
Robust Income Distribution
Estimation with Missing Data

by

Maria-Pia Victoria-Feser
University of Geneva

Discussion Paper Distributional Analysis Research Programme
No. DARP 57 The Toyota Centre
September 2000 Suntory and Toyota International

Centres for Economics and
Related Disciplines

London School of Economics
Houghton Street

London WC2A 2AE



Distributional Analysis Research Programme

The Distributional Analysis Research Programme was established in 1993 with
funding from the Economic and Social Research Council. It is located within the
Suntory and Toyota International Centres for Economics and Related Disciplines
(STICERD) at the London School of Economics and Political Science. The
programme is directed by Frank Cowell. The Discussion Paper series is available
free of charge and most papers are downloadable from the website. To subscribe to
the DARP paper series, or for further information on the work of the Programme,
please contact our Research Secretary, Sue Coles on:

Telephone: UK+20 7955 6678
Fax: UK+20 7955 6951
Email: s.coles@lse.ac.uk
Web site: http://sticerd.lse.ac.uk/DARP

� Authors: Maria-Pia Victoria-Feser

All rights reserved. Short sections of text, not to exceed two paragraphs, may be
quoted without explicit permission provided that full credit, including � notice, is
given to the source.



ABSTRACT

With income distributions it is common to encounter the problem of missing
data.  When a parametric model is fitted to the data, the problem can be
overcome by specifying the marginal distribution of the observed data.  With
classical methods of estimation such as the maximum likelihood (ML) an
estimator of the parameters can be obtained in a straightforward manner.
Unfortunately, it is well known that ML estimators are not robust estimators in
the presence of contaminated data.  In this paper, we propose a robust
alternative to the ML estimator with truncated data, namely one based on M-
estimators that we call the EMM estimator.  We present an extensive simulation
study where the EMM estimator based on optimal B-robust estimators (OBRE)
is compared to a more conservative approach based on marginal density (MD)
for truncated data, and show that the difference lies in the way the weights
associated to each observation are computed.  Finally, we also compare the
EMM estimator based on the OBRE with the classical ML estimator when the
data are contaminated, and show that contrary to the former, the latter can be
seriously biased.
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1 Introduction

This paper deals with the problem of estimating parameters of a univariate
distribution when some of the data are missing. The classical approach, ML
estimation, speci¯es the marginal density of the random variable and the
ML estimator is obtained by maximizing the log-likelihood of this marginal
density. This is equivalent to a simple procedure in which su±cient statistics
are adjusted and then used in the maximization procedure. When it comes to
robust estimators, and we will focus on optimal B-robust estimators (OBRE)
developed in Hampel, Ronchetti, Rousseeuw, and Stahel (1986), there are
di®erent approaches, depending on the way the weights associated with each
observation are computed.
In the particular problem of income distribution analysis, it is well known

that income data are not always as \clean" as one would like them to be;
see Cowell and Victoria-Feser (1996). Moreover, income data are typically
truncated: either in the low incomes because of taxation rules or in the
high incomes for con¯dentiality reasons. For these reasons it is important to
develop robust estimators that taken account of these common features of
the data.
The paper is organized as follows. In section 2 the classical framework of

ML estimation is presented and an interpretation of the estimation procedure
is developped. This is important because it gives the motivation for the
robust procedures that will be proposed in section 3. Section 4 presents a
simulation study with the Gamma distribution, a commonly used model for
income distribution. Finally, section 5 concludes.

2 Maximum likelihood estimation for trun-

cated data

2.1 Speci¯cation

Let X be a (univariate) random variable, generally the income variable, de-
¯ned in X µR and let Fµ be a parametric model with corresponding density
f(¢; µ) and score function s(¢; µ) = @

@µ
log f(¢; µ), such that X » Fµ. Our aim

is to estimate µ given a sample y1; : : : ; yn only observable in a subset Y of X ,
i.e. the data are not observed in X =Y = Y . Typically with income distribu-
tions, the missing data are actually truncated data in the lower and/or upper
tail of the distribution. To estimate µ one speci¯es a model for the random
variable Y which has generated the observed values given that X » Fµ, and
therefore Y » FµR

Y dFµ(x)
, the marginal distribution. The score function for
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such a model is given by

es(y; µ) =
@

@µ

·
log f(y; µ)¡ log

Z

Y
dFµ(x)

¸

= s(y; µ)¡ 1R
Y dFµ(x)

Z

Y
s(x; µ)dFµ(x) (1)

The ML estimator is a consistent estimator over the marginal distribution,
i.e. Z

Y
es(x; µ) dFµ(x)R

Y dFµ(x)
= 0

but we also have that Z

X
s(x; µ)dFµ(x) = 0

Then the ML estimator can be written as the solution in µ of
Z

Y
s(x; µ)dFµ(x) +

Z

Y
dFµ(x)

1

n

nX

i=1

s(yi; µ) = 0 (2)

2.2 Computation

In general one can use a Newton-Raphson method to solve (2), but in the case
when Fµ belongs to the class of exponential families the procedure simpli¯es
considerably.. Suppose ¯rst that f(x; µ) has the regular exponential-family
form

f(x; µ) =
1

d(µ)
b(x) exp

£
t(x)Tµ

¤

where t(x) denotes a p£ 1 vector of complete data su±cient statistics (p =
dim(µ)) and d(µ) is a constant which makes the integration of f(x; µ) equal
to unity. Intuitively, when one has to estimate the parameters of a model
with truncated data, one would try to complete the information through the
estimation procedure. As a ¯rst step, one can compute the ML estimators
ignoring the fact that the data set is truncated. In a second step, as these
estimators depend on statistics calculated by means of the truncated data,
one has to transform these statistics in order to push them near to the value
they would have taken if the data set was complete. This intuition makes
sense because for a parametric model from the class of exponential families
we have

s(y; µ) = ¡ @

@µ
log d(µ) + t(y)

Putting this in (2) we get

¡ @

@µ
log d(µ) +

Z

Y
t(x)dFµ(x) +

Z

Y
dFµ(x)

1

n

nX

i=1

t(yi) = 0 (3)
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Thus, in the framework of exponential families, one can use the following
algorithm. Suppose that µ(k) denotes the current value of µ after k cycles of
the algorithm. The next cycle can be described in two steps, as follows:

² E-step: Estimate the complete-data su±cient statistics t(x) by ¯nding

t(k) =

Z

Y
t(x)dFµ(k)(x) +

Z

Y
dFµ(k)(x)

1

n

nX

i=1

t(yi)

² M-step: Determine µ(k+1) as the solution of the equation @
@µ
log d(µ) =

t(k).

It should be stressed that this algorithm is nothing else but the EM
algorithm proposed by Dempster et al. (1977).

2.3 Properties

With income data one often encounters the problem of extreme data or out-
liers. Extreme data can be seen as model misspeci¯cation in that the pos-
tulated model is not exact so that a few data don't ¯t into the assumption
that X » Fµ. If the extreme data represent a very small proportion of
the observations, it is sensible to expect from the estimators not to be too
much in°uenced by these data points. This is what is understood by the
robustness property of estimators. To investigate this property, one uses the
so-called In°uence Function (IF ) which is de¯ned for a statistic written as
a functional T (F ) as its ¯rst order approximation in a neighbourhood of F
of in¯nitesimal size F" = (1 ¡ ")F + "¢z where ¢z is the distribution with
point mass 1 at an arbitrary point z. Formally, for di®erentiable functionals
the IF is

IF (z;T;F ) =
@

@"
T (F") j"=0

The IF was ¯rst introduced to assess the robustness properties of T by
Hampel (1968, 1974). F" de¯nes a neighbourhood of F of radius " and can
be seen as a contaminated version of the true model F . Data generated by
F" are generated by F with probability (1 ¡ ") and by another arbitrary
distribution ¢z with probability ". If " is small (as it is supposed usually) it
is desirable to have statistical procedures that are not in°uenced too much
by these model deviations. A statistic with an unbounded IF is said to
be non-robust because in this case an in¯nitesimal amount of contaminated
data can drive the value of the statistic by itself (Hampel et al. 1986). From
the delta method, the IF can be used to compute the asymptotic covariance
matrix of T in that

n var(T ) =

Z
IF (z;T; F )IF (z;T; F )TdF (z)
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The IF of the ML estimator µ̂ for the parametric model Fµ when the data
are truncated is given by

IF (z; µ̂; Fµ) =M
¡1(s; µ)

"
s(z; µ)¡ 1R

Y dFµ(x)

Z

Y
s(x; µ)dFµ(x)

#
(4)

where

M(s; µ) =
1£R

Y dFµ(x)
¤2

·Z

Y
dFµ(x)

Z

Y
s(x; µ)sT (x; µ)dFµ(x)¡

Z

Y
s(x; µ)dFµ(x)

Z

Y
sT (x; µ)dFµ(x)

¸

The proof is given in Appendix A. The asymptotic covariance matrix of the
ML estimator with truncated data is then given by

n var(µ̂) =M¡1(s; µ)Q(s; µ)M¡T (s; µ)

where

Q(s; µ) =
1R

Y dFµ(x)

Z

Y
s(x; µ)sT (x; µ)dFµ(x)¡

1£R
Y dFµ(x)

¤2
Z

Y
s(x; µ)dFµ(x)

Z

Y
sT (x; µ)dFµ(x)

= M(s; µ)

so that
n var(µ̂) =M¡1(s; µ)

which corresponds to the inverse of the Fisher information matrix.
The IF is especially useful for assessing the robustness properties of es-

timators. The IF of the ML estimator of µ when the data are truncated
is given in (4). Dependent on the way data have been truncated and on
the form of Fµ, the IF would become arbitrarily large and hence the ML
estimator of µ would be biased. Typically with income distributions, Fµ is
such that the score function takes large values in the tails of the distribution.
The interesting feature is then that if the truncation occurs in both tails,
the in°uence of contamination is limited, whereas if the truncation occurs
in the lower tail (as it is the case for example with ¯scal data), the IF is
unbounded. It is therefore important to develop estimators which are robust
to data contamination.
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3 Robust estimators

3.1 General de¯nition

We consider here the general class ofM -estimators which are de¯ned implic-
itly by the solution in µ of

nX

i=1

Ã(xi; µ) = 0 (5)

with Ã being a function satisfying mild conditions (Huber 1964). In general,
the Ã function de¯ning the M -estimator is itself a function of the score
function, i.e. Ã(x; µ) = K[s(x; µ)]. For example if

Ã(x; µ) = s(x; µ)

we have the ML estimator, and if

Ã(x; µ) = Hc (A[s(x; µ)¡ a]) (6)

where

Hc(z) = min

µ
1;

c

kzk

¶

are Huber weights depending on a tuning constant c, A is a p£p matrix and
a is a p£ 1 vector which are determined implicitly by

E
£
A[s(x; µ)¡ a][s(x; µ)¡ a]TAT

¤
= I

E [A[s(x; µ)¡ a]] = 0

we have the OBRE in the standardized case (see Hampel et al. 1986). This
estimator is the most e±cient estimator in the class of M-estimators with a
bounded (function of the) IF . The degree of robustness of the OBRE de-
pends on the choice of c: the lower its value the more robust is the OBRE
but it also looses e±ciency compared to the ML estimator at the unconta-
minated model. Typically c is chosen to achieve a given degree of e±ciency.
Note that when c = 1, one gets the ML estimator.
With truncated data, there are at least two ways of choosing the Ã func-

tion. The ¯rst is to use the score function es(y; µ) given in (1) and therefore
de¯ne the M -estimator as

nX

i=1

eÃ(yi; µ) =
nX

i=1

K [es(yi; µ)] = 0 (7)

with eÃ satisfying Z

Y
eÃ(x; µ)dFµ(x)=

Z

Y
dFµ(x) = 0 (8)
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for consistency. This is the approach based on the marginal distribution (MD
approach). When K is such that one gets the OBRE, the algorithm proposed
in Victoria-Feser and Ronchetti (1994) could be used.
Another approach would be to replace s(¢; µ) by Ã(¢; µ) in (2) and de¯ne

the M -estimator as
Z

Y
Ã(x; µ)dFµ(x) +

Z

Y
dFµ(x)

1

n

nX

i=1

Ã(yi; µ) =

Z

Y
K [s(x; µ)] dFµ(x) +

Z

Y
dFµ(x)

1

n

nX

i=1

K [s(yi; µ)] = 0 (9)

The idea behind this de¯nition is the same as that on which the ML estimator
is based: the value of the Ã function on the missing observations is replaced
by its mathematical expectation. Note that by taking expectations in (9)
one gets Z

X
Ã(x; µ)dFµ(x) = 0

We call this estimator the EMM estimator since it is based on the idea of
the EM algorithm and extended to M-estimators. The two approaches are
equivalent if and only if K[s(¢; µ)] = B ¢ s(¢; µ), i.e. in the case of the ML
estimator. In what follows, we will explore the two approaches in the case
when K leads to the OBRE given by (6).

3.2 Properties

We derive here the IF for both estimators with general Ã functions. This will
enable us to study the robustness properties of the estimators and derive their
asymptotic covariance matrix. For the M-estimator based on the marginal
distribution µ̂MD, we have

IF (z; µ̂MD; Fµ) =M
¡1( eÃ; Fµ)eÃ(z; µ)

where

M( eÃ; Fµ) =
Z

Y
eÃ(x; µ)sT (x; µ)d Fµ(x)R

Y dFµ(x)

(for details see Appendix B). For the EMM estimator µ̂EMM de¯ned in (9)
we have

IF (z; µ̂EMM ; Fµ) =M
¡1(Ã; Fµ)

·Z

Y
dFµ(x)Ã(z; µ) +

Z

Y
Ã(x; µ)dFµ(x)

¸

where

M(Ã;Fµ) =

Z

Y
Ã(x; µ)sT (x; µ)dFµ(x)¡

Z

Y
Ã(x; µ)dFµ(x)

Z

Y
sT (x; µ)dFµ(x)=

Z

Y
dFµ(x)
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(see Appendix C). We note in both cases that if eÃ or Ã is bounded, then the
IF are bounded and therefore the resulting estimators are robust to small
amounts of contamination.
The covariance matrices are respectively

n var(µ̂MD) = M¡1( eÃ; Fµ)Q( eÃ; Fµ)M¡T (eÃ;Fµ)

Q( eÃ; Fµ) =

Z

Y
eÃ(x; µ)eÃT (x; µ)d Fµ(x)R

Y dFµ(x)

and

n var(µ̂EMM) = M¡1(Ã; Fµ)Q(Ã; Fµ)M
¡T (Ã; Fµ)

Q(Ã;Fµ) =

Z

Y
dFµ(x)

Z

Y
Ã(x; µ)ÃT (x; µ)dFµ(x)¡

Z

Y
Ã(x; µ)dFµ(x)

Z

Y
ÃT (x; µ)dFµ(x)

3.3 OBRE with truncated data

As we have seen, the EMM estimator and the MD approach do not always
give the same estimators. Under OBRE the two approaches are di®erent be-
cause the statistical model foundation depends on the chosen approach. With
MD estimation the underlying model is transformed: we consider the density
the density on the incomplete data set rather than on the full data. With the
EMM estimator, we keep the initial model (density over the complete data
set) by replacing the truncated interval with its corresponding mathemati-
cal expectation. However, the empirical results will show that with OBRE,
the two approaches give nearly the same estimates at least for small propor-
tions of missing data. The di®erence between the two approaches is due to
the computed weights on the observations which depend on the underlying
model.
As we have seen before the EMM estimator is de¯ned as the solution in

µ of (9). In order to ¯nd the solution of this equation, we propose to use a
Newton-Raphson step. The details are given in Appendix D.

4 Numerical comparisons

As an example, we will take the case of data generated by a Gamma distri-
bution with shape parameter ® and scale parameter ¸:

F®;¸(x) =

Z x

0

¸®

¡(®)
x®¡1e¡¸xdx
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where ¡ denotes the Gamma function. We suppose without loss of generality
that the data are truncated below a known minimum value xm, an example
commonly encountered in the study of income distributions.

4.1 EMM estimator and MD approach with OBRE

It is di±cult to compare the two approaches by looking at the equations
de¯ning the estimators. However, we can notice that the EMM estimator is
consistent on the complete distribution, whereas in the MD approach, the
OBRE is consistent on the incomplete distribution. Thus the two solutions
will be in general di®erent and the reason for their di®erence can be seen in
the weights (see below). This result is not surprising, because often equiva-
lent classical procedures become di®erent when they are robusti¯ed (see e.g.
Heritier and Ronchetti 1994 with robust parametric tests). We can also ob-
serve that if we choose a bound c large enough the two approaches give the
same result. In fact in this case we are using the ML estimator.
Empirically we tried to compute the di®erence in the weights calculated

with the two approaches. We computed the matrix A and vector a when the
distribution is a Gamma distribution with parameters ® = 3 and ¸ = 1. We
chose c = 2:0.
In order to make this di®erence as clear as possible, we chose two di®erent

truncation points. In Figure 1, we can see that with a 10% of information loss
in the lower tail, the di®erence in the computation of the weights by the two
approaches is very small. In Figure 2, we made intentionally a high truncation
point (30% of information loss) and observed that the di®erence between
the two approaches is larger. In fact the weights associated to the EMM
estimator are always the same for any amount of information loss. Thus,
the di®erence is due to the weights calculated with the marginal distribution
approach. This con¯rms the hypothesis we made in the introduction: the
underlying model modi¯es the computation of the weights. The question
which then arises is: which approach to choose? In income distribution
models we know that the unreported lower incomes do really exist. Thus,
it is more realistic to postulate that the true model is the complete one
and choose the EMM estimator. What is more, since in certain cases the
incomplete information does not only correspond to the case of truncated
data, the EMM estimator is largely applicable in comparison to the approach
with the marginal distribution. However, as we will see, the di®erences on
the estimates between the two approaches are small at least in the case of a
truncation corresponding to a information loss less than 10%.
In order to compare the standardized OBRE in the two approaches, we

simulated 50 samples of 200 observations generated by a Gamma distrib-
ution with parameter values ® = 3:0 and ¸ = 1:0. In a second step, we
contaminated the model with the mixture model (1¡")F®;¸+"F®;0:1¸ taking
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" = 1% and " = 3%. We also truncated the data under a minimum value
xm, corresponding to an information loss of between 0:8% and 8%.

Truncation ®; ¸ OBRE (EMM) MSE OBRE (MD) MSE
(c = 2:0) (c = 2; 0)

xm = 1:0 ® 3.12 (0.07) 0.24 3.12 (0.06) 0.22
(8%) ¸ 1.03 (0.02) 0.03 1.03 (0.02) 0.02

xm = 0:8 ® 3.10 (0.06) 0.21 3.10 (0.06) 0.17
(4:7%) ¸ 1.03 (0.02) 0.02 1.03 (0.02) 0.02

xm = 0:6 ® 3.09 (0.06) 0.17 3.09 (0.05) 0.14
(2:3%) ¸ 1.02 (0.02) 0.02 1.03 (0.02) 0.02

xm = 0:4 ® 3.07 (0.05) 0.12 3.06 (0.04) 0.10
(0:8%) ¸ 1.02 (0.02) 0.02 1.02 (0.02) 0.01

Table 1: OBRE on non contaminated data, with the EMM algorithm
and the marginal distribution approach (MD)

As expected, in the non contaminated case, since the weights on the
observations are nearly all equal to unity, the two approaches give the same
estimators which are equivalent to the simulation values for the parameters
(see Table 1). In the case of 1% of contamination (see Table 2), we cannot
say that the estimators are di®erent. In the case of 3% of contamination the
di®erence is still small (see Table 3). The reason is because as we have seen in
the previous section, the di®erence between the two approaches becomes clear
when the loss of information is relatively large. In the contaminated cases
the MSE have relatively the same values as in the non contaminated case,
and moreover, they are the same when we compare the estimators between
the two approaches.

4.2 EMM and ML estimators

In this section we compare the EMM to the ML estimator.
We took the same sample as before and contaminated 1% of the highest

observations of each sample by multiplying them by 10. The results are very
surprising. First, as we can see in Table 4, when the samples are not conta-
minated, the OBRE and the ML estimator give the expected results, with a
comparable MSE. On the other hand, when we introduce the contamination
(see Table 5) the behaviour of the ML estimator is catastrophic! This re-
sult si not surprising since we already know that the ML estimators are not
robust to model contamination. The bias are even far worse than those in
the complete information case (see Victoria-Feser and Ronchetti 1994). We
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Truncation ®; ¸ OBRE (EMM) MSE OBRE (MD) MSE
(c = 2:0) (c = 2:0)

xm = 1:0 ® 3.07 (0.07) 0.24 3.11 (0.07) 0.24
(8%) ¸ 1.02 (0.02) 0.03 1.03 (0.02) 0.03

xm = 0:8 ® 3.07 (0.06) 0.21 3.08 (0.07) 0.22
(4:7%) ¸ 1.02 (0.02) 0.02 1.03 (0.02) 0.03

xm = 0:6 ® 3.06 (0.06) 0.17 3.08 (0.06) 0.18
(2:3%) ¸ 1.02 (0.02) 0.02 1.02 (0.02) 0.02

xm = 0:4 ® 3.06 (0.05) 0.12 3.05 (0.05) 0.12
(0:8%) ¸ 1.02 (0.02) 0.02 1.02 (0.02) 0.02

Table 2: OBRE on contaminated data at 1%, with the EMM algo-
rithm and the marginal distribution approach (MD)

Truncation ®; ¸ OBRE (EMM) MSE OBRE (MD) MSE
(c = 2:0) (c = 2:0)

xm = 1:0 ® 2.59 (0.06) 0.31 2.64 (0.06) 0.30
(8%) ¸ 0.85 (0.02) 0.04 0.87 (0.02) 0.04

xm = 0:8 ® 2.65 (0.05) 0.26 2.69 (0.05) 0.24
(4:7%) ¸ 0.86 (0.02) 0.03 0.88 (0.02) 0.03

xm = 0:6 ® 2.71 (0.05) 0.20 2.73 (0.05) 0.19
(2:3%) ¸ 0.88 (0.02) 0.03 0.89 (0.02) 0.03

xm = 0:4 ® 2.75 (0.04) 0.15 2.75 (0.04) 0.15
(0:8%) ¸ 0.90 (0.02) 0.02 0.90 (0.01) 0.02

Table 3: OBRE on contaminated data at 3%, with the EMM algo-
rithm and the marginal distribution approach (MD)

10



Truncation ®; ¸ OBRE (EMM) MSE MLE MSE
(c = 2:0)

xm = 1:0 ® 3.12 (0.07) 0.24 3.13 (0.06) 0.18
(8%) ¸ 1.03 (0.02) 0.03 1.04 (0.02) 0.02

xm = 0:8 ® 3.10 (0.06) 0.21 3.09 (0.05) 0.15
(4:7%) ¸ 1.03 (0.02) 0.02 1.03 (0.02) 0.02

xm = 0:6 ® 3.09 (0.06) 0.17 3.08 (0.05) 0.13
(2:3%) ¸ 1.02 (0.02) 0.02 1.02 (0.02) 0.01

xm = 0:4 ® 3.07 (0.05) 0.12 3.04 (0.04) 0.09
(0:8%) ¸ 1.02 (0.02) 0.02 1.01 (0.02) 0.01

Table 4: OBRE and MLE on non contaminated data, with the EMM
algorithm

chose here an extreme type of contamination to show our point, but a less
extreme type of contamination (i.e. not choosing systematically the highest
observation) would lead to similar conclusions.

Truncation ®; ¸ OBRE (EMM) MSE MLE MSE
(c = 2:0)

xm = 1:0 ® 3.07 (0.07) 0.24 0.61 (0.00) 5.71
(8%) ¸ 1.02 (0.02) 0.03 0.25 (0.00) 0.57

xm = 0:8 ® 3.07 (0.06) 0.21 0.61 (0.00) 5.51
(4:7%) ¸ 1.02 (0.02) 0.02 0.23 (0.00) 0.59

xm = 0:6 ® 3.06 (0.06) 0.17 0.61 (0.00) 5.71
(2:3%) ¸ 1.02 (0.02) 0.02 0.22 (0.00) 0.61

xm = 0:4 ® 3.06 (0.05) 0.12 0.65 (0.02) 5.60
(0:8%) ¸ 1.02 (0.02) 0.02 0.21 (0.01) 0.62

Table 5: OBRE and MLE on contaminated data at 1%, with the
EMM algorithm

5 Conclusion

Robust estimators with truncated data are particularly useful in the study
of income distributions because of the features of the data one encounters.
In this paper, we proposed the EMM estimator which is an extension of
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M-estimators to the case of missing data. In the particular case of the ML
estimator, the EMM estimator leads to the same estimator as when one
considers the marginal distribution of the data. However, with robust esti-
mators, the two approaches di®er and their di®erence is due to the way in
which the weights associated to each observations are computed.
We stressed our point by means of simulations study with the example

of the Gamma distribution. We also showed that a robust approach is much
safer than the ML estimator when the data are contaminated.
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A IF of the ML estimator

The ML estimator µ̂ can be seen as a special case of (7) where K is the
identity function. Using the results in (10), we have

IF (z; µ̂; Fµ) =M
¡1(s; Fµ)

"
s(z; µ)¡ 1R

Y dFµ(x)

Z

Y
s(x; µ)dFµ(x)

#

with

M(s; Fµ) =
1R

Y dFµ(x)

Z

Y
s(x; µ)sT (x; µ)dFµ(x)¡

1£R
Y dFµ(x)

¤2
Z

Y
s(x; µ)dFµ(x)

Z

Y
sT (x; µ)dFµ(x)

B IF of M-estimators with missing data

BVery generally, the IF for M -estimators µ̂ as de¯ned in (5) is given by

IF (z; µ̂; Fµ) =M
¡1(Ã; Fµ)Ã(z; µ)

where

M(Ã; Fµ) = ¡
Z

@

@µT
Ã(x; µ)dFµ(x)

(see Hampel et al. 1986). The IF for M -estimators µ̂MD as de¯ned in (7) is
deduced from this result, i.e.

IF (z; µ̂MD; Fµ) =M
¡1( eÃ; Fµ)eÃ(z; µ) (10)

where

M(eÃ;Fµ) = ¡
Z

Y

@

@µT
Ã(x; µ)dFµ(x)=

Z

Y
dFµ(x)

From (8) we get

¡
Z

Y

@

@µT
Ã(x; µ)dFµ(x) =

Z

Y
Ã(x; µ)sT (x; µ)dFµ(x)

and

M(eÃ;Fµ) =
Z

Y
Ã(x; µ)sT (x; µ)dFµ(x)=

Z

Y
dFµ(x)
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C IF of EMM estimators

We also use the general results on the IF for M-estimators. Let

Ã¤(y; µ) =

Z

Y
Ã(x; µ)dFµ(x) +

Z

Y
dFµ(x)Ã(y; µ)

so that the EMM estimator µ̂EMM is de¯ned implicitly by

1

n

nX

i=1

Ã¤(yi; µ) = 0

The IF is then given by

IF (z; µ̂EMM ; Fµ) =M
¡1(Ã¤; Fµ)Ã

¤(z; µ)

with

M(Ã¤; Fµ) =

Z

Y
Ã¤(x; µ)sT (x; µ)dFµ(x)=

Z

Y
dFµ(x)

=

Z

Y
Ã(x; µ)dFµ(x)

Z

Y
sT (x; µ)dFµ(x)=

Z

Y
dFµ(x) +

Z

Y
Ã(x; µ)sT (x; µ)dFµ(x)

=

Z

Y
Ã(x; µ)sT (x; µ)dFµ(x)¡

Z

Y
Ã(x; µ)dFµ(x)

Z

Y
sT (x; µ)dFµ(x)=

Z

Y
dFµ(x)

= M(Ã; µ)

D Algorithm for EMM estimator

By making the following approximation

@

@µ

(Z

Y
Ã(x; µ)dFµ(x) +

Z

Y
dFµ(x)

1

n

nX

i=1

Ã(yi; µ)

)
»= ¡

Z

X
Ã(x; µ)sT (x; µ)dFµ(x)

(11)
the Newton-Raphson step ¢µ is given by

¢µ =

½Z

X
Ã(x; µ)sT (x; µ)dFµ(x)

¾¡1 ·Z

Y
Ã(x; µ)dFµ(x)+

Z

Y
dFµ(x)

1

n

nX

i=1

Ã(yi; µ)

#
(12)

The complete algorithm to ¯nd the EMM estimator based on the stan-
dardized optimal OBRE is given by the following four steps:
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² Step 1: Fix a precision threshold ´, an initial value for µ and initial val-
ues for the vector a and the matrix A. For example, the ML estimator
of µ, a = 0 and A = J1=2(µ)¡T where

J(µ) =

Z

X
s(x; µ)s(x; µ)TdFµ(x) (13)

² Step 2: Solve the following equations for A and a

ATA = M¡1
2 (µ) (14)

a =

R
X s(x; µ)Wc(x; µ)dFµ(x)R

X Wc(x; µ)dFµ(x)
(15)

where

Mk(µ) =

Z

X
[s(x; µ)¡ a][s(x; µ)¡ a]TW k

c (x; µ)dFµ(x)

and

Wc(x; µ) = min

½
1;

c

kA[s(x; µ)¡ a]k

¾

² Step 3: Compute M1(µ) and

¢µ =M¡1
1 (µ)A

¡1
"Z

Y
Ã(x; µ)dFµ(x) +

Z

Y
dFµ(x)

1

n

nX

i=1

Ã(yi; µ)

#

² Step 4: If j¢µj ¸ ´ then µ(k+1) = µ(k) + ¢µ and return to step 2, else
stop.

The function Ã is de¯ned for the OBRE in the standardized case by
equation (6) and the following ones. In step 2, one can use an iterative
process in which, given current values for µ, a and A, the right hand sides
of (14) and (15) are computed and then the equations are solved for a and
A. In our experience however, a one step improvement using current values
of µ, a and A is enough. The algorithm is convergent provided the starting
point is near the solution. We propose here the ML estimator, and to insure
convergence, one can ¯rst compute an OBRE with a high value for the bound
c and then use the estimate as starting point for another more robust (lower
value for c) estimator.
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Figure 1: Weights of the OBRE (c = 2:0) with the EMM estimator (solid
line) and the MD approach (dotted line) with 10% of truncated data
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Figure 2: Weights of the OBRE (c = 2:0) with the EMM estimator (solid
line) and the MD appraoch (dotted line) with 30% of truncated data
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