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Abstract

The Wong-Viner Envelope Theorem on the equality of long-run and short-run marginal
costs (LRMC and SRMC) is reformulated for convex but generally nondifferentiable cost
functions. The marginal cost can be formalized as the multi-valued subdifferential a.k.a.
the subgradient set but, in itself, this is insufficient to extend the result effectively, i.e., to
identify suitable SRMCs as LRMCs. This goal is achieved by equating the profit-imputed
values of the fixed inputs to their prices. Thus reformulated, the theorem is proved from
a lemma on the sections of the joint subdifferential of a bivariate convex function. The
new technique is linked to the Partial Inversion Rule of convex calculus.
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1 Introduction

The original Wong-Viner Envelope Theorem on the equality of long-run and short-run
marginal costs (LRMC and SRMC) assumes differentiability of the short-run cost (SRC).
This assumption turns on the possibility of input substitution, which ensures that, at the
optimum, an extra unit of output can be produced as cheaply by increasing the quantity
of a variable input as it could be by increasing an input that is actually fixed in the
short run. But in reality the fixed inputs are likely to be near-perfect complements of the
variable inputs: indeed, a fixed input is usually a productive capacity that can possibly
be replaced by another capacity but not by any variable input.1 An elementary but
instructive example of Boiteux’s [2, 1.2.2] is a fixed-coefficients technology that produces
a quantity y = min {k, v/T} of a homogeneous output good from a quantity k of a fixed
input with a price r and a quantity v of a variable input with a price w (where T is
a given coefficient). The SRC is CSR (y, k, w) = wyT for y ≤ k (with CSR = +∞ for
y > k), and the LRC is CLR (y, r, w) = (r + wT ) y. The SRMC is wT if y < k, but at y
= k it is formally +∞ for an output increase (since no extra output can be produced by
increasing the variable input without increasing the capacity). The SRC is convex but
nondifferentiable and, at y = k, its subdifferential ∂yCSR is the half-line [wT,+∞). It
contains r+wT , which is the LRMC. The example extends to a simple peak-load pricing
problem, in which the output y is not a constant but a periodic function of time (with a
period T ); first noted in [2, 3.3], this is sketched at the end of Section 3 and detailed in
[6, Section 2]. Both the LRC and the SRC are then nondifferentiable, but the inclusion
between the LRMC and SRMC sets remains true, as it does for any convex technology:
∂yCLR (y, r) ⊆ ∂yCSR (y, k) when r ∈ −∂kCSR (y, k), i.e., when the fixed-input bundle k
minimizes the total cost of an output bundle y, given the input prices r and w (the latter
is suppressed from the notation). For differentiable costs, this reduces to the Wong-Viner
equality of gradient vectors, ∇yCLR = ∇yCSR.
But for nondifferentiable costs, the inclusion is generally strict (∂yCLR ( ∂yCSR),

and it shows merely that each LRMC is an SRMC–which is the reverse of what is
required for the short-run approach to LRMC pricing. What is needed is a result that
identifies a suitable SRMC as an LRMC. This is achieved by bringing in the short-
run profit (SRP) function ΠSR, and by requiring that the given prices for the capital
inputs are equal to their profit-imputed values, i.e., that r = ∇kΠSR (p, k) or, should the
gradient not exist, that r ∈ b∂kΠSR (which is the superdifferential of ΠSR as a concave
function of k). In Boiteux’s peak-load pricing problem, this condition simplifies to his
“relation between prices and costs” [2, 3.3, p. 76], which is that r =

R T
0
(p (t)− w) dt

(with continuous time). In this example and in general, the new condition is–as it must
1When the same output good can be produced from a number of plant types, “substitution between

the fixed and the variable inputs” is feasible, but only in expenditure terms: a more expensive type of
capacity with a lower unit operating cost can be replaced by a cheaper type with a higher operating
cost, but the total capacity required for a particular output remains the same.
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be–stronger than cost-optimality of the fixed inputs (when the output price system is
an SRMC), i.e., if p ∈ ∂yCSR (y, k) then b∂kΠSR (p, k) ⊆ −∂kCSR (y, k), and the inclusion
is generally strict (indeed, ∇kΠSR can exist even when ∇kCSR does not, in which case
∇kΠSR ∈ −∂kCSR). But this condition (r ∈ b∂kΠSR) is no stronger than it need be: it
is just strong enough to guarantee that if p ∈ ∂yCSR (y, k) then p ∈ ∂yCLR (y, r). This
is the Extended Wong-Viner Theorem (Theorem 6). It derives from what we call the
Subdifferential Sections Lemma (SSL, i.e., Lemma 2), which gives the joint subdifferential
of a bivariate convex function (∂y,kC) in terms of one of its partial subdifferentials (∂yC)
and a partial superdifferential, b∂kΠ (p, k), of the relevant partial conjugate (which is a
saddle function). The SSL is applied twice, to either ΠSR or CLR as a saddle function
obtained by partial conjugacy from CSR (a jointly convex function of y and k).
So far as we know, the SSL itself is a novelty but, as we show, it can be regarded

as a direct precursor of a fundamental principle of convex calculus, viz., the Partial
Inversion Rule (PIR, i.e., Lemma 5), which relates the partial sub/super-differentials
of a saddle function (∂pΠ and b∂kΠ) to the joint subdifferential of its bivariate convex
“parent” function (∂y,kC). Its applications include the equivalence of the parametric
version of Fermat’s Rule and the Kuhn-Tucker Saddle-point Condition (see, e.g., [9,
11.39 (d) and 11.50]) and the equivalence of Hamiltonian and Lagrangian systems in
variational calculus (see, e.g., [1, 4.8.2] or [8, (10.38) and (10.40)]). Put in general terms,
our own use of the SSL relates the marginal optimal values of a programme to those of
a subprogramme: in the specific context of extending the Wong-Viner Theorem, SRC
minimization is a subprogramme both of SRP maximization and of LRC minimization.
The nearly equivalent PIR can serve the same purpose, and this is a new use for what
is, in Rockafellar’s words, “a striking relationship...at the heart of programming theory”
[7, p. 604].

2 Subdifferential Sections Lemma and Partial Inver-
sion Rule

A multi-variate function can be maximized in two (or more) stages: first over a subset of
the variables (keeping the rest fixed), then over the other variables (the maximand now
being the value function from the first stage); the maximum point can be put together by
back substitution. This can be applied to conjugate a bivariate convex function C, i.e., to
maximize hp | yi− hr | ki−C (y, k) over the two vector variables, y and k. The first-stage
optimal-value function is then the sum of − hr | ki and the partial convex conjugate

Π (p, k) := sup
y
(hp | yi− C (y, k)) . (1)

This is a saddle (convex-concave) function of p and k: it is convex (like C) in the
“conjugated” first variable, but (unlike C) it is concave in the non-conjugated second
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variable. In terms of the generalized, multi-valued derivatives, viz., the subdifferential ∂
of a convex function and the superdifferential b∂ of a concave one, two-stage maximization
shows in this case that (p,−r) ∈ ∂y,kCSR (y, k) if and only if p ∈ ∂yCSR (y, k) and r
∈ b∂kΠSR (p, k). Thus the joint subdifferential of the bivariate convex function is “sliced”
along the “p-axis” and, as is next stated formally, the section of the set ∂C (y, k) through
any p ∈ ∂yC (y, k) is found to be −b∂kΠ (p, k).
Definition 1 (Sub/super-gradients) Let C: Y → R ∪ {±∞} be a convex extended-
real function on a real vector space Y that is paired with another one, P , by a bilinear
form h· | ·i : P × Y → R. A subgradient of C at a y ∈ Y is any p ∈ P such that
C (y +∆y) ≥ C (y)+ hp |∆yi for every ∆y ∈ Y . The set of all subgradients (at y) is the
subdifferential ∂C (y). In other words,

p ∈ ∂C (y)⇔ y maximises hp | ·i− C. (2)

When Π: K → R∪{±∞} is a concave function on a space K paired with another space
R, a supergradient of Π at a k ∈ K is any r ∈ R such that Π (k +∆k) ≤ Π (k)+hr |∆ki
for every ∆k ∈ K. The set of all supergradients (at k) is the superdifferential b∂Π (k),
which equals −∂ (−Π) (k). In other words,

r ∈ b∂Π (k)⇔ k maximises Π− hr | ·i . (3)

Lemma 2 (Subdifferential sections) Assume that C: Y ×K → R∪{+∞} is a proper
convex function2 on the Cartesian product of vector spaces Y and K that are paired (by
bilinear forms) with P and R. Let Π: P×K → R∪{±∞} be the partial convex conjugate
of C, i.e., (1) holds for each p ∈ P and k ∈ K. Then the following conditions are
equivalent to each other:

1. (p,−r) ∈ ∂C (y, k).

2. p ∈ ∂yC (y, k) and r ∈ b∂kΠ (p, k).
Also, either condition implies that both C (y, k) and Π (p, k) are finite.

Proof. This consists in giving the first-order conditions for either simultaneous or
sequential maximization over y and k (by convexity, the FOCs are both necessary and
sufficient). Formally, by (2), Condition 1 holds if and only if (y, k)maximizes hp,−r | ·, ·i−
C. This holds if and only if: (i) y maximizes hp | ·i − C (·, k) to Π (p, k), and (ii) k

2Properness of a convex C means that it takes a finite value somewhere, but does not take the value
−∞ anywhere. A convex function taking the value −∞ is peculiar: it may take finite values only on
the algebraic boundary of its effective domain {y : C (y) < +∞}, and it has no finite value at all if it is
lower semicontinuous along every straight line. See, e.g., [8, Theorem 4] or [9, 2.5].
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maximizes Π (p, ·)− hr | ·i. And this pair of conditions is equivalent to Condition 2, again
by (2) and (3). Finally, from (i), Π (p, k) = hp | yi − C (y, k) < +∞ (since C > −∞
everywhere). And, from (ii), Π (p, k) = hr | ki + supy,k (hp,−r | y, ki− C (y, k)) > −∞
(since C < +∞ somewhere). So Π (p, k) is finite (and hence so is C (y, k)).

Remark 3 Under the assumptions of Lemma 2,

b∂kΠ (p, k) ⊆ −∂kC (y, k) when p ∈ ∂yC (y, k) (4)

i.e., when y yields the supremum defining Π in (1).

Proof. Since ∂C (y, k) ⊆ ∂yC (y, k)×∂kC (y, k), the set ∂kC (y, k) contains the section
of ∂C (y, k) through any p ∈ ∂yC (y, k). And this section is −b∂kΠ (p, k) by Lemma 2.
The inclusion (4) is typically strict: indeed, the set b∂kΠ (p, k) may even be a singleton

when ∂kC (y, k) is not, i.e., the ordinary gradient vector ∇kΠ may exist also when ∇kC
does not. In such a case, (4) becomes: ∇kΠ (p, k) ∈ −∂kC (y, k) if p ∈ ∂yC (y, k). See [3,
Section 4], [4, Theorem 9] and [6] for examples in the context of peak-load pricing (with
ΠSR and CSR as Π and C); the examples rely on time-continuity of the price function,
which we verify for competitive equilibrium in [5].

The subdifferential correspondences of mutual conjugates are inverse to each other.
This rule can be applied to the partial subdifferential (∂yC) that is the range of the
variable (p) indexing the sections of the joint subdifferential (∂C), in Lemma 2. As a
result, the saddle-differential correspondence (∂pΠ × b∂kΠ) and the joint-subdifferential
correspondence (∂y,kC) are shown to be partial inverses of each other: their graphs are
identical up to a sign change and the transposition of that pair of variables with respect to
which Π and C are mutual conjugates (p and y). Thus the well-known Partial Inversion
Rule–given in, e.g., [1, 4.4.14], [7, Lemma 4] and [9, 11.48]–is derived here from the
simpler Subdifferential Sections Lemma and the Inversion Rule (which is stated next).

Proposition 4 (Inversion Rule) Assume that C: Y → R ∪ {+∞} is proper convex,
and the space Y is paired with P . Let Π: P → R ∪ {+∞} be the convex conjugate of C,
i.e., Π (p) := supy (hp | yi− C (y)) for each p ∈ P . Then, for every y ∈ Y and p ∈ P ,

p ∈ ∂C (y)⇔ y ∈ ∂Π (p) and C is finite and lower semicontinuous at y. (5)

Either condition implies that Π (p) is also finite.

Proof. See, e.g., [1, 4.4.4], [8, Corollary 12A] or [9, 11.3].

Corollary 5 (Partial Inversion Rule) Under the assumptions of Lemma 2, the fol-
lowing conditions are equivalent to each other:
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1. (p,−r) ∈ ∂C (y, k).

2. y ∈ ∂pΠ (p, k) and r ∈ b∂kΠ (p, k), and C (·, k) is finite and lower semicontinuous at
y (for any locally convex topology on Y that makes P the continuous dual space).

Also, either condition implies that both C (y, k) and Π (p, k) are finite.

Proof. This follows from Lemma 2 and Proposition 4 with C (·, k) in place of C.
Comment: There is a structural difference between the Subdifferential Sections Lemma

and the Partial Inversion Rule. The SSL turns the condition (p,−r) ∈ ∂y,kC into a pair
of conditions, p ∈ ∂yC and r ∈ b∂kΠ, that involve two functions but use partial subdiffer-
entials with respect to the same variables as in the joint subdifferential. The PIR turns
the condition (p,−r) ∈ ∂y,kC into the pair of conditions y ∈ ∂pΠ and r ∈ b∂kΠ. These
use a single function Π, but only one of its arguments (k) is the same as in the original
function C: the other argument (y) is replaced by its dual (p) in inverting ∂yC into ∂pΠ.
This step requires the semicontinuity of C with respect to y–and this is why the PIR is
not purely algebraic like the SSL.

3 Extended Wong-Viner Envelope Theorem

With the variable-input prices w kept fixed and suppressed from the notation, the long-
run cost CLR is a function of the output bundle y ∈ Y and the fixed-input prices r ∈ R,
and the short-run profit ΠSR is a function of the output prices p ∈ P and the fixed-input
bundle k ∈ K (where Y and K are the commodity spaces for outputs and the fixed
inputs, and are paired with price spaces P and R). By definition, both CLR and ΠSR
are partial conjugates of the short-run cost function CSR: more precisely, ΠSR is, as a
function of p, the convex conjugate of CSR as a function of y (with k and w fixed), and
CLR is, as a function of r, the concave conjugate of −CSR as a function of k (with y and
w fixed), i.e.,

CLR (y, r, w) = inf
k
{hr | ki+ CSR (y, k, w)} (6)

ΠSR (p, k, w) = sup
y
{hp | yi− CSR (y, k, w)} . (7)

The SSL can be applied to each of these relationships, with the following result.

Theorem 6 (Extended Wong-Viner Theorem) Assume that CSR: Y × K → R ∪
{+∞} is a proper convex function, which defines CLR and ΠSR by (6) and (7). Then the
following conditions are equivalent to one another:

1. p ∈ ∂yCSR (y, k) and r ∈ b∂kΠSR (p, k).
5



2. (p,−r) ∈ ∂CSR (y, k).

3. p ∈ ∂yCLR (y, r) and r ∈ −∂kCSR (y, k).

Comment (comparison with the differentiable case): The usual Wong-Viner Envelope
Theorem for differentiable costs is:

r = −∇kCSR (y, k) , i.e., k yields the inf in (6)⇒∇yCSR (y, k) = ∇yCLR (y, r) . (8)

The equivalence of Conditions 1 and 3 in Theorem 6 extends this result because, by
Remark 3, b∂kΠSR (p, k) ⊆ −∂kCSR (y, k) when p ∈ ∂yCSR (y, k) (9)

i.e., when y yields the supremum in (7). In the differentiable case, the inclusion (9)
reduces to the equality ∇kΠSR = −∇kCSR (when p = ∇yCSR), and thus the equivalence
of Conditions 1 and 3 reduces to (8).

Comments (failure of naive extension):

1. The Wong-Viner Theorem cannot be extended to the general, subdifferentiable case
simply by transcribing the ∇’s to ∂’s in (8) because, even when r ∈ −∂kCSR (y, k),

p ∈ ∂yCSR (y, k); p ∈ ∂yCLR (y, r) . (10)

It is the reverse inclusion that always holds,3 i.e.,

if r ∈ −∂kCSR (y, k) then ∂yCLR (y, r) ⊆ ∂yCSR (y, k) (11)

but the inclusion is generally strict, i.e., ∂yCLR 6= ∂yCSR–and thus it fails to attain
the goal of identifying an SRMC as an LRMC.

2. Our extension (Theorem 6) succeeds because it strengthens the insufficient condi-
tion r ∈ −∂kCSR in (10) to r ∈ b∂kΠSR (which is stronger because the inclusion in
(9) is usually strict, when CSR is nondifferentiable).

3. This can be illustrated in the context of pricing, over the demand cycle, the services
of a homogeneous productive capacity with a unit capital cost r and a unit running
cost w. The technology can be interpreted as, e.g., electricity generation from a
single type of thermal station with a fuel cost w (in $/kWh) and a capacity cost r (in
$/kWper period). The cycle is represented here by a continuous time interval [0, T ],
but the same arguments apply with discrete time. The long-run cost is CLR (y, r)
= w

R T
0
y (t) dt+ r supt∈[0,T ] y (t). The short-run cost is CSR (y, k) = w

R T
0
y (t) dt if

3The inclusion (11) follows from (6) by Remark 3 (applied to the saddle function CLR as a partial
conjugate of CSR).
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0 ≤ y ≤ k (with CSR = +∞ otherwise) for y ∈ L∞ [0, T ], the space of all essentially
bounded functions (paired with the space of integrable functions L1 [0, T ]). The
short-run cost is nondifferentiable whenever supt y (t) = k (i.e., whenever there is
no spare capacity), and then the condition r ∈ −∂kCSR (y, k) says nothing about
r (except that r ≥ 0)–so it obviously cannot ensure that an SRMC price system
is an LRMC. By contrast, the condition r = ∂ΠSR/∂k =

R T
0
(p (t)− w)+ dt does

specify r, and thus it is much stronger (if p ∈ ∂yCSR (y, k), i.e., if: y (t) = k when
p (t) > w, 0 ≤ y (t) ≤ k when p (t) = w and y (t) = 0 when p (t) < w). It is strong
enough, by Theorem 6, to ensure that if p ∈ ∂yCSR (y, k) then p ∈ ∂yCLR (y, r). For
this example, one can also check this by calculating both subdifferentials directly.
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