0.2585 0.0738 0.0278 | 0.4741 0.2490 0.1548 | 0.0455 0.0210  0.0106
5000 || 0.2450 0.0646 0.0265 | 0.4662 0.2362 0.1424 | 0.0419 0.0174  0.0087

Table 5: ERP of asymptotic tests at nominal level 5%, Theil measure (I3).

Singh-Maddala Pareto Lognormal
Nobs || ¢=0.7 ¢=12 ¢=17|a=15 a=2 a=25|0c=1 =07 oc=0.5

100 || 0.2717 0.1156 0.0484 | 0.3933 0.2421 0.1789 | 0.1040 0.0578  0.0343

500 || 0.2049 0.0718 0.0326 | 0.3440 0.1917 0.1268 | 0.0516 0.0239  0.0095
1000 || 0.1832 0.0610 0.0301 | 0.3279 0.1730 0.1128 | 0.0462 0.0233  0.0129
2000 | 0.1669 0.0488 0.0183 | 0.3139 0.1556 0.0993 | 0.0296 0.0130  0.0042
3000 || 0.1594 0.0402 0.0144 | 0.3108 0.1505 0.0886 | 0.0266 0.0087  0.0013
4000 || 0.1537 0.0383 0.0107 | 0.3070 0.1447 0.0847 | 0.0215 0.0023 -0.0012
5000 || 0.1478 0.0357 0.0118 | 0.3022 0.1378 0.0788 | 0.0166 0.0022 -0.0037

Table 6: ERP of bootstrap tests at nominal level 5%, Theil measure (I}).
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