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Abstract

We examine the performance of measures of mobility when allowance is
made for the possibility of data contamination. We find that “single-
stage” indices – those that are applied directly to a sample from a
multivariate income distribution – usually prove to be non-robust in the
face of contamination. However, “two-stage” models of mobility –
where the distribution is first “discretised” into income intervals and
then a transition matrix or other tool is applied – may be robust if the
first stage if appropriately specified.



1 Introduction

Economists and other social scientists are interested in the movement of personal

incomes. Information extracted from individual income histories can be useful

in drawing conclusions about the persistence of poverty, some aspects of \open-

ness" of a society or the extent of economic opportunity. The standard tool for

characterising this collection of information about personal income streams is the

mobility index. However if a mobility index is to do this kind of job it is important

that (a) the index be appropriately founded on ethical principles or reasonable

axioms that capture the meaning of mobility, and (b) that it be reasonably reli-

able in the face of the imperfections that are inevitably present in even the most

carefully collected data: even if one is reasonably con¯dent about a data source,

it is obviously inappropriate to assume that the data will automatically give a

reasonable picture of the \true" picture of mobility. It is on issue (b) that we

focus here: the purpose of this paper is to examine the relative performance of

di®erent types of mobility index when one makes allowance for dirty data.1

The issues that arise under (b) have an important role to play in the speci¯ca-

tion and selection of income-mobility indices. Unlike the case of other summary

indices in applied welfare economics - such as inequality measures or Social-

Welfare Functions there - is not really a good a priori case for one mobility index

rather than another or one class of indices rather than another. Instead, most

1The formal analysis underlying the discussion below is presented in Cowell and Schluter
(1998).
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commonly-used mobility measures are essentially pragmatic. The behaviour in

the presence of data imperfection can be one good guide to the choice of a prag-

matic index.

There are several ways in which data imperfections might be introduced into a

formal analysis of income mobility. One is to adopt a standard model of measure-

ment error. An alternative - pursued here is to use a model of data contamination:

a researcher may anticipate that, because of miscoding and other types of mistake,

a proportion of the observations may not \really belong" to the data, and that

including them in the working dataset may have a serious impact upon mobility

estimates and comparisons. We will consider the performance of some important

classes of mobility measures in the presence of this type of contamination.

The central question that we wish to address is whether the properties of mo-

bility indices in conjunction with the characteristics of panel data can give rise

to misleading conclusions about income-mobility patterns. Obviously if contam-

ination is in some sense \large" relative to the true data then we cannot expect

to get sensible estimates of mobility indices; but what if the contamination were

quite small? Could it be the case that isolated \blips" in the data or extreme

values could drive estimates of income mobility? We analyse this problem using

methods of robust analysis that have become established in other ¯elds.

There is a special di±culty associated with the problem of data contamina-

tion in the present context. Pragmatic approaches that are relatively easy to

implement in other income distribution problems may be impractical in applica-
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tions to issues such as the measurement of mobility. For example, in the analysis

of income inequality, it may be appropriate to \trim" data by eye or by algo-

rithm, but the types of rule-of-thumb treatment of outliers that could work well

for a univariate problem are likely to be unwieldy in the case of multivariate

distributions.

This practical di±culty underlines the importance of understanding the gen-

eral properties of mobility indices when applied to contaminated data. Our ap-

proach has been to establish these properties for two broadly-de¯ned types of

index using a simple model of data contamination. Section 2 sets out the basic

ingredients of the approach; sections 3 and 4 discuss the ¯rst of the two principal

types of mobility indices; section 6 discusses the second type of index; section 7

concludes. Finally, some of the relevant literature is brie°y surveyed in Appendix

A, and a glossary of formula½ for the measures discussed is given in Appendix B

2 The Approach

Imagine a video-recording of each person's income life-history. If income x is

recorded period by period (for example annually) over a ¯xed time-span then for

each individual we would have a multi-period pro¯le of information that may be

used as the basis for describing the pattern of personal income mobility within

an economy. This can be represented as a vector x := (x1; x2; :::; xT ) where T is

the number of periods. Mobility analysis is often described as though there were
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just two periods (\before" and \after") so that the problem would be reduced to

a bivariate analysis. However, as we shall see this is unnecessarily restrictive for

the issues on which we wish to focus.

2.1 Income Distributions

What do we mean by an income distribution? If we were just to be concerned

with a snapshot of the economy then this could just be taken as the standard

concept from the statistical textbooks, a distribution function, F , where, for any

value of income x, F (x) gives the proportion of the population that has an income

less than or equal to x. In the present context the basic concept with which we

will work is the distribution of individual income pro¯les x: this can be thought

of as a multiperiod income distribution. From this it is straightforward to derive

other income distribution concepts such as the cross-sectional income distribution

for any one period, or the distribution of discounted lifetime income.

2.2 Mobility

Once we have the idea of a multi-period income distribution in mind the concept

of a mobility index can be introduced. This is just a summary statistic of the

multi-period distribution like measures of location and dispersion that can be

used for single-period distributions. There are several alternative approaches to

the speci¯cation of such indices, which need not detain us here. Speci¯c types of
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mobility indices are discussed in Sections 3 to 6 below; for the moment note that

the class of indices M be resolved into two important subclasses:

² Single-stage indices attempt to make full use of information in a theoretical

or empirical distribution F : they are, so to speak, estimated directly from

the data.

² Two-stage indices are based on a \discretisation" of the distribution: F is

pre-processed by converting it into a grouped distribution where the groups,

or income intervals, may be exogenously imposed or may be related to

statistics of the distribution itself.

For a particular multivariate distribution F we then wish to evaluate the

mobility index M(F ). However, in most practical applications the \true" dis-

tribution will not be known a priori but must be estimated from some set of

sample data. An estimator of M(F ) can then obtained by one of the following

two approaches.

1. For the non-parametric approach one replaces F with the empirical distri-

bution represented by the sample.

2. In the parametric approach one assumes a priori that income is distributed

according to some pre-speci¯ed family of functional forms (for example the

family of multivariate lognormal distributions). One then estimates the

values of the parameters from the data to obtain one particular member
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distribution of the parametric family. Mobility is then estimated using this

distribution.

Here we will assume that a complete set of micro-data is available for the T

periods, and we focus upon non-parametric methods.

2.3 Data Contamination

Because in practice a mobility index is usually estimated using a sample one

should realistically expect that the data may be subject to contamination: for

example the misreporting of weekly as monthly income, or the presence in the

sample of data points that have been miscoded by the data transcriber (the

classic decimal-point error). If one had reason to suspect that this sort of error

were extensive in the data sets under consideration the problem of distributional

comparison might have to be abandoned because of unreliability. However, it is

possible that there might be a fairly serious problem of comparison even if the

amount of contamination were fairly small, so that the data might be considered

\reasonably clean".

A standard model of this type of problem is as follows. Suppose that the

\true" multivariate distribution for which we wish to estimate mobility is F but,

because of the problem of data-contamination, we cannot assume that the data

actually observed have really been generated by F . What we actually observe

instead of F is a mixture of it with some other \alien" distribution (1¡")F +"H
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where H is a distribution representing contamination and " (which lies between

0 and 1) represents the importance of the contamination in the mixture. Clearly

if " in (1) were large we could not expect to get sensible estimates of mobility

indices; but what if the contamination were very small?

To address this question for any given mobility statistic M we can use an

elementary version of this contamination model. Imagine that the contamination

distribution is made up of a set of discrete \blobs" (point masses). In its simplest

form we could take the case where there is just one such blob, a single false

income observation at z := (z1; z2; :::; zT ). Use H
(z) to denote the distribution

that consists of just this blob; then instead of the true multiperiod distribution

we actually see the mixture given by

F (z)" = [1¡ "]F + "H(z) (1)

For any given mobility index M we could obviously then work out the apparent

amount of mobility using the contaminated distribution M
³
F
(z)
"

´
. In fact this

gives us an appropriate tool for assessing the impact on mobility estimates of an

amount of contamination that is \small" in the sense that " approaches 0. for

any hypothetical value of z we could just di®erentiateM
³
F
(z)
"

´
with respect to "

and evaluate the result at " = 0. This is what is known as the in°uence function

(IF) for M . It gives us the in°uence on the estimator M of contamination at

the point z, and its value will depend upon the position of z with respect to
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the position of the majority of the data. It indicates whether an estimate of

mobility will be stable in the presence of a few \alien" observations in the income

pro¯le and, because the IF is the ¯rst-order term in the linear expansion of the

asymptotic bias of the estimator it will also provide information about the bias

of the mobility estimate. If, under the given model of data-contamination (1) IF

is bounded for all possible points of contamination z, then the mobility statistic

M is said to be robust. Of course it is particularly interesting to know whether

IF could in practice be unbounded. Typically, this problem of unboundedness

can arise when components of z approach extreme values: in this case a single

outlying observation in the income pro¯le could drive the mobility estimate by

itself.

Clearly it would be useful to know how the in°uence function will behave for

various types of data contamination for a wide class of mobility indices. So in

sections 3 to 6 we consider the problem of characterising IF for certain key types

of mobility statistics M .

3 Stability indices

The ¯rst subclass of single-stage indices builds upon an extension of inequal-

ity analysis. Imagine that income inequality is evaluated for each of the cross

sectional distributions 1; 2; :::; T and for the distribution of \time-averaged" in-

come for each person's pro¯le over the T periods; the average could be a simple
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arithmetic mean, or some kind of weighted average using weights w1; w2; :::; wT .

If there were absolutely no mobility in the income distribution (although there

might be overall income growth) then we would expect inequality in each period's

cross-section I(Ft) and inequality of weighted-average income I(Fw) to be iden-

tical. This is the basis for the idea of a so-called \rigidity" or \stability" index:

total income immobility is represented by the above case and departures from

this extreme state are assessed using the (as yet unspeci¯ed) inequality index I.

A typical stability index can be written

1¡ I(Fw)PT
t=1wtI(Ft)

: (2)

Of course each Ft (the cross-sectional distribution in period t) and Fw (the dis-

tribution of weighted average income) are derived from the joint distribution

function F , and consequently, if the true F is not directly observable and we

have to work with a contaminated distribution, these derived distributions will

also be a®ected. Furthermore, because the mobility index (2) is de¯ned as a func-

tion of the values of an inequality statistic for several derived distributions of F ,

its in°uence function will depend upon the in°uence function for the inequality

index implemented for these derived distributions. Whether the in°uence func-

tion of the stability index is unbounded depends in part on whether the in°uence

functions for the particular inequality measure I are themselves \badly behaved"

in the sense that the IFs evaluated for these indices are unbounded. Partly it
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depends on whether, in a sense, the \bad behaviour" of the top and bottom lines

in (2) happen to cancel each other out. Apart from trivial cases of little practical

importance - such as where the contamination just happens to rescale all incomes

to the same extent - it is not self-evident whether such a convenient cancellation

occurs. Particular instances of stability indices - essentially speci¯c inequality

measures - have to be checked individually.

This is not too demanding because there are only a few inequality measures

(or families of measures) that are considered as serious candidates for use as the

index I in (2). The two principal candidates are:

² The Gini Coe±cient.

² The Generalised Entropy Indices. This broad class includes measures that

are ordinally equivalent to (and that have similar statistical properties to)

the Atkinson inequality indices and the coe±cient of variation.

see Appendix B for the relevant formulas.

Many inequality indices are inherently nonrobust (Cowell and Victoria-Feser

1996), and the two above in particular are indeed so. Furthermore it can be

shown that this nonrobustness is not a phenomenon which somehow cancels out

in the top and bottom of the fraction in (2). The so-called \stability" indices,

are in fact all unstable!
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4 \Distance" and related measures

A second principal subclass of single-stage indices interprets mobility in terms

of \distributional change" (Cowell 1985) and typically focuses upon measures

that incorporate a concept of distance between incomes. As far as the measures'

properties in the face of contaminated data are concerned they can be treated

in the same manner as the approach of section 3. The distributional-change

approach requires restriction to a two-period interpretation of mobility: we will

label the two periods (t ¡ 1; t). Imagine that someone de¯nes the \distance"

D(xt¡1; xt) between the two periods' incomes for a particular individual: mobility

may be thought of as some kind of average over the population as the income

distribution evolves from t ¡ 1 to t. There are several commonly-used indices

that employ a notion of aggregating the \distance" between individuals' incomes

in the two distributions.

² The Hart index incorporates the concept of distance that is implicit in the

use of the variance of logarithms.

² The Fields-Ok Index uses a distance concept is based on the absolute dif-

ferences of logarithms.

² The King index introduces a concept of changing ranks within distribu-

tions as well as distance. Furthermore, following Atkinson (1970), King

derives axiomatically a social-welfare function consistent with the proposed
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mobility measure.

However, all of these, as well as a more general class of distance-based mea-

sures based on the generalised entropy concept can be shown to be non-robust.

The next section discusses whether this matters.

5 Simulation

We have seen that the single stage measures introduced in sections 3 and 4

are non-robust. In principle they might be extraordinarily sensitive in that an

in¯nitesimal amount of contamination in the wrong place could cause the value of

the index to be biased away from the value it would adopt for the uncontaminated

distribution. It remains to establish how important this issue is likely to be in

practice.

To investigate this we could have taken a set of panel data and manipulated

some of the observations. However, there is always the danger that some results

may be speci¯c to the dataset chosen, and it would clearly be more illuminating

to be able to examine systematically the sensitivity of the simulation results to

changes in the characteristics of the underlying distribution. Given that our pur-

pose is to examine the behaviour of practical tools, rather than to discuss case

studies of particular examples of income mobility, it makes sense to use an exper-

imental \dataset" over which one has some control, but which is not too far away

from the sort of numbers one might encounter in practice. We therefore carried
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out a simulation on an arti¯cial distribution that has characteristics similar to

actual data.

Our baseline distribution was a bivariate lognormal with parameters that

would be of the same order of magnitude as empirical estimates for the Michigan

Panel Study of Income Dynamics. The PSID income concept used was log annual,

unequivalised, real, post-tax, post-bene¯t income in 1989. These considerations

suggested the use of simulated data where marginal distributions were given by

Lognormal(10:25; 0:5): the two parameters are respectively the mean and variance

of log-income in the assumed distribution. A number of values for the correlation

coe±cient on log-income were used in the experiment. For a further point of

reference it may be interesting to note that if a lognormal were ¯tted to the

BHPS data (annual real net income equivalised using the McClements' scale)

for 1991 the result would be closer to Lognormal(9:5; 0:34) and the correlation

coe±cient on log-income for 1991/92 would be about 0.7.

There are two main types of contamination that may then be modelled within

this bivariate framework. Type 1 is that of the \rogue pro¯le": both components

of the income pro¯le (xt¡1; xt) are simultaneously contaminated for particular

observations in the data-set. Type-2 contamination may be thought of as the

\blip" problem: contamination may a²ict individual components of the pro¯le.

The experiments simulated \decimal-point contamination". This means that a

proportion of the observations are recorded as being 10 times larger (in our case)

or smaller than they should be: it is one of several typical manual recording errors

13



correlation=0.50 correlation=0.75
contam: 2.5% 5% 7.5% 10% 2.5% 5% 7.5% 10%
\Stability"indices
GE(-1) 0.9575 0.9344 0.9223 0.9133 0.9746 0.9615 0.9539 0.9488

(0.0131) (0.0117) (0.0108) (0.0096) (0.0093) (0.0081) (0.0073) (0.0068)

GE(0) 0.9328 0.9042 0.8908 0.8816 0.9614 0.9456 0.9377 0.9327
(0.0123) (0.0094) (0.0076) (0.0061) (0.0079) (0.0060) (0.0047) (0.0040)

GE(1) 0.9055 0.8811 0.8726 0.8677 0.9456 0.9326 0.9272 0.9245
(0.0156) (0.0109) (0.0089) (0.0075) (0.0100) (0.0073) (0.0058) (0.0052)

GE(2) 0.8954 0.8856 0.8846 0.8849 0.9374 0.9337 0.9315 0.9316
(0.0350) (0.0304) (0.0295) (0.0255) (0.0255) (0.0238) (0.0205) (0.0196)

Gini 0.9626 0.9437 0.9341 0.9275 0.9803 0.9706 0.9655 0.9622
(0.0072) (0.0054) (0.0042) (0.0033) (0.0042) (0.0031) (0.0024) (0.0020)

\Distance"-based indices
King 1.2146 1.2361 1.2383 1.2386 1.3805 1.4718 1.4843 1.4870

(0.0632) (0.0178) (0.0128) (0.0104) (0.1839) (0.0853) (0.0592) (0.0514)

Hart 0.8019 0.6655 0.5811 0.5112 0.7982 0.6643 0.5765 0.5106
(0.0552) (0.0478) (0.0425) (0.0360) (0.0642) (0.0542) (0.0457) (0.0414)

Fields-Ok 1.0017 0.9995 1.0008 1.0001 1.0005 0.9999 0.9999 1.0002
(0.0334) (0.0329) (0.0333) (0.0331) (0.0347) (0.0347) (0.0342) (0.0349)

Table 1: Bias in mobility indices resulting from type-1 contamination

found in practice.

Table 1 reports the experiment for the ¯rst type of contamination in a sample

of size 500 where the contaminated observations range from 2.5% to 10% of the

sample.

shows the contaminated mobility estimate as a ratio of the true value (so an

unbiased entry would have the value 1.0000). The ¯gures in parentheses show

the standard errors of the estimate. As the top part of the table shows the

stability indices based on GE-measures or the Gini index can exhibit substantial

downward bias (4 to 13 percent) if the correlation coe±cient of the log-income

process is low; if the correlation is higher, the bias is reduced (the bias worsens
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correlation=0.50 correlation=0.75
contam: 2.5% 5% 7.5% 10% 2.5% 5% 7.5% 10%
\Stability"indices
GE(-1) 0.9968 1.0090 1.0240 1.0402 1.0130 1.0402 1.0663 1.0929

(0.0140) (0.0136) (0.0140) (0.0137) (0.0109) (0.0118) (0.0133) (0.0130)

GE(0) 0.9919 0.9937 0.9978 1.0020 1.0155 1.0330 1.0463 1.0586
(0.0124) (0.0114) (0.0104) (0.0096) (0.0087) (0.0081) (0.0079) (0.0078)

GE(1) 1.0090 1.0063 1.0019 0.9960 1.0501 1.0640 1.0665 1.0662
(0.0144) (0.0150) (0.0149) (0.0146) (0.0109) (0.0123) (0.0131) (0.0131)

GE(2) 1.0795 1.0707 1.0543 1.0353 1.1592 1.1616 1.1468 1.1289
(0.0195) (0.0160) (0.0170) (0.0173) (0.0228) (0.0159) (0.0172) (0.0172)

Gini 0.9904 0.9833 0.9789 0.9745 1.0021 1.0037 1.0041 1.0045
(0.0090) (0.0091) (0.0088) (0.0082) (0.0063) (0.0069) (0.0068) (0.0070)

\Distance"-based indices
King 1.0718 1.0593 1.0658 1.0584 1.2522 1.2503 1.2458 1.2287

(0.1130) (0.1114) (0.1088) (0.1070) (0.1623) (0.1500) (0.1525) (0.1534)

Hart 1.1048 1.1864 1.2426 1.2821 1.3138 1.5533 1.7123 1.8551
(0.0716) (0.0750) (0.0780) (0.0785) (0.0965) (0.1059) (0.1161) (0.1232)

Fields-Ok 1.0750 1.1534 1.2289 1.3073 1.1159 1.2382 1.3525 1.4772
(0.0343) (0.0348) (0.0355) (0.0352) (0.0353) (0.0351) (0.0378) (0.0375)

Table 2: Bias in mobility indices resulting from type-2 contamination

with a reduction in the lognormal dispersion parameter). The lower part of the

table shows that the bias for two of the distance-related measures can be very

large: the King index is biased upwards and the Hart index downwards. This

phenomenon persists even where the underlying log-income correlation is high.

The Fields and Ok index appears to perform extremely well in this case, but

in a \blip" experiment it performs as badly, or worse than, the King index - see

Table 2. The reason for this special behaviour is that, when one works out the

in°uence function for the Fields and Ok index in this second case, simultaneous

similarly-sized perturbations of xt¡1 and xt will e®ectively cancel each other out,

a phenomenon that is absent from the \blip" model.
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6 Transition matrices and related techniques

Income mobility is inherently a complex process, and the attempts at measuring

mobility usually involve some attempt at simplifying the underlying model of the

process; this a priori simpli¯cation then has consequences for the way in which

sample data are to be handled. The simpli¯cations usually involve \discretisa-

tion" of the process, in one or both of two aspects - in state space and in terms

of time. The time discretisation is implicit in the discussion of Section 2 where

time is treated as distinct periods rather than as a continuous °ow.

Two-stage mobility indices involve discretisation of the state space. The tran-

sition matrix approach is a standard example of the two-stage approach and

permits discussion of a richer pattern of income mobility than can be embodied

within a single class of stability or distance-based indices. It might be thought

that, as with the distance-based single-stage measures, the two-stage approach

makes sense only for cases where T = 2; but there is no reason a priori why this

should be so.

The essential components of the approach are as follows. One speci¯es a set of

income classes (or \bins") into which observations from an empirical distribution

are sorted . For simplicity we assume that the set of bins is the same for both

periods, although this is not essential to the argument. The transition probabil-

ities may then be expressed as the probability that an individual with income

in bin i in period t ¡ 1 will have income in bin j in period t. The transition
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matrix is formed of these probabilities and the mobility index is then expressed

as a function of the transition matrix.

There are two types of issue that concern us here: the general characteristics

of the function that is applied to the transition matrix and the speci¯cation of the

bins. These correspond to two basic components of the impact of a small amount

of contamination on the mobility estimate: (i) the e®ect on overall mobility of a

small variation in any one transition probability and (ii) the impact on a given

transition probability of the assumed contamination. Component (i) is typically

uncontentious: it would be very perverse to specify a mobility criterion that

was wildly sensitive to some small change in a transition probability, and we are

not aware of any such measures in common use that would have this property.

Component (ii) deserves more discussion, and needs to be considered in the light

of two alternative practical ways of specifying the \bins".

Exogenous bins. If the income values for the interval boundaries are ¯xed

independently of the data then it is straightforward to show that the in°uence

function for each estimated transition probability is independent of z, the as-

sumed point of contamination. This means that the entire transition matrix

must be robust.

Endogenous bins. However, ¯xing the income boundaries of the bins a priori

is perhaps rather unusual. It is more common to link the bin boundaries to a

proportion of some statistic of the distribution, for example to a proportion of

the mean or to one of the quantiles. The expression for the in°uence function
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will now involve terms that are related to the sensitivity of the boundaries to

contamination in the data. It is intuitively clear - and straightforward to show

formally - that, unless the bin boundaries are parametrised as robust statistics

such as functions of quantiles, the transition probabilities estimator su®ers from

an unbounded in°uence function. However, given that deciles or other quantiles

are known to be robust statistics, then we have the positive result that transition

matrices computed on the basis of these statistics will indeed be robust.

Our analysis of two-stage mobility criteria then has two speci¯c conclusions:

1. The robust choice of income classes implies robust estimates of the transi-

tion probabilities.

2. The choice of the mobility index from this class of indices is e®ectively

irrelevant from the view point of robustness, and should be guided by other

considerations.

7 Concluding Remarks

We have seen that in the presence of data contamination commonly used \single-

stage" mobility measures usually behave rather di®erently from appropriately

designed two-stage models of mobility. The problem with single-stage indices

comes partly from attempting to make the responsive to all income movements,

wherever they may occur on the income scale, partly from the sensitivity of the
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functions used in evaluating mobility, be they of the form of adapted inequality

measures or distance measures.

The two-stage approach deals with these things separately. In stage 1 we

process information: a non-linear function ¯lters out information from parts of

the income range; in particular extreme values may be ¯ltered if the data \bins"

are function of robust statistics of the distribution. In stage 2 the evaluation

and weighting jobs can be performed \safely" by a large number of intuitive

and formal algorithms that correspond to di®erent concepts of mobility amongst

discrete income or status levels.
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A Notes on the Literature

Because the subject matter of this paper is fairly technical it may be useful to give

a brief overview of some of the relevant literature. The problem of measurement

error in mobility analysis is discussed in Bound et al. (1989) and Bound and

Krueger (1989).The alternative approach to the \dirty data problem" - that of

modelling contamination using the concept of robustness - is based upon the

work of Hampel (1968, 1974), Hampel et al. (1986), Huber (1986): their insights

have been applied to a wide range of statistics with economic and statistical

applications. The relationship between the measurement error approach and the

robustness approach to imperfections in the data is discussed in Cowell (1998) in

the context of income inequality.

The principal developments of stability analysis are attributable to Shorrocks

(1978) and Maasoumi and Zandvakili (1986, 1990). For a general discussion on

the use of inequality measures see Cowell (1995). The Hart mobility index is

discussed extensively in Shorrocks (1993); the other distance-based indices are

introduced in Fields and Ok (1997) and King (1983).

As the text stresses, two stage mobility indices do not, in principle, have to

be discussed in terms of the simpli¯ed two-period model, though this makes the

analysis very convenient of course. One of the few authors who has attempted

to deal with multiperiod generalisations of the two-stage concept is Hills (1998).

The modi¯cation of the approach to continuous time is discussed in Geweke et al.
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(1986).

B Formulas

B.1 Inequality indices

In what follows let G be some univariate (single-period) income distribution, and

de¯ne the generalised mean ¹® as

¹®(G) =

Z
x®dG(x); (3)

We can then write ¹ for the (arithmetic) mean, such that ¹(G) := ¹1(G). Also

de¯ne Q(G; q) as the qth quantile for the given distribution G: this is the smallest

income xq such that, for distribution G, 100q% have an income x less than or

equal to xq. Formally xq = Q(G; q) := inffx : G(x) ¸ qg.

The Generalised Entropy class of indices is then given by

IGE(®)(G) =
1

®2 ¡ ®

�
¹®(G)

¹(G)®
¡ 1

¸
(4)

where the functional ® (a real number anywhere between ¡1 and +1) is the

sensitivity parameter of the index. For ® large and positive the index is sensitive

to changes at the top of the income distribution, for ® negative the index is

sensitive to changes at the bottom of the distribution. At ® = 0 and ® = 1 (4)
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adopts the form of the so-called Mean-Log-Deviation index and the Theil index

respectively. The Gini coe±cient can be written as the functional

IGini(G) = 1¡ 2
R 1
0

R Q(G;q)
x

xdG(x)dq

¹(G)
(5)

where Q(G; q) is the qth quantile, de¯ned above.

B.2 \Distance-based" mobility indices

Let xt¡1 and xt denote an individual's income in two consecutive periods. The

Hart index is formally de¯ned as

MHart(F ) := 1¡ r(log xt¡1; log xt) (6)

where r(:) is the correlation coe±cient. The Fields-Ok index is based upon a

distance concept using the absolute di®erences of logarithms:

MFO(F ) = c

Z Z
jlog xt¡1 ¡ log xtj dF (xt¡1; xt): (7)

King's index can be expressed as

MKing(F ) = 1¡
"R R ¡

xte
°s(F;x)

¢k
dF (x)

¹k(Ft)

# 1
k

k � 1; k 6= 0; ° ¸ 0 (8)

25



where s(F ;x) := jxt¡Q(Ft;Ft¡1(xt¡1))j
¹(Ft)

is the \scaled order statistic" which captures

reranking.
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