View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Papers in Economics

STICERD

Suntory and Toyota International Centres
for Economics and Related Disciplines

Distributional Analysis Research Programme
Discussion Paper

Robustness Properties of Inequality
Measures: The Influence Function and

the Principle of Transfers

Frank A Cowell and Maria-Pia Victoria-Feser
October 1993

LSE STICERD Research Paper No. DARP 01

This paper can be downloaded without charge from:
http://sticerd.lse.ac.uk/dps/darp/darpl.pdf

Copyright © STICERD 1993


https://core.ac.uk/display/7119419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ROBUSTNESS PROPERTIES OF INEQUALITY MEASURES

by

Frank Cowell and Marica—Pia Victoria-Feser’
London School of Economics and Political Science

The Toyota Centre

Suntory and Toyota International Centres for
Economics and Related Disciplines

London School of Economics and Political Science

Discussion Paper Houghton Street
No.DARP/1 London WC2A 2AE
October 1993 Tel.: 020-7955 6678

! Partially supported b y the 'Fond National Suisse pour la Recherche Scientifique'. The

authors would like to thank C Dagum, S Howes, S Jenkins, P Lambert and S Yitzhaki for
their comments on earlier versions.



Abstract

Inequality measures are often used fot summarise information about empirical
income distributions. However, the resulting picture of the distribution and of changes
in the distribution can be severely distorted if the data are contaminated. The nature
of this distortion will in general depend upon the underlying properties of the
inequality measure. We investigate this issue theoretically using a technique based
on the influence function, and illustrate the magnitude of the effect using a
simulation. We consider both direct nonparametric estimation from the sample, and
indirect estimation using a parametric model. In the latter case we demonstratge the

application of a robust estimation procedure.
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1 Introduction

This paper is about the robustness properties of the estima-
tors of inequality measures and other related tools of income
distribution analysis.

There are various approaches in the literature to the defi-
nition of an inequality measure. For our purposes we see an
inequality measure simply as a member of a class of functions
that is defined by a set of essential characteristics. The class
of functions defines in turn a set of statistics that can be used
to characterise distributions of income, wealth, and so on.

The essential characteristics of an inequality measure are the
subject of some debate. However, many would accept that the
principal property which should be possessed by an inequality
measure is respect for the principle of transfers (Dalton 1920).
In addition it is often required that the class of admissible in-
equality measures satisfy properties such as scale independence
or decomposability.

There is evidently also room for debate about what consti-
tutes a “good” estimator of a statistic - in particular an in-
equality statistic. The purpose of this paper is to examine the
formal relationship between the economic properties that the

inequality measure should fulfil and the statistical properties



that are considered appropriate for the corresponding estima-
tor. This is important because drawing inferences about eco-
nomic inequality from, for example, income distribution data
plays an important part in political debates about economic
and social trends, and in a variety of applied studies in the
field of welfare economics. However, the statistical basis on
which the inferences are drawn is not always spelt out, and so
the relationship between the numbers observed in a particu-
lar sample and the supposed underlying concept of inequality
within the target population may be different from that sug-
gested by superficial appearances.

These empirical inequality measures are actually estimators
of the underlying inequality: in a population from a particular
set of data, one computes an estimate of the non-measurable
“true” value of this inequality. We are particularly interested
here in the robustness properties of these estimators. Robust-
ness is a growing field of research in statistics that began with
the pioneering paper of Huber (1964). It is a purely statistical
concept which in a sense measures a “qualitative” aspect of any
estimator, more precisely its stability under non-standard con-
ditions. In particular, we will use the Influence Function (IF)
(Hampel 1968, Hampel 1974), a measure of robustness which

indicates the extent to which an estimator is influenced by an



infinitesimal amount of “errors” either in the specification of
the underlying model or in the data. These errors are com-
monly called data conteminations. Moreover, for those who
would argue that the “errors” can satisfactorily be determined
in a pragmatic or subjective fashion, it is important to point
out that the IF is also a tool that enables one to control for
such errors systematically.

As we will see in section 2, the IF of an estimator is re-
lated to the bias on this estimator caused by an infinitesimal
amount of data contamination: an unbounded IF means that
this bias can be infinite. In this paper we want to show that
in very general cases and for a very large class of inequality
measures, we have unbounded IF's, meaning not only that the
bias on these measures can be very large, but that this bias
can actually be caused by a single observation.

The behaviour of the IF will depend on the type of statistic
under consideration, and so a principal question which we wish
to address is whether there is a systematic relationship between
the properties that are taken to be defining characteristics of
the class of inequality measures and the behaviour of the I'F.

Why is this important to researchers in the field of inequality
analysis? It is well known that economic data in particular are

far from being clean; this usually means that some observations



may be present which in a sense have nothing to do with the
majority of the data. These rogue data are usually a result of
the collection procedures. A simple example is the “decimal
point error”: the coder inadvertently puts the decimal point in
the wrong place and thus multiplies an observation by a factor
of 10. More subtle is the week-month confusion where data are
supposedly collected on weekly income, but some respondents
actually report incorme per month. We give an example of the
effect of these kinds of contamination in subsection 5.1.

If those observations have a negligible impact upon the anal-
ysis, then obviously there is nothing to worry about. Unfor-
tunately, in most cases, those observations are “extreme” (for
example of a different order of magnitude)! and, as we will see
below, they can then drive the value of the inequality measure
by themselves. Such extreme values may of course be pick-
ing up true information; but very often in empirical work a
case can be made for dropping an “obviously” inappropriate
or suspect observation that may be the result of recording er-
ror or other contamination. This type of ad hoc procedure is
unsatisfactory, but if it is not done then the result of the anal-

ysis may be seriously biased so that the inequality measure no

'In the 1981 and 1986 Family Expenditure Survey for the UK the top-most income in
the sample has a value twice that of the next-highest income. It is arguable that an outlier

of this sort should be treated as exceptional and dropped from the sample (see Jenkins
1992).



longer represents what it was intended to represent. In other
words, the whole effort put into the construction of an inequal-
1ty measure satisfying important economic properties is simply
lost because the estimate deviates substantially from a repre-
sentation of the “true” value of the inequality measure. For
example, it is well known that Atkinson inequality indices, for
values of the inequality aversion parameter greater than unity,
are extraordinarily sensitive to abnormally small incomes (see
for example Cowell 1977, p. 132-134, Pudney and Sutherland
1992); for this reason it has become common practice just to
drop unreasonably small incomes (along with zero and negative
values?®) from the sample (see Jenkins 1992). What is perhaps
less well recognised is that comparable problems will arise with
other inequality measures that bear a family relationship to
the Atkinson indices, but are extraordinarily sensitive to ab-
normally high incomes. However, the aim of this paper is not
only to show analytically why different inequality measures are
sensitive to extreme observations, but also to propose a statis-
tical procedure for the estimation of inequality measures which
avoids subjective pre-screening of the data.

We believe that robust inequality measures can provide the

2The Atkinson index is not defined for negative incomes. For inequality aversion greater
than unity, the Atkinson index tends to its maximum value as any sample observation
approaches zero.



researcher with a useful supplement of information concern-
ing the true underlying structure of inequality for a given data
sample. Indeed, the effect of data contamination in the tails of
the distribution can result in serious confusion between quite
different underlying income distributions, as shown in figure 1.
Suppose the shape of the income distribution is represented by
the continuous frequency distribution in part A of the figure,
but that in a sample from the population there are some rogue
observations represented by the point mass labelled “contami-
nation”. Then, according to inequality statistics that are fairly
sensitive to the top end of the distribution, the implied picture
of the income distribution will be indistinguishable from that
represented in part B of the figure (see Victoria-Feser 1993 for
an empirical example). “Common sense” might suggest that
the rogue observations be dropped from the sample, in such a
situation, but “common sense” may not be an adequate guide
to sound statistical practice when the data set is complex.
This paper is organized as follows: in the next section we
introduce the I F. In section 3, we study the robustness proper-
ties of a general class of inequality measures and show that the
principle of transfers alone is insufficient to determine whether
or not the I'F' of these measures is bounded. We then con-

sider the properties of an important subclass, decomposable



inequality measures: in section 4 we analyse the behaviour
of this class under mean-preserving contaminations and show
that under some important cases, the corresponding I'F' is un-
bounded (see proposition 1). Moreover, in section 5 we address
the problem of arbitrary contaminations (where the mean is
also affected by model deviations), and show that under these
circumstances the IF' is always unbounded. In section 6, the
case of parametric models for the distribution of income is
analysed through the generalized entropy class of income in-
equality measures. In section 7 we propose a robust method
of computing inequality measures and present some simulation

results. Section 8 concludes.

2 The influence function

The use of the IF to assess the robustness properties of any
estimator was originated by Hampel (1968), Hampel (1974)
and further developed in Hampel, Ronchetti, Rousseeuw, and
Stahel (1986). It is defined as the influence of an infinitesimal
proportion of “bad” observations on the value of the estimate.
We first introduce some notation. Let I be the (true) in-
equality measure that we estimate by means of a sample z1,. .., z,,

where the z; are realizations of a random variable X. For exam-

ple, X is the income variable when measuring income inequal-
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ity. We denote by I(F') the functional version of I, depending
on the true distribution F'. An estimator of I(F') is obtained
when replacing F' by either F},, the empirical distribution of X
given by
1 n
Fo(z)=— ) Al 1
(2) =~ Z (a:) (1)

where A, is a point mass in z, or Fj;, an estimated parametric
model, such that X ~ Fj. Let us also define the following

mizture distribution
Ge=(1—-¢)F+¢cH (2)

where 0 < ¢ < 1 and H is some perturbation distribution. For
example, H could be the distribution A, which puts a point
mass 1 at any point 2. Then G, is the mixture model from
which an observation has probability (1 —¢) of being generated
by F' and a probability ¢ of being an arbitrary value z. In our
case, as we will see later, it is more convenient to consider a

distribution H with corresponding probability distribution

4] if r = 21
dH(z)={ ... (3)

oy, fzr=2z,

Vi, ; > 0, and > o; = 1.



The influence of an infinitesimal model deviation (or model

contamination) on the estimate is then given by

[I(Ge) -~ I(F)]

£

lim
g—{

(4)
or, when the derivative exists, by

%,
%I(Gs)

(3)

=0

It should be stressed that (5) is a slightly different definition
from the usual IF. Indeed, when H = A,, then it is equal
to the IF, denoted by IF(z;I,F). It gives the influence on
the estimator I of an infinitesimal amount® of contamination
at the point z. The IF then depends on the position of 2 with
respect to the position of the majority of the data. Usually,
the IF is maximal when z approaches extreme values such as
oo, —oo or 0.

When H is any distribution, then (5) can be called an in-
tegrated IF (I1F) because it is equal to [ IF(z;I, F)dH(z).
However, in our examples, H will be a distribution which puts
different point masses at different points depending on a com-
mon point z. Therefore, by extension of the definition of the

IF, we will consider that with such a distribution H, (5) is

3Infinitesimal means here that the probablity ¢ that this contamination occurs tends
to zero.



still an IF.

The IF is a very useful tool not only as a measure of the
influence of errors in the model on the value of the estimator,
but also because it can be seen as a first order approximation
of the bias of the estimator when the model is misspecified as
G¢ rather than F. Indeed, if we were able to compute the
maximum bias supg, [[{G,) — I(F)| as a function of ¢, then
sup, [ F(z; I, F)| would appear to be nothing else but the slope
of this function at € = 0 (see figure 2 and Hampel, Ronchetti,
Rousseeuw, and Stahel 1986). Therefore, we can see why it
is important for an estimator to have at least a bounded IF

which ensures a bounded bias, near ¢ = 0.

3 Robustness properties of a general class of

inequality measures

Although the results presented in this paper apply to any in-
equality measure for the distribution of any random variable,
we shall find it convenient thoughout to refer to income dis-
tribution. We first consider whether inequality measures sat-
isfying the principle of transfers will automatically vield un-
bounded IF's under very general conditions.

We define a general class of income inequality measures I{ F')



by the set of all I(F) which satisfies the principle of transfers
(Dalton 1920). In other words if, say, I*(F) belongs to this
class, then the transfer of an arbitrary positive amount of in-
come from a poorer income receiver to a richer income receiver
(such that the mean of the distribution is preserved), increases
the value of I*(F).

In order to study the effect on the estimator of an infinitesi-
mal amount of contamination, we suppose that the underlying
distribution lies in a neighbourhood of the model as defined in
(2). H is in principle any perturbation distribution. In our
case, an appropriate perturbation distribution is given by H()
with corresponding probability distribution

JHO(z) = 05 ifx=pu—2=uz(2) (©)

05 fx=p+2=u1a9z2)

where 0 < 2 < u. Let us denote by ng) the mixture distribu-
tion

G = (1 - e)F + eH®

then

lim
e—0

I(GP) - I(F)
£

} = IF(z1,F)

This kind of perturbation distribution is convenient because it



preserves the mean of the distribution*:

wG) = [adei)
= (1= )u(F) + 3e(u(F) - 2) + 5e(u(F) + 2)
= u(F) (7)

It might be thought that the principle of transfers alone
would give rise to an unboundedness problem: imagine a data
contamination simultaneously at y— z and p+ z and then con-
sider increasing z. The principle of transfers implies that the
empirical value of the inequality measure must increase and the
question arises whether, for an indefinitely large value of z, the
contamination will totally dominate the inequality measure. In
other words, is sup, |IF(z;I,F)| = lim,... IF(2;I,F) = oo,
only by virtue of the principle of transfers?

Suppose that z* > z, then by the principle of transfers we

have

I(GEY) > 1(GY) (8)

The IF of these inequality measures are then obtained by
subtracting I(F'), dividing by ¢ and taking the limit when £ —

4We drop this restriction on the mean-preserving rature of the contamination in section
5 below.



0. We have

. I(GEy - I(F) > lim I(GY) — I(F)

e—0 £ e—0 €

(9)

l.e.

IF(z%1,Fy > IF(2;1,F) (10)

However, we cannot conclude from (10) that the IF of an in-
equality measure which satisfies the principle of transfers nec-
essarily is unbounded. Even if z may take any real value, the
IF may actually be everywhere increasing and bounded; fur-
thermore the admissible values of 2 may be restricted because
the relevant support of F is - for some inequality measures -
not the entire real line. In order to obtain sharper results, it is
useful to consider a restricted class of measures. Under this re-
striction we will find that the principle of transfers can indeed
give rise to problems of unboundedness for certain well-defined

types of contamination.

4 Decomposable inequality measures under

mean-preserving contaminations

In this section we restrict our considerations to mean-preserving
contaminations. We show that any inequality measure belong-

ing to the class of decomposable inequality measures satisfy-
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ing the principle of transfers and with corresponding income
variable defined under an unrestricted domain must have an
unbounded /F. Although we have restricted the class of in-
equality measures, the results found here are applicable to a
great number of inequality measures, such as the coefficient of
variation, the relative mean and median deviation, the vari-
ance of the logarithm of income (Gibrat 1931), members of
the generalized entropy family, Hirschman’s index (Hirschman
1945), Atkinson’s index (Atkinson 1970), Kolm’s index (Kolm
1976a, Kolm 1976b) etc. A notable exception to this class is
the Gini coeflicient. However, we will see below that the same

conclusions can be drawn for this measure too.

4.1 General properties

An inequality measure fulfilling the property of decomposabil-

ity can be written in the following form

I(F) = $J(F, u(F)) , u(F) (11)
where
HEp) = [ S mdF (), (12)

¢ and v are functions R? —» R and ¢ is monotonic Increasing

in its first argument.



In the case of decomposable measures given by (11) and (12)
where ¢ is a differentiable function, the principle of transfers

implies
$1(z2; 1) — iz p) > 0 for any =) < 2y (13)

where ¢, is the derivative of ¢ with respect to its first argument.

This result can be shown by considering an infinitesimal
transfers of income dz > 0 from a poorer income receiver to
a richer income receiver. If the income distribution before the
transfer is represented by F, then after the transfer, the new

distribution F™* is the same as F except that
327, x5 such that 2] = 21 —dr , 25 = 29 + dz and z, < 5

By construction, p(F*) = u(F) = u. The effect of this transfer
on the inequality measure is given by

A= HFY =10 = b [ asndr @), u] -
o|f smudF@ul (4

The limiting case gives
im - {o | [ @ mar) o -ulf (i wdF (o). | |

15



= G lI(E ), 1] {6 (21 8) + ¢ (a25) } (15)

where ) > 0 is the derivative of ¢ with respect to its first
argument. If I satisfies the principle of transfers, then we have
that

o1(zo; p) — ¢1(z1; ) > 0 for any z; < x5 (16)

that is, ¢ must be strictly convex in its first argument.

4.2 Robustness properties

Let us now derive the I F of any I(F) satisfying the principle
of transfers for the perturbation distribution defined in (6).
Given that

IGE) = 9lJ(GE, u(GH)) . u(G)]
= YJ(GE, w(F)), u(F)] (17)

where

TG p) = (1-¢) [ (e mdF @) + peoa(z)im +

S<o(@a(z); ) (18)



The IF of the inequality measure is given by

IF(z;I,F) = lim {I(GEZ))_I(F)}

e—0

£
o d

- = Rl (2)
- 8J [J,}l-] GEJ(GE Hu)

e=0

= Wl [-IE) + e +

502 (19)

The behaviour of the I'F is directly related to the proper-
ties of the function ¢. Since ¢ is strictly convex in its first
argument, ¢(z;-) is unbounded either when £ — —oo or when
z — oo. Therefore, as z — oo, unless ¢ is symmetric in t, the
IF of I is unbounded.

However, it should be stressed that the above statement
is valid only if we consider a random variable which takes its
values on the whole set of the real numbers. It could be argued
that in the case of income distributions an additional a priori
restriction on the values of the random variable is appropriate,
namely = > 0. If so, then the above analysis needs to be

revised. Consider instead of (6) the following definition

1
dH(z) = { 1**

14z

(20)



then the I'F of I is given by

IF(51,F) = $ald,u] {~J(F,p) +

1 z 1
mﬁf’(ﬂ -2y ) + mé(ﬂ;; u)} (21)

The behaviour of the IF' as z — oo depends on the behaviour
of ¢(x;u) as x — 0 or as z — oo. We have the following

situations. If
lim ¢(z; 1) < oo and ¢(0; p) < oo
then the IF is bounded. But if

lim @(z; p) = oo or lim ¢(z; p) = oo

r—o0

then the I'F' is unbounded.

In the following three subsections, we will analyse some spe-
cial cases of inequality measures more closely: the first two of
these form an important subclass of the class of fully decom-

posable measures; the third special case is the Gini coefficient.



4.3 Kolm'’s index

Kolm’s (Kolm 1976a, Kolm 1976b) index belongs to the class

of decomposable inequality measures and is given by

I4(F) = —log [ / e“(“(F)“z)dF(x)} (22)

where « is a parameter. Its function ¢ is given by
(; p) = ") (23)

Since lim; .o ¢(z; 1) = 0 and ¢(0; p) < oo, the IF of Kolm’s
index with mean-preserving contaminations is bounded. This
is also easily shown analytically.

Consider again the mixture model GEZ) with the perturba-

tion function given in (20). We have

1
I(G,) = Elog [(1 — e)/e“(“‘”)dF(x) + T332

- j_ zgew(l—%)] (24)

The I'F of the Kolm index is given by

1
. TR . - &(pu—x)
IF(z; I5, F) = P Crae { /e dF(z) +

T Zew(IH) + - izew(H%)} (25)

1Q



Therefore, as lim, . JF(z; I, F) < co.

4.4 Inequality measures from the generalized entropy

family

Members of the ‘generalized entropy’ family are defined by

2= Ew%ﬁf KE)M ~ 1] dF(z). (26)

where 3 € (—o0; +00). This family has very convenient prop-
erties for the study of inequality: each inequality measure de-
rived from it can be interpreted as a measure of the distance
between the distribution of the income and the distribution in
which every economic unit receives the mean income p (see
Cowell 1980).

Theil’s (Theil 1967) inequality measures correspond to the

limiting cases when 8 — —1 and 8 — 0. They are given by

/ log ( ) dF(z) (27)
fE=/ () e () ero )



The corresponding ¢ functions are given by

. m[(i)ﬁﬂ_l] for B £ —1,0
(z; 1) = | —log (i) for = —1 (29)
L (i‘) log (f) for3 =10

For the IF', we have the following situation:
1. 82 0: lim, .o, ¢(z; 1) = oo, then the IF is unbounded.

2. -1 < B <0 limyo@(x;u) = —o0 and &(0; 1) < oo,
then the IF is bounded.

3. 8 £ —1: limyg ¢(x; u) = oo, then the IF is unbounded.

These results can also be found by analysing the IF with
mean-preserving contaminations. If we consider the perturba-

tion function given by (20), the IF becomes

_ 1 2P+t z
IR =~ + s s + o o0
IF(z ;L F) = ——Igl(F‘)-—i;zlog(z) (31)
IF(513,F) = ~I3(F) - 12 log(2) (32)

We can see then that the JF with mean-preserving contami-
nations is bounded for the members of the generalized entropy
family having the parameter —1 < 3 < 0.

However, we should emphasize that this result is only valid

21



for contaminations that leave the mean of the distribution un-
affected. As we shall see in section 5, the possibility that the

contamination affects the mean can have a dramatic impact on

the IF.

4.5 The Gini index

The Gini index does not belong to the class of decomposable
inequality measures, although it is "non-overlapping” decom-
posable, see Cowell (1988) and Ebert (1988). However, we will
show that with mean-preserving contaminations, the I'F of this
statistic is unbounded.

The Gini concentration ratio is given by

1
Ig(F)=1—2 fﬂ gr(a)do (33)

where gp{«) is the Lorenz ordinate of F' given by

F~Ya)
ar(e) = p~Y(F) / udF(u) (34)

and can be interpreted as the proportion of income belonged
by the proportion « of the poorest income receivers.
We consider here the mixture distribution (2) which ensures

that u(Ge) = u(F) := p. The influence on I of this misspeci-



fication is then given by

lim [IG(GE)

D) g [REL= RG] g5

£e—0 £ e—0 £
where
1
R(F) = [ ar(a)da (36)
0
We have

1
R(G,) = fo 46.(0)da

fl lszl(a) udG (u)da
- f” lf wdG (u)dG (z)

- / { a-e | udF u)-I-s/z udH(u)}dGs(:r)

_ 1“5)2/ f wdF(u)dF(z) +
Ll—-_sl/‘ f udF(u)dH (z) +
E(l_g)f f u)dF(z) +
- [ i} [ wdH(w)dH(z) (37)

Let us now consider the perturbation distribution H*) given



by (6)°. We then have

z _ _52 5(1‘_8) l ,U—Zu u
RGY) = (1-2PR(P)+ {f dF(u) +

2 J o
%[:zudF(u)}+
8(1—6){MQZf”+zdF(x)+”;zfm dF(m)}—l—

H -2z +z

5.2_ {% f_p_z udH("')(u) + %/HZ udH(z)(u)} (38)

H o —00

The IF is finally given by

IF(z;Ig,F) = 4R(F)—H [ p_zudF(u)—i— WudF(u)] -

o0 —0oQ

[“;z(F(#+Z)—F(u—z)+

g+ 2z
B2 (- Pt 2)] (39)

Now consider the behaviour of the IF as z varies.

0 1 -z
5 IF(z:06,F) = = [2F(u+2) - F(u — 2) = J-E" 2 f(u42)
z H H
(40)
As 2z — oo, %IF(Z;Ig,F) — -}; and therefore IF(z;15, F) —
0.

So even, if we restrict attention to the special case where

®Since for the Ginj index the underlying income variable is defined for the whole set of
real numbers, we choose this type of mean-preserving contamination. However, choosing
for H{*) the perturbation distribution given by (20) would lead to the same conclusion.



contamination does not affect the mean of the distribution we

find that the I'F of the Gini coefficient is unbounded?®.

5 Robustness properties with arbitrary con-

taminations

So far we have considered the issue of robustness of inequality
measures given a very special kind of contamination: one which
preserves the mean of the distribution. This approach would
be relevant to cases in which inequality was defined in terms
of incorme shares rather than incomes, and observations were
available on shares. Under such circumstances the population
mean would be known by definition. But this sort of situation
is exceptional. In other cases we have to assume either that the
impact of the contamination on the mean is negligible, or that
the impact on inequality of variability in the mean is negligible,
neither of which is satisfactory.

However when we allow for arbitrary perturbations to a dis-
tribution the resulting impact on inequality measures is going
to yield an expression involving both transfer effects and a
change in the mean, which are difficult to interpret analytically

without more restriction on the class of inequality measures.

6Unboundedness of the IF with arbitrary contaminations has been shown by Monti
(1992).
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In this section, we derive the I'F of an inequality measure
belonging to the class of decomposable measures. We consider
here the mixture model G, where the perturbation distribution
1s the point mass 1 at an arbitrary income level z. The I'F is

given by

IF(51F) = GilJ(F )il 5-7(Gom(@)|  +

e=0

wQ[J(Fa fl)a ﬂ)] : (z - l") (41)

where 1;, j = 1,2, is the derivative of ¢ with respect to its j*»
argument. For most inequality measures, the relevant part is

given by the first term in (41). We have

2 /(G ()

= {09 [enGnare +
£9(z; M(Ge))} -
- - f é(z; 1)dF (z) +

f%é(x; pldF(z) - [z - p] +
¢(2; ) (42)

e=(

We may make the following remarks: (a) The first term is
independent of z, (b) the second term is due to the effect of
the contamination on the mean and (¢) the third term would

also be present if were to suppose that the mean be given.
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If a decomposable measure has an unbounded IF for the
mean-preserving contamination case, then it must also be un-
bounded in the arbitrary contamination case by virtue of (¢)
above.

However, some inequality measures which have bounded IF
in the mean-preserving contamination case will be unbounded
in the arbitrary contamination case because of (b). This can
easily be shown in the case of the class of decomposable mea-
sures. Indeed, consider the same perturbation function as
above and suppose that the mean pu is given. The IF of
the members of the generalized entropy family with param-
eter —1 < 8 < 0 (for which the IF with mean-preserving

contamination is bounded), is given by

1 2\ A+
IF(Z,Ig,F) = —-Ig(F) + m [(;) - 1] (43)

We can see that the IF is unbounded.

Drawing together our results here and in section 4 we may

state:

Proposition 1:
If the mean has to be estirmated from the sample then all scale
independent, translation independent, and decomposable inequal-

ity measures have an unbounded IF.

i



The proposition follows from our results on the Kolm indices
which form the entire class of decomposable measures that are
translation independent and on the Generalized Entropy in-
dices which form the entire class of decomposable measures
that are scale independent. It also includes all “intermediate”
cases as defined by Bossert and Pfingsten (1990).

If we try to take account of the case where contamination
affects the mean (which is probably more realistic in most ap-
plications) the problem of an unbounded IF arises for a large
class of commonly used inequality measures. This presents a
serious problem for the empirical analysis of income inequality
from micro data, since it means that a few “rogue” low obser-
vations (in the case of bottom-sensitive inequality measures) or
high observations (for the other types of inequality measure)
would drive the estimated value of the inequality index on their
own. The situation may not be so bad for the rare cases where
the mean does not itself have to be estimated, but this is small
comfort.

What can be done about this situation? Omne approach is
to screen pragmatically by eye. This is frequently done and
usually for good reasons. However, although the researcher’s
judgment may be very good in a particular instance, the pro-

cedure is very arbitrary. Moreover, since the only option is
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whether or not to drop the questionable observation from the
sample, there can be situations in which this procedure is re-
garded as too drastic. We will suggest an alternative procedure
in section 6 and 7 below. First let us take a look at the impor-

tance of contamination on empirical estimates of inequality.

5.1 Simulation study

For this first simulation study, we computed the Theil index
(see equation (28) which as many other inequality measures,
may be determined empirically by only a few observations.
This is shown in table 1. We computed 100 samples of 200
observations generated by a Lognormal distribution given by

e—ﬁr(los(-f)*ﬂ)z dr (44)

¢

1
FatZ/—“—
no(t) T

with parameters 4 = 1.0 and ¢ = 0.8. We contaminated a
percentage of those observations by simply multiplying them
by 10. The differences between the Theil indexes are then due
to those small proportions of observations.

We can see that with only 5% of “rogue” data, Theil’s index
becomes twice its initial value! However, one could argue that
this type of contamination, i.e. a random proportion of con-
tamination multiplied by 10, is too extreme. But as said before,

this is the type or error that can occur during the recording
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Degree of Theil Index  (SD)
contamination
0% 0.312 (0.002)
1% 0.430  (0.024)
2% 0.515  {0.030)
3% 0.58  (0.027)
4% 0.649  (0.029)
5% 0.700  (0.031)

Table 1: Empirical Theil index when a random proportion of data
are multiplied by 10

process, that is a “decimal point error”. The other type of
error we consider here is the week-month confusion defined in
the introduction. Although this type of error is less large, we
can see by means of a simulation study that its effect on in-
equality measures is quite important. In table 2 we show the

computed Theil’s index when a random proportion of data are

multiplied by 4.

Degree of Theil Index  {SD)
contamination
0% 0.312 (0.002)
1% 0.334 (0.003)
2% 0.357 {0.004)
3% 0.379 (0.010)
1% 0.400 (0.010)
5% 0.429  (0.012)

Table 2: Empirical Theil index when a random proportion of data
are multiplied by 4



6 The estimation of inequality through para-

metric distributions

As an alternative to direct estimation of inequality, we will
consider here the “parametric approach”, ie. the analysis
of inequality measures estimated through a parametric model
F = Fp, where ¢ is a vector of parameters. Although the fol-
lowing results apply to any type of inequality measure, we will
examine the particular case of the generalized entropy family.

The parametric approach has several advantages. First it
allows one to build robust estimators which have some optimal-
ity properties (for example minimal variance among estimators
belonging to the same class). Second, it allows one to distin-
guish systematically between extreme values that "belong” to
the estimate of inequality and those that do not. In effect it
permits one to construct an automatic procedure for detect-
ing observations that are very "far” (in an appropriate sense)
from the bulk of the data and that should be treated sepa-
rately. This is particularly important in parts of the sample
where the observations are sparse. A good example of the use
of the parametric approach arises when estimating the inequal-
ity of wealth distributions: in such cases the common practice

of fitting a Pareto distribution to the upper tail permits the re-
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searcher to build in information about the structure of wealth
distributions in general in order to make the best use of one
particular sample.

It may be argued that the use of a parametric approach
has the inbuilt problem that inappropriate model choice can
of itself bias the estimators, and that non-parametric methods
would avoid this type problem. However it is possible to miti-
gate model-selection bias by prior use of a selection procedure,
and robust methods for such a procedure are available - see
Victoria-Feser (1993).

An estimator of one of the members of the generalized en-
tropy family (henceforth called GEPFE) is obtained by replac-
ing F in (26) by Fj where 6 is estimated from the sample.

Let T be an estimator of 8 for the parametric model Fy. T
can be written as a functional T(Fy) of the distribution. Hence,

for the contaminated model G. given by
Ge = (1 —e)Fy+cA, (45)

T(G,) can also be influenced by model deviations. The IF of
a GEPFE is given by

IF(z; I3, Fy) = A(B, Fy) - IF(z; T, Fy) (46)



where

T B+1
ABF) = g [ ()o@ dR) -
1 1 z ! T
a5 ) (i) @ni@ [[astaorangs
and s is the scores function given by
s(z;6) = 0 logf(:f: ) (48)

f(z;8) being the density function corresponding to Fy. For the

particular cases when 8 =0 and 8 = —1, we have

A0, Fp) = fu(Fa) log (m) s(x;0) T dFy(z) —
z T dF( )
f (F)s(:r,ﬂ) dFy(x)

[ sieios () e+
f — Fg)s(x;Q)Tng(z) (49)

and

A(-1,Fy) = /log (H(ZFB)) s(z;0) dFy(z) +
/ o Fe)s(x;Q)Tng(:c) (50)

Since A(3, Fy) does not depend on z, the JF of the GEPFE is
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proportional to the IF' of the estimator of 8 given by

o}
IF(z;T, Fo) = 5-T(G:) (51)
e=0

Therefore, if IF(2;T, Fy) is unbounded then so is IF(z; I, Fy).

Typically, 8 is estimated by the maximum likelihood es-
timator (MLE). The IF of this estimator is proportional to
the scores function (see Hampel, Ronchetti, Rousseeuw, and
Stahel 1986. For almost all the models used in income distri-
butions, the scores function is unbounded (see Victoria-Feser
1993). Hence, GEPFE computed through MLE have an un-
bounded IF.

For example, consider the Pareto distribution with density

function
f(z:0) = 92~ O+D (52)
where 0 < zg € z < co. The corresponding scores function is
given by
1
s(2;6) = = — log(z) + log(y) (53)

Then IF(z;Is, Fy) is proportional to — log(z) which is clearly

unbounded.



7 Robust income inequality measures

7.1 Optimal B-robust estimators

In this section, we show that a reasonable way of obtaining
robust estimators of income inequality measure is through the
specification of a parametric model. Parametric models allow
one to compute robust estimators in an optimal way, which
yield robust estimated income inequality measures. In other
words, given an appropriate specification of a parametric model
for the income distribution, we are able to compute robust in-
equality measures through the robust estimators for the pa-
rameters of the model. In this section, we first present robust
estimators for the parameters of income distribution models
which are optimal in a sense defined below and present some
simulation results.

For the estimator of #, we propose taking the optimal B-
robust estimators (OBRE) defined in Hampel, Ronchetti, Rousseeuw,
and Stahel (1986). These estimators are M-estimators, i.e.

they belong to the class of estimators defined by
> ¥(z;6) =0 (54)
i=1

where 1 is any function R — RP, p = dim(6). For example,

the MLE belong to this class, and in this case ¥ is equal to
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the scores function. However, although MLE are the most ef-
ficient estimators, they are in general non-robust. By defining
the wider class of M-estimators, one can obtain robust estima-
tors optimally. The trade-off is between efficiency and robust-
ness (bounded IF). OBRE are the optimal solution of this
trade-off. They are called B-robust for Bias-robust because
their bias measured by the I'F is bounded. One should stress
that there are several versions of OBRE that depend on the
way one chooses to minimize the asymptotic covariance matrix.
We propose here standardized OBRE (see Hampel, Ronchetti,
Rousseeuw, and Stahel 1986).

Their expression is similar to that of MLE. They are defined
implicitely by

n n
D v(z8) = [s(z::6) — a(8)] - W, (21 A(6),a(8)) = 0
i=1 i=1 (55)
In (55), W(z;;...) are actually weights attributed to each ob-
servation according to its influence on the estimator. They
depend on a constant ¢ which can be seen as a regulator be-
tween efficiency and robustness: the lower c is the more robust

is the estimator. At ¢ = oo we have the MLE.

The p X p matrix A(f) and the px 1 vector a(f) used in (55)



are defined implicitly by

E [¢(z;0)u(2;6)T] = [A(8)4(0)] (56)
Ely(z;6)] = 0 (57)

so that the constraints of efficiency and consistency are satis-
fied. The solution of (55) is not straightforward and in general
OBRE have to be computed iteratively. For a more precise
definition of OBRE and a simple algorithm, see Victoria-Feser
and Ronchetti (1993).

7.2 Simulation results

In order to show how large the bias on the income inequality
measure can be when the data are contaminated, we computed
the Theil index for different samples. The results come from
100 simulated samples of 200 observations from a Gamma dis-

tribution given by

Fua(t) = r?:) /O e dy (58)

where I'(«r) = fol t*~le~'dt. The mixture distribution is

G, = (1 - E)Fa,)\ + EFa,O.l-A (59)



where & = 3.0 and A = 1.0. That is, the contaminations are
observations from the same distribution but multiplied by ten.
The results are presented in table 3.

We can see that only 3% of contaminations push the value of
the Theil index from 0.155 to 0.27, and hence determine alone
the value of the estimator. This is certainly not a desirable
property. However, it is possible to avoid those situations with

robustified inequality measures.

Bias of the MLE | MSE of the MLE | Theil’s Index
No contamination | o .05 0.07 0.155
A 0.01 0.01
3% contamination | a -1.33 1.89 0.270
A -0.54 0.32
5% contamination | « -1.72 3.09 0.342
A -0.70 0.5

Table 3: MLE and Theil index with and without data contamination

In table 4 we presents the same computations as in table 3
except that instead of using the MLE, we calculated the OBRE
(¢ = 1.5). More details on computational aspects are given in

Victoria-Feser (1993).

Bias of the OBRE | MSE | Theil’s Index
No contamination | o 0.06 0.07 0.155
A 0.02 0.01
3% contamination | @ 0.15 0.12 0.185
A 0.07 0.02
5% contamination | o -0.22 0.16 0.169
A -0.11 0.03

Table 4: OBRE and Theil index with and without data contamina-
tion



The results show that with OBRE, the value of the Theil
index is almost unaffected by the contaminations, even with a
contamination proportion as high as 5%. Therefore, there are
potential gains by using OBRE instead of MLE when comput-
ing estimates of the underlying parametric model which then

serves to compute robust estimates of inequality.

8 Conclusions

Inequality measures should convey practical information about
income distributions. Whether or not they do this effectively
depends of course upon the reliability of income distribution
data; it also depends upon the method of estimation. It is pos-
sible that under certain estimation procedures the apparent
picture of inequality is strongly influenced by data contamina-
tion.

The conventional properties of inequality measures also play
a role in determining the extent to which the picture of income
distribution is distorted by data contamination: the IF is a
useful device for quantifying this effect. One might have sup-
posed that the fundamental property of mainstream inequality
analysis - the transfer principle - is a sufficient condition for
unboundness of the JF. We have shown that this is not the

case. However, this negative result is not actually very encour-
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aging because we have shown that as soon as one introduces
other standard features of inequality measures (scale indepen-
dence, decomposability) or a more realistic specification of the
estimation problem (where the mean itself has to be estimated
rather than being specified a priori) the problem of unbound-
ness of the I F re-emerges. As we have shown, the impact upon
measured inequality of quite small amounts of contamination
in the tails of the distribution can be disastrous. Controlling
for this contamination in practice can be tricky, and ad hoc
methods are likely to be unreliable.

One way of dealing with this problem is to adopt a para-
metric approach to income distribution analysis and inequality
measurement, and to estimate inequality through robust es-
timates of the parameters of the income distribution model.
Even if the robust estimates of inequality are not used on
their own, they should provide a useful supplementary check
against estimates of inequality computed by classical meth-
ods. Where discrepancies between the results for the two ap-
proaches emerge and are attributable to a small number of
observations, this information should be taken into account in
drawing conclusions about the “true” picture of the underlying

income distribution.
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Figure 2. Bias on the estimator.
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Figure 1. Confusion caused by contamination.
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