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Abstract 

We use information from two prospective British birth cohort studies to explore 
the antecedents of adult malaise, an indicator of incipient depression. These 
studies include a wealth of information on childhood circumstances, behaviour, 
test scores and family background, measured several times during childhood. 
We are concerned both with incorporating model uncertainty and using a 
person-centred approach. We explore associations in both cohorts using two 
separate approaches: Bayesian model averaging (BMA) and recursive trees. The 
first approach permits us to assess model uncertainty, necessary because many 
childhood antecedents are highly correlated. BMA also aims to produce more 
robust results for extrapolation to other data sets through averaging over the 
range of plausible models. The second approach is concerned with partitioning 
the sample, through a series of binary splits, into groups of people who are as 
alike as possible. One advantage is that the approach is person-centred in that it 
retains real groups of respondents. We compare and contrast the insights 
obtained from the two approaches and use the results from each to inform the 
other and thus refine our understanding further. Moreover, we explore the 
claimed added robustness for extrapolation by using a split-sample for the 1970 
cohort. The consistency of results across methods and cohorts is discussed 
throughout. 
 
Keywords: well-being, cohort, Bayesian Model Averaging, recursive trees 
JEL classification: I10, C11, C14 
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Non-Technical Summary 

Using data from 1958 The National Child Development Study (NCDS) and the 
1970 British Cohort Study (BCS70), we explore the antecedents of adult 
malaise, an indicator of incipient depression. Our outcome variable, the Malaise 
Inventory, was designed by Rutter et al (1970) and is a 24-item battery of 
questions designed to identify those individuals at high risk of depression. We 
restrict attention to female cohort members, and the samples that we analyse 
comprise all females for whom a malaise indication was available at the 
relevant adult age. These datasets also include a wealth of information on 
childhood circumstances, behaviour, test scores and family background, 
measured several times during childhood. We have constructed a series of 
childhood measures that, in most cases, summarise information collected in a 
similar form at each of the three main childhood waves. These include 
childhood poverty; social class of origin; social class of father (or father figure); 
housing tenure; family disruption; parents’ school leaving; behavioural 
measures based on several scale items, taken to represent aggression, anxiety, 
and restlessness or hyperactivity, teacher’s reports of mother’s and of father’s 
interest in the cohort member’s schooling; frequent absences from school (only 
for NCDS); contact with the police by age 16 (only for NCDS); and educational 
test scores. 
 
We explore associations in both cohorts using two separate approaches: 
Bayesian model averaging (BMA) and recursive trees. The first approach 
permits us to assess model uncertainty, necessary because we have a large 
number of possible explanatory variables and many of the childhood 
antecedents are highly correlated. In these circumstances, stepwise methods that 
choose one “best” model may be misleading. There may in fact be several 
different models, all of which fit the data similarly well, and all of which are, 
more or less, defensible. The stronger the evidence for other models, the less 
certain a researcher can be that any chosen model is the best. This kind of model 
uncertainty can be problematic, for instance, if different models have different 
implications for answering research or policy questions. Rather than choose one 
model, Bayesian model averaging (BMA) identifies a set of plausible models 
and ranks them from most to least likely.  
 
The second approach, Classification and Regression Trees (CART), is person-
centred and involves partitioning the sample, through a series of binary splits, 
into groups of people who are as alike as possible based on the outcome of 
interest.  Parametric regression techniques, while traditionally the statistical 
method of choice in the social sciences, often impose strong linearity 
assumptions and meet with data-based constraints on the extent and order of 
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interaction terms; when the assumptions underlying parametric regression 
methods are not met, the resulting model is unlikely to describe the data well. 
Non-parametric person-centred techniques allow researchers to relax or 
eliminate many of the restrictive assumptions underlying parametric modelling. 
The end result can be displayed graphically in tree form and real groups of 
people in different risk groups can be described. 
 
The BMA results for the NCDS indicate that, using a strict model selection 
criterion, only five models are retained. Thus despite our a priori concerns, there 
is not a great deal of model uncertainty. Five childhood antecedents are 
included in all five models: any childhood poverty, any high anxiety score, any 
low father’s interest in schooling, any frequent school absences, and any lowest 
quartile test score. In addition, there is positive evidence that female cohort 
members for whom there were no educational test scores available at any 
childhood wave, those with some contact with the police, and, more weakly, 
those with fewer than two test scores in the highest quartile are all more likely 
to experience malaise at age 33. These eight measures of childhood background 
correspond to those identified when a stepwise logit model was estimated. The 
model uncertainty arises from nested subsets of the most likely model involving 
inclusion of one or two of the three additional but ‘uncertain’ antecedents.  
 
In contrast, results for the BCS70 sample suggest more model uncertainty, with 
10 models being retained. This greater uncertainty may have arisen because, for 
methodological reasons, we worked with a randomly chosen half of the sample 
(the ‘estimation sample’) or from the lack of information on two of the more 
powerful childhood antecedents that were included in all models for the NCDS. 
Two factors are in all 10 models: experiencing childhood poverty at any 
childhood wave and having an educational test score in the lowest quartile in at 
least one of the three childhood waves. Experience of childhood anxiety is also 
retained frequently but the higher risk group varies across models (sometimes 
only those with the most evidence are retained as different from the reference 
group, other times those with moderate to high evidence are retained). As with 
the NCDS, there is some, though weaker, indication that having all test scores 
missing is associated with adult malaise. The only other childhood measure 
included among the ten possible models for BCS70 reflects family structure 
whilst growing up. The results for BCS70 are thus a little less consistent and 
tidy than those for NCDS, and the original stepwise model does not correspond 
to any of the 10 retained BMA models. 
 
Using the CART method, results for both the NCDS data and the BCS70 show 
a first split by academic test scores, after which there are substantial differences. 
Patterns in the NCDS tree suggest that both truancy and test scores could, 
perhaps, be usefully combined into a summary variable of school performance. 
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Patterns for the BCS70 sample suggest an interaction between family structure 
and having experienced either low academic test scores or having some 
evidence of childhood poverty. Family structure does not further increase the 
risk of having a high malaise score for those women who suffered both kinds of 
disadvantages, but among those who suffered only one, experience of foster 
care or some forms of single parent family, increases the risk of a high malaise 
score to levels similar to the doubly disadvantage group.  
 
We then explore the possible gains from bringing together these two analytic 
approaches and show that the BMA predicted probabilities provide a very good 
basis for the splits in recursive trees and that the groups from the recursive tree 
analysis can help to inform regression modelling. We then explore possible 
interactions or combinations of the childhood predictors in a number of 
structured, but informal, ways to improve our understanding of the childhood 
antecedents of female adult malaise. We thus discover important interplays 
between childhood anxiety and test scores in predicting adult malaise. 
Furthermore, we used the other random half of the BCS70 sample (the 
‘validation sample’) to explore whether the BMA approach did indeed provide 
the claimed superiority for ‘out of sample’ prediction. 
 
Both BMA and CART methods offer new and interesting opportunities for 
exploring the complex interplays among different elements of childhood 
disadvantage that affect adult outcomes, such as malaise. We share and have 
been consistently inspired by Burt Singer’s deep concerns about the general 
linear model as the only tool for data exploration, especially when no serious 
attempt is made to get beyond main effects. Moreover, Adrian Raftery’s plea for 
better analysis and fitting when using the general linear model also resonate. 
BMA methods can help identify robust models and predictors but does so with a 
strong penalty for the inclusion of additional explanatory variables. CART 
methods can identify ways of interacting and combining the data so that when 
both are used, perhaps iteratively, more defensible and reliable models can be 
identified.  
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1.  Introduction 

This paper is primarily concerned with applying and combining two fairly 
distinct methodologies in the context of an exploration of the childhood 
antecedents of female adult malaise. The problem we face is one shared by 
those undertaking exploratory analyses of the antecedents of much sociological 
(or other human) behaviour. One of the difficulties that most analysts face is 
how to deal with quite large numbers of covariates, in order to ‘sort the wheat 
from the chaff’. As in much social research, many of our covariates are often by 
nature categorical and, moreover, the problems of dealing with missing 
information make the use of categorical covariates more desirable.  
 
Several years ago Raftery (1995) provided a thorough account of issues to do 
with Bayesian model selection in social research. Many social researchers have 
responded to that Sociological Methodology article by adopting the BIC statistic 
for model testing. But fewer have been enticed by the Bayesian model 
averaging (BMA) approach, even though that was in many ways the core 
element of Raftery’s approach. The claimed key advantages of BMA were: 
dealing with model uncertainty; and robustness advantages for out-of-sample 
prediction (see also Hoeting et al 1999). We are convinced that dealing with 
model uncertainty is desirable and informative and will illustrate some of the 
benefits through our application to the childhood antecedents of adult female 
malaise. We also explore the issue of the potential gains for out of sample 
prediction, using a split-sample approach for one of the two birth cohorts 
considered here. 
 
The second approach that we explore here is the use of person-centred methods. 
Readers of Sociological Methodology were introduced to an extended example 
by Singer et al (1998). Perhaps that work did not have the influence that the 
approach merits for two main reasons: the procedures used to group individuals 
according to their characteristics were very labour intensive; and, in part 
because the groups were produced without any attention being paid to the 
outcome being considered, the laboriously obtained groups of persons did not 
turn out to provide much discrimination or insights about the mental health 
outcome concerned. However, one of the authors of that study has gone on to 
extend methods for a more automated approach to person-centred analysis, 
which is known as recursive partitioning and involves dividing the sample into a 
series of recursive binary splits, to maximise homogeneity within nodes 
according to a ‘goodness-of-split’ criterion, producing a ‘tree’ that is then 
‘pruned’ to give a more parsimonious grouping (see Zhang and Singer 1999). 
This approach is related to the ‘Automatic Interaction Detection’ procedures 
developed many years ago. Person-centred methods divide into two broad 
approaches, those which begin with each individual and then group together 



 5

those who are most alike according to some criterion, known as cluster analysis, 
and those that begin with the entire population and successively divide it into 
groups, often known as Classification and Regression Trees (Breiman et al 
1984). 
 
One attraction of person-centred approaches to many is that the final groupings 
correspond to ‘real’ groups of people. This certainly makes results more 
accessible to policy makers. Advocates of person-centred approaches often 
stress this (and other related advantages) as being invaluable through avoiding 
the complexities of multiple regression models, that attribute probabilistic 
estimates to individuals, rather than exploring real groups. We regard this 
distinction as debatable, but nevertheless feel that quantitative approaches to 
person-centred methods are not explored often enough in social research. We 
thus explore the insights to be gained from applying the Zhang and Singer 
(1999) approach to our two birth cohorts. 
 
In exploring these two approaches, it was always our intention to see whether 
they could cross-inform each other, in the sense that the groups identified 
through recursive partitioning might either serve to identify interaction terms 
that had been missed by the regression models or to define a more informative 
covariate for the BMA models. Conversely, it is also reasonable to ask whether 
the predicted probabilities derived from the BMA regression modelling do well 
enough as predictors to dominate the basis for splitting into groups in the 
recursive trees analysis. A further issue is to examine how well the two 
approaches do in terms of their ability to ‘account for’ variation in female adult 
malaise. 
 
Lastly, we explore how well the two approaches used here do in terms of 
predictive performance. For the younger birth cohort considered, we randomly 
split the sample into two halves, an estimation sample and a validation sample, 
and then explore the out of sample predictive performance of the various 
models considered. 
 
There is particular value in being able to repeat our analyses for two nationally 
representative prospective studies of birth cohorts, a group of children born in 
1958 (the National Child Development Study, NCDS) and a group born in 1970 
(the British Cohort Study 1970, BCS70). Finding, as we do, that the most 
informative childhood antecedents of adult female malaise are fairly similar 
across the two cohorts provides some reassurance that our exploratory approach 
gets close to the underlying mechanisms and that there is continuity across 
cohorts in the antecedents of female adult malaise that matter. 
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2.  Data Description 

The data used are drawn from the National Child Development Study (NCDS) 
and the British Cohort Study (BCS70), longitudinal studies that have both 
attempted to follow the lives of around 16,000 people who were born during 
one week in March 1958 and one week in April 1970 respectively. The NCDS 
has collected a wide range of information around birth, at ages 7, 11 and 16 
during childhood and at ages 23, 33 and 42 in adulthood. BCS70 conducted 
interviews shortly after birth, at ages 5, 10 and 16 during childhood and at ages 
26 (a limited postal enquiry) and 30 in adulthood. In order to make the analyses 
comparable, we examine malaise as measured at age 33 in NCDS and at age 30 
in BCS70. Moreover, we restrict attention to female cohort members since their 
malaise incidence is higher than for males and the analyses here are intended to 
illustrate the methods used. The samples that we analyse comprise all females 
for whom a malaise indication was available at the relevant adult age. In this 
analysis, the BCS70 sample is randomly split into two samples – the learning 
and the validation. All models are estimated using the learning sample so that 
their out of sample performance can be assessed using the validation sample. 
 
Our outcome variable, the Malaise Inventory, was designed by Rutter et al 
(1970) and is a 24-item battery of questions designed to identify those 
individuals at high risk of depression. The items cover a range of symptoms 
associated with depression, and, similar to previous work, we classify those 
individuals answering yes to at least seven of the 24 items as being at high risk 
of depression (Richman, 1978; Rutter et al 1976).  
 
The explanatory variables are, in most cases, constructed as summaries of 
information collected at more than one childhood wave. However, many cohort 
members were not interviewed at all ages, and even among those who were 
interviewed, there is often a good deal of missing information and non-
response. Because attrition and non-response appear to be non-random, 
restricting our sample to those cohort members with complete information could 
result in serious sample selection issues. We explicitly code missing values for 
each explanatory variable (for details on NCDS see Hobcraft 1998 and on 
BCS70 see Sigle-Rushton 2004). This maximizes our sample and allows us to 
assess whether missing information is likely to be informative. Because most of 
our explanatory variables summarise information collected at various points in 
time and because we wanted to exploit as much real information as possible, for 
each summary variable, only those individuals with no information on the 
characteristic in all of the childhood waves were classified as missing. Those 
with at least some information were coded into categories that were constructed 
with some allowance for missing information.  
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We have constructed a series of childhood measures that, in most cases, 
summarise information collected in a similar form at each of the three main 
childhood waves. This enables capture of any information on disadvantage 
(even when missing at one or two of the waves) and also permits some measure 
of repeated incidence of disadvantage, such as depth of childhood poverty. 
These summary measures of childhood experience are documented and more 
fully described by Hobcraft (1998 & 2000) for NCDS and by Sigle-Rushton 
(2004) for BCS70. We have tried to make the handling of these factors 
comparable over the two cohorts, though this is an ongoing effort, but the same 
information is not always available in both. Typically, we took information 
from the three childhood waves, with the item at each age classified into 
advantaged, intermediate, disadvantaged, and missing categories and 
summarised information across the combined ages into four categories plus an 
additional one with all information missing. The usual categories were: a group 
with clear evidence of disadvantage at two or three waves; a group with one 
piece of evidence of disadvantage, but possibly some information missing at 
one or two waves; those with no evidence of disadvantage, but with fewer than 
two indications of advantage; those with two or three indications of advantage; 
and all information missing. There are some minor variations in detail, as will 
be apparent from Table 1. 
 
The summary measures that have been used in this work are shown for the 
samples used in this analysis in Table 1 and take comparable inputs at each of 
the three childhood ages unless otherwise indicated, covering: 

 childhood poverty (indicators), as measured by: ‘experience of financial 
difficulties’ at ages 7, 11, & 16 and by ‘receipt of free school meals’ at 
ages 11 & 16 for NCDS; and by receipt of free school meals at age 10, 
receipt of income support or unemployment benefits at age 10 and self-
assessed financial hardship at age 16;  

 childhood poverty (income) for BCS70 only, using banded family income 
at ages 10 and 16; 

 social class of origin, concentrating on three broad groupings of non-
manual, skilled manual, and semi- and unskilled manual for the father at 
the birth of the survey member and the two paternal grandfathers; 

 social class of father (or father figure), similarly grouped, but for the 
three childhood ages; 

 housing tenure, distinguishing renting from local authority (or public 
housing), owner-occupier, and other; 

 parents’ school leaving age for NCDS only – a combination of whether 
mother & father left school at the minimum age (measured once for each 
parent); 

 family disruption, including having been born outside marriage, 
experience of care, loss of a parent through death, experience of parental 
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divorce, and remarriage, with minor variations in the classification, 
derived from the interview around birth in addition to the three childhood 
waves; 

 behavioural measures based on several scale items, taken to represent  
♦ aggression,  
♦ anxiety, and  
♦ restlessness or hyperactivity; 
for BCS70 we have only used ages 5 and 16; 

 teacher’s reports of mother’s and of father’s interest in the cohort 
member’s schooling, distinguishing very interested and low interest from 
intermediate groups; for BCS70 this information was only available at 
age 10; 

 frequent absences from school (only for NCDS); 
 three reports of contact with the police by age 16, two from teachers and 

one from parents (only for NCDS); 
 and educational test scores, distinguishing lower and upper quartile 

scores from intermediate ones. 
 
When we apply Bayesian Model Averaging techniques, we treat all of our 
control variables, other than family type and poverty, as categorical with an 
explicitly defined missing category. We treat the most advantaged category as 
the reference category.  With the exception of the missing category, all the 
categorical variables other than family experience have been entered into our 
models as a series of hierarchically defined dummy variables. Taking the most 
advantaged category as a reference and creating a dummy for the missing value 
category, we then created a series of dummy variables. The first was set equal to 
one for all categories other than the reference and the missing category. This 
variable identifies those cohort members for whom there is any possibility of 
disadvantage as we define it for that variable. The next dummy is set equal to 
one for those members with at least some evidence of disadvantage.  A final 
dummy variable is set equal to one only for those with the clearest evidence of 
disadvantage.1 
 

                                                 
1  The dummy variables for experience of poverty are similarly defined but take into 

account the larger number of categories for that variable. In other words, there are 
four, as opposed to three, hierarchal dummies defined for each of the poverty focal 
variables. Moreover, in NCDS, there is only one dummy for all missing childhood 
behaviour, rather than three separate all missing dummies for aggression, anxiety and 
hyperactivity for BCS70. 
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Table 1: Sample distribution by categories of childhood antecedents for 
females with adult malaise scores at age 30 in BCS70 and at age 33 in 

NCDS (per cent) 

Childhood Antecedent Categories BCS70a  NCDS Category 
 learning validation NCDS (Where different) 

Poverty Indicator     
Not Poor 35 36 40  
Probably Not Poor 30 29 35  
Some Poverty 10 11 11  
Fairly Poor 8 8 8  
Clearly Poor 13 13 3  
All Missing 4 4 3  
     
Poverty Income     
Not Poor 42 42 N/A  
Probably Not Poor 36 36 N/A  
Some Poverty 8 7 N/A  
Fairly Poor 3 4 N/A  
Clearly Poor 2 1 N/A  
All Missing 9 10 N/A  
     
Family Type     
Natural throughout 41 43 50  
Natural , partial info 37 38 29  
Ever in care/fostered 4 4 2  
Dissolution, no remarriage 8 6 4 Divorced, no remarriage 
Dissolution, remarried 8 7 2 Divorced, remarried 
Lone parent at birth, no marriage 1 1 4 Other dissolution, no remarr. 
Lone parent at birth, later married 2 1 2 Other dissolution, remarried 
All missing 1 1 3 Born out-of-wedlock 
   4 All missing 
Social Class of Origin     
2-3 nonmanual 16 17 15  
0 IV or V, 0/1 nonmanual 40 37 35  
one IV or V 27 27 32  
2-3 IV or V 10 12 15  
All Missing 7 7 3  
     
Social Class of Father Figure     
2-3 nonmanual 27 29 25  
0 IV or V, 0/1 nonmanual 43 43 40  
one IV or V 13 14 15  
2-3 IV or V 8 7 14  
All Missing 8 7 5  
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Table 1 (continued) 

Childhood Antecedent Categories BCS70a  NCDS Category 
 learning validation NCDS (Where different) 

Housing Tenure     
2-3 Owner Occ. 8 8 38  
0 Council, 0/1 Owner Occ. 55 56 15  
1 Council 12 12 11  
2-3 Council 23 22 34  
All Missing 3 3 2  
     
Father's Interest in Education at Age 10    Father's Interest in Education 
Very Interested 28 28 21 2-3 High Interest 
Some Interest 14 15 41 0 Low, 0/1 high 
Little Interest 3 3 20 1 Low 
No Interest 2 2 7 2-3 Low Interest 
Missing 54 52 11 All Missing 
     
Mother's Interest in Education at Age 10    Mother's Interest in Education 
Very Interested 41 42 32 2-3 High Interest 
Some Interest 23 24 41 0 Low, 0/1 high 
Little Interest 3 3 18 1 Low 
No Interest 1 1 7 2-3 Low Interest 
Missing 32 30 3 All Missing 
     
Aggression Scores     
2 Low 22 24 46 2-3 Low 
0 High, 0/1 Low 59 58 36 0 High, 0/1 Low 
1 High, 1 Low 5 6 12 1 High 
2 High or 1 High, 1 Missing 4 4 4 2-3 High 
All Missing 10 9 2 All Missing 
     
Anxiety Scores     
2 Low 19 19 27 2-3 Low 
0 High, 0/1 Low 60 60 41 0 High, 0/1 Low 
1 High, 1 Low 7 8 23 1 High 
2 High or 1 High, 1 Missing 5 4 7 2-3 High 
All Missing 10 9 2 All Missing 
     
Hyperactivity Scores     
2 Low 20 22 45 2-3 Low 
0 High, 0/1 Low 63 62 35 0 High, 0/1 Low 
1 High, 1 Low 5 5 13 1 High 
2 High or 1 High, 1 Missing 3 3 5 2-3 High 
All Missing 10 9 2 All Missing 
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Table 1 (continued) 

Childhood Antecedent Categories BCS70a  NCDS Category 
 learning validation NCDS (Where different) 

Academic Test Scores     
2/3 High Quartile 13 12 18  
0 Low, 0/1 High Quartile 49 50 49  
1 Low quartile 23 22 16  
2/3 Low quartile 9 10 16  
All Missing 6 6 1  
     
Contact with Police     
All 3 No N/A N/A 30  
1-2 No, 0 Yes N/A N/A 50  
1-2 No, 1 Yes N/A N/A 2  
Yes>No N/A N/A 2  
All Missing N/A N/A 16  
   
Frequent School Absences   
All 3 No N/A N/A 46  
1-2 No, 0 Yes N/A N/A 33  
1+ Yes, 1-2 No N/A N/A 17  
1+ Yes, 0 No N/A N/A 3  
All Missing N/A N/A 1  
   
Parental School Leaving Ages   
2 Beyond Minimum N/A N/A 10  
1 Beyond Minimum, Other Missing N/A N/A 25  
Either or Both at Minimum N/A N/A 62  
All Missing N/A N/A 3  
     
Sample Size 2823 2864 5768  
   
Proportion with High Malaise Score 20 20 12  
 
a The BCS70 sample is randomly split into two samples of roughly equal size.  This allows us to test 
the performance of models achieved with the learning sample data using the validation sample data. 
 
The family experience variable is constructed in a similar, but less 
straightforward, way. The reference category comprises, as mentioned above, 
those who were living with both natural parents at all three childhood 
interviews. Those for whom there is no evidence of family disruption, but some 
doubts because of missing information are identified by a dummy, as are those 
for whom all information on family structure is missing. An additional dummy 
picks out those children who have ever been in care. The remaining categories 
differ slightly for the two cohorts. For NCDS, a further dummy identifies all 
children born out of wedlock. Four further dummies capture the remaining 
information: ‘disruption’ (any divorce or lone parenthood, regardless of 
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subsequent marital status), ‘divorce’ (regardless of subsequent marital status), 
‘remarriage’ (regardless of type of disruption), and ‘divorced & remarried’ to 
complete the coverage. For the remaining categories in BCS70, we first create a 
dummy variable that equals one if the cohort member was born to a lone mother 
or ever experienced a family dissolution. The next variables pick out those 
among that group who were born to a lone mother, experienced a step-family 
situation (remarriage following dissolution or marriage to a lone mother), and 
finally, those who experienced both a dissolution and a step-family 
arrangement. As constructed, the categorical variables are transformed into 58 
hierarchical variables for the NCDS and 53 for the BCS70.    
 

3.  The Methods 

3.1.  Bayesian Model Averaging (BMA) 
When faced with a large number of explanatory variables, social scientists often 
employ model selection techniques like stepwise regression in order to choose 
one “best” model that is both parsimonious and fits the data well.  However, in 
many instances, there will be several different models, all of which fit the data 
similarly well, and all of which are, more or less, defensible. The stronger the 
evidence for other models, the less certain a researcher can be that any chosen 
model is the best. This kind of model uncertainty can be problematic, for 
instance, if different models have different implications for answering research 
or policy questions.  Rather than choose just one particular model, Bayesian 
model averaging (BMA) is an estimation method that explicitly takes model 
uncertainty into account and identifies a set of plausible models. Researchers 
can then use the set of defensible models to address the research question at 
hand and, in many cases, improve out of sample predictive performance 
(Hoeting et al, 1999).  
 
To illustrate Bayesian model averaging methods, we will rely on a specific 
example that is pertinent to our own application.2 Suppose our research question 
is focused on a specific regression parameter, β1. If we were to choose one best 
model, it would either include β1 or it would not. But even if β1 is not included 
in the best model, it may, nonetheless, be included in other models that fit the 
data almost as well. Not taking those other models into account may mean 
losing some important information about this parameter. Now assume that, 
instead of choosing just one model (either by choice of variables or selection 

                                                 
2  The material in this section is drawn from Raftery (1995) and Hoeting et al (1999). 

We refer interested readers to these publications for a more generalised and rigorous 
introduction to the method.  
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techniques) we consider the set of K possible models, which, in most cases, will 
be rather large. In doing so, we can calculate Pr[β1 ≠ 0 | D], the posterior 
probability that β1 is in the model, which is 
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A

k∑=≠β , (1) 

 
where A1={Mk: k=1,…,K; β1≠0} – that is the set of models that include β1, and 

)|( DMp k denotes the posterior model probabilities which gauge the amount of 
evidence for model Mk. These posterior model probabilities are obtained by 
Bayes’ Theorem as follows: 
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The more the data support model Mk, the higher the value of )|( DMp k  , and the 
higher the posterior odds of model Mk relative to some baseline model. Often 
the researcher will have no preference for one model over another, so the prior 
probabilities of each model will all be the same. In other words, p(M1) = . . . = 
p(MK) = 1/K.   
 
Using model averaging techniques, we can also examine the size of β1 given 
that it is nonzero. The posterior distribution for β1 is 
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This posterior distribution can be summarised by its posterior mean and the 
standard deviation, which provide a point estimator and a Bayesian analogue of 
the standard error. Raftery (1995) suggests the following approximations 
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1 kse  are respectively, the MLE and standard error of β1 

under the model Mk. 
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The main obstacle to carrying out this method is the number of models that may 
have to be considered. With a large number of variables, K may be formidably 
large. Previous research suggests are two strategies that can be used to reduce 
the number of models over which we are going to average.  First, very unlikely 
models can be discarded. In addition, models that have more likely sub-models 
nested within them can also be discarded. When one or both exclusion rules are 
applied, the remaining models are said to belong to Occam’s window. When 
only the first exclusion rule is applied, Occam’s window is said to be 
symmetric, and when both exclusion rules are applied it is said to be strict. 
 
In order to apply either exclusion rule and retain the models that fall within a 
symmetric or strict Occam’s window, we must measure how likely the different 
models are. When comparing models, it is usually good to establish a baseline 
model against which all models are compared. This is usually either a null 
model (with no explanatory variables), M0, or a saturated model, MS, in which 
each data point is fitted exactly.  Let’s assume our baseline model is M0 and that 
we want to compare Mk to it. Evidence for whether or not the data support Mk 
over M0 is measured by the posterior odds for Mk against M0 – that is the ratio of 
their posterior probabilities. By equation (2), this is 
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The first factor on the right hand side of equation (5) is called the Bayes factor 
for Mk over M0, denoted by Bk0. The second factor on the right hand side of (5) 
is the prior odds – which, as mentioned above, is often set equal to one when the 
researcher has no prior preference for either model. Hence, the Bayes factor is 
equal to the posterior odds when there is no a priori model preference. 
 
When the Bayes factor, Bk0, exceeds one, the data support Mk over M0. 
Similarly, when Bk0 falls below one, the data provide more evidence for Mk than 
for M0. Raftery (1995) suggests an heuristic interpretation of the Bayes factor – 
for Bk0 ∈ [1,3] there is positive but decidedly weak evidence for Mk over M0; 
when Bk0 ∈ (3,20] the evidence is positive; when Bk0 ∈ (20,150] the evidence is 
strong; and finally, when Bk0 >150 the evidence for Mk over M0 is very strong.   
 
In practice, calculating the Bayes factor often involves high-dimensional and 
complex integration. The Bayesian Information Criterion (BIC) can provide a 
good approximation to the Bayes factor, and it is more simple to calculate. 
When our baseline model is the null model (or any other model nested in Mk) 
the approximation, denoted kCBI ′ , is  
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ndfB kkk loglog2 0
2
00 +−≈ χ  (6) 

 
Where 2

0kχ  is the standard likelihood ratio test (LRT) statistic for testing M0 
against Mk, dfk0 is the number of degrees of freedom associated with the test, 
and n is, most often, the sample size. 
 
When the baseline model is MS (or any other model in which Mk is nested), we 
have ndfLB kkk loglog2 2

0 −= , which is denoted as kBIC . Here, 22
SkkL χ= , the 

deviance of model Mk and dfk is the corresponding degrees of freedom. In both 
the kCBI ′  and the kBIC  the latter term takes into account both the sample size 
and the degrees of freedom. Hence, there is a penalty for model complexity. 
Moreover, the latter term requires more evidence for the inclusion of an 
additional parameter in large samples. Regardless of the baseline model used, to 
compare any two models, Mj and Mk, jkjk BICBICB −≈log2  and 

jkjk CBICBIBICBIC ′−′≡− . In other words, any two models (nested or not) can be 
compared by taking the difference of their BIC (or CBI ′ ) values.3 In either case, 
the model with the smaller value (more negative) is the preferred model.  
 
To identify those models that fall within a symmetric Occam’s window, 
Madigan and Raftery (1994) suggest that the most likely model be identified 
and all others with a BIC (or CBI ′ ) difference of at least six (very strong 
evidence against the alternative model) be discarded. This corresponds roughly 
to odds of at least 20:1 in favour of the best model. To identify those models 
that fall within a strict Occam’s window, all of those models that have more 
likely sub-models nested within them are removed based on a comparison of the 
BIC values (which, as mentioned above, penalise model complexity). Typically, 
the exclusion of models falling outside of Occam’s window reduces 
substantially the set of models taken into consideration.  
 
In our BMA application, we use the bic.logit function in S-Plus. The software 
uses a leaps and bounds algorithm in order to identify those models that fall 
within a strict version of Occam’s window, and is available on the internet.4 
Because BMA is particularly useful in situations where the sample size is large 
and the set of potential predictors is large (making the identification of a 
parsimonious model based on p-values difficult because few variables will be 
eliminated), it is unfortunate that this program cannot deal effectively with more 
                                                 
3  Although the BIC or BIC’ must be computed using nested models, two BIC statistics 

can be compared for any models, nested, or non-nested. 
4  This program and other BMA software, all written in S-Plus©, can be downloaded at 

www.research.att.com/~volinsky/bma.html. 
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than 30 explanatory variables. When the set of explanatory variables exceeds 
30, the program uses stepwise procedures to reduce the set of explanatory 
variables to 30. We have generally tried to explore reentering those explanatory 
variables that were backed out by the stepwise procedure, removing those not 
backed out that did not feature at all in the BMA models and iterating as 
necessary. 
 
3.2.  Recursive trees 
Parametric regression techniques, while traditionally the statistical method of 
choice in the social sciences, often impose strong linearity assumptions and 
meet with data-based constraints on the extent and order of interaction terms. 
When the assumptions underlying parametric regression methods are not met, 
the model is unlikely to describe the data well. In addition, when many and 
high-order interactions are included in an attempt to allow for non-linear 
relationships, the model is often difficult to interpret. Non-parametric 
techniques allow researchers to relax or eliminate many of the restrictive 
assumptions underlying parametric modelling. Recursive partitioning is one 
such technique that can aid in the identification of non-linear relationships and 
in the choice of parsimonious models. The recursive partitioning technique that 
we use in this application is that of Classification and Regression Trees 
(CART). This method involves repeatedly partitioning the sample into more 
homogenous groups based on an outcome variable of interest. The end result 
can be displayed graphically in tree form and “interpreted as a string of Boolean 
statements, facilitating conversion of complex output to narrative form.” (Zhang 
and Singer, 1999, p.2). Our summary of the method draws largely from work by 
Zhang and colleagues and interested readers can refer to these publications for a 
more comprehensive treatment of both CART and other tree methods (Zhang 
and Singer, 1999; Zhang and Bracken, 1995). 
 
To illustrate the method we employ in this application, assume we have an 
outcome variable Y, and a set of p explanatory variables, x1,x2,…,xp, where Y is 
a random variable and the x’s are fixed variables. In our example, Y is a 
dichotomous variable and the x’s are ordinal variables with some missing 
information. We are interested in identifying the relationship between Y and the 
x’s so that we can predict Y based on the value of the x’s. Essentially, we want 
to estimate the probability of the random variable Y conditional on the x’s: 
 

P },...,,|{ 21 pxxxyY =  (7) 
 

The analysis begins with the unique root node of the tree which is represented 
by a circle at the top of the tree diagram. This root node contains all 
observations in the sample from which the tree is derived. At each subsequent 
layer of the tree, a node can be internal, meaning that additional nodes lie below 
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it, or, the node can be terminal, meaning no additional nodes lie below it. 
Internal nodes are represented with circles and terminal nodes with boxes.  
 
Both the root and the internal nodes are partitioned, using the same procedure, 
into two nodes in the next layer of the tree. These are called left and right 
daughter nodes, each of which is a sub-set of the internal node above it and, in 
the diagram, connected to it with straight lines. The partition of the sample 
becomes progressively more detailed as the layers get deeper, but each subject 
is eventually assigned to one of the terminal nodes – ideally a node in which all 
subjects are homogenous with respect to the outcome variable. In practice, the 
complete homogeneity of terminal nodes is rarely achieved, however. 
 
 The partitioning technique is applied layer by layer to each internal node, 
including the first root node.  The goal, for each partition, is to locate a binary 
split that results in two homogeneous, or pure, daughter nodes. Because no split 
is likely to achieve total purity, we base our choice on a goodness of a split 
measure that weighs the impurities of the resulting daughter nodes. Impurity can 
be measured using any concave function, φ that satisfies these three conditions 

(i) φ≥0; 
(ii) for any p ∈ (0,1), φ(p)= φ(1-p), and  
(iii) φ(0)=φ(1)< φ(p).  

For our estimation we use the entropy impurity function which for node τL, is 
 

)1ln()1()ln()( ppppi L −−−=τ . (8) 
  
In order to split a given parent node τ into left and right daughter nodes τL and 
τR, respectively, the goodness of the split, s, is given by: 
 

}{}{}{}{(),( RRLL iPiPisI ττττττ − − )= ∆  (9) 
 
where P{τL} and P{τR} are the probabilities that a subject falls within nodes τL 
and τR, respectively. Using this measure, the best split is chosen for each 
predictor variable. If a given ordinal variable, with no missing information, 
takes on j different values among the subjects in a given node, there are j-1 
allowable splits for that variable. For a nominal variable divided into j 
categories, there are 12 −j  allowable splits. In our application, which has a good 
deal of missing values, we assign subjects with missing information using the 
“missings together” approach. Essentially, the missings together approach treats 
those cases with missing information as having either the lowest or the highest 
value of the variable for which they have missing information. In this way all of 
the missing cases are assigned to either τL or τR – either as a category by 
themselves or with the lower or higher end of each split. For ordinal variables 
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with j values, one of which is missing, there are 2j-3 possible splits. The total 
number of allowable splits for any given node is, then, the sum of the allowable 
splits across all the variables.  The goodness of fit measures for the best split for 
each variable are then compared and the one with the largest s is chosen to 
partition node τ.  
 
To begin building the tree, we first split the root node using the splitting 
procedure presented above. We continue by attempting to partition its two 
daughter nodes using the same method, and then their four daughter nodes, on 
through each layer of the tree. While a given daughter node cannot, by 
construction, be split in the same way as its parent node, an offspring node may 
nonetheless split using the same variable. For instance, we might choose to split 
node τ using ordinal variable xj so that τL contains all those subjects for whom xj 
equals –3, -2 or –1 and τR contains all those subjects for whom xj equals 0, 1 or 
missing. When splitting τL, it would not be possible to split xj at zero because all 
of those in τL take on values below zero. We might find that the best split for τL 
is another, negative, value of xj, such as –2, however. Notice that in the parent 
node xj took on six possible values, so there were nine possible splits, but in 
splitting τL, xj only took on three possible values, so, while it is still possible to 
split on xj, the number of possible splits falls to just three. As we move further 
down the tree, the number of possible splits for each node, therefore, falls.  
 
We continue splitting each layer of nodes until no offspring nodes can be split 
any further. When this happens, the tree is said to be saturated. Because the total 
number of possible splits for a node falls as we more from one layer to the next, 
the number of permissible splits gradually approaches zero, at which point the 
tree cannot grow any further. Saturated trees of are limited use, statistically, 
because the terminal nodes are usually very small, and the trees are often so 
large that interpreting them can be intractable. In our application, we make the 
trees more workable by applying a second step called “pruning”. First, we grow 
the tree until it is saturated. Beginning with the bottom nodes of this tree we 
begin to prune upwards.  
 
To prune to the tree, we first calculate a statistic for each internal node from the 
bottom up. This statistic is the Studentized log relative risk of the split to that 
node, which, for a dichotomous outcome, is the log relative risk that y=1 in the 
two daughter nodes divided by its standard deviation. In practice, this statistic is 
biased upward to some extent because the relative risk is calculated as a 
resubstitution estimate – ie using a similar measure to the one from which the 
tree was grown. Next, for each internal node, we compare its statistic with those 
calculated for all of its offspring nodes. If any offspring node has a higher 
statistic than its ancestor, we replace the statistic of the ancestor with that higher 
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value. Finally, we examine the size of the statistics for each node. Any node 
whose statistic falls below some threshold (say 1.96 if we are interested in 
pruning to a 0.05 significance level) is pruned. 
 

4.  Initial Explorations 

In this section we explore the childhood antecedents of adult female malaise 
separately for each of the two approaches considered. In order to introduce the 
material, we begin with the results of a straightforward stepwise logistic 
regression, with backwards elimination and possible reentry. This is an 
approach that is quite often used with large numbers of possible covariates in 
order to reduce models to a manageable size. For example, we have used 
stepwise regression procedures extensively in exploring the antecedents of adult 
social exclusion or multiple disadvantages for these birth cohorts (see Hobcraft 
1998, 2000, 2002, 2003, and 2004; Hobcraft and Kiernan 2001; and Sigle-
Rushton 2004). Although the limitations of stepwise regression for model 
selection are well known, we have found reassuring agreement for models 
derived from both backwards elimination and forwards inclusion.  
 
A key issue with stepwise regression (and other standard regression) procedures 
is the choice of the p-value for the threshold. The multiple testing involved 
undoubtedly means that a standard significance level of five per cent or possibly 
even one per cent is too generous. Both for this reason and in the light of the 
guidance provided by Raftery (1995, Table 9, p.141) and so strongly endorsed 
by Hauser (1995, pp.180-181), we have been routinely using a cut-off p-value 
of either one in a thousand or one in ten thousand in such models as being 
appropriate with samples of around five thousand.  
 
A further potential problem with standard stepwise regression procedures arises 
when two variables are close to collinear. Once one enters the model, the other 
is unlikely to do so.  
 
Table 2 presents results from fitting a backwards elimination logistic model for 
both birth cohorts, in summary form showing only the significant dummies for 
the childhood antecedents, eight of 58 for the NCDS and five of 53 for the 
BCS70. Both models include any incidence of childhood poverty measured by 
indicators, having any low educational test score, and a measure of childhood 
anxiety (though with a different cut-point). The model for the NCDS includes 
two further behavioural measures that are not available for the BCS70, contact 
with the police and frequent school absences. In addition, the NCDS model 
includes further cut-points on the educational test scores and an indication of the 
father’s (or father figure’s) interest in schooling (measured at more waves in 
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NCDS than BCS70). The model for BCS70 includes an indication of family 
structure.  
 

Table 2: Significant childhood antecedents of adult female malaise 
(backwards stepwise elimination, p=0.001)  

Childhood antecedent NCDS 1958 BCS70 
Poverty indicators Any poverty Any poverty 
Low income N/A  
Social class of origin   
Social class of father   
Housing tenure   
Parental schooling   
Family structure  (Re)marry 
   
Aggression   
Anxiety Any high Not low 

Missing 
Hyperactivity   
   
Mother’s interest   
Father’s interest Any low  
   
Contact with police Any N/A 
Frequent school absences Any N/A 
   
Educational test scores Any low 

2/3 Low 
Missing 

Any low 

 
Thus we see a fair commonality of models across the two cohorts. In both, any 
experience of childhood poverty as measured by the indicators is associated 
with a higher incidence of adult malaise. It is noteworthy that the cut-point in 
the distribution is the same for both cohorts and that the low income measure 
available in BCS70 does not appear. Educational test scores also appear in the 
models for both cohorts, although the NCDS shows more pervasive links of 
adult malaise to this antecedent. Moreover, both cohorts suggest that having any 
low test score matters for experience of adult malaise. Childhood poverty and 
low test scores are amongst the most pervasive antecedents of a wide range of 
adult disadvantages (see Hobcraft 2000, 2003, and 2004 for NCDS, and Sigle-
Rushton 2004 for BCS70). 
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The other shared component in the stepwise models for the two cohorts is a 
measure of childhood anxiety, though with a slightly different cut-point for the 
two cohorts (and noting our omission of an indicator at age 10 for BCS70, 
which makes the two measures not fully comparable). Thus we see that adult 
mental health links to childhood behavioural measures. Our broader work 
shows that links of the three childhood behavioural indicators (anxiety, 
aggression, and hyperactivity) to adult disadvantages are by no means as 
pervasive across other adult disadvantage as for childhood poverty or 
educational test scores (e.g. Hobcraft, 2004).  
 
4.1  Bayesian Model Averaging (BMA) 
Table 3A provides summary information on the results for the NCDS 1958 
cohort from the BMA models with the strict Occam’s window. Only five 
models were retained; all others were either very unlikely compared with the 
most likely model (a BIC difference of six or higher), or had a more likely sub-
model nested within them (the strict criterion removing a further 15 models). 
Thus there is not a great deal of model uncertainty. Five childhood antecedents 
were included in all five models, with posterior effects probabilities of 100 per 
cent: any childhood poverty, any high anxiety score, any low father’s interest in 
schooling, any frequent school absences, and any lowest quartile test score. 
These factors also have to be common to all the 20 models included in the 
symmetric Occam’s window (since the additional models can only have further 
antecedents added to them). In addition, there is positive evidence that female 
cohort members for whom there were no educational test scores available at any 
childhood wave, those with some contact with the police, and, more weakly, 
those with fewer than two test scores in the highest quartile are all more likely 
to experience malaise at age 33. These eight measures of childhood background 
correspond to those identified in the stepwise model introduced earlier. The 
model uncertainty arises from nested subsets of the most likely model involving 
inclusion of one or two of the three ‘uncertain’ antecedents in that model. In this 
situation, we would be fairly comfortable that the most likely model did a pretty 
good job, containing all the other ‘strict’ competitor models. 
 
Table 3B provides the analogous results for a strict Occam’s window BMA 
applied to the BCS70 learning sample data. Here there is more model 
uncertainty, with 10 models being retained. Two factors, experiencing 
childhood poverty as measured by indicators at any childhood wave and having 
an educational test score in the lowest quartile in at least one of the three 
childhood waves, are in all 10 models, providing very strong evidence that they 
do indeed matter as predictors of female malaise at age 30 for this cohort, as for 
the 1958 cohort. 
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Table 3A: Childhood antecedents of adult female malaise in NCDS 
included in BMA models with strict Occam’s window and posterior 

probabilities 

Childhood antecedent 1 2 3 4 5 Effect posterior 
probability (per cent) 

Any poverty (indicator) * * * * * 100 
Any high anxiety * * * * * 100 
Any low father’s interest * * * * * 100 
Any frequent school absences * * * * * 100 
Any low test score * * * * * 100 
Missing test scores * * *  * 90.8 
Any contact with police * *  *  78.4 
Less than two high test scores *  *   60.9 
       
Model posterior probability (%) 46.2 23.0 14.7 9.2 6.9 100 

 
Table 3B: Childhood antecedents of adult female malaise in BCS70 
included in BMA models with strict Occam’s window and posterior 

probabilities 

Childhood 
antecedent 

1 2 3 4 5 6 7 8 9 10 Effect posterior 
probability 
(per cent) 

Any poverty 
(indicator) 

* * * * * * * * * * 100 

Any low test score * * * * * * * * * * 100 
Probably anxious * * *   *     68.8 
(Re-)married lone 
parent 

*  * *   *  *  63.4 

Missing anxiety * *         55.2 
Missing tests   * * * *     25.9 
Any high anxiety    * *  * *   22.8 
            
Either anxiety (prob. 
or any)  

* * * * * * * *   91.6 

            
Model posterior 
probability (%) 

38.7 16.4 8.1 6.7 5.6 5.5 5.5 5.0 4.4 3.9 100 
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Experience of childhood anxiety appears in two guises, with posterior effect 
probabilities of 68.8 per cent for ‘probably anxious’ and of 22.8 per cent for any 
high anxiety. Since these two alternative indicators of anxiety never appear in 
the same model, the overall posterior probability of one or other measure of 
childhood anxiety appearing is 91.6 per cent, which constitutes fairly strong 
evidence. Why is there more uncertainty for BCS70 on anxiety than for NCDS? 
There are several possibilities: anxiety is only measured in useable form at two 
of the three childhood waves for BCS70, giving a less secure summary 
measure; there is genuine uncertainty as to where in the anxiety distribution the 
cut should fall and the near collinearity shows up in the model uncertainty; the 
smaller sample used with BCS70, because of the split into two halves affects 
uncertainty (though the BIC criterion should avoid some of the problems of 
more conventional frequentist testing); and the other important measures in 
NCDS (frequent school absences and contact with the police) may somehow 
bring the anxiety measure into sharper focus. 
 
As with the NCDS, there is some, though weaker, indication that having all test 
scores missing is associated with adult malaise; unlike the 1958 cohort, 
however, there is nothing to suggest that a further split on the test scores matters 
at all for the 1970 cohort,. The only other childhood measure included among 
the ten possible models for BCS70 reflects family structure whilst growing up 
and indicates either having been born to a lone parent who subsequently married 
or having a parental marriage dissolution followed by remarriage and has a 
posterior effect probability of 63.4 per cent.  
 
The results for BCS70 are thus a little less consistent and tidy than those for 
NCDS, with greater model uncertainty, a lack of nesting of all 10 models within 
the most likely one, and the original stepwise model not corresponding to any of 
the 10 retained BMA models (though containing only antecedents that were also 
identified by the BMA procedure). 
 
Since the symmetric BMA Occam’s window produced 20 models for NCDS 
and 64 for BCS70, it is not feasible to examine the terms included in each 
model here. Rather, we use the summary information on posterior effects 
probabilities shown in Table 4. We shall not dwell on the elements already 
considered for the strict windows. Suffice it to observe that the posterior effect 
probabilities for these antecedents are (unsurprisingly) very similar for both the 
strict and the symmetric windows. However, it is worth examining the 
additional childhood antecedents that appear infrequently in the models and 
always make the models less likely though more complex according to the BIC. 
In general, the posterior effects probabilities for these additional childhood 
factors are low and usually low enough to suggest evidence for the null 
hypothesis that they do not matter in determining adult malaise.  
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Table 4: Effect posterior probabilities for NCDS and BCS70 in BMA 
models with both strict and symmetric Occam’s windows 

Childhood antecedent NCDS Childhood antecedent BCS70 
 Strict Symmetric  Strict Symmetric
Number of models 6 20 Number of models 10 64 
      
Any poverty 100 100 Any poverty 100 100 
Any low test 100 100 Any low test 100 100 
Any truancy 100 100    
Any high anxiety 100 100 Prob low/any anxiety 91.6 92.3 
Any low father interest 100 100    
Missing tests 90.8 92.4 <2 Low anxiety 68.8 78.2 
Any police contact 78.4 82.3 Missing anxiety 55.2 67.2 
<2 High tests 60.9 62.7 (Re)marry LP 63.4 58.7 
   Missing tests 25.9 24.6 
   Any high anxiety 22.8 22.5 
      
Ever in care  16.7 2/3 high aggression  19.7 
<2 Owner-occupier  4.7 Dissolution& remarry  14.1 
2/3 high truancy  4.2 <2 Owner-occupier  10.5 
Any hyperactivity  4.0 Any public housing  6.7 
2/3 high aggression  2.7 Any hyperactivity  5.1 
Any low mother interest  1.8 <2 non-manual father  2.2 
Missing police  1.6 Ever in care  1.6 
Missing behaviour  1.5 2/3 manual origin  1.4 
   <2 non-manual origin  1.1 
   Missing aggression  1.0 
   Missing hyperactivity  0.9 
 
But there are some grounds for not dismissing this information out of hand. For 
example, having ever been in care for the 1958 cohort has a posterior effect 
probability of 16.7 per cent. In earlier work, using a conventional five per cent 
cut-off for the stepwise modelling, having been in care was powerfully 
associated with a wide range of disadvantaged adult outcomes (Hobcraft 1998). 
However, this is a rather rare group, covering about two per cent of the 
population. Intuitively, when using categorical variables, it would make sense to 
use a less stringent testing criterion for rare groups and this need has also been 
discussed in the context of the BIC, which uses the total sample size and not the 
group size (see Weakliem 1999 and discussion). In this instance, we thus 
believe that BMA points us towards a relationship that probably does matter. 
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The remaining, very weak posterior effects probabilities for the NCDS probably 
do not add much insight. However, they may give hints about measurement 
issues: mother’s and father’s interest in schooling are fairly highly correlated, 
yet the father’s interest dominates quite clearly; weak indications of the other 
dimensions of childhood behaviour (aggression and hyperactivity) also appear; 
as does a further indicator of frequent school absences; and missing values on 
two important factors, anxiety and contact with the police, just get noticed. 
 
For BCS70 there is a slightly stronger indication than for NCDS that childhood 
aggression may matter for adult malaise. The substantial subset (85%) of the 
(re)marry group, with dissolution followed by remarriage appears as an 
alterative in some models (PEP=14.1 per cent). There is also some weak 
indication that parental housing tenure during childhood is linked to malaise at 
age 30 for this cohort (PEPs of 10.5 and 6.7, totalling 17.2 per cent), as it was 
even more weakly for NCDS (PEP=4.7 per cent). For BCS70, but not for 
NCDS, there is a scatter of weak indications that social class matters a little, 
whether of the father or of origin. 
 
Thus BMA provides many useful insights that are not easily obtained with other 
approaches. Where there is powerful collinearity (not seen here) the models can 
alternate between those that contain one or the other of two closely related 
factors (we discovered this bonus by accident). The recognition and 
quantification of model uncertainty is valuable and can prevent over 
interpretation of results from simpler models. Some looser similar insights can 
be gained from a careful examination of the variables that are just included or 
just not included in stepwise models or by fitting a fuller model and examining 
significance levels in terms of p-values rather than arbitrary cut-offs.  
 
There are a few difficulties that deserve recall. Firstly the algorithm used, 
bic.logit, can only search among up to 30 covariates, because the number of 
possible models is vast (230 or about 109). Conventional backwards stepwise 
elimination is used to reduce the initial list of covariates to 30 (once the 
algorithm is patched). Thus care is needed if there are covariates that are close 
competitors: one is likely to be removed by the stepwise procedure. We have 
verified model selection by retaining only those childhood measures among the 
30 used for the BMA search that were included in the symmetric window and 
then supplementing these with those that were eliminated by the stepwise 
procedure. We advise such (tedious) caution. 
 
A second major problem comes in the presentation of results. We all know the 
difficulties of presenting any complex model in an accessible way. When the 
real result is to say that we need to average over several (often very many) 
‘acceptable’ models this becomes near impossible. We have shown that several 



 26

key insights can be obtained from the posterior effects probabilities, but 
presenting the parameter estimates for each model can only be achieved in 
graphical form when there are many models (see, for example, figure 4, p.28 of 
Hoeting et al 1999). The difficulty is that (at least in our models) the parameter 
estimates for each covariate have a small range, excepting the probability mass 
at zero when not included in the models. We thus find it unhelpful to present an 
‘average’ parameter estimate weighted by the model posterior probabilities, 
even though this is available within the algorithm used.5 It is the models that are 
averaged. This presents little difficulty for the derivation of predicted 
probabilities, which simply involves the laborious fitting of each of the BMA 
models in turn, derivation of the fitted values, and averaging these using the 
model posterior probabilities as weights; all of this is fairly easily accomplished 
by editing the output from bic.logit into a Stata do-file. But we do not really 
have a clue as to how to present BMA detailed results to policy makers in any 
accessible form beyond the posterior effects probabilities and summary charts 
on the parameter estimates. 
 
4.2  Recursive Trees 
4.2.1 Recursive tree results using the BCS70 learning sample 
We use recursive trees to explore the relations between the childhood 
background factors listed in Table 1 and scoring high on the malaise inventory 
at age 30. Both entropy impurity measures and relative risks are used to 
describe the risks of having a high malaise score in any two sub-populations of 
the learning sample. The entropy impurity of any split of node τ into left and 
right daughter nodes τL and τR, respectively, is given by }{}{}{}{ RRLL iPiP ττττ +  
where P{τL} and P{τR} are the probabilities that a subject falls within nodes τL 
and τR, respectively, and i(τL) and i(τR) are given in equation (8) above.6 For 
descriptive purposes, we also present the 95% confidence interval for the 
relative risk, but, because the relative risks are biased upward, these are 
inappropriate for significance testing. 
 
Using data from a randomly selected sample of women (n=2813) from the 
British Cohort Study, the tree-based method, pruned to a significance level of 
0.005, produced Figure 1. Here, we see that the childhood test score summary 
was used to split the entire learning sample (the root node). Two subpopulations 
result from this split, and comparing nodes 2 and 3, it emerges that women who 
                                                 
5  Although as equation (3) makes clear, the value we want is p(β1 | D, β1≠ 0), the 

algorithm we use averages over all the models, including those for which β1≠ 0. 
6  Because in assessing goodness of split (equation 8 above), i(τ) is the same for all 

splits of node τ, a ranking of impurity from smallest to highest will also provide a 
ranking of goodness of fit. 



 27

had at least one bottom quartile set of test scores during childhood are more 
likely than women with better test scores to have a high malaise score at age 30. 
The missings together approach places those women with no information on 
their academic test scores at either of the three childhood waves into the higher 
risk group (relative risk (RR) = 1.81, 95 percent confidence interval (CI) 1.5-
2.2).   
 
Nodes 2 and 3 were each split using the measure of childhood poverty that 
combines three indicator measures (free school meals, receipt of universal 
benefits, and reported financial difficulties), but the sub-populations were split 
somewhat differently. Node 2 was split so that those women with at least one 
indicator of child poverty form one, higher risk daughter node, and those 
without any indicators that suggest poverty, as well as those with missing 
information for all three indicators, form the other, lower risk node (RR=1.65, 
95 percent CI 1.2-22). Those women located in node 3, who performed better 
on their childhood academic tests, are split into one subpopulation that has no 
evidence of childhood poverty and no more than one missing value on the three 
indicators and another subpopulation that has more evidence of childhood 
poverty, including those with missing information (RR=1.54, 95 percent CI 1.2-
2.0). Although nodes 2 and 3 are not split in exactly the same way, the relative 
risks of childhood poverty are surprisingly similar once we have conditioned on 
academic test scores during childhood. 
 
In the next layer of the tree, nodes 4 (containing those women with low test 
scores and low evidence of childhood poverty) and 7 (containing those women 
with higher test score and higher evidence of childhood poverty) are both split 
via childhood family structure. Once again, the split is not identical, but in no 
way dissimilar. Node 4 is split into a higher risk group containing those women 
who had ever been in foster care, experienced a family dissolution, or were born 
to a lone mother who never (re)married. All other measures of family 
experience, including those who have no information on childhood family 
structure are placed in the lower risk subpopulation (RR=1.69, 95 percent CI 
1.1-2.5). Node 7 is split into a higher risk group of women who had ever been in 
foster care or who were born to a lone parent (regardless of whether or not the 
parent subsequently married). All other family structure categories are placed in 
the lower risk node (RR=2.19, 95 percent CI 1.0-4.6).  This pattern suggests an 
interaction between family structure and having experienced either low 
academic test scores or having some evidence of childhood poverty. Family 
structure does not further increase the risk of having a high malaise score for 
those women who suffered both kinds of disadvantages, but among those who 
suffered only one, experience of foster care or some forms of single parent 
family, increases the risk of a high malaise score to levels similar to the doubly 
disadvantage group. About 38% of those women with low test scores and 
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relatively high evidence of childhood poverty have a high malaise inventory 
score at age 30. Among those with only one of these disadvantages, the 
percentages are about 35% for poor academic performers with little evidence of 
poverty, and 41% for better academic performers with higher evidence of 
poverty. 
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Figure 1: Tree drawn using the BCS70 learning sample, pruned to significance level 0.005, 
showing Node, proportion with high malaise, and number of cases

 
 
4.2.2  Recursive trees for the NCDS sample 
Figure 2 presents a tree grown using data from the NCDS sample of women 
(n=5768). Although the tree grown in Figure 1 was pruned to a significance 
level of 0.005, the tree presented in Figure 2 is pruned to a more stringent 
significance level of 0.001. We make this decision both to maintain the 
simplicity of the tree and because the NCDS sample is more than twice the size 
of the BCS70 learning sample. Following the advice of Raftery (1995), we 
apply more stringent significance levels to the large sample, because the use of 
typical levels of significance is likely to be too inclusive.  
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Similar to what we found for the BCS70 data, Figure 2 shows that the childhood 
test score summary was used to split the entire population (the root node). Two 
subpopulations result from this split, and comparing nodes 2 and 3, it emerges 
that women who had at least one bottom quartile set of test scores during 
childhood are more than twice as likely as women with better test scores to have 
a high malaise score at age 30. Once again, the missings together approach 
places those women with no information on their academic test scores at either 
of the three childhood waves into the higher risk group (RR = 2.18, 95 percent 
CI 1.9-2.6).   
 
Nodes 2 and 3 were each split using a summary of truancy – a measure that was 
not available in the BCS70 data. Both sub-populations were split so that those 
with any evidence of truancy form the higher risk group. Additionally, those 
with missing information on all measures of truancy are placed with the lower 
risk group in both cases. Although nodes 2 and 3 were split in the same way, 
truancy has a slightly stronger effect among those individuals with better test 
scores. When node 3 is split via the truancy summary, those cohort members 
with some evidence of truancy are more than twice as likely to have a high 
malaise inventory score at age 30 (RR=2.2, 95 percent CI 1.7-2.8). In contrast, 
among those with at least one low test score observation, the split via truancy is 
less dramatic. Compared to other women in node 2, those with some evidence 
of truancy are 1.67 times as likely to have a high malaise inventory score (95 
percent CI 1.3-2.1). Interestingly, when nodes 2 and 3 are split, those groups of 
women with either one bottom quartile set of test scores and no evidence of 
truancy (node 4) or no bottom quartile set of test scores and some evidence of 
truancy (node7) both have similar risks of high malaise (15.6% and 16.5% 
chance of high malaise in nodes 4 and 7 respectively). This pattern suggests that 
truancy and test scores could, perhaps, be usefully combined into a summary 
variable of school performance.  
 
In the next layer of the tree, nodes 5, 6, and 7, are each split using different 
variables. Node 5 is split using the poverty indicator summary so that those 
women with low test scores and some evidence of truancy are even more likely 
to have a high age 30 malaise score if there is any evidence of poverty during 
childhood (RR=1.71, 95 percent CI 1.2-2.5). This higher risk group also 
includes those women with missing information on all childhood poverty 
indicators. Among the most advantaged group (no low test scores and no 
evidence of truancy) in node 6, having any high anxiety scores during childhood 
(or missing information at all ages) increases the risk of having a high age 30 
malaise score (RR=1.86, 95 percent CI 1.4-2.4). Finally, among those women 
with no low test scores and some evidence of truancy, it is the summary of 
father’s interest in their education that best differentiates that group according to 
adult mental health. For those women located in node 7 who also have at least 
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one childhood report of low paternal interest in education, the risk of having a 
high malaise score at age 30 is about twice as high as women with more 
interested fathers (RR=2.02, 95 percent CI 1.2-3.3). This high risk group also 
contains women with no information on father’s interest in their education at 
any of the childhood waves.  
 
In this layer, we find similar risks of having a high malaise score among that 
group of women who have no low test scores, some evidence of truancy, but no 
evidence of low paternal interest in education (node 12) and another group of 
women who have no low test scores, no (or missing) evidence of truancy, but at 
least one high anxiety score (node 15). The risks of high malaise for these 
groups are 0.114 and 0.110, respectively.  
 
In the fourth, layer of the tree, only nodes 12 and 13 are split, but both are split 
via the family type variable. Among those women with no evidence of low test 
scores, no evidence of truancy, but at least one high anxiety score, there is a 
lower proportion with high malaise inventory scores at age 30 among those who 
also had ever been in care (n=12), ever lived in a stepfamily following parental 
divorce (n=18), appear to have lived with both natural parents throughout 
childhood but have some missing information (n=257), or have all information 
missing (n=45). The higher risk group, which is dominated by those who have 
clear evidence of living with both natural parents at all childhood waves 
(n=546), are more than twice as likely to have a high malaise score (RR=2.09, 
95 percent CI 1.3-3.4). This split is not easily interpreted and not very intuitive. 
On the other hand, the partition of node 13 via the family type variable shows 
that among women with no low test scores, no evidence of truancy, and no high 
anxiety scores there are more women with a high malaise score among those 
who had ever been in care (n=21), ever lived with a stepfamily following a 
parental divorce (n=31), or had all family structure information missing (n=88; 
RR=2.83, 95 percent CI 1.7-4.6). Thus, both splits by family structure pick out 
groups that are dominated by those with missing or partial information. This 
apparent crossover split is not at all easy to interpret and a researcher confronted 
with such information may choose either to prune this split from the tree or to 
see whether slightly different, but more sensible splits have similar levels of 
impurity (Zhang and Singer, 1999). 
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4.2.3  Hidden Branches 
While an examination of the factors selected to construct the tree in Figures 1 
and 2 is instructive, it is also useful to examine the nearly selected factors 
(Zhang and Singer, 1999). Following Zhang and Bracken (1995), we present 
these “hidden” relations in tabular form: Table 5 for the tree built using the 
BCS70 learning sample and Table 6 for the tree built using the female NCDS 
cohort members. The first column of these tables indicates the number of the 
node along Figures 1 and 2 – for example, the number 1 refers to the root node. 
The second column presents the name of the variable that provides a 
competitive split of that node, and column 3 identifies the higher risk 
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subpopulation based on that split. Column 4 presents the impurity of the split 
based on the entropy impurity function – the measure used to identify the best 
split for each node. Finally, the last two columns report the relative risk and its 
95 percent confidence interval – information used in the pruning process. For 
the purposes of these tables, we ordered competitive splits by the entropy 
measure used to determine the split and only show the top three competitors, 
although more are shown where the entropy measure to 3 decimal places is the 
same. In addition, we have only included those where the 95 per cent 
confidence interval around the relative risk does not include 1.0. To illustrate, 
the third row of Table 5 tells us that a competitive split based on childhood 
housing tenure for node 1 in Figure 1 is whether the woman was observed living 
in public housing at one of the childhood waves. The impurity of the split is 
0.49, and there are more women with a high malaise score among those women 
observed living in public housing at least once (RR=1.5, 95 percent CI 1.3-1.9). 
 

Table 5: Competitive splits for the nonterminal nodes for high malaise 
score (Figure 1), BCS70 

Node Variable Higher Risk Subpopulation Impurity Relative Risk 95% CI
1 tests At least one low set of scores* 0.485 1.8 1.5-2.2
1 povind At least one indicator 0.488 1.7 1.4-2.1
1 tenure At least one public house obs. 0.490 1.5 1.3-1.9
1 famtype Care, diss/rem, lone at birth/no rem 0.491 1.7 1.3-2.1
      
2 povind At least one indicator 0.574 1.6 1.2-2.4
2 famtype Care, dissolution, lone at birth/no rem 0.576 1.6 1.2-2.1
2 fathclass <2 nonmanual obs* 0.580 1.7 1.1-2.8
2 aggress 2 high scores 0.580 1.7 1.0-2.8
      
3 povind No ind + 2 missing or >0 indicators* 0.418 1.5 1.2-2.0
3 tenure At least one public house obs.* 0.419 1.5 1.2-2.0
3 anxiety <2 low scores* 0.420 1.7 1.2-2.4
3 famtype Both natural parents, dissolution 0.420 1.9 1.1-3.1
      
4 famtype Care,dissolution, lone at birth/no rem 0.532 1.7 1.1-2.5
      
7 famtype Care, lone at birth 0.492 2.2 1.0-4.6
7 tenure At least one public house obs. 0.493 1.6 1.0-2.5
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Not surprisingly, given the subsequent best splits of nodes 2 and 3, Table 5 
shows childhood poverty provides the second best, competitive split of the root 
node. Both the impurity measure and relative risk measures are extremely close. 
Tenure provides the next best competitive split, and it provides competitive 
splits in the next layer of the tree, as well as for node 7. Consequently, housing 
tenure, although not selected as one of the best splits in Figure 1, may, 
nonetheless, be a useful factor to consider.   
 
Moving on to examine the competitive splits for node 2 (conditional on having 
made the “best” split of the root node), we find that both the social class of the 
father figure and childhood aggression provide competitive splits. Because 
neither of these factors provides competitive splits of node 3, this pattern 
suggests that there may be an interaction between low test scores and having a 
lower social class (measured by the occupation of the father). Additionally, 
there may be an interaction between low test scores and high aggression scores. 
Among the subpopulation with higher test scores in node 3, high childhood 
anxiety provides a competitive split, also suggesting a possible interaction.   
 
No factors other than childhood family structure provide competitive splits for 
node 4 (those women with at least one bottom quartile test score but no 
evidence of childhood poverty). For node 7, only tenure provides an additional 
competitive split.  
 
Table 6 provides information on competitive splits for the NCDS data. The 
second best split of the root node is the summary of paternal interest in 
education – a factor that contributes a best split much later in the tree. The 
truancy summary, which provides the best split of nodes 2 and 3, provides the 
third best competitive split for the root node. Among all three candidate 
variables, both the impurity measure and relative risk measures are extremely 
close. Maternal interest in education and the poverty summary provide the next 
two best competitive splits, and both provide competitive splits in the next layer 
of the tree. Although no node is ever split via maternal interest in education it is 
worth noting that this summary variable provides a competitive split for nodes 5 
and 7 as well. Note in Table 5, this variable provided none of the best 
competitive splits. This may be due to the fact that the NCDS measure 
summarises three measures while the BCS70 measure only relies on 
information collected at age 10. Whatever the reason, maternal interest in 
education, although not selected as one of the best splits in Figure 2, may be a 
useful factor to consider. Alternatively, given the high correlation between 
maternal and paternal interest in education, it may be worth considering whether 
the two measures could be combined to form a stronger indicator. 
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Table 6: Competitive splits for the non-terminal nodes for high malaise 
score (Figure 2), NCDS 

Node Variable Higher Risk Subpopulation Impurity R R 95% CI
1 tests at least one low test score* 0.361 2.18 1.9-2.6
1 finted little interest at least once* 0.362 2.12 1.8-2.5
1 truant some evidence of truancy 0.362 2.24 1.9-2.7
1 minted little interest at least once 0.363 2.10 1.8-2.5
      
2 truant some evidence of truancy 0.481 1.67 1.3-2.1
2 povind at least one indicator* 0.481 1.67 1.3-2.1
2 minted little interest at least once 0.483 1.58 1.3-2.0
2 finted little interest at least once* 0.483 1.62 1.3-2.1
      
3 truant some evidence of truancy 0.293 2.16 1.7-2.8
3 finted little interest at least once 0.294 1.95 1.5-2.5
3 povind at least one indicator 0.295 1.88 1.5-2.4
3 anxiety at least one high score* 0.295 1.72 1.4-2.2
3 minted little interest at least once 0.295 1.83 1.4-2.4
      
5 povind at least one indicator* 0.563 1.71 1.2-2.5
5 famtype all/some nat, divorce, other one parent 0.566 1.70 1.1-2.6
5 minted little interest at least once* 0.567 1.62 1.1-2.4
      
6 anxiety at least one high score* 0.267 1.86 1.4-2.4
6 tests <2 high scores 0.269 1.71 1.2-2.3
6 povind yes>no 0.269 2.11 1.4-3.2
6 famtype all/some natural, one parent, other remarry 0.269 1.67 1.2-2.3
6 finted little interest at least once 0.269 1.64 1.2-2.2
6 police some evidence of contact 0.269 2.62 1.4-4.8
      
7 finted little interest at least once* 0.438 2.02 1.2-3.3
7 aggress at least one high score 0.441 1.91 1.1-3.2
7 minted <2 very interested 0.442 2.09 1.1-4.0
7 povind all not poor 0.442 1.87 1.1-3.3
      
12 famtype all natural, lone parent at birth, divorce (no 

remarry), other one parent 
0.349 2.09 1.3-3.4
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13 famtype ever in care,widowed parent, stepfamily 0.227 2.83 1.7-4.6
13 fathclass <2 non-manual 0.228 1.96 1.3-2.9
13 tenure <2 owner occupier 0.228 1.81 1.3-2.6
13 tests < 2 high scores 0.229 1.94 1.3-3.0
13 povind all not poor* 0.229 2.41 1.4-4.1
13 finted <2 very interested 0.229 1.64 1.1-2.3
13 origclass <2 non-manual obs.* 0.229 1.84 1.1-3.0

 
Given that the root nodes in Figures 1 and 2 are split in the same way, we can 
compare the competitive splits for nodes 2 and 3 across samples in order to 
identify a set of interactions with test scores that are likely to have common 
effects on adult malaise in both samples. We compare the best competitors in 
Table 6 to Table 5. The second best split of node 2 in Table 6 is via the 
childhood poverty indicator. This variable provides the best split of node 2 in 
Table 5. Mothers’ and fathers’ interest in education contribute the third and 
fourth competitive splits of node 2 in Table 6, but neither of these provide a 
competitive split in node 2 of Table 5. 
 
Moving on to node 3, we find that the impurity measure of the first five 
competitive splits ranges from 0.293-0.295, so the differences between their 
goodness of split is rather small. After truancy, which provides the best split of 
node 3 in the NCDS sample, we find that paternal interest in education offers 
the next best competitive split. The third best split of node 3 is via the poverty 
indicator summary. Despite differences in the construction of the two measures, 
the poverty summary variable provided the best competitive split of node 3 in 
the BCS70 sample.  The next best split of node three is via the childhood 
anxiety summary variable, and closely behind is the split of maternal interest in 
education. Of these last two competitive splits, the anxiety summary provides a 
competitive split of node 3 in Table 5. 
 
Among women with any low test scores and any evidence of truancy (node 5 in 
Table 6 and figure 2), only three factors provide competitive splits. After the 
poverty indicator, the second best split is via the family type variable but, as 
with the splits via family type in nodes 12 and 13, this is not easily interpreted. 
The only other competitive split of node 5 is provided by the summary of 
maternal interest in education.  
 
For node 6, comprising the most advantaged women with no low test scores and 
no evidence of truancy, academic test scores, childhood poverty, family type, 
paternal and maternal interest in education, and contact with the police all offer 
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competitive splits. The range of the impurity measures is narrow, suggesting 
that all factors are close competitors.   
 
For node 7, comprising women with no low test scores but some evidence of 
truancy, aggression, mother’s interest in education, and the child poverty 
indicator provide competitive splits. Looking across nodes 5, 6, and 7, we find 
that the poverty indicator variable offers a competitive split of all three. In 
contrast, anxiety is not a competitive factor for either node 5 or node 7. Finally, 
father’s interest in the cohort members’ education provides a competitive split 
of both node 6 and node 7, suggesting an interaction between having no low 
academic test scores and paternal interest in education.    
 
There are no competitive splits of node 12. For node 13 the two closest to the 
best split, are the summary of the father’s social class, and housing tenure. In 
addition, academic tests, childhood poverty, paternal interest in education, 
social class of origin, aggression, mother’s interest in education, contact with 
police and parent’s school leaving ages all provide competitive splits of node 
13. Given the fact that the population of the node 13 is still rather large 
(n=2391), it is not surprising that there are still competitors to the split via 
family type. Nonetheless, after splitting by family type, both daughter nodes 
become terminal.   
 
In the preceding discussion, we have assumed, as we moved down the tree, that 
the previous splits have followed those in Figure 1 or Figure 2. We could, 
alternatively, glean additional information by looking for patterns along 
alternative tree structures. This may provide additional information about the 
underlying structure of the data, but is beyond the scope of this current 
application.   
 

5.  Branching Out: Combining Trees and BMA and Beyond 

In this section we provide several illustrations of further ways in which insights 
can be gleaned from bringing the two approaches together and from using the 
results to extend the analysis in other ways. We have chosen to use the NCDS 
sample for these purposes, partly because the subsequent out-of-sample 
validation analysis uses BCS70, but also because there was less apparent model 
uncertainty and more covariates are available. 
 
We begin by summarising comparable information on goodness of fit for the 
NCDS using the two approaches. We do this using three indicators: the BIC, as 
used to judge goodness of fit for the BMA procedure; the likelihood ratio 
deviance; and the ROC (receiver operating characteristic). Unlike BIC, neither 
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the deviance nor the ROC penalise for model complexity. Table 7 provides 
these summary indications and show some of the inherent problems of judging 
the fit of models. According to the ROC statistic, the BMA models all ‘fit’ 
better than the model derived from the recursive trees, though the difference is 
small at about 0.01. The deviance measure, on the other hand, suggests that the 
regression model based on the categorical nodes fits better. Lastly, our preferred 
BIC measure provides strong evidence that the BMA-derived models are all to 
be preferred to that derived from the nodes of the tree, with the BIC-difference 
being over 10 compared with the ‘best’ BMA model. 
 

Table 7: Goodness of fit for several logistic models for malaise, NCDS 

Model ROC BIC Deviance Degrees of 
freedom 

Initial BMA strict window 0.6871 -209.8 to –
206.1 

248 N/A 

Initial BMA symmetric  0.6908 -209.8 to –
203.9 

252 N/A 

Initial BMA ‘best’ model 0.6867 -209.8 248 8 
Nodes from Figure 2 0.6761 -198.9 268 8 
     
BMA with counts and interactions – 
‘best’ model – section 5.2.1 

0.6912 -227.6 297 8 

 
5.1  Simple Cross-Pollination 
Since recursive tree methods essentially generate information about 
interactions, one post-initial strategy is to add the predicted probabilities from 
the BMA results into the variables considered for the tree. If the BMA 
approach, using averages of general linear models without interactions, actually 
accounts well for the variation in incidence of malaise in the sample we would 
expect the predicted probabilities to dominate at least the early splits in the 
trees. Splits on other antecedents could then be indicative of risk factors that 
applied over part of the range of underlying propensities to experience malaise. 
When we introduce the BMA predicted probabilities into the recursive trees 
alongside the full range of the child antecedents we do indeed find that the 
initial splits are dominated by the BMA predicted probabilities. Indeed, if the 
tree was pruned to a significance level of 0.0005 (a less stringent cut-off than 
we have used in some earlier work using stepwise regression, see Hobcraft 
2000), only splits on the BMA predicted probability are included, with four 
resultant terminal nodes identifying cut-points at 0.065, 0.102, and 0.213 and 
including 1,079, 2,363, 1,740 and 585 women respectively. The only further 
splits to occur at the 0.001 level concern two groups, the smallest group with the 
highest level of risk, average malaise of 30.6 per cent and the largest group at 
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the second level of risk. For the high risk group, the tree identifies childhood 
family disruption as a major source of variation, with the 109 women who had 
been in care (n=47), had no coresident father at birth (n=39), or had all missing 
information on family (n=23) having a malaise incidence of 44 per cent, 
compared with 27.5 per cent for the remainder. For the largest group, the next 
split identifies those with two or more high test scores (n=315) as being at a 
lower risk of malaise (4.7 per cent, compared with 9.2 per cent for the 
remainder). Subsequent splits among the remainder group are uninformative 
and not considered here. A further example of this approach is given for the 
validation sample from BCS70 later. 
 
The alternative cross-pollination approach is to introduce information about the 
nodes from the recursive trees into regression-type analysis. We had hoped that 
recursive trees would help to identify clear indications of interaction terms to 
introduce into regression analysis, but the recursive binary splitting often leads 
to quite complex ‘twigs’ emerging. We have considered two approaches to 
exploring the benefits of recursive trees.  
 
The first approach is to include the resultant terminal nodes in BMA analysis, 
but exploration using dummy variables to identify the nodes has proven 
unsatisfactory. An alternative is to introduce the observed (same as predicted) 
probabilities for members of each node into a BMA analysis and explore what 
is identified as improving the fit. This is illustrated for the BCS70 validation 
sample later.  
 
The second approach is to use the results from the recursive trees to give 
insights into meaningful and missed interactions that can be included in 
regression analysis. Again, as discussed above, there are problems in getting 
clear indications of such interactions, especially from the more complex trees 
for the NCDS. Inevitably many branches lead to intermediate or final nodes 
with fairly similar incidence of malaise. In the earlier discussion of Figure 2, the 
similar incidence of malaise for those with low test scores and no frequent 
school absences and those with no low test scores and some frequent school 
absences were noted, suggesting a possible combination of two disadvantages 
into three categories, neither, either, or both might be helpful. However, as we 
move further down the tree things get much untidier, with different factors 
coming into play. Moreover, the results are sometimes counterintuitive or very 
difficult to interpret, even where the same factors are involved in the split as 
instanced for nodes 24 to 27 in Figure 2.  
 
5.2  Rooting Around in the Data 
The lack of real success in identifying interactions from the recursive trees led 
us to explore two further, more data intensive approaches. These retain some of 
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the spirit of the BMA and trees combination and draw considerable inspiration 
from the underlying philosophy of Singer et al (1998). The first additional 
exploration uses regression techniques to illuminate possible interactions and 
suggests the need for an interaction between educational test scores and the 
anxiety measures. It also combines some of the results from BMA with a 
modification of the Boolean OR approach advocated by Singer et al (1998). The 
second additional approach is an attempt to retain the spirit of the very 
painstaking examination of the data advocated by Singer et al (1998), but 
economising on effort to some extent by using the BMA results to suggest 
where to look for combinations into real groups. 
 
5.2.1  Some Mechanical Digging 
Both the BMA and recursive trees analyses suggested that educational test 
scores were among the most powerful antecedents of adult malaise (this power 
of educational test scores has been found very consistently in analyses of a 
whole range of adult disadvantages using information from the NCDS – see 
Hobcraft 1998, 2000, 2003, and 2004). Table 8 shows the results from fitting 
stepwise regressions separately within each of the test score classifications used 
in the best fitting child model as identified by BMA. Particularly striking are the 
odds ratios for childhood anxiety, which suggest a clear interaction of anxiety 
with test scores: those with any low test scores need two or more low anxiety 
scores to have lower adult malaise; those with two or three high test scores but 
also two or three high anxiety scores are also at excess risk of adult malaise; and 
the largest, intermediate group on test scores (no low, but <2 high) are at greater 
risk of adult malaise if they had any high anxiety score as children. This result is 
fairly robust since locking in all of the non-test dummies from the best child 
model and exploring the need for additional significant childhood antecedents 
only picks out the same anxiety interactions. The proportions experiencing high 
malaise as adults by the identified groupings are shown in Table 9. The most 
striking incidence of malaise is for the small group of women who performed 
very well on educational tests but were very anxious, among whom 23 per cent 
(or 12 women) experienced high malaise at age 33. 
 
The other set of results that can be recalled from the BMA analysis for NCDS, 
shown in Tables 3A and 4, indicate the cluster of antecedents other than test 
scores and anxiety that were included in the best fitting child model nearly all 
had posterior probabilities of 100 per cent, with any police contact being the 
only exception at around 80 per cent. Although the BMA effect sizes were not 
shown, they are all of fairly similar magnitude. This suggests that a simple 
count of these ‘strong’ disadvantages might be worth considering as a more 
parsimonious description of childhood disadvantage. In essence, a sum of 
indicator variables serves to identify the first level of a set of Boolean OR 
statements (Singer et al 1998) covering all of the four items of any occurrence 
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of poverty, low father’s interest, frequent school absence, or contact with the 
police. The intrinsic advantage of a sum of these indicators is that it can also 
give us some information regarding multiple childhood disadvantages too. Since 
the symmetric BMA identified several childhood antecedents with low posterior 
effect probabilities it also seemed worth posing the question as to whether a 
count across these ‘weak’ disadvantages (ever in care, two or three high 
aggression scores, any high hyperactivity score, any low mother’s interest in 
schooling, and strong indications of frequent school absences) might add further 
explanatory power to our models or trees. The incidence of malaise and the 
numbers of women involved for these groups are shown in Table 10. 
 

Table 8: Odds ratios from stepwise regression models within test score 
groups (p=0.003) 

Antecedent BMA best 
model 

Any low 
tests 

No low tests 
& <2 high 

tests 

Two or 
three high 

tests 
Number of women 5768 1822 2821 1040 
     
Any poverty 1.53 1.55 --- --- 
Fairly poor --- --- 1.72 --- 
Any low father’s interest 1.49 --- 1.54 3.06 
Any low mother’s interest --- 1.42 --- --- 
Any contact with police 1.71 1.79 --- 6.45 
Any frequent school absence 1.60 1.45 1.84 --- 
     
Not 2/3 low anxiety --- 1.63 --- --- 
Any high anxiety --- --- 1.57 --- 
2/3 High anxiety --- --- --- 6.89 
     
Any low tests 1.54 --- --- --- 
No low tests & <2 high tests 1.58 --- --- --- 
All tests missing 4.00 --- --- --- 
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Table 9: Incidence of high malaise by test scores and anxiety 

Anxiety Test scores 
 Any low No low 

<2 high
2-3 high

2-3 high 0.231 
(52) 

1 high 

0.132 
(831) 

No high 
<2 low 

 
0.209 
(1366) 

2-3 low 0.140 
(456) 

 
0.086 
(831) 

 
0.048 
(988) 

 
Table 10: Incidence of high malaise by counts of strong and weak 

childhood disadvantages 

Count  0 1 2 3 4 
      
Strong disadvantages 0.076 0.127 0.202 0.305 0.396 
N 3080 1541 766 328 53 
      
Weak disadvantages 0.087 0.148 0.241 0.412 0.25 
N 3532 1675 456 97 8 

 
Note: Strong disadvantage includes a count of any: poverty, contact with police, frequent school 
absences and low father’s interest in schooling; weak disadvantages are: ever in care, 2-3 high 
aggression, any hyperactivity, any low mother’s interest in schooling and strong frequency of school 
absence. 
 
Results from incorporating dummy variables for these test-anxiety interactions 
and counts of strong and weak indicators of disadvantage are shown in Table 
11. We note that the dummy variables for the counts of disadvantage were again 
coded hierarchically (1+, 2+, 3+, 4). We see that a possible penalty of 
introducing these new items into the BMA is an increase in model uncertainty, 
especially for the strict criterion. This is also reflected in the lack of effect 
posterior probabilities of 100 per cent, except for the indicator of the experience 
of any one or more of the strong childhood disadvantages. However, what we 
do observe is that the new measures do indeed dominate the plausible models, 
with the convenient indication here being taken as an effect posterior 
probability of above two-thirds. This subset also comprises the best BMA 
model and the odds ratios from that model are shown in the final column of 
Table 11. In interpreting these odds ratios it is important to recall the 
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hierarchical coding of the counts, so that the odds ratio for the three or more 
strong disadvantage group is 3.81 (=1.57*1.53*1.58) compared with the no 
strong disadvantage group. No component of either the strong or weak 
disadvantage counts appear at all on its own and no other dummy appears at all 
outside the counts and the test scores and anxiety measures already implicit in 
the interactions. Thus the new model seems to be doing well in capturing 
variation. This proves to be the case if we return to Table 7, which summarises 
the various goodness-of-fit measures for this model (with counts and 
interactions). This new ‘best’ model has a better ROC score, a higher deviance, 
and a substantially higher BIC score than any of the earlier ones. 
 

Table 11: Effect posterior probabilities for BMA models with counts and 
interactions for female adult malaise, NCDS 

Childhood antecedent Strict Symmetric Odds ratios 
in ‘best’ 

Number of models 33 45  
    
1+ Strong disadvantages 100 100 1.57 
2+ Strong disadvantages 94.0 95.0 1.53 
2-3 High tests & 2-3 High anxiety 91.0 92.4 3.79 
No low tests &<2 High tests & any high anxiety 86.1 86.0 1.60 
All tests missing 82.7 85.4 2.88 
Any low tests & not 2-3 low anxiety 76.9 80.5 1.98 
2+ Weak disadvantages 68.9 69.8 1.50 
3+ Strong disadvantages 68.6 67.4 1.58 
    
3+ Weak disadvantages 25.3 27.9 --- 
No low tests&<2 High tests 23.1 30.8 --- 
Any low test 19.0 23.7 --- 
Any high anxiety 8.1 6.8 --- 

 
Figure 3 shows the tree grown with the addition of these counts and 
interactions, pruned at a significance level of 0.0005. The story is very similar, 
with tests, anxiety and the two counts dominating splits, but some potentially 
interesting insights that we do not pursue further here, suggesting that the 
counts discriminate better within the right hand fork that has the higher 
incidence of malaise, identified by two or more strong disadvantages, and that 
tests and anxiety play a greater role for the relatively advantaged, lower malaise 
incidence left fork. 
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Figure 3: Tree drawn using the NCDS sample, pruned to significance level 0.0005, showing  
proportion with high malaise, and number of cases

 
 
5.2.2  Grubbing around using tools rather than bare hands 
Singer et al (1998) used an exceedingly labour intensive approach to obtaining 
groups of people for their person-centred analysis, which involved examining 
constructed detailed biographies of individuals and manually searching for 
patterns of characteristics. We wished to retain some of the spirit of their 
approach whilst finding a less labour-intensive way of proceeding. Our initial 
hope was that recursive trees would prove convincing in this respect, but the 
automation is too great and less sophisticated tools are required.  
 
After some experimentation, we adopted the following approach. We began 
with the results of the BMA and in particular the elements of the best model (or 
any of the models under the strict criterion). We then used the collapse facility 
in Stata to obtain a file with counts of individuals in cells corresponding to the 
full 25* 5 cross-classification; of the 160 possible cells there were only 
observations in 103. The file also contained the mean value on adult malaise 
and all of the other childhood characteristics for each combination of test scores 
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with indicators of any incidence of childhood poverty, anxiety, low father’s 
interest in schooling, contact with the police, and frequent school absences. The 
resulting file can usefully be sorted by size of the cell or by the summary 
proportion experiencing malaise and visually inspected using the Stata browser 
or data editor facility. Moreover attention can be restricted to larger cells, sorted 
by malaise scores (or any other criterion). Thus there is much scope for semi-
automated exploration of the patterns. By far the largest group (n=1225) were 
those with no low but fewer than two high test scores and no other ‘best-model’ 
childhood disadvantage, with 6.3 per cent experiencing malaise at age 33. The 
second largest group (n=614) comprises those with two or three high test scores 
and no other ‘best-model’ disadvantage, with only 3.6 per cent experiencing 
adult malaise. The association between having no low test scores and not being 
disadvantaged in other respects is clear.  
 
The patterns on the childhood covariates for the cells containing more than 50 
women are shown in Table 12. It is striking how test score groups broadly order 
the combinations ranked by malaise incidence. Moreover, there is a clear 
tendency for sub-ordering within test score groups by the count of the number 
of best-model disadvantages. Although contact with the police is fairly clearly 
associated with increased risk of malaise it is rare for women (only four per cent 
in this sample) and thus does not fall into the largest groups. Unlike the 
previous analysis, there is no special indication that anxiety interacts with test 
scores more than other childhood disadvantage in its association with malaise 
incidence. The patterns shown here are indicative of a much more thorough 
examination of smaller cells too. What emerges from this first pass, in our view, 
is the possibility of adopting a summary interaction measure combining the test 
scores with the count of best-model disadvantages. The groupings adopted are 
shown in Table 13. 
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Table 12: Cells from collapsed NCDS data with more than 50 observations, 
ordered by grouped malaise incidence 

Malaise 
incidence 
(per cent) 

Sample 
size 

Poverty Anxiety Father 
interest 

Police Frequent 
school 

absence 

Count Tests 

Very low         
0.036 614 0 0 0 0 0 0 2-3H 
0.038 53 1 0 0 0 0 1 2-3H 
0.055 181 0 1 0 0 0 1 2-3H 
Low         
0.063 1225 0 0 0 0 0 0 0-1H 
Next         
0.082 219 0 0 1 0 0 1 0-1H 
0.087 173 1 0 0 0 0 1 0-1H 
0.098 102 0 0 0 0 1 1 0-1H 
0.104 347 0 0 0 0 0 0 Low 
0.114 88 0 1 1 0 0 2 0-1H 
0.115 462 0 1 0 0 0 1 0-1H 
0.125 96 1 1 0 0 0 2 0-1H 
Next         
0.143 112 1 0 1 0 0 2 Low 
0.147 184 0 1 0 0 0 1 Low 
0.150 60 0 0 0 0 0 0 Miss 
0.161 62 1 0 1 0 0 2 0-1H 
0.163 80 0 0 0 0 1 1 Low 
0.169 65 0 0 1 0 1 2 0-1H 
0.172 87 0 1 1 0 0 2 Low 
0.173 110 0 0 1 0 1 2 Low 
High         
0.181 199 0 0 1 0 0 1 Low 
0.191 110 1 0 0 0 0 1 Low 
Very high         
0.235 51 0 1 1 0 1 3 Low 
0.268 56 1 1 1 0 0 3 Low 
0.308 120 1 0 1 0 1 3 Low 
0.342 73 1 1 1 0 1 4 Low 
         
Count  9 9 12 0 7   
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Table 13: Suggested interaction pattern for test scores and counts of best-
model childhood disadvantage 

Test scores Count of best-model  
childhood disadvantages Any low No Low

<2 high 
2-3 High All missing 

0 0.104 
(347) 

0.063 
(1225) 

1 0.101 
(981) 

 
0.039 
(929) 

2 

 
0.172 
(1039) 0.147 

(435) 
3+ 0.310 

(436) 
0.228 
(180) 

 
0.207 
(111) 

 
 
 

0.188 
(85) 

 
The results of a stepwise regression with forward selection (backwards selection 
gives very similar results, but a slightly worse fit, removing a different 
interaction dummy) and p=0.003 using this new interaction term are shown in 
Table 14, as are the goodness of fit statistics. The only terms retained are all but 
one of the dummies for this test-disadvantage interaction; no other childhood 
factor enters the model at all (test scores were of course omitted). Judged by the 
BIC and the deviance, but not by the ROC, this model provides a better fit than 
any of the original BMA results or the initial model with the nodes. However 
the improvement is not as great as for the model considered in section 5.2.1.  
 
Table 14 also recalls the odds ratios from the best BMA model for the analysis 
of section 5.2.1 with test-anxiety interactions and the counts of strong and weak 
disadvantages. Finally we explore whether combining the insights gained from 
these two analyses and further introducing a count of the five disadvantages 
included in determining the test-disadvantage count of this section (any 
indications of poverty, father’s interest, police, and school absences, 
corresponding to the strong disadvantages of the previous section plus any low 
anxiety). This is also coded hierarchically. The resultant stepwise model is 
shown in Table 14 and provides the best fit yet on all of the measures of 
goodness of fit, with only seven degrees of freedom.  
 
We have thus achieved quite substantial gains in model fit from the two 
exploratory approaches in section 5. No doubt further progress could be made 
with more digging. But there is, of course, a danger of overfitting with such 
detailed exploration. 
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Table 14: Odds ratios from stepwise logistic regression (p=0.003) results for 
models with test-disadvantage interactions from section 5.2.2 and for 

models combining the counts and interactions from sections 5.2.1 and 5.2.2 

Count or interaction 
terms 

Test-disadvantage 
count interactions 

plus child 
antecedents  

Test-anxiety 
interactions and counts 
of disadvantages and 
childhood (BMA best) 

Both sets plus 
count of 

disadvantages 
From 5.2.2 

Test Disadvantage Count Interactions 
Low & 0  xxx  
Low & 1 or 2 2.30 xxx  
Low & 3+ 4.95 xxx  
<2 high & 0 Ref. xxx Ref 
<2 high & 1  xxx  
<2 high & 2 1.90 xxx  
<2 high & 3+ 3.26 xxx  
2-3 high & 0 or 1 0.45 xxx 0.38 
2-3 high & 2+ 2.89 xxx  
All missing & any 2.56 2.88  
Test-Anxiety Interactions 
Low & <2 low xxx 1.98 1.56 
Not low, < 2 high & 
any low 

xxx 1.60  

2-3 high & 2-3 high xxx 3.79 4.27 
Count of strong disadvantages 
1+ xxx 1.57  
2+ xxx 1.53 1.51 
3+ xxx 1.58 1.60 
Count of weak disadvantages 
2+ xxx 1.50 1.55 
Count of five disadvantages Section 5.2.2 
1+ xxx xxx 1.56 
Any other childhood 
antecedent 

None None None 

    
Deviance 276 297 313 
Degrees of freedom 7 8 7 
BIC -215.0 -227.6 -252.1 
ROC 0.6792 0.6912 0.6940 

 
Note: xxx means not considered, blank means not included in model. 
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5.3  A brief look at the tree of life 
Since we also have results from the malaise inventory at ages 23 and 42 for the 
NCDS sample, one way of assessing the value of the insights gained from the 
detailed analysis of the results at age 33 is to see how well they suffice to 
‘explain’ malaise at the other ages. We have explored the antecedents of 
continuity and change in malaise scores at ages 23 and 33 in more detail 
elsewhere (Hobcraft 2003 and 2004), but without the possible benefits from the 
detailed explorations undertaken here. The malaise inventory is meant to 
capture a fairly stable underlying propensity towards depression, so there should 
be quite a lot of continuity across ages, although we have also shown that 
experience of unemployment or of a divorce between ages 23 and 33 is 
associated with increased risk of malaise (Hobcraft 2003 and 2004). We ignore 
the inconvenient element involved in moving backwards through the life-course 
when considering malaise at age 23. 
 
Table 15 shows a simple illustration of the predictive value of the symmetric 
BMA predicted probabilities. The first panel shows the odds ratios for high 
malaise scores at age 23 and only four further childhood antecedents enter the 
model, suggesting that the BMA at age 33 captures many of the important 
antecedents of malaise at age 23. Similarly, only three additional covariates 
appear in the model for high malaise scores at age 42, again showing that the 
BMA at 33 is of considerable predictive value at other ages, despite other life 
course changes that may have occurred. 
 

Table 15: Stepwise logistic regression results using BMA predicted 
probabilities for age 33 malaise and other childhood antecedents in models 

of malaise at ages 23 and 42 in NCDS  

Malaise at age 23 Odds ratio
BMA at 33 symmetric 276.8 
Fewer than 2 Low anxiety 1.53 
Fewer than 2 Owner-Occupier 1.39 
All behaviour missing 3.50 
Fewer than 2 high tests 1.53 
  
Malaise at age 42  
BMA at 33 symmetric 77.21 
Fewer than 2 father non-manual 1.39 
Any high hyperactivity 1.38 
All father’s interest missing 1.45 
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6.  Out of sample predictive performance 

In this section we examine the predictive performance of both Bayesian Model 
Averaging and Recursive Tree methods, comparing both to the more typical 
backward stepwise selection approach. Using the selected models estimated 
with data from our learning sample, we explore how well these models perform 
when we apply them to a different, validation sample. We use Receiver 
Operating Characteristic (ROC) curves in order to summarise out of sample 
predictive performance of these very different techniques (Hanley, 1989). The 
area under the ROC curve can reach a maximum of 1 and provides information 
on the predictive performance of a model. A random prediction model should 
have a ROC area equal to 0.5, so any defensible model should have an area in 
the range of 0.5-1.  
 
Table 16 shows the area of the ROC curves when the various models chosen 
using our learning sample are applied to data from our validation sample. With 
a ROC-curve area of 0.561, the backward stepwise model chosen with a 
significance level of 0.003 performs slightly less well than either the BMA or 
the tree method. The BMA models, both with and without a strict Occam’s 
window perform best out of sample, and the recursive tree (pruned at a 0.005 
significance level) has a ROC curve area that is similar to that of the backward 
stepwise method. While the BMA methods do perform marginally better, it is 
evident from these measures that a great deal of variation in our outcome 
variable is not explained by any of these methods.  
 
Table 16: Out of sample predictive performance, BCS70 Validation sample 

Method   ROC 
Stepwise (0.003)  0.561 
  (0.01) 
BMA Strict  0.566 
  (0.01) 
BMA Symmetric  0.575 
  (0.01) 
Recursive Tree  0.562 
    (0.01) 

 
To explore further how well these modelling techniques perform out of sample, 
we first calculate, for the validation sample, three estimates of the predicted 
probability of having a high malaise score. The first estimate PPBMA1 averages 
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over the set of models that fell within a strict Occam’s window, and the second 
estimate, PPBMA2 averages over the set of models that obtained when Occam’s 
window was symmetric. Finally, the predicted probabilities for the recursive 
tree model, PPTREE, are assigned based on the frequency of high malaise 
within each terminal node. For example, a woman with one set of bottom 
quartile test scores and some evidence of childhood poverty would be assigned 
a predicted probability of high malaise of 0.380. This is because her 
characteristics would place her in node 5 of the estimated tree, which among the 
learning sample contained 297 women, 113 of whom had a high malaise score. 
Next, we apply BMA and recursive tree methods using the validation sample, 
but in addition to our initial set of explanatory variables, we add one of the 
predicted probability measures.  In what follows, we present a subset of these 
models in order to explore the extent to which the different model selection 
techniques summarise our data and its relationship with adult malaise scores. 
Although we do not provide the results from all nine runs (three predicted 
probabilities times three estimation methods), what we do present is largely 
representative of our findings.   
 
Table 17 presents the set of models chosen when we apply BMA techniques 
with a strict Occam’s window to our validation sample and include PPBMA1 as 
an additional explanatory variable. Here we see that the set of defensible models 
is small, but that model uncertainty is high. The model that contains just 
PPBMA1 is retained, but it is the least likely of the chosen models. Nonetheless, 
PPBMA1 is retained as significant in all of the models, so there is very strong 
evidence that PPBMA1 belongs in the model. Childhood hyperactivity is also 
retained as significant in the two best models in Table 17, but the evidence for 
the inclusion of this measure in the model is weak. Neither of the other two 
factors that are retained in at least one of the models has positive evidence of a 
significant effect. 
 
Hence, while the BMA with a strict window does not explain much of the 
variation in our outcome measure, it does summarise the information in the data 
set and its association with the outcome variable rather well. 
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Table 17: BMA, strict, predicted probability entered as an explanatory 
variable, estimated using BMA strict on validation sample, BCS70 data. 

  
1 
 

2 
 

3 
 

4 
 

 
 5 
   

Effect 
posterior 

probability 
(%) 

PPBMA1 * * * * * 100 
Any hyperactivity * *     76.5 
Missing interest *   *   47.7 
High aggression     *     11.4 
Posterior Model Probability 41.0 35.5 11.4 6.7 11.4 100 

 
Table 18 presents results similar to those in Table 17, except, PPTREE is 
entered as an additional explanatory variable in place of PPBMA1. The set of 
models that obtain from this application of BMA is also small, and the set of 
variables that is retained is very similar to those presented in Table 17. The 
variable PPTREE is retained in three of the five defensible models and appears 
in the two most likely ones. Nonetheless, there is positive, but not strong, 
evidence for its effect. Similar to what we found in Table 17, childhood 
hyperactivity also appears, once again with weak (but nearly positive) evidence. 
Childhood hyperactivity provided competitive splits (although not one of the 
top three presented in Table 5) to nodes 1 and 3 in the learning sample, and 
using a symmetric Occam’s window (but not a strict) was retained, but with a 
PEP of just 5.1%.  Why it should emerge with such higher evidence in the test 
sample is not clear. No other retained variables have positive evidence, but 
interestingly, having two high aggression scores during childhood is also 
associated with having a high malaise score in the second “best” model. This is 
also similar to the competitive splits that emerged via the aggression variable in 
nodes 1 and 3 of the learning sample, and using a symmetric Occam’s window 
(but not a strict) was retained with a PEP of 19.7% – perhaps because the 
predicted probability reduces the number of variables in each model, it is 
possible for this variable to be retained within a strict Occam’s window because 
model complexity is reduced. Once again, why anxiety does not emerge as well, 
is not clear. Finally, housing tenure is retained in one of the models. Recall that 
housing tenure frequently offered a competitive split all along the construction 
of the tree in Figure 1 – usually split into those with at least one observation of 
public housing. In addition, like hyperactivity and aggression, the variable was 
retained in some BMA models using a symmetric Occam’s window with a PEP 
of 6.7%. Although there is not positive evidence for an effect of either of these 
variables, the fact that they were seen as providing competitive splits in the 
original construction of the tree may merit further attention.  
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Table 18: Recursive trees predicted probability entered as an explanatory 
variable, variable, estimated using BMA strict using validation sample, 

BCS70 data 

  
1 
  

2 
  

3 
  

4 
  

5 
  

Effect 
posterior 

probability 
(%) 

PPTREE * *   * 88.6 
Any hyperactivity *  * *   73.7 
Some council housing   * *   11.4 
missing mother's interest   *    6.0 
High aggression   *       21.5 
 62.3 21.5 6.0 5.5 4.8 100 
 
Figure 4 presents a tree built using the validation sample with PPBMA2 entered 
as an additional explanatory factor. The root node is not split via PPBMA2, but 
rather by the aggression variable – women with at least one high childhood 
aggression score form the higher risk subpopulation.  An examination of the 
competitive splits for this node reveals that the PPBMA2 measure provides the 
second best split (PPBMA2>0.25 identifies the higher risk sample) and the 
impurities of both splits are extremely close. When root node is split via the 
aggression variable, the impurity measure is 0.493 and when it is split using 
PPBMA2, the impurity measure is 0.494. The difference in the relative risks is 
somewhat larger, however. When the root node is split via the aggression 
variable, the relative risk is 1.8 compared to 1.6 for the split via PPBMA2. 
Similarly, while node 2 is split via the poverty indicator summary (RR=1.6, 95 
percent CI 1.0-2.7), once again PPBMA2 provides the next best competitive 
split (RR=1.6, 95 percent CI 1.0-2.7). Node 3 is split via PPBMA2, and the 
same variable once again provides a competitive split for node 7. Although 
PPBMA2 does not completely dominate the growth of the recursive tree in 
Figure 4, it does emerge as a consistently competitive factor. Nonetheless, why 
it is that aggression emerges as such a strong predictor in the test sample and 
not the learning sample (where aggression provides only the eighth best split) 
must simply result from sampling variability.  
 
In this section, we examined the out of sample predictive performance of the 
Bayesian Model Averaging and Recursive Tree methods. Although out of 
sample predictive performance based on the ROC curve was disappointing, both 
methods appear to summarise the data sets fairly well. By introducing predicted 
probabilities as explanatory variables, we find that in a validation sample, our 
models do summarise the data fairly well. This is especially true when the 
predicted probabilities calculated from BMA methods are used as explanatory 
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variables in another BMA run. The BMA predicted probabilities do not 
dominate trees grown using the validation sample, but they do emerge as 
consistently competitive factors throughout. These findings suggest that our 
data do not explain the variation in having a high malaise score very well, but 
that the model selection techniques exploit the information that is there in a 
reasonably satisfactory way.   
 

Node 1
0.199
2864

Node31
0.210
625

Node 14
0.174
1515

Node 2
0.337
267

aggression
>= 1 high score

poverty
indicators

PPBMA2 >0.102

Node 3
0.184
2597

>=1 indicaor,
all missing

mother’s 
interest in 
education

little/no interest,
all missing

Figure 4: Tree drawn using the BCS70 test sample, PPBMA2 entered as an explanatory 
variable, pruned to significance level 0.005, showing Node, proportion with high malaise, 

and number of cases

Node30
0.314
185

Node 15
0.233
810

social
class
father

>=1 manual

Node 4
0.268
157

Node 5
0.436
110

Node 6
0.096
272

Node 7
0.195
2325
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7.  Conclusion  

It is easy to get lost in the thickets of exploratory data analysis, but we have 
illustrated many of the returns that can be gleaned through a variety of quite 
intensive approaches. Because our backgrounds are quantitative and rooted in 
regression analyses we may have failed to glean as much from the recursive 
trees as might someone from a more qualitative background.  
 
However, we confess to some disappointment with the benefits of the 
automated recursive tree approach. There are two areas (at least) where we have 
concerns. Firstly, the binary nature of the splitting leads to quite complex 
combinations very rapidly, especially with sizeable data sets as here. Second, 
the impurity measure seems to favour splits that retain groups of fairly equal 
size and thus do not clearly identify some of the interactions that we discovered 
through more laborious processes. On the other hand, the option, however 
clumsy and limited, to control the splitting process is useful and can provide 
interesting insights into measures that are close competitors as in section 4.2.3. 
The software used, RTREE, does not permit examination of alternative splits 
within the same variable though.  
 
There is considerable advantage though to the variables being considered for 
splitting one at a time. We have made use of the ‘missings together’ approach, 
suggested by Zhang and Singer (1999), which is very useful indeed when 
dealing with the situation we usually face, where the categories for childhood 
disadvantage on most antecedents are strictly ordered with the exception of 
those for whom all information is missing; the option to group these at either 
end of the hierarchy is thus useful. However, with a more complex antecedent, 
like our family structure, simply treating partially structured or partially ordered 
groups as nominal does not suffice. However, though not yet operationalised, it 
would be possible to include several further versions of our family structure 
variable that identified the partial hierarchies implicit in our coding of the 
dummy variables. Moreover, the option exists to include all sorts of collinear 
versions of the covariates in a recursive tree analysis. For example, our 
summary measures of childhood experience regarding each antecedent typically 
take observations at each of three childhood waves and combine them. There is 
nothing to prevent us including the component measures at each of the three 
childhood ages as well as the combination, in order to explore whether the 
combination actually does perform better or whether experience at a particular 
age matters more. The possibilities are limitless. 
 
We have become enthusiasts for learning about model uncertainty and have 
found the posterior effect probabilities from BMA consistently illuminating. It 
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is helpful to have the results both for the strict and the symmetric Occam’s 
window models and we have demonstrated ways of taking advantage of this 
above. The main difficulty with BMA, beyond the technical discussions of 
Raftery (1995) and Weakliem (1999) and their commentators, is the 
presentation of the results. In several cases above, we have resorted to reporting 
the odds ratios or parameter estimates from the best fitting model according to 
the BIC. The other indicative alternative is to present the model posterior 
probability weighted average of the non-zero parameter estimates, adjusted for 
the posterior effect probability. Neither is satisfactory for non-linear models, 
where only the model posterior probability weighted average of the predicted 
probabilities seems really defensible. But although this is perhaps a useful tool 
for out of sample prediction (see section 6 and section 5.3), it is not what can be 
usefully presented to policy makers. 
 
We hope that this paper has also shown some of the rewards that be obtained 
from a lot of data exploration that is illuminated but not completely driven by 
insights from BMA and recursive trees. We have emphasised the exploratory 
nature of most of our analysis, although cautiously drawing attention to 
continuities across cohorts and across the life-course of one of our cohorts as 
helping to give confidence that we are discovering something real and valuable. 
We are unashamed empiricists in this respect and regard much so-called theory 
as being closer to adopting a disciplinary set of blinkers. It is no accident at all 
that we have made great effort to consider a wide range of childhood 
antecedents of malaise. This broad philosophy is better illustrated by our 
concerns with social exclusion or multiple disadvantages across a wide range of 
domains, including economic, social, welfare, demographic, and health 
outcomes (Hobcraft 1998 and Sigle-Rushton 2004) and to late adolescent and 
early adult experiences as intermediate elements in pathways to adult 
disadvantages (Hobcraft & Kiernan 2001, Hobcraft 2000, 2002, 2003, and 
2004). Of course, we have no antipathy to genuine theoretical insights, nor to 
drawing on cumulative knowledge. But most theory in the social sciences 
perhaps needs disciplining as a strong Bayesian prior, so that the constraints 
imposed are made explicit. 
 
Discovering complex interplays among different elements of childhood 
disadvantage that affect adult outcomes, such as malaise, is a difficult task and 
all too rarely pursued with vigour. We share and have been consistently inspired 
by Burt Singer’s deep concerns about the general linear model as the only tool 
for data exploration, especially when no serious attempt is made to get beyond 
main effects. Moreover, Adrian Raftery’s plea for better analysis and fitting 
when using the general linear model also resonate. In this paper we have tried to 
indicate some time-intensive, but ultimately rewarding, approaches that began 
by using BMA and recursive trees directly, but then moved beyond these simple 
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mechanical approaches to try to combine some of the philosophy underlying 
Burt Singer’s approaches with varying degrees of automation. We trust the we 
have indicated too that the general linear model is not yet dead, but that main 
effects only models should be interred.  
 



 57

References 

Breiman, L., J.H. Friedman, R.A. Olshen and C.J. Stone (1984) Classification 
and Regression Trees. Monterey, CA: Wadsworth and Brooks/Cole. 

Hanley, J.A. (1989) ‘Receiver operating characteristics (ROC) methodology: 
The state of the art’. Critical Reviews in Diagnostic Imaging 29: 307-335. 

Hobcraft, J. (1998) Intergenerational and Life-Course Transmission of Social 
Exclusion: Influences of Childhood Poverty, Family Disruption, and 
Contact with the Police. CASEpaper 15, Centre for Analysis of Social 
Exclusion, London School of Economics  

Hobcraft, J. (2000) The Roles of Schooling and Educational Qualifications in 
the Emergence of Adult Social Exclusion. CASEpaper 43, Centre for 
Analysis of Social Exclusion, London School of Economics  

Hobcraft, J. (2002) ‘Social Exclusion and the Generations’. In J. Hills, J. 
LeGgrand and D. Piachaud (Editors) Understanding Social Exclusion. 
Oxford: Oxford University Press 

Hobcraft, J. (2003) Continuity and Change in Pathways to Young Adult 
Disadvantage: Results from a British Birth Cohort. CASEpaper 66, 
Centre for Analysis of Social Exclusion, London School of Economics. 

Hobcraft, J. (2004) ‘Parental, Childhood and Early Adult Legacies in the 
Emergence of Adult Social Exclusion: Evidence on What Matters from a 
British Cohort’. In P. Lindsay Chase-Lansdale, K. Kiernan and R. 
Friedman (Eds.) Human Development across Lives and Generations: The 
Potential for Change. Cambridge: Cambridge University Press. 

Hobcraft, J. and K. Kiernan (2001) ‘Childhood Poverty, Early Motherhood and 
Adult Social Exclusion’. British Journal of Sociology 52: 495-517. 

Hoeting, J.A., D. Madigan, A.E. Raftery, and C.T. Volinsky (1999) ‘Bayesian 
Model Averaging: A Tutorial’. Statistical Science 14(4). 

Madigan, D.M. and A.E. Raftery (1994) ‘Model selection and accounting for 
model uncertainty in graphical models using Occam’s Window’. Journal 
of the American Statistical Association 89: 1335-1346. 

Raftery, A.E. (1995) ‘Bayesian Model Selection in Social Research’. In P.V. 
Marsden (Ed.) Sociological Methodology 1996:111-195. (with Comments 
by: A. Gelman and D.B. Rubin; R.M. Hauser; and Rejoinder by A.E. 
Raftery) Oxford: Blackwell. 

Richman, N. (1978) ‘Depression in Mothers of Young Children’. Journal of the 
Royal Society of Medicine 71: 489-493. 



 58

Rutter, M., J. Tizard and P. Graham (1976) ‘Isle of Wight Studies: 1964-1974’. 
Psychological Medicine 16: 689-700. 

Rutter, M., J. Tizard and K. Whitmore (1970) Education, Health and 
Behaviour. London: Longman. 

Sigle-Rushton, W. (2004) Intergenerational and Life-Course Transmission of 
Social Exclusion in the 1970 British Cohort Study. CASEpaper78, Centre 
for Analysis of Social Exclusion, London School of Economics. 

Singer, B., C.D. Ryff, D. Carr and W. Magee (1998) ‘Life Histories and Mental 
Health: A Person-Centered Strategy’. In A.E. Raftery (Ed.) Sociological 
Methodology 1998: 1-51. 

Weakliem, D.L. (1999) ‘A Critique of the Bayesian Information Criterion for 
Model Selection’. Sociological Methods and Research 27(3): 359-443 
(with Comments by D. Firth and J. Kuha; A. Gelman and D.B. Rubin; 
A.E. Raftery; Y. Xie; and Reply by D. Weakliem). 

Zhang, H.P. and M. Bracken (1995) ‘Tree-based risk factor analysis of preterm 
delivery and small-for-gestational-age birth’. American Journal of 
Epidemiology 141: 70-78. 

Zhang, H. and B. Singer (1999) Recursive Partitioning in the Health Sciences. 
New York: Springer-Verlag. 

 


