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A technique is proposed to improve the accuracy of indoor positioning systems 

based on WIFI radio-frequency signals by using dynamic access points and fingerprints 

(DAFs). Moreover, an indoor position system that relies solely in DAFs is proposed. 

The walking pattern of indoor users is classified as dynamic or static for indoor 

positioning purposes. I demonstrate that the performance of a conventional indoor 

positioning system that uses static fingerprints can be enhanced by considering dynamic 

fingerprints and access points. The accuracy of the system is evaluated using four 

positioning algorithms and two random access point selection strategies. The system 

facilitates the location of people where there is no wireless local area network (WLAN) 

infrastructure deployed or where the WLAN infrastructure has been drastically affected, 

for example by natural disasters. The system can be used for search and rescue 

operations and for expanding the coverage of an indoor positioning system. 
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CHAPTER 1

INTRODUCTION

Global positioning systems (GPS) use satellites that orbit the earth to calculate

outdoor location. Since its inception in 1973, GPS has been widely used, commercially-

speaking, for many applications ranging from military to commercial. All industrialized and

technologically developed societies depend on GPS.

Since GPS requires a direct line of sight between the satellites and a mobile device

to correctly receive the signal, there has to be no obstruction between such parties for this

technology to function correctly. As a consequence of this limitation, it is not plausible to

use GPS signals to localize someone inside a building. For this reason alternatives have to

be developed to effectively locate someone indoors.

From finding a shop in a large mall to finding a gate at an airport, indoor position-

ing systems (IPS) have proven their importance. Several indoor localization technologies

and techniques have been proposed in recent years to solve this problem. None of those

technologies have become ubiquitous. The Institute of Electrical and Electronics Engineers

(IEEE) have not yet released specifications regarding indoor technologies standards since,

as of today, a solution does not exist that can solve this problem perfectly.

The technologies that can be used to solve the indoor localization problem, which

ranges from using the wireless local area network (WLAN) infrastructure to using ultra

wideband (UWB) technology, have their own advantages and disadvantages, which explains

the lack of a clear winner at this point.

Localization and navigation of robots while indoors has also been a problem exten-

sively studied. A technique called simultaneous localization and mapping (SLAM) calculates

the localization of a robot and at the same time creates a map where the robot can navigate,

it uses landmarks installed in the environment to solve the location and navigation task.
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1.1. Motivation

Even though a standard for indoor positioning systems, is not available as of today

the most widely used indoor positioning system technology is based on using the wireless

local area network (WLAN) infrastructure deployed in buildings. The main reason behind

this trend is because of its low cost and extensively use. Its original intention is to provide

internet access to users within the building.

The work presented in this thesis is based on WLAN positioning systems and the use

of smartphones to improve those systems. Smartphones have become increasingly popular

in the last few years surpassing desktop computers in number of sales [2].

The main contribution of this thesis is based on the idea of taking advantage of the

WIFI hotspot feature embedded in most smartphones. The hotspot feature is being used as a

WIFI repeater that create temporary access points from personnel who are inside buildings.

Indoor positioning systems that have been developed so far shortfall on taking advantage of

this WIFI feature. The approach of this thesis contributes by yielding accuracy superior to

that of current WLAN indoor systems.

This thesis also implements a SLAM technique called RGBD-SLAM in a mobile robot.

The technique was developed by Felix et al.[9] which uses a kinect camera for obtaining video

in real time for further processing to solve the SLAM problem.

1.2. Motivation for the Research

Improvement is needed in terms of accuracy for indoor positioning systems currently

based on WLAN infrastructure. As is presented in this thesis, there are many indoor posi-

tioning systems that exist using a wide variety of technologies and there are advantages and

disadvantages for each of those systems. The aim of this research is to show that the novel

WLAN-based indoor positioning system presented in this thesis provides better accuracy

compared to existing systems.
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1.3. Relevance to the Field

Improving accuracy indoors using the WLAN infrastructure has been one of the main

challenges needed to be addressed for indoor positioning systems; the amount of accuracy

obtained varies depending on the approach and technology considered to solve this problem.

1.4. Relevance to Society

The relevance to the society in general lies in that there are several market segments

and emerging technologies that can take full advantage of an indoor positioning system.

Indoor positioning systems can be used for applications such as location based shopping and

advertising, and even for emergency response applications.

Several smartphone applications and websites are using location based services based

on GPS technology to obtain more information about the user and consequently to show

user-tailored information when located at a certain location. For example an application

designed to show information regarding restaurants can take advantage of the current user

location to infer the closest restaurant and show directions to the user automatically.

1.5. Overview

Chapter 2 presents the background and literature review of indoor positioning tech-

nologies, techniques and algorithms with great emphasis in the WLAN positioning systems,

since the WLAN technology approach was selected for the work presented in this thesis.

Chapter 3 presents the implementation of a room-level accuracy Indoor positioning sys-

tem using MATLAB. Chapter 4 presents the main contribution of this thesis, which is the

dynamic WIFI fingerprinting indoor positioning system, The chapter explains the proposed

technique, implementation of the server and android applications, and results. Finally, chap-

ter 5 presents the SLAM technique implemented in a robot. All the testings were performed

at the University of North Texas (UNT) Discovery Park building.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW OF POSITIONING TECHNOLOGIES,

TECHNIQUES AND ALGORITHMS

In this chapter existing indoor positioning techniques, topologies and technologies are

presented with their corresponding performance metrics, advantages and disadvantages; also

definitions necessary to understand indoor positioning systems are presented.

2.1. Definitions

• Transmitter

A transmitter is a device that produces radio waves to be propagated in a medium.

• Receiver

A receiver is designed to receive and process the radio waves emitted by the trans-

mitter.

• Positioning

Positioning refers to the process of inferring the current location of a user in an

environment. The environment can be indoors or outdoors.

• Radiolocation

The principal method used to infer location, for both indoors and outdoors, is based

on using radio frequency waves. The location is inferred by measuring parameters

of the radio waves between a receiver and a transmitter [7]. In most systems the

user acts as the transceiver and there exist several receivers that process the radio

waves coming from the transceiver to infer the localization. In the case of outdoor

positioning, when a mobile device needs to be localized, the process of radiolocation

is performed by measuring signals coming from nearby cellular base stations or

satellites for GPS.

• Wireless local area network (WLAN)

The purpose of this type of network is to allow connectivity between 2 or more
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wireless devices using a wireless medium. WLAN is also used to provide internet

connectivity to the devices.

2.2. Metrics

The parameters presented in the following section allow for the evaluation of the

performance of an indoor positioning system.

• Accuracy

Accuracy is a performance metric defined as the error that exists between the loca-

tion estimated by the positioning system and the true location of the user. Accuracy

is considered the most important metric of an indoor positioning system.

• Precision

Precision refers to the degree of closeness between several location calculations with

the same signal.

• Complexity

The more complex the indoor positioning system is, the more time it takes to obtain

a position and the more energy is needed to successfully localize the user, it is im-

portant to keep the complexity as low as possible to decrease the power consumption

of the system.

• Responsiveness

This metric calculates how fast the system performs calculations to infer the location

and to display the result to the user needed to be localized; this performance depends

on the complexity of the system.

• Robustness

High robustness is achieved when an indoor positioning system can work even when

some of the signals used for localization purposes are not available or are disturbed

by noise in the environment. A robust indoor positioning system has to use the

incomplete information efficiently to obtain correct location.

• Scalability

This metric has to do with efficiency of the indoor positioning system when dealing
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with a large number of users. A high scalable system can efficiently process many

requests coming from mobile devices that need to be localized, with all of them

being requested at the same time.

• Coverage

The coverage of an indoor positioning system is defined as the total area within the

indoor floor plan of a building where the system is able to operate.

• Costs

The cost of an indoor positioning system can be expressed in terms of infrastructure

needed, desired lifetime, responsiveness of the system, whether beacons are needed

or not, among other factors. Some indoor positioning systems are monetarily ex-

pensive to implement because as the area increases the more sensors are needed for

positioning.

• Resource efficiency

This parameter is related to efficiently using the knowledge of where the users to be

localized are situated to optimize the use of resources related for indoor positioning;

if a high density of users occupy a specific indoor area, it could be possible to reduce

the resources at the places where the system is not being used.

2.3. System Topologies for Localization Systems

There are 4 system topologies [18] that can be used for indoor positioning. A topology

is a geometric configuration for indoor localization.

• Remote positioning system

Using this topology, the mobile device needed to be localized emits a signal that

is received by remote sensors which further process the signal and the result of the

calculated position is returned to the device.

• Self-positioning

Using this topology, the position is determined on the mobile device itself. This

unit receives the signal from several transmitters located in known locations and
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then the location is computed in the positioning device based on values obtained

from the measured signals.

• Indirect remote positioning

Using this topology, a device sends the measurement results from a self-positioning

measuring unit to a remote server or receiver for future processing and then the

information is further used to locate new users.

• Indirect self positioning

Using this topology, the measurement result is stored in a database and then the

information is sent from a remote positioning unit to a mobile device.

2.4. Analysis of WLAN Received Signal Strength Indicator (RSSI) at UNT’s Discovery Park

In the following section, an analysis of the WLAN signals at 2 different locations are

presented; The reason behind studying the signals behavior lies in the importance of the

variation of the RSSI over time, this effect is of great importance for an indoor positioning

system.

2.4.1. Multipath Fading

Multipath fading is an effect that occurs between a transmitter and a receiver in a

noise environment. The effect causes a constructive and destructive interference in the signals

that affect the signal strength. The strength increases or decreases the signals amplitude

according to external factors such as noise [26].

2.4.2. Shadowing

Shadowing is additional attenuation of signal power. Shadowing occurs when an

object affects the propagation of a signal between a transmitter and a receiver in a noisy

environment. This random effect depends also on human body presence that blocks the

signal [26].

2.4.3. RSSI Measurements without Rotation

Signal measurements at UNT’s Discovery Park were obtained from nearby access

points (APs) installed in the infrastructure to observe if the fluctuation of the measurements
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was significant over time, since a notable change could drastically affect the functionality of

the IPS. Ideally, a constant RSSI measurement is obtained from access points, but in real

case the RSSI measurements are being affected by noise.

Figure 2.1a and Figure 2.1b illustrate the results obtained when considering 10 access

points at 2 different locations, the locations are the second floor main hallway and the first

floor main hallway of the Discovery Park building, respectively.

(a) Location 1: DP Second floor main hallway (b) Location 2: DP First floor main hallway

Figure 2.1. Offline and testing fingerprints

The RSSI results over a time period of 90 seconds did not have any drastic changes,

which is desired for an IPS.

WLAN signals that stay at the same level are desired for any WIFI fingerprinting

system since those signatures yield better overall performance.

2.4.4. RSSI Measurements with Rotation

Figure 2.2a and Figure 2.2b illustrate how rotation of the phone affected the RSSI

readings from 0 to 90 degrees.
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(a) Location 1: Second floor main hallway with

rotation

(b) Location 2: First floor main hallway with ro-

tation

Figure 2.2. RSSI measurements with rotation

At location 1, the access point number 3 changes from a RSSI of -70 at 0 degrees

to -60 at 90 degrees, this result is undesirable for an IPS since different RSSI readings at a

same location decrease the accuracy of an IPS, this is the main reason why several readings

are needed considering rotation. The multipath and shadowing effects are the main factors

that degradate the strength.

2.4.5. Variation of the RSSI with Change of Distance

In the following subsection, the variation of the signal strength was recorded when

change in distance is presented between the access point and the mobile device; the ex-

periment was performed at the Discovery Park building. The experiment is recorded when

changing from 1 to 10 meters in 2 different locations (Figure 2.3a). The locations selected

were the Computer Science and Engineering (CSE) hallway and the second floor main hall-

way at the Discovery Park building. The peaks of the signal strength represents the best

strength values that can be obtained from the WIFI signals coming from access points.

In Figure 2.3a the peak of most of the signal is obtained at 5 meters, in Figure 2.3b most of

the peak values of the signals are obtained at a distance of 8 meters. Those specific locations

represent the closest distance to access points installed in the infrastructure.
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(a) Location 1: Second floor main hallway (b) Location 2: CSE main hallway

Figure 2.3. RSSI measurements with rotation at location 1 and 2

2.4.6. Histograms of RSSI Frequency

This subsection presents the analysis of the change of the signal strength when several

readings are being made at the same location. For this experiment, 1000 samples of the

received signal strength with sample period of 5 second were captured.

In Figure 2.4 and Figure 2.5 it can be observed that the signal changes in a 10 dB

interval.

(a) Location 1: First floor Hallway (b) Location 2: Second floor Hallway

Figure 2.4. RSSI for 1000 samples
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(a) Location 1: First floor Hallway (b) Location 2: Second floor Hallway

Figure 2.5. RSSI for 1000 samples obtained at Discovery Park

2.5. Positioning Techniques

The indoor positioning techniques can be categorized into triangulation and trilater-

ation, scene analysis and proximity as it can be observed in Figure 2.6.

Positioning 

detection

Proximity Triangulation Scene Analysis

Location 
Fingerprinting

Angulation Lateration

Figure 2.6. Classification of indoor positioning technologies and subcategories

2.5.1. Triangulation and Trilateration

Triangulation indoor methods use the angles of at least 3 known positions in respect

to the user to be localized to infer location. GPS is an example of a system that uses such

a method. In trilateration, 3 positions at least are needed to infer the location.
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Figure 2.7. Positioning using a fingerprinting system

2.5.2. Scene Analysis

This positioning technique analyzes the features from an observed scene. The scene

can be any type of signal, from a sensor or from the environment itself that can be measured

and used to differentiate between locations. Using this approach, the location of a device can

be calculated based on the similarity between scenes. A WLAN fingerprinting positioning

system is considered to be part of the scene analysis positioning technique and it is the

foundation of the IPS presented in this thesis.

2.5.3. Proximity

Using this technique, the device to be localized acts as a transmitter and there exist

several receptors within the localization space, the localization of the device can be inferred

according to the proximity of the device to the sensors.

2.6. WIFI Fingerprinting Indoor Positioning System

This section emphasizes the concepts behind the WIFI fingerprinting technique for

indoor positioning-based systems as it is the approach being used for the system developed

in this thesis. The approach is presented in Figure 2.7 [12]. WIFI fingerprinting is a scene

analysis technique and is the most extensively used radio frequency based technology for

indoor localization. WIFI fingerprinting has been shown to be a reliable way to localize

people indoors since it uses infrastructure already deployed indoors.
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2.6.1. Obtaining Indoor Position from Fingerprints

WIFI fingerprinting associates a unique location inside a building to a fingerprint

that gives that location a specific identifier. The fingerprint is usually a feature of a signal

in the indoor environment.

The received signals at the mobile device emitted by one or several transmitters can

be used to infer the location of the user. The location can be computed locally or remotely.

To obtain the position of a mobile device, a match needs to be performed between the signal

being read at the mobile device in real time and those signals previously saved in a database.

2.6.2. RSSI for Fingerprinting

Any type of signal that can help differentiate a location inside a building can be used

as a fingerprint. For this thesis, the received signal strength obtained from nearby WIFI

access points is used to characterize the fingerprint. The RSSI in noise free environments

can be modeled with the help of the following equation:

(1) RSSI = P −R− 10αlog10d

P is the transmitted power, α is the path loss exponent which falls linearly andR is a constant

that depends on the conditions of the environment [26]. Due to noise in the environment,

this equation cannot be used for trilateration localization purposes. The RSSI from multiple

access points can be employed to infer the localization of the mobile device, which is the

core idea of the fingerprinting method.

Single samples taken from the RSSI received from nearby access points are not suf-

ficient to characterize a fingerprint. It is necessary to obtain an average of the readings to

successfully identify a fingerprint. The collection of access point average readings at one

location is what characterizes one fingerprint location. Table 2.1 presents an example of

RSSI average readings.
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BSSID Mac Address Signal Level (dB)

eduroam 00:1a:1e:1a:6a:d2 -63

eduroam 00:1a:1e:1a:58:d2 -73

eduroam 00:1a:1e:1a:78:02 -70

UNT 00:1a:1e:1a:6b:71 -89

UNT 00:1a:1e:1a:02:f1 -88

eduroam 00:1a:1e:1a:6b:72 -91

UNT 00:1a:1e:1a:70:b1 -95

Table 2.1. Example of RSSI at Discovery Park building

2.6.3. Derivation of Position from RSSI Fingerprints

As explained in the previous section, a matching between the fingerprints from a

training set and the fingerprints being read in real time on the mobile device needs to be

performed. This process is called offline and online phases, respectively.

2.6.4. Offline Phase

During this phase, a survey of the indoor area where the indoor positioning system

is going to be deployed is obtained to create a training set of offline fingerprints. Each

fingerprint contains a set of averages values from the nearby access points that characterize

that location, as presented in Table 2.2.

2.6.5. Online Phase

During this phase, the mobile device is within the indoor positioning system coverage.

At the beginning the position of the mobile device is currently unknown. To calculate the

position, the device reads the RSSI measurements from the near access points and creates

a vector with the average of these readings; then it compares the values obtained with the

ones saved on the offline survey using a positioning algorithm, the algorithm returns the
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Location
Average AP 1

(dB)

Average AP 2

(dB)

Average AP 3

(dB)
Fingerprints

(0,0) -78 -75 -95 Fingerprint 1

(1,1) -86 -89 -95 Fingerprint 2

(2,2) -80 -86 -83 Fingerprint 3

(3,3) -82 -89 -91 Fingerprint 4

Table 2.2. Collection of fingerprint vectors

approximated location. The process of obtaining a location via a positioning algorithm are

explained in the following section.

2.7. Adjacent Channel Interference in WLAN Networks

Tan et al.[25] investigate the effect of adjacent channel interference in neighboring

nodes of wireless WLAN mesh networks operating in the same or adjacent frequency chan-

nels. They reach the conclusion that 37 dB to 45 dB less attenuation is needed to eliminate

the adjacent channel interference between 2 nodes. These results show that when new WLAN

infrastructure is installed in a building, adjacent channel interference is created between new

nodes and neighboring WIFI nodes already installed in the WLAN infrastructure, this effect

will modify the RSSI pattern at the fingerprints of a WIFI fingerprinting indoor positioning

system. A new survey is required if new access points are installed in the infrastructure.

2.8. Indoor Positioning Algorithms

Once data is captured with one of the techniques presented in the previous section

(offline phase), an algorithm capable of processing the data to approximate the true location

of the user is needed; this is a very important aspect of an indoor positioning system, since

according to the algorithm chosen, the performance of the positioning system will be affected

substantially.
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2.8.1. WLAN Fingerprint Positioning Algorithms

For WLAN-based indoor positioning systems there are 2 types of algorithms to infer

the location of the user given the data obtained by the positioning technology, the determin-

istic and probabilistic approaches.

2.8.1.1. Deterministic Algorithms

A fundamental property of a deterministic algorithm is that by giving the same set

of input signals the output of the algorithm will always be the same.

In order to obtain the location of a user using a deterministic approach, the Euclidean

distances between the offline fingerprints and the online fingerprint needs to be obtained.

Assuming M offline fingerprints, the Euclidean distance (D) between the ith measured

online fingerprint fi and the ith offline fingerprint can be calculated as:

(2) D =

√√√√ N∑
i=1

|ri − fi|2

This distance must be calculated between the online fingerprint and all the existing

offline fingerprints, the smallest distance is used to infer which offline fingerprint is selected

to infer the location of the user, as a consequence, the coordinates of the selected offline

fingerprint determine the location of the user.

Bahl et al.[4] proposed the first indoor positioning system based on WIFI fingerprint-

ing. They used a deterministic approach for their proposed system.

• K-Nearest Neighboor Algorithm

The K nearest neighbor algorithm is similar to the Euclidean distance approach, with the

difference that K nearest offline fingerprints is used to infer the location of the online fin-

gerprint. The euclidean distance is obtained for the case of K = 1.

ConsideringN access points deployed in the environment, the online fingerprint vector

as r and the offline fingerprint vector as f the K nearest neighbors can be selected using the
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following distance metric:

(3) Dk = (
N∑
i=1

|ri − fi|q)
1
q

where Dk is called the Manhattan distance.

From the selected set of smallest K distances and the same set of K locations with

pairs (xk, yk) The approximated location of the user (x, y) from K nearest neighbors can be

obtained by using the following equation:

(4) (x, y) =
1

k

N∑
i=1

(xi, yi)

(xi, yi) are the coordinates of the ith fingerprint.

2.8.1.2. Probabilistic Algorithms

Roos et al.[22] were the first to purpose a probabilistic-based approach algorithm.

They estimate the likelihood of a fingerprint distribution to obtain the approximated location

of the user.

Given a vector of locations v of fingerprints and a signal vector s, the element from

v selected is the one obtained from:

(5) if P (vi|s) > P (vj|s) for i, j = 1, 2, 3, ..., n, j 6= i

P (vi|s) denotes the probability that the user is located at position vi given the online

fingerprint s.

p(vi) denotes the probability that the user is in location vi. The selection of the

fingerprint is based on posteriori probability.

If Bayes rule is used to solve this problem, and assuming an equal probability between

locations expressed as: P (vi|s) = P (vj|s) for i, j = 1, 2, 3, ..., n The following decision rule

based on the likelihood that P (s|vi) is the probability that the signal s is received. P (vi)

given that the user is located at location vi.

The estimation of the location vi can be obtained with:

(6) P (vi|s) =
P (S|vi)P (vi)

P (S)
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If considering that P (S) is constant for all v the previous equation can be rewritten as:

(7) P (Vi|S) = P (S|vi)P (Vi)

The estimated location v is the one that attains the maximum probability when

(8) v = arg max
vi

[P (vi|s)] = arg max
vi

[P (S|vi)P (vi)]

2.8.2. Support Vector Machine (SVM)

SVM is a machine learning method used mainly for classification purposes, an SVM

separates points in space by a hyperplane that separates positive samples from negative

samples, using this algorithm it is necessary to maximize the distance between the samples.

For our purposes the training set containing all the fingerprints needs to be separated

by location.

2.8.3. Propagation-based Algorithms

Using propagation-based algorithms a direct line of sight between transmitter and

receiver is required for positioning.

2.8.3.1. Time of Arrival (ToA)

This algorithm measures the travel time of a radio signal from a transmitter to several

receivers or vice versa. At least 3 reference points are required for a system implementing a

TOA algorithm to function properly. The Figure 2.8 [12] shows a TOA system.

As in [18] a system considering this algorithm considers a device located at points

(x0, y0) at time t0 it transmits a signal to the N base stations located at (x1, y1), (x2, y2),

(x3, y3)..., (xN , yN) and consequently the base stations receives a signal at times t1, t2, ..., tN

The cost function of the system can be expressed as:

F(x) =
n∑

i=1

α2
i f

2
i (x)

αi is the reliability of the signal received at the measuring unit i and fi(x) is defined as

fi(x) = c(ti − t)−
√

((xi − x)2 + (yi − y)2,where c is the speed of light.
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Figure 2.8. Calculation of position using TOA

2.8.3.2. Time Difference of Arrival (TDOA)

TDOA compares the relative difference in time at which the signal is received from

several transmitter and receivers.

As opposed to TOA, in TDOA the receivers need to be synchronized.

Figure 2.9 [12] shows a TDOA system.

Figure 2.9. Calculation of position using TDOA

2.8.3.3. Angle of Arrival (AoA)

This technique is based on finding the angle of arrival between a transmitter and

several receivers.

As an example, consider the following AoA system presented in Figure 2.10 [12], the

angles at the receiver from 2 of the transmitters are considered as θ1 and θ2 respectively, and

their locations are (x1, y1) and (x2, y2)
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Figure 2.10. Calculation of position using AOA

2.8.3.4. Propagation-based Algorithms for WLAN positioning

Propagation-based algorithms calculate the position by obtaining measurements of

the Received Signal Strength with path loss.

In [17] the Received Signal Strength can be measured using the following equation:

(9) R = r − 10α log10(d)− L

where r is the initial value of the Received Signal Strength, d is the distance from

the desired location to a selected access point, α is the path loss exponent, L is the sum of

the losses contributed by each wall in the building that affects the propagation of the signal

strength.

2.9. WLAN Access Point Selection Strategies

Each AP available in the environment has its own contribution to the positioning

system, there are APs that help in the performance of the system and there are APs that

decrease the performance of the system. Discarding the APs that decrease the performance

is needed, it is only necessary to include the APs that improves the performance.

A variety of access point selection strategies have been extensively studied in the

existing WLAN fingerprinting location literature [30] [6] [10].

Youseff et al.[30] propose a joint probabilistic technique for indoor positioning; and

presents an AP selection strategy called MaxMean, were a few access points from all that

are available in the environment with the strongest RSSI are selected for positioning. Chen et
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al.[6] presents an access point selection strategy called InfoGain based on selecting the APs

with the highest discriminating power. The discriminative power of the ith AP is obtained

as the reduction of entropy as described in the following equation:

(10) InfoGain(APi) = H(G)−H(G|APi)

An AP with high discriminative power helps in efficiently differentiate fingerprints

from one another. Chen et al. also introduces a random access point selection strategy that

is independent from the signal strength called RandMean.

The MaxMean and the RandMean approaches are used in this thesis as access point

selection strategies with the aim of increasing the accuracy of the system.

2.10. Indoor Navigation Technologies

In Figure 2.11, the technologies that can be used for indoor navigation are presented.

Figure 2.11. Indoor navigation technologies

2.11. Positioning Technologies

2.11.1. Dead Reckoning

This technology estimates the user location based on a previously known position,

The techonology uses the aggregation of odometry readings to estimate the user location,

as presented in [20]. The readings can be obtained with the built-in sensors included in

smartphones as accelerometers, gyroscopes, magnetometers or compasses.

The nature of the aggregation of error over time makes this system inaccurate by

itself, it needs to be combined with other technologies. However, this technology is infras-

tructureless, so there is no cost associated with deployment.

21



2.11.2. Infrared (IR)

This technology uses the infrared light for localization purposes, it requires a line-of-

sight between transmitter and receiver to infer the location of the user. The usual configura-

tion for this system is to install IR receivers on the walls of a building and an IR transmitter

is carried out by the user to be localized, the transmitter is called a tag that emits a beacon

of information that helps to localize the user. [28].

In Table 2.3 are presented the performance metrics for infrared signals.

Accuracy Range Cost Power consumption

1m to 2m Medium Low

Table 2.3. Performance metrics for IR

2.11.3. RFID

Radio frequency identification is a technology that deploys high-response RFID sen-

sors in the indoor environment. The sensors are then able to localize users that carry either

a passive or active RFID tag, the localization is being inferred by proximity which makes it

hard to integrate with other non-proximity technologies.

The RFID tags carried by the users calculate the distance between each of the RFID

tags from the users to obtain position.

In Table 2.4 are presented the performance metrics for RFID signals.

Accuracy Range Cost Power consumption

1m to 2m Low Low

Table 2.4. Performance metrics for RFID
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2.11.4. Wireless Sensors Networks

A wireless sensor network (WSN) is installed inside buildings with the main purpose

of capturing and processing environmental conditions as temperature sound or pressure.

A common example of a WSN is the Zigbee technology. The technology has low

power and low data transmission rate. It can be used as an ad-hoc network for positioning

as proposed in [13].

Zhang et al.[31] propose a WSN in which the localization of only a few nodes is known

from a large set of nodes. The localization of the unknown nodes is inferred sequentially

from the position of the known nodes. The authors conclude that the performance of this

technique is largely dependent on the localization algorithm used.

In Table 2.5 are presented the performance metrics for WSNs.

Accuracy Range Cost Power consumption

3m to 5m Low Low

Table 2.5. Performance metrics for WSN

2.11.5. FM Radio Based Systems

The frequency modulated (FM) radio waves signals emitted by local FM radio stations

commonly found all over the world can also be used for positioning. Chen et al.[5] combine

RSSI values coming from WIFI and FM systems to create a unique fingerprint. They report

that localization is improved by 83% when compared to WIFI Fingerprinting alone.

The main disadvantage of this approach is that smartphones nowadays do not include

FM antennas which makes the approach unreliable.

In Table 2.6 are presented the performance metrics for FM.

2.11.6. Ultrasound

Ultrasound waves with a short wave length can be used for localization purposes

indoors. The system requires a direct line of sight between a transmitter and a receiver.
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Accuracy Range Cost Power consumption

2m to 4m Low Low

Table 2.6. Performance metrics for FM technology

An indoor positionig system using ultrasund-based positioning is developed in [21],

it uses a combination of RF and ultrasound technologies.

In Table 2.7 are presented the performance metrics for ultrasound.

Accuracy Range Cost Power consumption

1cm to 1m Medium Low

Table 2.7. Performance metrics for ultrasound technology

2.11.7. Bluetooth

Bluetooth technology is a wireless technology that enables data sharing among de-

vices in a short range. Bluetooth devices are low cost, low power, and integrated in most

smartphones. A Bluetooth device tag has a unique ID, the ID can be used for localization.

The main disadvantage of the technology is the discovery latency time that ranges from 10

to 30 seconds, which slows down an indoor positioning system.

In Table 2.8 are presented the performance metrics for bluetooth.

Accuracy Range Cost Power consumption

2m to 5m Low Low

Table 2.8. Performance metrics for bluetooth technology
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2.11.8. Light Emitting Diode (LED) Lamps

LED lamps, can be used for indoor localization purposes. Using triangulation tech-

niques the light can be processed by a mobile device using a light sensor to infer the local-

ization of the users.

2.11.9. Magnetic Fields

Anomalies of ambient magnetic fields inside buildings can also be used for the purpose

of location indoors. The convenience of a systems based on magnetic fields is that it does not

need any physical infrastructure. The way the system works is by using a magnetometer em-

bedded in smartphones that compares the sensor measurement with the magnetic map that

has been created for the building in advance. Since the magnetic fields are high susceptible

to noise, a low accuracy is obtained using this system.

Pathapati et al.[24] present an indoor localization method based on ambient magnetic

fields. the authors classify the ambient signatures of indoor hallways using a dynamic time

warping approach; they report an accuracy of 92.6% for a building with 26 hallways and

91.1% for a building with 15 hallways.

2.11.10. UWB Ultra Wide-band

This technology is characterized as having high accuracy capabilities in the range of

20 to 30 cm. and it uses TDoA, ToA and traversed time to determine the range between the

UWB transmitter and UWB receiver. UWB is based on using ultra short pulses, typically

less than 1 nanosecond, with a low duty cycle.

2.11.11. SmartSlam

SmartSlam [11] is a smartphone-based SLAM approach to solve the indoor positioning

problem. The system developed in the paper has the particularity that it can work in a

completely unknown environment and built its own map with use. SmartSlam selects from

a variety of algorithms one that is best suited for the current scenario. The system accuracy

depends on the environment, for the results shown the accuracy vary from 2 meters to 3

meters.
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CHAPTER 3

MATLAB SIMULATION OF ROOM-LEVEL ACCURACY OF A WIFI INDOOR

LOCALIZATION SYSTEM AT UNT’S DISCOVERY PARK

In this chapter is presented a room-level precision indoor localization system using

a deterministic-algorithm based approach. The selected rooms is located at the Discovery

Park building first floor. The implementation of the IPS was using the MATLAB software.

3.1. Weighted K-Nearest Neighbor Algorithm

Assuming M offline fingerprints, the euclidean distance vector D between the mea-

sured online fingerprint vector represented as r and the offline fingerprint vector represented

as f can be calculated as:

(11) D =

√√√√ N∑
i=1

|ri − fi|2

The weighted vector can be define as W =
1

D
. The k nearest offline points are sorted

from low to high and the best weights are selected for positioning.

Then the estimated position coordinates are:

(12) x = K
n∑

i=1

wixi

(13) y = K

n∑
i=1

wiyi

where the normalization factor K becomes:

(14) K =
1

n∑
i=1

wi
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3.2. Characterization of Rooms Using RSSI Readings from Nearby Access Points

At UNT’s computer science and enginering and electrical engineering departments,

the changes on RSSI readings coming from available access points were recorded using a

Nexus 4 smartphone, the experiment considered changes in locations of the mobile device in

adjacency rooms, the results are presented in Figure 3.1

According to the observations in Figure 3.1, a change of approximately 10 dB was

observed on each access point reading when going from one room to another. This change

shows that the same access point can have a significant change at 2 adjacent rooms; The

experiment let us to infer that room-level accuracy can be obtained with only fingerprints

located inside rooms.
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Figure 3.1. RSSI variation from room to room

f 1 2 3 4 5 6 7 8 9 10

x 158 156 160 160 192 188 189 185 218 218

y 729 700 653 623 733 702 653 622 622 657

Table 3.1. Fingerprints from 1 to 10 for the MATLAB simulation
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f 11 12 13 14 15 16 17 18

x 223 220 162 182 160 189 218 220

y 703 729 584 554 553 581 553 580

Table 3.2. Fingerprints from 11 to 18 for the MATLAB simulation

In Table 3.1 and Table 3.2 can be appreciated the 18 fingerprints (f) that are shown

in Figure 3.2. The 18 fingerprints have a location associated with each fingerprint; the

location is expressed as a pair of coordinates (x, y).Figure 3.2 shows the mapping of the

fingerprints and calculated localization of the user at the first floor of Discovery Park.

Figure 3.2. Mapping of the fingerprints
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In Figure 3.2 is presented the distribution of the fingerprints (red dots). In the same

figure, the blue rectangle represents the current location of the user as calculated by the

weighted K-Nearest neighbor algorithm.
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Figure 3.3. RSSI levels from 7 fingerprints

In Figure 3.3 8 signal samples, 7 from offline fingerprints and 1 from an online finger-

print are presented with their corresponding RSSI values. In the figure it can be observed

that the level of the signal changes according to the location; the signal more similar to the

online fingerprint is selected.

For this experiment, the signal most similar to the online fingerprint is the signal from

offline fingerprint, f2, so for K = 1 the location assigned to fingerprint f2 is consequently

assigned to the online fingerprint.

Figure 3.3 shows that the number of access points detected change per fingerprint,

the value depends on the number of available access points at the location (x, y) of the

fingerprint.
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3.3. Conclusions

The Indoor positioning system presented in this section successfully provided room

level accuracy as it can be observed in Figure 3.2.

Although the system is able to localize persons with room level accuracy; when con-

sidering K = 1, even a small error in the localization system assigns the location of the user

to an incorrect room, which carries a large localization error. Another problem is that since

localization is only achieved in rooms, peoples in hallways are never localized.

The problems presented in this indoor positioning system are overcome with the main

contribution of this thesis, as presented in the following chapter.

In the next chapter, the main contribution of this thesis is presented, it considers

fingerprints that have a different number of set of access points, as shown in Figure 3.3. The

fingerprints are created and modified according to a set of dynamic access points.
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CHAPTER 4

DYNAMIC WLAN FINGERPRINTING INDOOR POSITIONING SYSTEM

4.1. Introduction

It is commonplace that people who perform daily activities indoors stay at the same

place, for example, students in a classroom, professors at their offices, receptionists in a

lobby area and so on. Moreover, they usually frequent the same places while indoors, that

is, students going to the same classroom and professors having a meeting in the same room

at a specific time of the day. The work of this thesis aims to take advantage of those

observations and patterns to create an IPS that relies solely on WIFI hotspot signals from

devices carried by occupants and also to improve the accuracy of existing IPS based on WIFI

fingerprinting.

The adoption of smartphones has grown exponentially all over the world [2], due

to their extensive functionality and decline of price. The level of adoption allows for the

inference that a large number of people who stay indoors use smartphones. In this text the

term passive users refer to people that perform their daily routine activites indoors.

Most smartphones have a WIFI hotspot feature that allows sharing the smartphone’s

internet connectivity with nearby devices via WIFI; in this scenario, the smartphone behaves

as a WIFI repeater. Unlocked smarphones as the Nexus 4, that have installed the Android

original firmware developed by Google can activate the WIFI hotspot feature without having

a WIFI hotspot plan with the phone’s carrier; Figure 4.1 illustrates the concept. In these

scenarios the user is asked to activate the service once a request to connect to the internet

is being made from a device using the WIFI hotspot feature.

4.2. Thesis Contribution

The contribution of this thesis is based on the use of the smartphone’s WIFI hotspot

feature not only as a feature to extend the internet connectivity to other users as it is

originally intended, but also as a tool to increase the accuracy of a WLAN IPS; furthermore,
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(a) WIFI hotspot activation (b) Visibility of 4 wifi hotspot devices

Figure 4.1. Thetering option and WIFI hotspot in a nexus 4 smarpthone

the walking patterns of users is analyzed using machine learning algorithms for prediction

of the dynamics of the system.

4.2.1. Dynamic Access Points and Fingerprints (DAF)

At every place where passive users become stationary, they create a dynamic fin-

gerprint. The dynamic fingerprint contain a set of access points already available in the

infrastructure and a set of dynamic access points, which are created from the signals coming

from other passive users when they are in a stationary state. DAFs are modified in real time

according to the dynamics of the IPS.

4.2.2. Improvement of the Performance of an IPS

The performance of the proposed dynamic IPS was evaluated in terms of accuracy

as the dynamics of the system changes, compared with the standard WIFI fingerprinting

positioning system and when more users contribute to the IPS.
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Figure 4.2. Ad-hoc wireless network consisting of WIFI hotspot nodes

The accuracy of the system was compared using various access point selection strate-

gies and indoor positioning algorithms which include probabilistic and non probabilistic

approaches. The testing was performed at UNT’s Discovery Park electrical engineering and

computer science and engineering departments. The results in terms of accuracy are pre-

sented in the last section of this chapter.

4.2.3. Configurations of the Proposed IPS

There are many buildings were there is no WLAN infrastructure or where not many

fixed WIFI access points are deployed; in this case, an IPS can be created with the approach

presented in this thesis. 2 configurations are presented using this approach.

4.2.3.1. No WLAN infrastructure deployed and passive users available

An ad-hoc wireless network can be created from only WIFI hotspots when there is no

WIFI infrastructure deployed. The particular network is presented in Figure 4.2. Nodes from

N1 to N22 represent a static stationary user sharing the mobile WIFI hotspot connectivity

from his phone. Every node can detect the signal of every other node when all the nodes

become static.

In order to determine when a user is stationary or dynamic, machine learning algo-

rithm were used for prediction.

33



Source node MAC address RSSI

N2 00:24:6c:c1:c1:80 -53

N3 00:1a:1e:85:a4:11 -67

N4 00:1a:1e:87:04:c2 -67

N5 00:1a:1e:85:a4:02 -60

Table 4.1. Pair of mac address and RSSI from 4 nodes at node 1

The nodes have only 2 states:

• Moving Node (Deactivated) when the nodes start moving they are not being con-

sidered as in the system.

• Static Node (Activated) when a node is static its received signal strength is consid-

ered to help localize other nodes.

Table 4.1 is an example of a fingerprint created at N1 when signals from 4 other

nodes are available (static). This case implies that the rest of the nodes are in a moving

state (dynamic).

Chen et al.[6] reports that at least 3 access points are required for a WLAN fin-

gerprinting to function correctly, so fingerprints with fewer than 3 fingerprints were not

considered for positioning.

All the fingerprints combinations of at least 3 other nodes are calculated at the server,

the server coordinates the content of the dynamic fingerprints according to the movement

pattern of the users.

4.2.3.2. WLAN infrastructure and stationary users available

Figure 4.3 shows a combination of fixed WIFI nodes with WIFI hotspot nodes. The

white color represents WIFI hotspot nodes and black color represents fixed WIFI nodes.

This configuration has the following types of fingerprints:

• Fixed WIFI fingerprints

Fingerprints created solely from fixed WIFI nodes are deployed as a backup system
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Figure 4.3. Combination of fixed WIFI nodes with WIFI hotspot nodes

when no WIFI hotspot nodes are available. This case exemplifies a standard non-

dynamic fingerprinting indoor positioning system.

• WIFI hotspot fingerprints

The fingerprints created from signals coming from WIFI hotspots nodes from sta-

tionary users contain fixed WIFI access points as well, which are already deployed in

the infrastructure. These types of fingerprints have the particularity to be updated

in real time, as users move. The configuration require the creation of all possible

combinations of dynamic fingerprints available.

4.2.4. Applications

4.2.4.1. Natural disasters

The WLAN infrastructure in buildings can severally be affected as a result of a

natural disaster; in those situations, the approach presented in this thesis could be the only

available option for indoor positioning. The position system can help a rescue team find

people trapped indoors. A rescue team would be able to use an existing dynamic positioning

system if the trapped users indoors are able to share their mobile WIFI hotspot connectivity

when the WIFI infrastructure is damaged.
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4.2.4.2. Increase the coverage of an existing IPS

The coverage of an already deployed IPS can be expanded if the approach presented

in this thesis is considered in the case when creating WIFI hotspot nodes where the WLAN

infrastructure is not available.

4.3. Step Detection Using the Accelerometer

The accelerometer embedded in most smartphones measures the acceleration of the

smartphone in the x (lateral), y (longitudinal), and z (vertical) axes. The value obtained from

the 3 axes are represented by floating point values and are expressed in meters per second

squared. The data is further analyzed to help yield better accuracy in the localization

task. Figure 4.4 presents the variation of the acceleration over time when the user starts

walking using a tri-axis Nexus 4 smartphone. The sudden start of change in the amplitude

corresponds to the user going from a stationary state to a walking state.
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Figure 4.4. Change of acceleration in the X,Y and Z axes when movement

is detected

In order to infer when a user is moving or not moving and to eliminate small changes

in the step detection, Jimenez et al. [14] present a robust approach to step detection:
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First, the magnitude of the acceleration ai for every obtained acceleration sample i

is expressed as:

(15) ai =
√
a2xi

+ a2yi + a2zi

The local acceleration variance is obtained to improve step detection and to remove gravity

(noise):

(16) σ2
ai =

1

2w + 1

i+w∑
j=i−w

(aj − āj)2

where āj is a local mean acceleration value, obtained by āj = 1
2w+1

i+w∑
q=i−w

aq, and w defines

the size of the averaging window. for detecting the swing phase and stance phase a threshold

is expressed as:

(17) A1i =


Threshold 1, σai>Threshold 1

0, otherwise

for the swing phase, and as:

(18) A2i = Threshold 2, if σai<Threshold 2

for the stance phase.

A step is detected in an acceleration sample i at the end of a swing phase and when

the stance phase starts. Also, the following conditions need to be satisfied for the acceleration

to be successfully detected as a step:

• transition from high to low acceleration A1i−1 <A1i

• max(A2i:i+w) =Threshold 2
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Figure 4.5. Electrical engineering department user pattern movement

4.4. User Movement Pattern

Figure 4.5 shows the movement pattern of 3 users that are represented with 3 different

colors (Red, Green and Blue). The circles represent when users are moving and the squares

represent when the users are static.

As presented in the previous subsection, the moving pattern of the user can be inferred

with the accelerometer data coming from the mobile device.

The system is designed in such a way (as it is presented in section 4.3) that small

changes in the acceleration are ignored, For example, when the user decides to use the phone

or when a trivial change in position of the phone is made.

• Stationary user is static

The WIFI hotspot feature is only activated when the user is at a static position,

This allows for having a constant WIFI signal strength received at the fingerprints

to characterize them correctly.

• Stationary user is moving

When the user starts moving between places, the WIFI repeater is switched off and

the access point signal is removed at the fingerprint, since variation on the received

signal strength is not useful for positioning.
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4.5. User Activity Recognition

A sample of acceleration signal from a mobile device is shown in Figure 4.6, The

signal was labeled as dynamic or static according to the movement pattern of a user; each

label of the signal is called a feature.

As it can be observed from Figure 4.6; when the user is at a static position the

acceleration of the phone changes; those changes express short movement of the mobile

device; for example, when the user decides to talk over the mobile device or when the user

moves the phone to a different position.

4.5.1. Classification

In this section classification techniques are presented to determine if the user is static

or dynamic, the technique that returns the best accuracy is selected for prediction.

Witten et al.[27] define data mining as a tool for finding and describing patterns in a

large set of data to make future predictions based on patterns found on the observed data.

Based on data that describes a process or an activity; data mining can make future

predictions for a given set of unknown data. The accuracy describes the level of correct

predictions that can be made within the current data set.

Several machine learning algorithms from the WEKA [3] machine learning software

were used for classification and prediction of the movement patterns of the user.

Figure 4.7 shows the statistics of the Y axis sample set using the WEKA software,

which gives the minimum and maximum value of the set. The mean and standard deviation

values of the sample set are also presented.

The labeled patterns which are activities of the user categorized as dynamic or static

are shown in Figure 4.6, those acceleration samples are used to train the system for prediction.
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Figure 4.7. Statistics of the Y axis features
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Figure 4.6. Acceleration signals from user movement pattern for experiment 1

4.5.2. Parameters Used for Classification

The classification results from WEKA are expressed with the following parameters:

TP Rate: Rate of true positives. It returns the instances correctly classified.

FP Rate: Rate of false positives. It returns the instances falsely classified.

Precision: Instances that are actually from a class divided by all the instances clas-

sified as that class

Recall: Fraction of relevant instances that are fetched
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ROC area: The area under the ROC curve. An area of 1 represents a perfect classi-

fication.

The classification results from WEKA are presented using the Bayes network, naive

Bayes, support vector machine and random forest classifiers. All the results were obtained

with a cross validation of 10 folds and 66% of percentage split.

4.5.3. Classification Results for Experiment 1

Figure 4.8, Figure 4.9, Figure 4.10 and Figure 4.11 present the classification results

for the experiment 1.
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Figure 4.8. Classification results for experiment 1 using Bayes network classifier
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Figure 4.9. Classification results for experiment 1 using naive Bayes classifier
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Figure 4.10. Classification results for experiment 1 using support vector

machine classifier
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Figure 4.11. Classification results for experiment 1 using random forest classifier

4.5.4. Classification Results for Experiment 2

Figure 4.12 shows the acceleration signals from user movement pattern for experiment

number 2. Figure 4.13, Figure 4.14, Figure 4.15 and Figure 4.16 present the classification

results for the experiment 1.
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Figure 4.12. Acceleration signals from user movement pattern for experiment 2
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Figure 4.13. Classification results for experiment 2 using Bayes network classifier
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Figure 4.14. Classification results for experiment 2 using naive Bayes classifier
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Figure 4.15. Classification results for experiment 2 using support vector

machine classifier
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Figure 4.16. Classification results for experiment 2 using random gorest classifier

4.5.5. Conclusions of the Classification of the Experiments

According to experiment 1, the random forest classifier returns the best accuracy

when compared with the accuracy of the other classifiers, The classifier returns a 95.5504%

of correctly classified instances of the data set as presented in Figure 4.6.

According to the data from experiment 2, as it can be observed in Figure 4.12, the

random forest algorithm is also the classifier that returns the best accuracy when compared

with others classifiers with 79.9195% of correctly classified instances.
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Since random forest is the classifier that returns the best accuracy among the classi-

fiers used for experiment 1 and 2, it is the classifier selected for prediction of the user activity

as dynamic or static.

4.5.6. Selected Buildings

The selected buildings to test the system is the electrical engineering department

main section and the CSE building located at UNT’s Discovery Park.

4.6. System Description and Design

This section presents the dynamic WLAN fingerprinting system architecture and its

design.

4.6.1. Dynamic Fingerprints

• Creation

The sum of fixed WIFI access points and the temporary access points created by

stationary users constitute a dynamic fingerprint. The term dynamic is used as

change is being made to the system every time a stationary user is added or removed,

which depends on the movement pattern of the stationary users. Each dynamic

fingerprint contains a set of dynamic access points that are added to, or removed

from the fingerprint according to the moving pattern of the stationary user. A

dynamic access point is associated to the availability of the WIFI signal coming

from a passive user. The dynamic fingerprints have the particularity that they

are only created at location where passive users are static; those locations can be

inferred by the analysis of the movement patterns of the users.

• Update

The dynamic fingerprints are updated when a user is added into the system and

considering the change of state of the stationary users.

A record of fingerprints and accelerometer data can be expressed as Rt = f(F,Ac)

where F represents the WIFI signal fingerprint and Ac represents the recorded accelerometer
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data. if n access points are available in the building, then the fingerprint can be represented

as F = [f1, f2, ..., fn] where fi denotes the RSS value of the ith access point.

In order to categorize the motion of the user as dynamic or static the accelerometer

readings Ac was saved over time for further analysis using the Random forest algorithm.

The training data for our system is the initial collection of data containing the dy-

namic fingerprints associated with the static and dynamic accelerometer data, after several

samples are obtained from stationary users.

4.6.2. Enhancing an Existing WLAN Fingerprinting System

An existing WLAN fingerprinting system can be improved in terms of accuracy when

dynamic fingerprints are considered. The WLAN fingerprinting system presented in Fig-

ure 4.17 considers only fixed WIFI fingerprints by red dots. The dynamic fingerprints help

by providing temporary signals that yield better accuracy.

Figure 4.17. Conventional WLAN fingerprinting system

4.7. Android Mobile Application for the Online and Offline Phase

The project was developed using the Java programming language for Android devices.

Part of the source code is based on the open-source platform Airplace [15]. Android was

selected as the mobile platform for the IPS since it provides more hardware manipulation

than iOS; another reason for the selection is that Android devices are used more extensively

in the world than iOS devices.
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4.7.1. Introduction

For this thesis 2 separated Android applications and a server were developed, as

shown in Figure 4.18.

Figure 4.18. Android applications and server interaction

The offline and online applications were developed to achieve the following constraints:

• Low communication overhead and minimum database update

In order to minimize the communication overhead between the device and the server

and to prevent the database to be updated when obtaining new fingerprints, the

server-device interaction was reduced as much as possible to lower the communica-

tion cost as much as possible.

• Privacy

In order to encourage user privacy, the algorithms for positioning was running en-

tirely on the mobile devices to prevent any undesired intrusion form the server, once

the dynamic fingerprints are downloaded by the user, no other connection between

the server and the user is necessary.

4.7.2. Offline Phase

The offline phase generates a radiomap which contains a set of fingerprints. The fin-

gerprints can contain fixed WIFI access points and dynamic access points. The fingerprints
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can be created via crowdsourcing (several users) or by a single user. In the case of crowd-

sourcing, the server appends and combines all the fingerprints created by several users to

create the final radio map that is used for positioning. The users can select how many sam-

ples per fingerprint they want to collect and the time between samples can also be adjusted.

The users then must upload the collected fingerprints to a main server for further analysis

and distribution.

4.7.3. Online Phase

During the online phase, the user has to connect to a main server and download the

stored fingerprints that were created in the offline phase; also, specific-algorithm parameters

that yield the lowest calculated accuracy from a testing data set are used for real time

positioning.

The user can select the algorithm used for positioning in real time. The parameters

for the lowest accuracy provided by the server cannot be modified.

Figure 4.19 shows the settings of the offline android application and the algorithm

selection of the online android application.

4.8. Server

The server, also developed in Java, receives the dynamic and non-dynamic fingerprints

captured by the users. The server processes the raw fingerprint data by calculating the mean

of the fingerprints obtained at the same location and then it calculates the algorithm-specific

parameters for the probabilistic and deterministic approaches; depending on the value of

those parameters the accuracy of the system change as it is presented in the results section.

The parameters with the best accuracy for each algorithm is returned to the user for real-time

positioning. The parameters selected cannot be changed by the online application.

4.9. Algorithms Used for Positioning

In this subsection, the characteristics of the positioning algorithms used for the IPS

of this thesis are presented.
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(a) Offline application settings (b) Online application algorithm selection

Figure 4.19. Offline and online android applications

To evaluate the results of this thesis 4 algorithms are used for positioning. 2 deter-

ministic, namely the k-Nearest Neighbor (KNN) [4] and the weighted k-Nearest Neighbor

(WKNN) [16] algorithms and 2 probabilistic namely the maximum a posteriori (MAP) [29]

and the minimum mean square error (MMSE) [22] algorithms.

Those algorithms were selected since they exemplify the deterministic and probabilis-

tic approaches in a weighted and non-weighted manner.

4.9.1. K-Nearest Neighbor and Weighted Nearest Neighbor Algorithms

For this thesis, 2 deterministic algorithms, the k-Nearest Neighbor algorithm and the

weighted nearest neighbor algorithms, were implemented for positioning.

The algorithm considers N offline fingerprints f, the online fingerprint vector is rep-

resented by r, and a vector of approximated locations l can be obtained by calculating the

euclidean distance between each element i of the online and offline fingerprints.
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Calculating the inverse of the euclidean distance the weight w of each approximated

location can be obtained as:

(19) wi =
1

|fi − ri|

The approximated location l̂ can be obtained as:

(20) l̂ =
K∑
i=1

wi

K∑
j=1

wj

li

The approximated location l̂ is ordered according to increasing the distance between

the offline and online fingerprints |fi − ri|

For the K-Nearest Neighbor algorithm:

(21) K ≥ 1 and w is expressed as wi =
1

k

For the weighted k-Nearest Neighbor algorithm:

(22) K ≥ 1 and w is expressed as wi =
1

|fi − ri|

4.9.2. Variation of Parameters for Deterministic Algorithms

The value of K neighbors is varied from 1 to 15 at the server; then the K that

returns the less positioning error is selected, and the value changes according to the estimated

positioning values obtained by the deterministic algorithms from the testing data.

4.9.3. Maximum A Posteriori and Minimum Mean Square Error Algorithms

For the probabilistic approach, 2 algorithms were implemented, namely, the maximum

a posteriori and the mean square error algorithms.

The probabilistic approach is based on calculating the probability of location l̂ given

the signal s as:

(23) P (li|s) =
P (S|li)P (li)

P (S)
=

P (S|li)P (li)
l∑

i=1

P (S|li)P (li)
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The MAP algorithm obtains the estimated location l̂ as:

(24) l̂ = arg max
li

[P (s|li)p(li)]

The MSSE algorithm obtains the estimated location l̂ as:

(25) l̂ = E(l|s) =
l∑

i=1

lip(li|s)

4.9.4. Variation of Parameters for Probabilistic Algorithms

For each location of the radiomap a probability or likelihood of the user being at

that specific location is assigned according to the similarity between the online and offline

fingerprints.

The probability P is obtained using the following equation:

(26) P =
n∏

i=1

e

−(v1i − v2i )2

σ2

where v1i and v2i are the ith values from the RSSI of the radiomap (offline fingerprint) and

the RSSI values being observed (online fingerprint), respectively.

For the experiments performed in this thesis, the equation (26) is used to vary the

values of the parameter σ from 1 to 15. The σ that returns the less positioning error is

selected. The value of σ changes according to the estimated positioning values obtained by

the probabilistic algorithms. The testing data is used to determine which parameter returns

the fewest errors for the positioning algorithm.

4.9.5. Importance of the variation of Parameters in the Deterministic and Probabilistic Al-

gorithms

Shin et al.[23] proposed the enhanced weighted k-Nearest Neighbor algorithm that

improves accuracy of an indoor positioning system by varying the number of K neighbors

considered for positioning in real time, during the online phase of the system.

The premise for studying indoor positioning systems with a varying K is that there

should only be considered K neighbors that are at a small distance to the location of the

user. The number of nearest neighbors relevant for positioning depend on the type of indoor
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area. For example in a corridor there are fewer nearest neighbors relevant for positioning

than the ones available in an open area.

In the case of the probabilistic algorithms the ith probability of a location li given

the signal s changes according to the value of the parameter σ. The optimal value of σ also

depends in the area used for positioning.

The accuracy results presented in this thesis, depends on the change of the K for the

deterministic algorithms and σ for the probabilistic algorithms. The accuracy results are

expressed as an average positioning error.

4.9.6. Performance of Deterministic and Probabilistic Algorithms

According to the literature [18], The probabilistic algorithms perform better than the

deterministic algorithms. For this thesis, the type of algorithm is not the only characteristic

that affects the performance of the algorithms, but also the parameters k for the deterministic

and σ for the probabilistic approaches.

4.10. Calculation of Accuracy

The accuracy is measured by obtaining an average positioning error expressed in me-

ters. Since it is unfeasible and impractical to obtain the average positioning error empirically,

a large set of test data is used for this purpose.

The error is obtained by calculating the error of a large set of test data, the test

data contain a collection of fingerprints associated to a location; each test data fingerprint

is processed by a positioning algorithm. The obtained estimated location is compared with

the real location by calculating the Euclidean distance between the real and the estimated

positions to obtain the deviation between the original and the estimated value.

The true ith location are the coordinates (xi, yi) were the user captures an offline

fingerprint to be used as a test data. An estimated jth location (xj, yj) is obtained by

processing the true location of the user by the positioning algorithms. The relation can be

expressed as follows:

(27) (xj, yj) = f(xi, yi)
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The average positioning error relies on the true and estimated location to calculate a

value that correctly expresses the accuracy of the system.

The process to obtain the average positioning error is by the summation of positioning

errors obtained per location and divided by the total number of locations, as it can be

expressed in the following equation:

(28) APE =

N∑
i=1

PEi

NP
m

APE represents the average positioning error expressed in meters, PEi represents

the positioning error of the ith location expressed in meters and NP is the total number of

positions.

The position error is calculated as the euclidean distance between (xi, yi), which is

the real location and (xj, yj) which is the approximated location. The PE is obtained as:

(29) PE :
√

(xi − xj)2 + (yi − yj)2

4.11. Experiment 1: Dynamic WIFI Fingerprinting System at UNT’s Electrical Engineering

Department Using MaxMean

The first experiment of the approach presented in this thesis was performed at the

electrical engineering department of UNT.

The dimensions of the selected area of the electrical engineering department are 36.18

meters wide by 20.21 meters high. The dimensions are included in the android application

to precisely calculate the accuracy error.

Figure 4.20a and Figure 4.20b shows the offline and testing fingerprints used for the

positioning system.
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(a) Offline fingerprints (b) Testing fingerprints

Figure 4.20. Offline and testing fingerprints

4.11.1. Dynamic Fingerprints and Access Points (DAF)

For this experiment the MaxMean access point selection criterion is employed as

described in section 2.9.

The results are expressed as the average positioning error, as the dynamic access

points and the value of the parameters change.

10 access points from the UNT’s Discovery Park building infrastructure and 10 WIFI

hotspots from 10 volunteers were considered in the dynamic indoor positioning system.

4.11.2. Location of the DAF

The locations of the WIFI hotspot users are shown in Figure 4.21. Also the pattern

of the user to determine when the user is moving or not moving is studied and consequently

classified.
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Figure 4.21. Location of dynamic access points and dynamic fingerprints

4.11.3. Results for the Non-Dynamic IPS

The APE of the positioning system is presented in this section without considering

DAF. The APE is obtained for deterministic and probabilistic algorithms as shown in Fig-

ure 4.22a and Figure 4.22b. As it can be observed in Figure 4.22 The less APE considering

the fixed WIFI access points deployed is of 7.2 m for the WKNN algorithm at parameter 2.
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Figure 4.22. Average positioning error of the non-dynamic IPS

4.11.4. Adding DAF to the Original Positioning System

The figures from Figure 4.23 to Figure 4.27 show the results in terms of accuracy,

using deterministic and probabilistic algorithms for the original system when considering

from 2 to 10 DAF, a step of 2 DAF is considered.
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(b) Probabilistic algorithms

Figure 4.23. Average positioning error adding 2 DAF to the IPS
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(b) Probabilistic algorithms

Figure 4.24. Average positioning error adding 4 DAF to the IPS
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Figure 4.25. Average positioning error adding 6 DAF to the IPS
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Figure 4.26. Average positioning error adding 8 DAF to the IPS
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Figure 4.27. Average positioning error considering 10 DAF in the IPS

4.11.5. Summary

A summary chart showing the best accuracy from all the previous experiments on this

section is presented in Figure 4.28. The figure also presents the parameter and algorithm

that yielded the fewest APE per experiment.
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Figure 4.28. Best position per data set including each algorithm

4.11.6. Conclusions of the Experiment 1

As it can be observed from the results, considering DAF improves the accuracy of an

IPS at a certain point. In our case the variation was made from 2 to 10 DAF, as that was

the maximum number of volunteers available to perform the experiment. The accuracy of

the positioning system was improved as more DAF were added into the system to a limit of

6 DAF, adding more than 6 DAF the accuracy stays the same.

It is important to mention that the availability of the DAF depends on the movement

pattern of the users. For this experiment The WKNN algorithm is the best algorithm for

the given experiment using parameters 5 and 3.

4.12. Experiment 2: Dynamic WIFI IPS Experiment at the Electrical Engineering Depart-

ment Using DAF Only

The accuracy of the Experiment 1 is tested using a system consisting solely on DAF;

the location of the DAF is the same as in the previous section as shown in Figure 4.21.

The figures from Figure 4.29 to Figure 4.34 illustrates the APE when DAF is varied

from 2 to 10 considering a step of 2 DAF.
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Figure 4.29. Average positioning error of 2 DAF IPS
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Figure 4.30. Average positioning error of 4 DAF IPS
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Figure 4.31. Average positioning error of 6 DAF IPS
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Figure 4.32. Average positioning error of 7 DAF IPS
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Figure 4.33. Average positioning error of 8 DAF IPS
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Figure 4.34. Average positioning error of 10 DAF IPS
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4.12.1. Summary

In this subsection the best algorithm and parameter per DAF experiment that yield

the least positioning error are presented in Figure 4.35. The algorithm and parameter are

shown in the figure.
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Figure 4.35. Best accuracy per DAF sample considering all parameters and

all algorithms

4.12.2. Conclusions of the Experiment 2

From Figure 4.35 it can be noted that the more drastic change is observed when

the system changes from 2 DAF to 4 DAF. The results demonstrates that only 4 DAF are

required for best accuracy. When considering more than 4 DAF, the accuracy of the system

stays constant, it can also be noticed a slightly decrease in the accuracy at 8 DAF and then

going back to the previous accuracy at 10 DAF.

4.13. Experiment 3: Dynamic WIFI Fingerprinting System at UNT’s Electrical Engineering

Department Using RandMean

In this section it is presented the results of an IPS using 5 different configurations

of the RandMean access point selection strategy. As presented in the background section of

this thesis, the RandMean strategy selects a random number of access points from a larger

set of access points for the IPS. The 5 RandMean configurations have a different collection

of access points. 1 access point cannot belong to more than one configuration.
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In the discovery park building, using the location in Figure 4.20 46 access points were

available for positioning. For this experiment from the 46 available access points 5 sets were

constructed; 4 containing a set of 10 access points and 1 set containing a set of 6 access

points. For the 5 sets the 10 dynamic access points were always available.

In this section results of each of the 5 configurations are presented for the deterministic

and probabilistic approaches. The results are presented from Figure 4.36 to Figure 4.40.
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Figure 4.36. Average positioning error for the RandMean experiment 1
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Figure 4.37. Average positioning error for the RandMean experiment 2

62



0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
o

si
ti

o
n

in
g 

Er
ro

r 
(m

) 

Parameter  

KNN

WKNN

(a) Deterministic algorithms

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
o

si
ti

o
n

in
g 

Er
ro

r 
(m

) 

Parameter 

MSEE

MAP

(b) Probabilistic algorithms

Figure 4.38. Average positioning error for the RandMean experiment 3
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Figure 4.39. Average positioning error for the RandMean experiment 4
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Figure 4.40. Average positioning error for the RandMean experiment 5

63



4.13.1. Similarity of the Results for Experiment 3

Figure 4.41 shows the sorted results from the deterministic and probabilistic algo-

rithms of the 5 sets according to the accuracy obtained when considering all the parameters.

The results show that the accuracy vary from 2 meters to 10 meters according to the pa-

rameters selected. The figure also shows that similar accuracy results are obtained for the

different sets of the random access points selection experiment. The best accuracy when

using the RandMean approach is of 2.2 meters.
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Figure 4.41. Sorted results according to the obtained accuracy from all ex-

periments

4.13.2. Summary

In Figure 4.42 it can be observed the best accuracy per RandMean experiment consid-

ering all parameters and all algorithms. The results shows that the positioning error variate

between 2 and 3 meters.
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Figure 4.42. Best accuracy per RandMean experiment

4.14. Conclusion of the Results from all Experiments at the Electrical Engineering Depart-

ment

(1) Original IPS

as it can be observed from Figure 4.28 the original system produces the best accuracy

for an APE of 7 meters.

(2) Original IPS with 10 DAF using MaxMean access point selection strategy.

In Figure 4.28 is shown the APE for the original IPS when also considered 10

DAF, the best accuracy when considering both the original system and the DAF is

obtained for an APE of 3 meters.

(3) IPS consisting only of DAF

In Figure 4.65a it can be observed the best accuracy results considering only DAF.

the best accuracy is obtained for an APE of 2.6 meters approximately.

(4) Original IPS with 10 DAF using RandMean access point selection strategy.

In Figure 4.42 is shown the APE for the original IPS when considering 10 DAF. The

best accuracy when considering both the original system and the DAF is obtained

for an APE of 2.4 meters.

As it can be noted from the previous results, a centimeter-difference APE is obtained

for the IPS systems considering the MaxMean and RandMean access point selection criterion
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and the DAF only method; the difference ranges from 2.4 meters to 3 meters, all those IPS

outperform the original system APE of 7 meters.

The results show that when considering a DAF only IPS system, the system out-

performs the original system, when considering the same number of access points for the 2

systems. This effect is caused as the DAF are characterize more efficiently different finger-

prints than an IPS without access points.

4.15. Experiment 4: Dynamic WIFI Fingerprinting System at UNT’s CSE Department Us-

ing MaxMean

In this section a dynamic WIFI fingerprinting IPS deployed at the CSE department

of UNT is presented. The selected area for the indoor positioning system is showing in

Figure 4.43

(a) Offline fingerprints (b) Testing fingerprints

Figure 4.43. Offline and testing fingerprints at the CSE department

The dimensions of the selected area are 35.9664 meters wide by 33.528 high. The

dimension are considered in the android application to calculate the average positioning

error. Following the same approach as in experiment 1, only 10 access points are selected
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from all the fixed WIFI access points available using the MaxMean access point selection

strategy. For this experiment 10 dynamic access points from volunteers were available for

positioning. As in previous experiments, 4 algorithms are used to evaluate the accuracy of

the system: 2 deterministic (KNN and WKNN) and 2 probabilistic (MAP and MMSE).

4.15.1. Location of the DAF

In Figure 4.44 are shown the location of the 10 DAF at the CSE department.

Figure 4.44. Location of DAF at the CSE department

4.15.2. Results of the IPS from the Original (Non-Dynamic) System to Adding 10 DAF

(Dynamic)

In this subsection the results from the non-dynamic system (original) to the addition

of 10 DAF into the system are presented in Figure 4.45 to Figure 4.55.
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Figure 4.45. Average positioning error of the non-dynamic IPS
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Figure 4.46. Average positioning error considering 1 DAF in the IPS
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Figure 4.47. Average positioning error considering 2 DAF in the IPS
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Figure 4.48. Average positioning error considering 3 DAF in the IPS
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Figure 4.49. Average positioning error considering 4 DAF in the IPS
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Figure 4.50. Average positioning error considering 5 DAF in the IPS
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Figure 4.51. Average positioning error considering 6 DAF in the IPS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
o

si
ti

o
n

in
g 

Er
ro

r 
(m

) 

Parameter  

KNN

WKNN

(a) Deterministic algorithms

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
o

si
ti

o
n

in
g 

Er
ro

r 
(m

) 

Parameter 

MSEE

MAP

(b) Probabilistic algorithms

Figure 4.52. Average positioning error considering 7 DAF in the IPS
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Figure 4.53. Average positioning error considering 8 DAF in the IPS
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Figure 4.54. Average positioning error considering 9 DAF in the IPS
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Figure 4.55. Average positioning error considering 10 DAF in the IPS

4.15.3. Summary

The best accuracy per experiment,from the original IPS to adding 10 DAF, are pre-

sented in Figure 4.56. The best accuracy for each trial is shown; also the parameter that

yielded the best accuracy is presented.
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Figure 4.56. Best estimate of location in all experiments and the corre-

sponding parameters

4.15.4. Conclusions of the Experiment 4

As it can be observed in Figure 4.56, the best accuracy for the IPS is obtained when

5 DAF are considered; considering more than 5 access points decrease the accuracy of the

system. The MMSE at parameter 10 performed better in all the trials when compared with

other algorithms as expected.

4.16. Experiment 5: Dynamic WIFI Fingerprinting Consisting of DAF Only

In this section, it is presented the results of the dynamic IPS consisting only of dy-

namic access points and fingerprints. The results are shown from Figure 4.57 to Figure 4.65.

The availability of the DAF is varied from 1 to 10 in a step of 1 DAF.
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Figure 4.57. Average positioning error of the dynamic IPS considering 2 DAF
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Figure 4.58. Average positioning error of the dynamic IPS considering 3 DAF
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Figure 4.59. Average positioning error of the dynamic IPS considering 4 DAF
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Figure 4.60. Average positioning error of the dynamic IPS considering 5 DAF

73



4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
o

si
ti

o
n

in
g 

Er
ro

r 
(m

) 

Parameter  

KNN

WKNN

(a) Deterministic algorithms

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
o

si
ti

o
n

in
g 

Er
ro

r 
(m

) 

Parameter 

MAP

MSEE

(b) Probabilistic algorithms

Figure 4.61. Average positioning error of the dynamic IPS considering 6 DAF
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Figure 4.62. Average positioning error of the dynamic IPS considering 7 DAF
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Figure 4.63. Average positioning error of the dynamic IPS considering 8 DAF
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Figure 4.64. Average positioning error of the dynamic IPS considering 9 DAF
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Figure 4.65. Average positioning error of the dynamic IPS considering 10 DAF

4.16.1. Summary

In Figure 4.66 it can be observed the best results for all the experiments considering

all parameters and all algorithms, the results show only the parameters that yielded the best

accuracy per experiment; the accuracy is increased as more DAFs were considered into the

system.
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Figure 4.66. Best accuracy per DAF sample

4.16.2. Conclusions of the Experiment 5

The results presented in Figure 4.66 show that when considering a system solely of

DAF the accuracy is better as the number of DAF increase. In the experiment performed

for this thesis the DAF was varied from 1 to 10, the algorithm that performed better was

the MMSE with parameter 2.

4.17. Conclusion of the Results from all Experiments at the CSE Department

The original IPS at the CSE department yields an APE of 3.4 meters. When adding

DAF into the original system the accuracy of the system is increased, with a maximum of 2.4

meters for 5 DAF. When considering more than 5 DAF the accuracy of the system decreases.

When considering a DAF only IPS the APE varies from 13 meters to 4.4 meters for

2 and 10 DAF respectively. The results show that when adding more DAF into the system

for the CSE department experiment the APE decreases.
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CHAPTER 5

SLAM IMPLEMENTATION ON A ROBOT INDOORS

5.1. Introduction

In the robotics field, SLAM refers to the process that a robot uses to incrementally

generate a map of an unknown environment and at the same time to calculate the position

of the robot. This process is crucial for the success of the navigation of the Robot while

staying at indoor environments.

5.2. Formulation of the Problem

If a robot is moving through the environment, at time k, the following concepts gives

an approximate solution to the SLAM problem: [8] .

The xk state vector describes the location of the robot, the record of robot locations

can be expressed as: X0:k = {x0, x1, · · · , xk} = {X0:k−1, xk}:

The vector uk is a control vector, it influences the behavior of the robot when going

from position xk−1 to position xk , the record of control inputs can be expressed as: U0:k =

{u1, u2, · · · , uk} = {U0:k−1, uk}

The vector mi describes the location of the ith landmark. The set of all landmark

observaions are expressed as: m = {m1, m2, · · · , mn}

The vector zik describes the observation of a landmark from the robot. The set of

landmark observations are expressed as:Z0:k = {z1, z2, · · · , zk} = {Z0:k−1, zk}

The following probability distribution describes the joint posterior probability of the

landmarks and the location of the robot, which needs to be computer for all times k:

(30) P (xk, m|z0:k, U0:k, x0)

Using this equation, a recursive solution to the slam problem is obtained. In particular at

time k − 1 the equation can be expressed as

(31) P (xk−1, m|Z0:k−1, U0:k−1, x0)
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which can be solved using Bayes theorem.

5.2.1. Models

In the following section, the observation and the motion models of the SLAM problem

are presented.

• Observation Model: this model calculates the probability of observation zk when

the position and the landmark location are known to the Robot.

(32) P (zk|xk, m)

• Motion Model: this model obtains the probability of position xk given the previous

position of the robot, this equation can also be seen as a markov process.

(33) P (xk|xk−1, uk)

5.3. SLAM Algorithms

In this section 2 recursive algorithms are presented in the form of probabilistic esti-

mations to calculate the position of the robot according to updates to the system of type

time and measurement.

If, as presented in the previous section, the vector xk is considered for the robot

state, m for the map, k for the time and the observations z0:k and control inputs U0:k are

also considered to estimate the probabilities.

The Figure 5.1 [8] presents the SLAM technique using landmarks.

• Time-Update

(34) P (xk, m|Z0:k−1, U0:k, x0) =

∫
P (xk|xk−1, uk)× P (xk−1, m|Z0:k−1, U0:k−1, x0)dxk−1

• Measurement-Update

(35) P (xk, m|Z0:k, U0:k, x0) =
P (zk|xk,m)P (xk,m|Z0:k−1,U0:k, x0)

P (zk|Z0:k−1,U0:k)
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Figure 5.1. SLAM using landmarks

5.4. RGBD SLAM

RGBD SLAM (Red, Green, Blue & Deep Simultaneous Localization and Mapping) is

an open source approach to solve the SLAM problem [9], based on cameras, the approach uses

the Kinect Sensor to solve the slam problem and it also creates a 3D model representation

of the environment.

In order to solve the SLAM problem the project is divided into frontend and backend.

the frontend is in charge of obtaining relations between tha image frames obtained from the

hand held device and the backend optimizes the pose of those observations in a pose graph.

5.4.1. Frontend

After obtaining a set of frames using the Microsoft Kinect sensor visual features are

compared and matched, the OpenCV software, is used to perform the image processing.

A feature descriptor extract features from an image to perform matching between

frames.

The following feature descriptors are implemented in the Frontend:

SIFT: The Scale Invariant Feature Transform (SIFT) has the properties that the

features extracted are invariant to image scale and rotation. The transform provides
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robust matching in environments that include noise, affine distortion, change in 3D

view point and changes in the illumination [19].

SURF: The Speeded-Up Robust Features (SURF) is fast feature extractor were the

approach reduces the number of operations being performed. The authors imple-

ment a laplacian indexing strategy which improves the matching between images

without affecting the performance of the method

ORB: ORB is a feature matching descriptor which outperforms in terms of speed to

the previously mentioned descriptors (SIFT and SURF). This descriptor can resist

noise and rotation invariant.

SIFTGPU: This descriptor is a parallelized version of the SIFT feature descriptor,

it is implemented in the GLSL and CUDA GPU-oriented programming languages.

5.4.2. Backend

The SLAM backend constructs a globally consistency trajectory for the Robot as a

pose graph. The pose graph is optimized using the g2 framework. The framework performs

a minimization of an error function that can be represented as a graph.

The Figure 5.2 [9] presents the RGBD SLAM process. Visual features are first cap-

tured and then it extract depth information that corresponds to 3D points. Pair of frames

are register and a pose graph is built with this information. Finally a map is created.

Figure 5.2. Schematic overview of RGBD SLAM
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In this chapter are reported experiments conducted using SLAM with a Robot inside

the hallways of the electrical engineering department.

5.5. Hardware Used

For the experiment conducted the robotic platform called eddie was used, as it can

be observed in Figure 5.3 [1].

Figure 5.3. Eddie robot platform

5.6. Robot Operating System

ROS is defined [1] as a ”Flexible framework for writing robot software. It is a collection

of tools, libraries, and conventions that aim to simplify the task of creating complex and robust

robot behavior across a wide variety of robotic platforms”. The software can also work in a

multi-computer environment.

ROS is a widely used open-source framework among institutions and individuals to

create Robotics applications. The main reason behind the extensive use of this software is

because of its intention to be a general-purpose framework aiming to be compatible with

several robotics platforms, which facilitates the porting of the code to other systems.

Those are basic concepts of the framework:

Node: Process that performs calculations The Figure 5.4 presents the interaction

between nodes.

master: Provides communication among nodes

messages: The way the nodes communicate with each other

Topics: Provides a communication channel among nodes with a subscriber and pub-

lisher configuration
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Services: Enables request and reply requests among nodes

Bags: Bags are used to store the data being shared.

Node 1 Node 2

Service Invocation

Topic
Publiction Subscription

Figure 5.4. Node interaction

5.7. Eddiebot

The Eddie Robot was originally developed to work under the Microsoft Robotics

Development Studio.

The eddiebot is an open-source ROS package that ports the basic drivers from the

Eddie robot to provide functionality of the robot within the Robot Operating System, facil-

itating the interface between the software (ROS) and the hardware (Robot)

5.8. Conclusions and Results

The RGBD-SLAM package was implemented on a Eddie Robot for experimentation

at the electrical engineering department hallways at the University of North Texas.

The Figure 5.5 and Figure 5.6 present the result of the experiments performed in the

Discovery Park building.

A SLAM technique based on the Microsoft Kinect was successfully implemented in

the Eddie robot for positioning an navigation at the electrical engineering department at

UNT.
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Figure 5.5. Extraction of visual features that are associated to 3D points

Figure 5.6. 3D model of the electrical engineering department at UNT
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Figure 5.7. 3D Model electrical engineering department alternative view

Figure 5.8. 3D modeling of a room at the electrical engineering department
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Figure 5.9. Node interaction in ROS

Figure 5.10. ROS node interaction
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CHAPTER 6

SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1. Summary and Conclusions

In this thesis, a novel approach to improve accuracy of an indoor positioning system

based on WIFI fingerprinting was presented.

The approach takes advantage of the WIFI repeater option in most smartphones

to create dynamic access points and fingerprints. The accelerometer embedded in most

smartphones was used to predict the movement patterns of the users using machine learning

algorithms.

2 deterministic and 2 probabilistic algorithms were used to calculate the position of

the users while indoors at 2 locations in the Discovery Park building. For each algorithm a

set of parameters where tested and the best parameter that returned the highest accuracy

was the one used for real time indoor positioning.

In this thesis, 2 access point selection strategies, the MaxMean and RndMean, were

used to select a set of access points from all the available in the Discovery Park building for

the purpose of improving positioning.

For non-dynamic IPS, at location 1 the APE was of 7.2 meter and at location 2 of

3.5 meters.

For a non-dynamic IPS including DAFs, the best accuracy was obtained for an APE

of 2.8 meters at location 1 considering 6 DAF, using the WKNN algorithm with a parameter

of 3; at location 2, the best APE obtained was of 2.2 meters, considering 5 DAF, using the

MMSE alogrithm with parameter 3.

For an IPS consisting of DAF only, the best accuracy was obtained for an APE of 2.2

meters considering 4 DAF at location 1 using the MMSE algorithm with a parameter of 3;

at location 2 the best APE obtained was of 4.2 meters considering 10 DAF using the MMSE

alogrithm with parameter 2.
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Both experiments show that a limit of 5 DAF are needed to obtain improvement of

an existing indoor positioning system. The accuracy was decreased or stayed constant when

considering more than 5 DAFs. Since the availability of the dynamic fingerprints and access

points change over time, as users are added or removed to the system, there exists an high

probability that at least half of the total number of DAFs are available for positioning, which

are the least number of DAFs needed to maximize the accuracy of the system.

In the case of an indoor positioning system consisting solely of DAFs; at location

1 it was shown that the best accuracy with the fewest DAFs is obtained with 4 DAFs.

At location 2 the more DAFs were considered, the better the accuracy that was obtained.

Those results show that if the accuracy is not increased it is constant for a DAF only indoor

positioning system.

The factors that let to obtain a small change in the accuracy results at the 2 locations

were influenced by the size of the area, number of fingerprints obtained and the environmental

noise available.

Regarding the SLAM for robots project, the main section of the electrical engineering

department was successfully used to provide navigation and localization of the robot indoors

with the use of landmarks deployed in the environment.
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6.2. Future Work

As future work of this thesis, the inclusion of other ambient signals can be studied to

increase the efficiency when characterizing the fingerprints to decrease the chances to provide

an incorrect location indoors. Example of those signals can be the earth magnetic fields or

the frequency modulated signals, which are available in the environment.

The fusion of the dynamic WIFI indoor positioning system with other technologies

can be studied, for example Bluetooth BLE, RFID tags or UWB sensors, in order to increase

the performance of the positioning system. The selection of the technology should be made

wisely according to the needs of the user, since each one of them has its own advantages and

disadvantages.

A dynamic indoor positioning system was developed in 2 locations at Discovery Park

with the help of volunteers to create the dynamic scenarios; The results of this thesis show

improvement for an indoor positioning system. A next step for this project is to deploy the

system in all the Discovery Park building using the WIFI hotspot signals from students and

professors and after that continue with the deployment in buildings located in main campus.

Regarding the SLAM for robots project, the future work of the project is to create

a cooperative slam with the robots available at the electrical engineering department. The

aim of the project is to help localize and navigate the group of robots more efficiently.
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