
Abstract 
 
The size distribution of cities in many countries follows some broadly regular patterns.  Any 
good theory of city size distributions should (i) be able to account for this regularity, but also 
(ii) rely on a plausible economic mechanism and (iii) be consistent with other fundamental 
features of cities like the existence of agglomeration economies and crowding costs.  Unlike 
the previous literature, the model proposed here satisfies these three requirements.  It views 
small innovation-driven technological shocks as the main engine behind the growth and 
decline of cities.  Cities grow or decline as they win or lose industries following new 
innovations.  Formally, this is achieved by embedding the quality- ladder model of growth 
developed by Grossman and Helpman in an urban framework.  
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1. Introduction

One of the most striking and least understood facts about cities regards their differences in popu-
lation sizes. In the United States (US) for instance, the Consolidated Metropolitan Statistical Area
(CMSA) of New York has a population count above 21 million whereas Lynchburg (Virginia) has
around 210,000 inhabitants and Paris (Texas) only slightly more than 21,000. This paper proposes
a novel approach to account for these very large differences in size. Small innovation-driven
technological shocks at the industry level are viewed as the main engine behind the growth and
decline of cities.

In developing this approach, I have been guided by the principle that any good theory of
city size should meet three requirements. First, it should be able to replicate existing empirical
regularities about size distributions with some accuracy. Many theories may be able to generate
some unevenness with respect to city sizes. A more stringent empirical fit is thus necessary to
discriminate between these theories. Second, the model should rely on a plausible economic argu-
ment and be based on sound microeconomic foundations. Unspecified or implausible economic
mechanisms do not deepen our understanding of cities nor are they being helpful with respect
to normative and policy questions. Third, any good theory of city size and urban development
should be consistent with fundamental features of cities such as the existence of agglomeration
economies and crowding costs increasing with city population. Such requirement is necessary
because any theory of city size should be part of a broader body of knowledge regarding the
economics of cities. The model developed below satisfies these three requirements.

The empirics of city size distributions

Since Auerbach (1913) and Zipf (1949), the well-known claim is that in a large number of countries,
if one ranks cities from the largest to the smallest and correlates this with their population in the
following manner:

log Rank = Constant− ξ log Size ,

the estimated coefficient ξ (known as the Zipf’s exponent) is very close to one. This statistical relation
(i.e., the Zipf’s curve being best approximated by a straight line with a slope −1) is referred to as
Zipf’s law and it corresponds to having city sizes randomly drawn from a Pareto distribution with
exponent −1. This claim is however controversial. Krugman (1996) speaks of "one of the most
overwhelming empirical regularities in economics" and states that Zipf’s law describes the US city
size distribution remarkably well, whereas Black and Henderson (1998), who also look at US cities,
conclude that "this is an inappropriate framework to use". In light of the first requirement above,
a deeper examination of the facts is obviously needed before going any further.

Rosen and Resnick (1980) and Soo (2002) are the most complete comparative studies on the
issue. Rosen and Resnick (1980) examine the distribution of city sizes for 44 countries in 1970. Their
main finding is that the average Zipf’s exponent across countries is close to unity — precisely 1.13
with a standard deviation of 0.19. For all countries but one in their sample, the Zipf’s exponent
is between 0.8 and 1.5. Soo (2002) confirms most of these findings for an enlarged sample of 75
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countries over the last 30 years. For the more recent period, he obtains a mean Zipf’s exponent of
1.10 for cities. In his sample, 71 out of 75 countries have a Zipf’s exponent between 0.8 and 1.5.

These cross-country differences are small compared to similar coefficients calculated on firm
size distributions across industries or individual income distributions across countries (Arnold,
1983). Hence, it is fair to first conclude that there is indeed some regularity in the size distribution
of cities. However the existing evidence offers only weak support for taking the Pareto distribution
with exponent −1 as the underlying "true" distribution. Zipf’s law is only a very rough approx-
imation.1 Consequently, satisfying the first requirement above should not imply attempting to generate
Zipf’s law but rather replicating existing city size distributions. Below I focus on the US distribution,
which has been extensively studied, as well as the French distribution, which exhibits features very
different from its US counterpart, as a robustness test.

Contradicting threads in the literature

Trying to replicate empirical distributions is very much in contrast to the existing theoretical
literature. The prevailing options have been instead either to take Zipf’s law very seriously or
to forget completely about existing regularities in city size distribution.

The main purpose of most of the literature taking Zipf’s law seriously (in urban economics
just like in industrial organisation) is to propose statistical processes generating unitary Zipf’s
exponents regardless of their plausibility (see Sutton, 1998, for a critical review of this literature).
Simon (1955) is still arguably the best model in this strand of literature. He assumes that the urban
population grows over time by discrete increments. With some probability, a new lump goes to
form a new city. Otherwise it is added to an existing city, with the probability that any particular
city gets it proportional to its population. This mechanism generates a Pareto distribution for city
sizes. The Zipf’s exponent falls to one at the limit as the probability of new cities being created
goes to zero.

This model is somewhat problematic with respect to the first requirement set above because
it is unable to generate Zipf’s exponents below one (which are observed in 12 out of the 44
countries studied by Rosen and Resnick, 1980). Besides, it can generate Zipf’s law only when
the urban population goes to infinity (which implies cities of infinite sizes and infinitely slow
convergence). Because of its complete lack of economic content, this model also fails to pass my
second requirement. It can generate Zipf’s law in a statistical sense but is unable to explain it in
terms of economic or social forces. Finally it does not satisfy my third requirement either since it
seems inconsistent with agglomeration economies being at the root of the existence of cities.

1Rosen and Resnick (1980) highlight two systematic deviations from Zipf’s law. First, primacy, that is the largest city
being much larger than predicted by Zipf’s law, is prevalent in many countries. Second, there are systematic deviations
from Zipf’s law in the lower tail of the distribution with either too many or too few small cities. These lower tail
deviations from Zipf’s law are undoubtedly at the root of many of the disagreements in the recent literature about
the validity of Zipf’s law. For instance, Krugman (1996) gets a Zipf’s exponent of 1.00 from the 130 largest US cities,
whereas Black and Henderson (1998) obtain a Zipf’s exponent close to 0.8 using a much larger sample of around 300
US metropolitan areas. In further research, Dobkins and Ioannides (2000) estimate directly the counter-cumulative of
city size distribution for the US. They find a Zipf’s exponent above one in the upper tail of the distribution and well
below one in the lower tail. These results on US cities are consistent with the non-parametric estimation of local Zipf’s
exponents by Ioannides and Overman (2002).
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Independently of this statistical approach and starting with Henderson (1974), a large economic
literature on urban systems has developed. Its basic insight is the recognition of a tension between
local external economies of scale and dis-economies of urban crowding. This tension implies
that urban efficiency is a concave function of city size. Under mild assumptions regarding their
management, cities reach their optimal size in equilibrium. Furthermore, with local external
economies of scale taking place within industries, cities specialise in equilibrium (if not fully, at
least in their production of tradable goods) and their sizes vary depending on their specialisations
since technology differs across industries. For instance, if localisation economies are stronger for
banking than for textile, banking cities are larger in equilibrium than textile cities.

This type of model provides a very fruitful way to think about cities and gives consistent ex-
planations for many observed stylised facts about what cities are and what they do (see Duranton
and Puga, 2000, for a survey of this literature). Regularities about the size distribution of cities
stand here as conspicuous exceptions.2 In conclusion this literature does well on the second and
third requirements but fails in its ability to deal with city sizes, the first requirement set above.

Gabaix (1999a) stands as a landmark in the literature for being the first to propose a model that
not only generates Zipf’s law but also explains it using an economic argument. The key hypothes-
ised mechanism is that cities grow and decline in population following exogenous idiosyncratic
shocks on their amenities. The details are as follows:  overlapping generations of workers choose
at birth a city where to live depending on local wages and amenities. Wages are in turn determined
locally by the ratio of old to young workers as old immobile workers complement the young in the
production function. In equilibrium, the utility of young workers, which is given by the product of
amenities by wages, is equalised across cities. A positive amenity shock in a city leads to an influx
of young workers. But this crowds out the local labour market so that any positive amenity shock
is partially offset by lower wages. More precisely, amenity shocks, as they enter multiplicatively
in the utility function, lead to population shocks in cities proportional to their current population.
Hence, when amenity shocks are identical and independently distributed, the growth of a city is
independent of its size. Gabaix (1999a) demonstrates that this crucial property, known as Gibrat’s
law, implies Zipf’s law in steady-state. To see this, consider for instance that cities may double in
size with probability 1/3 or halve with probability 2/3 so that the expected growth of a city is zero.
In steady-state, for the distribution of city sizes to remain constant, there must be twice as many
cities of size 1 than cities of size 2, etc. This is Zipf’s law. As argued above, generating Zipf’s law
may not be the right thing to do but Gabaix (1999a) shows that his approach can also account for
some of the known deviations from Zipf’s law observed in the data. The first requirement above
can thus be taken to be satisfied.

However, with respect to the specific channel of transmission proposed by Gabaix (1999a),
namely young workers migrating to cities that just received positive amenity shocks, the evidence
is far from supportive. Although the quality-of-life literature typically reports large cross-city

2With this static approach, city size is a positive function of the intensity of localisation economies. The number
of cities of each type is also determined by demand parameters. There is no a priori reason why the distribution
of localisation economies across industries and demand parameters should generate the observed regularities in the
distribution of city sizes. Instead, the main prediction regarding the distribution of city sizes is that there should be
clusters of cities of the same type and size.
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differences for amenity values, these are much smaller once outliers are eliminated. According
to Gyourko, Khan, and Tracy (1999), the interquartile range is around 1500 dollars for US cities.
A large fraction of it can be accounted for by fiscal variables (and these should play no role
in Gabaix’ model). Another large fraction of it is climate, which does not frequently receive
city-specific shocks. For amenities subject to non-fiscal shocks (like policing), the estimates are
very low and cannot justify large migration flows. For instance, Gyourko et al. (1999) report that
one standard deviation in crime is valued at 83 dollars. In line with this, the literature on internal
migrations shows that amenities are not significant in the choice of destinations of young migrants
(but play a significant role in that of older workers – the opposite of Gabaix’ assumption). Instead,
employment opportunities and wages come up empirically as far more important to determine
migration choices (see Greenwood, 1997, for a survey). Furthermore, the causality appear to be
more from population growth to worse amenities or from population decline to better amenities
than from amenity improvements to population growth.3

Although further empirical work is certainly warranted, Gabaix (1999a)’s model does not seem
to satisfy the second requirement set above: Amenities constitute theoretically a perfectly valid
source of shocks leading to Zipf’s law, but empirically the magnitude of the forces at stake appears
implausibly small. Furthermore, the theory proposed by Gabaix (1999a) neither proposes any
reason for the existence of cities in the first place nor is compatible in any direct fashion with the
existence of local external returns, the third requirement set above. In Gabaix (1999b), the basic
mechanism of Gabaix (1999a) is extended to account for external returns and urban crowding. The
sum of the two however is assumed to follow a negative power law with exponent −1 to offset
exogenous total factor productivity shocks at the urban level. This does not appear very realistic.
Recent work by Córdoba (2001) explores a wide range of statistical processes also based on Gibrat’s
law and confirms the basic crux of Gabaix (1999a)’s model. He even argues in favour of rejecting
the idea of local increasing returns, which has proved so fruitful to understand cities since Marshall
(1890).

Preview of the argument

Rather than trying to build on a literature that does not appear very successful, my point of
departure is the following. Anecdotal evidence suggests that technology shocks at the industry
level constitute an important channel of urban growth and decline. Extreme examples range
from the demise of the steel industry in Pittsburgh to the rise of internet-related industries in San
Francisco / San Jose or the growth of financial services in New York. Further supportive case-study
evidence is discussed in-depth by Brezis and Krugman (1997). Coulson (1999) and Carlino, DeFina,
and Sill (2001) provide more systematic evidence and show that changes in employment in US

metropolitan areas are mostly caused by local shocks at the industry level. Furthermore, Beardsell
and Henderson (1999), Henderson (1999), and Dumais, Ellison, and Glaeser (2002) all suggest that

3The existing evidence regarding a causality running from amenities to growth is mostly intra-metropolitan – see
Kahn (2000) for an analysis of differences in county growth rates in greater Los Angeles. For evidence of population
decline leading to better amenities, see Kahn (1999) on Rust-Belt cities in the US. Finally, see Kahn (2001) for evidence of
population growth leading to worse amenities.
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the location of production in many industries changes significantly over time. Furthermore, the
changes in the spatial patterns of production in the US are closely related to the processes of plant
creation and destruction (Dumais et al., 2002).

To model this argument and show how innovation-driven shocks within industries can explain
existing patterns of city sizes, I embed Grossman and Helpman (1991b)’s quality-ladder model in
an urban framework. In each industry, research firms try to invent the next step up the quality
ladder in order to reap monopoly profits. Research firms may be successful in their own industry
or may develop a new leading quality in another industry. Local spill-overs induce research firms
in an industry to locate with production in the same industry and in most industries, successful
innovators need to start producing where they did their research. This implies that own-industry
innovations lead to a change of monopoly but to no change of location for the industry. Cross-
industry innovations by contrast imply not only a change of monopoly but also typically a change
of location since the old and new monopolies are not in general located in the same city.

Rochester (N.Y.) and New York provide two very interesting illustrations of this process (Jacobs,
1969). In the late 19th century, New York was the capital of the newly created photographic
industry, whereas Rochester was at the forefront of technological developments in precision instru-
ments. George Eastman, while working at improving optical instruments in Rochester, invented
an emulsion-coating machine which enabled him to mass-produce photographic dry plates. His
company soon took over the market for photographic films. As a consequence, Rochester replaced
New York as the main centre for the industry. Rochester, 50 years later, was still the capital of the
US film industry, whereas New York was that of the duplication industry. Then, Haloid Company,
a firm specialised in the manufacturing of photographic papers and operating in the shadow of
Eastman Kodak, came up with a new process for making copies without the need for developing.
The process, called xerography, made Rochester the new capital of the duplication industry in
place of New York (again) where the previous dominant technology, the varityper was produced.

In steady-state and in absence of agglomeration economies and urban crowding, this dynamic
process generates city size distributions for which the Zipf’s curve is concave. When calibrating
the model on the US urban system, the performance is mixed. One the one hand, the simulations
approximate the US distribution of city sizes better than Zipf’s law. On the other hand, the
simulated Zipf’s curves are a bit too concave with cities at the top of the distribution being smaller
than the likes of New York and Los Angeles and cities in the middle of the distribution being a bit
too large.

This simple benchmark however is such that there are neither costs nor benefits to city size. To
satisfy my third requirement, the model is extended to allow for urban congestion and economies
of agglomeration. When agglomeration economies dominate crowding costs, the probability of in-
novating in a city increases more than proportionately to its size. This reduces the Zipf’s exponent
in the upper tail and increases it in the lower tail. Under realistic values for the trade-off between
dynamic agglomeration economies and crowding costs, it is possible to generate urban systems
very similar to that of the US. The French urban system can also be replicated. Hence adding
realistic urban features to the model strengthens its empirical fit. The model can be extended even
further and made consistent with city creation, new products development and plant relocations.
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To summarise, the contributions of this paper are the following. First, it provides a simple
mechanism able to replicate observed patterns of city size distributions. Second, this mechanism
(innovation-driven shocks at the level of industries and cities) is arguably a strong candidate to
explain the growth and decline of cities. Third, it shows that observed regularities about city size
distribution are compatible with the basic building blocks of urban economics like the existence
of agglomeration economies, crowding costs, etc. Importantly, these building blocks are crucial
for a good empirical fit with the data. In this respect, the model can be viewed as a small step
towards a unified theory of urban systems. In short, the theory presented here satisfies the three
requirements set above. The last contribution of the paper is more subtle. Replicating existing
patterns of city size distributions may not be as difficult as previously thought. This implies that
the real test to distinguish between different mechanisms like the one highlighted here, that of
Gabaix (1999a) or any potential alternative is not whether they can replicate observed patterns but
rather their quantitative importance as sources of growth and decline for cities.4

The exposition proceeds in steps. Section 2 proposes a simple benchmark model. It is solved
in Section 3. The model is then enriched in Section 4 where more realistic urban assumptions are
introduced. Studying first a simple benchmark makes it easier to isolate the main mechanism of
the model and present the main argument in a clear and simple fashion. The differences between
the results of the benchmark model and those of the complete model with richer urban features
also allow an easier assessment of the respective contributions of the different building blocks.
Finally, the last Section contains some conclusions.

2. The Benchmark Model

The benchmark builds on Grossman and Helpman (1991b) (or Grossman and Helpman, 1991a,
Chapter 4). Consider an economy with a large (discrete) number of industries, n, each of which
produces one good which can potentially be supplied in an infinite number of qualities.5 Quality
j of good z is given by qj(z) = δj with δ > 1. At time t = 0, the quality of all goods is normalised
to unity so that any good must be improved j times to reach quality j. Quality improvements find
their source in research investments, which are described below.

Preferences

Consider a population of long-lived households whose mass is normalised to one and whose
instantaneous utility is given by

u(t) ≡
n

∑
z=1

1
n

log

j(z,t)

∑
j=1

qj(z)dj(z,t)

 , (1)

4Among the potential alternatives, Black and Henderson (1999) develop a model where human capital externalities
lead to urban growth and a skewed distribution of city sizes. Their model generates only two classes of city sizes.
Introducing some perturbations in this model could potentially lead to something more realistic.

5Note here a small difference with Grossman and Helpman (1991b). There is a discrete set of industries instead of a
continuum. This prevents the law of large numbers from applying at the level of individual cities.
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where dj(z,t) is the consumption of quality j of good z at time t and j(z,t) its highest available
quality. For reasons made clear below, location indices can be ignored for the time being. Total
expenditure is given by

E(t) ≡
n

∑
z=1

j(z,t)

∑
j=1

pj(z,t)dj(z,t) , (2)

where pj(z,t) is the price of quality j of good z at time t. The objective of consumers is to maximise
the discounted sum of their future instantaneous utilities

U ≡
∫ ∞

0
u(τ)e−ρτdτ , (3)

subject to the intertemporal budget constraint∫ ∞

0
E(τ)e−R(τ)dτ ≤ W(0) , (4)

where R(τ) is the cumulative interest factor between 0 and τ and W(0) is the net present value of
the stream of income plus the initial asset holdings at t = 0.

The maximisation of the consumers’ programme can be performed in two stages: First allocate
instantaneous expenditure, E(t), to maximise u(t) and then choose the intertemporal allocation of
expenditure. The maximisation of instantaneous utility (1) for any positive level of consumption
expenditure implies equal shares of expenditure across industries. Then to solve for the allocation
of expenditure within industries, define J(z,t) ≡ Argminj≤j(z,t)

(
pj(z,t)/qj(z)

)
, the quality of good

z for which the ratio of price to quality is the lowest. When J(z,t) is unique (and it is so in
equilibrium), demand in industry z is then given by

dj(z,t) =

{ E(t)
npj(z,t) for j = J(z,t),

0 otherwise.
(5)

Inserting these demands into (1) yields

u(t) =
1
n

n

∑
z=1

[log E(t)− log n + log qJ(z,t)− log pJ(z,t)] , (6)

where pJ(z,t) and qJ(z,t) are the price and quality of J(z,t), respectively. Equation (6) can now be
used to solve the optimal consumption path whose solution is characterised by

Ė/E = Ṙ− ρ , (7)

together with the budget constraint and a transversality condition. After normalising total ex-
penditure E(t) to n through the choice of numéraire, equation (7) implies Ṙ = ρ, that is the nominal
interest rate is always equal to the subjective discount rate.

Technology

As is standard in quality-ladder models of growth, research firms in each industry compete to
innovate and occupy the next step up the quality-ladder. Any successful innovator is rewarded
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with a patent giving it a monopoly right over the production of this quality, j(z,.). This patent
cannot be licensed and it expires only when yet another successful innovator manages to develop
the following quality step. For qualities below j(z,t), there is free-entry among price-setting
oligopolists. In all industries and irrespective of quality, producers need one unit of labour to
produce one unit of good.

Free-entry and unitary marginal costs imply that for any non-leading quality, j < j(z,t), the
price, pj(z,t), is equal to the wage rate, w(t). Together with (5), this implies that any quality leader

in industry z has a revenue pj(z,t)dj(z,t) = E(t)
n = 1 when

pj(z,t)
qj(z,t) ≤

pj−1(z,t)
qj−1(z,t) , that is when pj(z,t) ≤

δw(t). Prices above δw(t) imply zero demand for the industry’s leading quality. Hence, with unit
elastic demand, any industry leader maximises its profits by selling its quality at the limit price
p = δw. Since the assumptions about product development ensure that in every industry there is
a unique quality leader, this leader is also the only active firm in the industry: j(z,t) = J(z,t). For
all industry leaders, this limit pricing strategy implies a profit equal to

π = 1− 1
δ

. (8)

There is free-entry in the race to be the next leader in each industry. A research firm k in industry
z, by investing λk(z) units of research labour for a time interval of length dt to work on the highest
existing quality, j(z,t), succeeds in inventing the next step up the quality-ladder in this industry,
j(z,t) + 1, with probability βλkdt. Thus, as in Grossman and Helpman (1991b), research firms use
the state-of-the-art technology j(z,t) in an industry as a base to invent the next step up the quality-
ladder in the same industry.6 There is however a slight difference with Grossman and Helpman
(1991b)’s framework regarding the research technology. A research effort targeted at improving
industry z may be successful, not only for this particular industry (as just described), but also
for any other industry because of serendipity in the research process. Scherer (1984) provides
very strong empirical support regarding the pervasiveness of such cross-industry innovations.7

More formally, a research firm k in industry z, by investing λk(z) units of research labour over dt
succeeds in inventing the next step up the quality-ladder in industry z′ 6= z with probability γλkdt
with γ < β.

In total, a research firm k in industry z, which invests λk(z) over dt, expects to invent the next
step up the quality-ladder in industry z with probability βλk(z)dt and in any of the other industries
with probability γλk(z)dt. After denoting λ(z) ≡ ∑k λk(z), the sum of all research investments
made by research firms in industry z, the probability of an innovation taking place in industry z

6As in most endogenous growth models, innovations have both a private good dimension (patenting) as well as a
public good aspect (increase of own-industry stock of knowledge). Without any cost advantage in research, industry
leaders do not attempt to innovate since, in case of success, the incremental profit would be less than that of a new
entrant. Thus in equilibrium, research is performed only by would-be entrants. Furthermore note that the size
of research firms is indeterminate because of constant returns in this activity. This need not be a concern because
employment and not industry structure is the main variable of interest here.

7So far, after the choice of a discrete number of industries as opposed to a continuum, this is only the second
difference with Grossman and Helpman (1991b). None of these differences would change their results in any meaningful
way. In a spatial setting, however, the possibility of inter-industry innovations is crucial to allow a research firm located
in a given city to "capture" an industry previously located in another city and thus provides a reason for city size to
change.
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over dt is ι(z)dt where
ι(z) ≡ βλ(z) + γ ∑

z′ 6=z
λ(z′) . (9)

For the sake of clarity, the assumptions presented here stick as closely as possible to the
canonical model of Schumpeterian growth developed by Grossman and Helpman (1991b): A
multi-industry model where firms compete and invest in research in order to reap the monopoly
profits associated with the highest quality. Self-sustaining and non-explosive growth is possible
since new innovations are neither more difficult nor easier than past ones. This well-known model
can now be embedded in the simplest possible urban setting. With firms located in different cities,
the churning of monopolies will provide the basis for population changes in cities.

Cities

Consider m cities across which final goods are freely tradable with there being many more indus-
tries than cities: n � m. Workers are freely mobile and any city can accommodate any number of
workers at zero cost so that there are neither advantage nor cost to city size. This last assumption,
which is clearly counterfactual, is relaxed in Section 4.

Regarding research, recall that a quality improvement in an industry requires the use of the
knowledge associated with the leading quality. In turn this knowledge is available only to research
firms located in the same city (or cities) as the industry leader. In other words, the public good di-
mension of leading technologies is restricted to be local. One may learn about leading technologies
only by observing how industry leaders produce, through small-talk with workers involved in
production or by being involved indirectly in the production as supplier. All this requires physical
proximity. This assumption of local knowledge spill-overs has received ample empirical support:
See for instance Jaffe (1989), Jaffe, Trajtenberg, and Henderson (1993) or Feldman (1994).

Turning to the location of production, assume that industries can be of two types: First-nature
or second-nature. First-nature industries are immobile and each city hosts one such industry. Any
successful innovator in a first-nature industry, if located in a different city, must thus relocate at
no cost to implement its innovation. One may think of some natural advantages like a primary
resource that tie these industries to some particular cities. For instance any improvement in coal
extraction can only be implemented close to coal fields. Note that first-nature industries are only a
small fraction of all industries since m � n. They provide both a "first nature" justification for the
existence of cities and a way by which to identify them.

The remaining n − m industries are labelled second-nature in the sense that production must
take place where the last quality innovation occurred. One possible justification for this assump-
tion is that in this type of industries the production of the highest quality depends on many work-
ers who took part in the innovation. Although they are individually freely mobile, coordinating
the relocation of these workers to a particular city may be difficult.8 In this respect, note that in
many industries where quality innovations are rather complex such as the electronics industry, the

8Alternatively assume that state-of-the-art knowledge is too complex to be codified and exported to another city. This
would also of course prevent patenting. To remain consistent with the existence of monopolies, it is however enough to
make the imitation of the highest quality costly. See Dosi (1988) for further discussion on these issues.
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highest quality products are nearly always manufactured close to the research centres where they
were developed (see Fujita and Ishii, 1998, for evidence regarding Japanese firms in this industry).

In summary, in first-nature industries innovators follow production, whereas in second-nature
industries production follows innovators. Second-nature industries relocate across cities following
successful innovators and thus provide a reason for the growth or decline of cities. In contrast
first-nature industries are "anchors" which prevent cities from losing all their industries and thus
falling in a zero population trap.9 Note finally that these assumptions about industry location
together with local knowledge spill-overs also imply a unique location for each industry.

3. Steady-State Growth and City Size Distribution

Before enriching the urban side of the model and allow for the existence of agglomeration econom-
ies, I solve the benchmark case presented above.

Steady-state economic growth

In absence of cost or benefit to city size, profits are independent of location. The model can thus be
solved for research and growth independently of the urban structure. Denote υ the stock-market
value of an industry leader. If this stock market value is the same across industries (which is the
case at the symmetric equilibrium), then firm k at a cost wλk(z)dt can expect to win (β + (n −
1)γ)× λk(z)× υdt. Profit maximisation by research firms implies that in equilibrium

υ =
w

β + (n− 1)γ
. (10)

Turning to the stock-market valuation of firms, industry leaders pay a dividend πdt over the
period dt since their profits are not re-invested in research. The value of an industry leader
appreciates by υ̇dt when no research firm succeeds in inventing the next step up the quality-ladder,
whereas it goes to zero in the opposite case. This loss of υ occurs with probability ι(z), the
aggregate probability of any research firm being successful in industry z as defined in (9). Thus,
with any industry leader, the expected rate of return for a shareholder is π+υ̇

υ − ι(z). This return is
risky but can be perfectly diversified since there is always one leader with constant profit in each
industry: The loss of one firm is the gain of another. Thus firms are valued so that their expected
stock-market return is equal to the safe interest rate, Ṙ, which is itself equal to the subjective
discount rate ρ. Consequently

π + υ̇

υ
− ι(z) = ρ . (11)

Equations (8), (10), and (11) imply the following no-arbitrage equation

ẇ
w

+
(

1− 1
δ

)
β + (n− 1)γ

w
= ι(z) + ρ . (12)

9This property can be generated in many other ways. For instance, qualitatively similar results are obtained with
the assumption of costly industry relocation and a small group of immobile workers in every city who pay to attract an
industry when their city becomes empty. In Section 4, this assumption is relaxed when stochastic industry relocations
are allowed.
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Figure 1. Determination of the equilibrium

In steady-state, equations (9)–(11) imply a symmetric research effort in all industries: λ(z) = λ.
The aggregate probability of an innovation taking place in an industry becomes ι(z) = ι =
(β + (n− 1)γ) λ. Inserting this in equation (12) and re-arranging yield a differential equation
guiding wages

λ =
1

β + (n− 1)γ

ẇ
w

+
(

1− 1
δ

)
1
w
− ρ

β + (n− 1)γ
. (13)

This no-arbitrage condition is such that higher wages, which make research more expensive, have
a negative effect on employment in research. By contrast, a higher efficiency of research (β or γ)
raises returns to this activity and thus employment therein. An increase in the discount rate, ρ, is
equivalent to an increase in interest rate. This lowers the net present value of future profits and the
incentive to innovate. In turn, this implies less employment in research.

The model is closed by equating labour market demand and supply. Recall that each monopoly
employs 1

δw units of labour and that research is the same across industries so that aggregate labour
demand is equal to n( 1

δw + λ). Since aggregate labour supply is inelastic and equal to one, labour
market clearing implies

λ =
1
n
− 1

δw
. (14)

The evolution of the economy is depicted in Figure 1 where the (NN) locus is the no-arbitrage
condition (13) and the (LL) locus is the labour market clearing condition (14). The economy must
always lie along (LL) for the labour market to clear. For values of w below (NN), wages and
research employment fall to zero. Since expenditure is constant, this implies that expected profits
must rise above research costs, a contradiction with profit maximisation by research firms. A
similar argument applies for values of w above (NN). The economy must thus always be in steady-
state and jump at point S.
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The steady-state values of w and λ solve equations (13) and (14) with ẇ = 0:

w =
1

1
n + ρ

β+(n−1)γ

, (15)

λ =
1
n

(
1− 1

δ

)
− ρ

(β + (n− 1)γ)δ
. (16)

Note that to obtain positive values for the research employment in each industry, the subjective
discount rate must be low enough: ρ ≤ (δ− 1) β+(n−1)γ

n . From equation (16), it is easy to compute
the expected growth rate, g, of quality adjusted production in the economy over the period dt:

g =
(

1− 1
δ

)(
(δ− 1)(γ +

β− γ

n
)− ρ

)
. (17)

This expected growth rate is increasing with the size of the quality improvements, δ. There is
a direct effect caused by larger quality improvements and an indirect effect whereby larger im-
provements imply larger profit and thus a stronger incentive to do research. The growth rate also
increases with β and γ, the two efficiency parameters of research. It is also obviously decreasing
with the rate of time preference, ρ. More interestingly, growth decreases with the number of
industries. This is a dilution effect: with more industries, a research investment has a probability
of success, β, to yield a monopoly over a smaller part of the economy, 1

n , and a lower probability
of success, γ, over a larger part of the economy, n−1

n . Note that because of the discrete number
of industries, there may not be any quality improvement in any given period.10 Furthermore the
model also predicts an uneven and ever changing distribution of qualities, j(.,.) across industries.

As in Grossman and Helpman (1991b) or Aghion and Howitt (1992), the equilibrium growth rate
may be above or below the optimal growth rate. This is the result of two conflicting effects. There
is a consumer-surplus effect whereby quality innovations benefit to consumers who still pay the
same price and enjoy higher quality goods. This effect depresses investment and thus maintains
growth below its optimal level. However there is also a business-stealing effect whereby successful
research firms displace existing incumbents. These attempts to capture monopoly rents imply
over-investment. The sum of these two effects is ambiguous.

Steady-state city size distribution

Turning to city sizes, recall that each firm with a monopoly over the highest quality in an in-
dustry is the sole producer in this industry. Furthermore, because of local spill-overs, research
is geographically tied to production. Consequently, symmetry across industries and free worker
mobility imply that the population of a city is 1

n times its number of monopolies. Thus, the latter
quantity is a sufficient statistic to describe a city. As a shorthand, the number of active industries
in a city is referred to as its size. Denote mi(t) for i = 1,...,n, the number of cities with i industries
at time t. The distribution of city sizes is in steady-state when the expected growth of mi(t) for all
i = 1,...,n is zero, that is when the following steady-state equation holds:

E[mi(t + dt)]−mi(t) = 0 . (18)

10The law of large numbers does not apply here because time periods can be made arbitrarily small. This does not
matter with respect to the intertemporal consumer program because of log-linear utility.
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To characterise the steady-state, note first that in absence of cross-industry innovation between
t and t + dt, the urban structure is left unchanged. Changes in the size distribution of cities happen
only when a second-nature industry is improved by a research firm located in a different city.

Conditional on the occurrence of a cross-industry innovation, the number of cities of size 1,
m1, increases by one unit when a second-nature industry located in a city of size 2 is successfully
improved by research in an industry located in another city of size 2 or above. In steady-state, all
n(n − 1) possible cross-industry innovations occur with the same probability. Since, there are m2

second-nature industries in cities of size 2 which can be each improved by one of n−m1 − 1 other
industries, the conditional probability of this event is thus:

m2

n
× n−m1 − 1

n− 1
. (19)

The number of cities of size 1, m1, declines by one unit when a second-nature industry not
located in a city of size 2 is successfully improved by research in a city of size 1. Since there are
n − m − m2 such industries which can be captured by m1 industries in cities of size 1, this event
occurs with the conditional probability:

n−m−m2

n
× m1

n− 1
. (20)

In steady-state, the probability of having one more city of size 1 must equal that of having one less
city of the same size. Hence, for the expected change of m1 to be zero, (19) and (20) must be equal.
This implies:

m2 =
n−m
n− 1

m1 . (21)

In Appendix A, this reasoning is generalised to cities of size i ≥ 2. The steady-state equation
(18) then becomes:

i(n− i)mi+1 = [(2i− 1)n− im− 2i(i− 1)]mi − (i− 1)(n−m− i + 2)mi−1 . (22)

Equations (21) and (22) characterise the deterministic steady-state of the benchmark. With the
continual occurrence of innovations and because the number of cities is not arbitrarily large,
the model cannot be expected to settle at the deterministic steady-state but rather to experience
small-scale fluctuations around it as cities grow and decline. Before turning to these fluctuations, I
first explore the main features of the deterministic steady-state.

First, in absence of agglomeration economies and congestion costs, this steady-state is determ-
ined only by the numbers of cities and industries. This can be observed directly from equations
(21) and (22). The other parameters of the model (e.g., β, γ, and ρ) only affect the growth rate of
output. Hence, they may affect convergence towards the steady-state city size distribution but not
the steady-state itself.

Second, the size distribution of cities in steady-state is skewed with cities randomly experi-
encing small positive or negative shocks driving them up or down the urban hierarchy. More
precisely, the steady-state Zipf’s curve is concave with a Zipf’s exponent below one in the lower
tail and above one in the upper tail. To understand this, recall that any series si with a unitary
Zipf’s exponent is such that si+1

si
= i−1

i+1 . With n � m, straightforward calculations using (21) and
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(22) show that mi+1
mi

≥ si+1
si

for the first terms of the series. This implies a Zipf’s exponent below
one in the lower tail of the distribution. Then, a simple induction argument also using (21) and
(22) shows that mi ≤ m1( n−m

n−1 )i−1. Indeed, from (21), this inequality weakly holds for i = 2. Then
simple calculations using (22) show that if it holds for i, it is also satisfied for i + 1. Hence it holds
for any i ≥ 2. The steady-state is thus bounded from above by a decreasing geometric series.
Such series decreases faster than any series following a Pareto distribution and has consequently
a Zipf’s exponent above one in the upper tail. Hence the steady-state Zipf’s curve is concave with
an exponent locally below unity for smaller cities and above unity for larger cities.11

The economic intuition for this result is the following. Recall first that growth processes whose
means and variances are independent of size (i.e. Gibrat’s law) are needed to generate Zipf’s
law, that is a straight Zipf’s curve with slope −1. Then, note that conditional on a cross-industry
innovation taking place, the probability of a city with i industries gaining an industry is equal
to the probability of the innovation taking place there (which is proportional to city size and
equal to i

n ) multiplied by the probability of the improved industry being a second-nature industry
originally located in another city. This second quantity (equal to n−m−i+1

n−1 ) decreases with size.
Hence the probability of gaining an industry is less than proportional to city size due to a negative
own-size effect. By the same token, the probability of loosing an industry (equal to i−1

n−1 ×
n−i

n )
is less than proportional to city size. In total, the conditional expected growth of a city (equal
to n−im

n(n−1) ) decreases with city size and so does its expected growth rate and its variance. Hence,
the steady-state distribution generated by the benchmark is less skewed than a Pareto distribution
with exponent−1 and has thus a concave Zipf’s curve. The main force at work here is this own-size
effect which implies that larger cities have less to win than smaller cities.

The important issue at this stage is how good an approximation this concave Zipf’s curve is with
respect to real city size distributions. Given the fluctuations of the model around the steady-state,
this evaluation may only be carried out by means of simulations.

Baseline simulations

The size distribution of US CMSAs is used as reference. Since there is a population threshold of
around 100,000 for a city to qualify as CMSA, the existing 280 US CMSAs in 2000 must be viewed as
a truncation of the real distribution. To circumvent this censoring problem, consider a population
of 400 cities, each of which is initially endowed with 25 industries. The latter are assumed to
employ 25,000 workers each so that the total urban population is set to 250 million to match
(roughly) that of the US. Consider 1,000 independent sequences of cross-industry innovations
occurring randomly as in the model. In the simulations, we speak of steady-state when the mean
Zipf’s exponent for 1,000 simulations does not increase nor decrease by more than 0.01 as more

11The steady-state distribution is not log-normal either as made clear by equations (21) and (22) which define it.
However as will be clear from the simulations below, the steady state is rather well approximated by a log-normal
distribution.
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Figure 2. Baseline simulations and actual US city size distribution.
Source: US Census Bureau (2000 decennial census) and author’s simulations. The US Zipf’s curve is in grey. The two
curves in black represent the 10th and 90th percentile for each rank from 1 to 280 in the simulations. 1,000 simulations of
10 million events were run. The grey dotted straight line represents the expected Zipf’s curve for a Pareto distribution
with exponent −1.

innovations are considered.12

The Zipf exponent for the 280 largest cities in each of the simulations can be computed and
compared to that of the 280 US CMSAs. In steady-state, the mean Zipf’s exponent is 0.74 with
a standard deviation of 0.03 whereas the equivalent number for US cities in 2000 is 0.85. When
looking only at the 150 biggest cities (as customary in the empirical literature), the average Zipf’s
exponent in the simulations is 1.10 with a standard deviation of 0.07. The corresponding figure for
US CMSAs is within two standard deviations at 0.98.13 Figure 2 plots the Zipf’s curve for US CMSAs
in 2000 together with the 10th and 90th percentile for every rank in the simulations.

The overall ability of the model to replicate the observed US patterns is mixed. On the one hand
in Figure 2, the simulations predict a fairly skewed distribution of city sizes which, at first sight,
looks in line with the real US distribution, which is also fairly concave (see Parr, 1976, and Vining,

12Such steady-state is reached after around 2 million events. This number may seem large. However, after 500,000
events, the Zipf’s exponent for the 150 biggest cities is already around 1.25 and then slowly goes down to around
1.10 over the following 1.5 million events. This may well replicate the slow anticlockwise movement of the Zipf’s curve
observed in the US during the 20th century (Parr, 1985; Black and Henderson, 1998). Furthermore, the next section argues
that the development of new industries should lead to an "initial distribution" of industries across cities that is much
more skewed than the initial uniform distribution assumed here for the simulations. This should make convergence
much faster. Finally, it must be remembered that "churning" at the micro-level is very significant. The annual turnover
rate for US plants is typically above 10% (Davis, Haltiwanger, and Schuh, 1996). At the same time, the annual US patent
count is also high, typically above 600,000.

13Note further that the simulations are not completely neutral with respect to the number of industries n as expected
from the analytic results above. Considering a greater number of industries reinforces the concavity of the Zipf’s curve
whereas considering fewer industries makes it straighter. An important issue here is thus how lumpy industries are. On
the one hand, there are certainly more production plants in the US than the 10,000 assumed in the baseline simulations.
On the other hand, remember that a central tenet of urban economics is the existence of localisation economies, i.e., local
external economies within industries leading firms to cluster by industry (see Duranton and Puga, 2000, for references
and a discussion of the empirical literature). Hence the use of rather big lumps (25,000 persons) could be viewed as
a reduced-form for a more detailed model encompassing explicit localisation economies. Such localisation economies,
although absent here, could easily be introduced by considering a more complex production structure with for instance
input-output linkages with differentiated industry-specific intermediates as in Abdel-Rahman and Fujita (1990). In this
respect, note that localisation economies have been shown to be no barrier to the mobility of industries. Quite the
contrary, the most localised industries appear to be the most mobile in the data (Henderson, 1999).
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1976, for early discussions of this). Figure 2 also plots a straight line with a negative unitary slope
representing a strict version of Zipf’s law which takes New-York as a reference. As a first-order
approximation, the model does better than Zipf’s law.14 On the other hand, closer inspection of
the simulated distributions and the real US Zipf’s curve reveals sizeable differences. The Zipf’s
curves simulated from the model are more concave than what is observed in the US creating some
visible differences for the largest three cities and for cities ranking between 20 and 100. For the
largest city, the predicted size in the simulations is between 15 and 65% the size of New York, with
a mean slightly below 50%. For cities ranking between 50 and 60 (i.e., where the concavity of the
simulated distributions is at its strongest), their simulated size is between 20 and 40% bigger than
in reality.

Note that beyond their size distribution, the cities in the model share some important features
with real life cities. First, the model predicts a one-to-one correlation between the size of a city and
its number of industries. The relationship between size and diversity appears very clearly in the
data, albeit not as strongly as predicted by the model (see Mori and Nishikimi, 2001, for strong
Japanese evidence and a discussion of the literature on this point). Second, technological change
is a dominant factor at the root of the rise and decline of cities. Recent studies by Coulson (1999)
and Carlino et al. (2001) on two samples of US CMSAs show that local industry shocks explain
most of the changes in metropolitan employment. Both papers use a time-series methodology to
identify local industry shocks. According to Coulson (1999), the latter explain between 67 and 97%
of the difference between the 36-month ahead prediction and what really occurs. Using greater
frequency data and a slightly different identification method, Carlino et al. (2001) find that local
industry shocks explain between 87 and 94% of the same forecast error over nearly 50 years.
Third, Beardsell and Henderson (1999), Henderson (1999), and Dumais et al. (2002) all document
a substantial degree of mobility of industries across US CMSAs. Finally, cities move slowly up and
down the distribution as observed in the US case (Black and Henderson, 1998).

4. Adding Urban Features to the Benchmark

The benchmark model, whose working has just been described, builds on a potentially highly rel-
evant economic mechanism. Hence it satisfies the second requirement imposed in the Introduction.
With respect to the first requirement, the ability of this benchmark to replicate the US distribution
of city sizes is not perfect but nonetheless better than previous approximations building on Zipf’s
law. However, cities so far have been modelled in a highly simplistic manner which goes against
the basic tenets of urban economics. In this respect, the objective of this section is first to demon-
strate that the model can take into account fundamental features of cities like the existence of
agglomeration economies and crowding costs, which have been so far ignored. The model is also
extended to take into account industry relocations, the creation of new cities, and the development
of new industries. Hence the benchmark model can be extended to satisfy the third requirement
imposed in the Introduction regarding the consistency of the urban modelling. Interestingly, these

14A simple efficiency criterion is to integrate on a log plot (like that of Figure 2) the absolute value of the difference
between the real US distribution and any other distribution chosen to approximate it. According to this metric, the
baseline simulations do on average better than Zipf’s law.
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extensions also show that these more realistic urban features improve the empirical performance
of the model so as to closely replicate existing urban systems.

Agglomeration economies and urban crowding

The economic literature on systems of cities and more generally urban economics typically views
any city as the outcome of a trade-off between some form of economies of agglomeration and
crowding costs. Crowding costs are easy to introduce. For simplicity, think of them as a labour-
reducing factor. A worker in a city of population ` has its labour supply divided by a factor C(`).
These crowding costs are such that C′ > 0 with C(1) being normalised to unity.

Turning to agglomeration economies, they may be either static or dynamic and take place
either within cities but across industries (urbanisation economies) or within cities and industries
(localisation economies). Static urbanisation economies can be thought of as a labour-augmenting
factor in production A(`) which increases with city population ` and is normalised to unity in
cities of unit population.15 As for static localisation economies, because of symmetry they apply in
the same fashion to all industries within a city and thus can be confounded with static urbanisation
economies.

With respect to the benchmark proposed above, these new features imply that unit labour costs
are no longer uniform across cities. They depend instead on city population `. The labour supply
(in efficiency units) of a worker in a city of population ` is A(`)/C(`) times that of a worker in a city
of unitary population. Given the utility function (1) and free mobility, equilibrium labour income
must be equalised across cities.16 Hence unit labour costs are equal to w C(`)

A(`) where w is the unit
labour cost in a city of unit population. If for simplicity agglomeration economies are assumed
to apply only to the leading technologies (i.e., non-leading technologies can be implemented with
equal efficiency everywhere), the profit function (8) of an industry leader in a city of population `

becomes:
π(`) = 1− C(`)

δA(`)
. (23)

In this equation, the effect of city size on profits is twofold. First, increasing city population leads
to more crowding and in turn to higher costs for firms as they must compensate workers for this
extra crowding. At the same time, urbanisation economies increase the efficiency of labour, which
means a lower wage bill for firms. The overall effect of an increase in city population on profits is
ambiguous. Note that C(`) 6 δA(`) is needed for an industry leader to be willing to produce in a
city.

As for dynamic urbanisation economies, the easiest and most natural way to represent them
is through another labour-augmenting factor B(`) but this time affecting research labour. More
formally, a research firm k located in a city of population ` and hiring λk(z) workers in industry z

15Crowding costs and agglomeration economies are directly assumed here rather than derived within the model from
microeconomic foundations. The specific functional forms used below however are similar to the standard reduced form
obtained from microeconomic models of urban increasing returns (see Duranton and Puga, 2003, for a review of this
literature).

16This labour income is net of commuting and housing costs as these are already captured by C(.). In absence of
migration costs for households, the latter maximise instantaneous utility which in absence of trading costs imply the
maximisation of their labour income wA(`)/C(`). In equilibrium this quantity must be equalised across cities.
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over dt expects to innovate in the same industry with probability B(`)× βλk(z)dt and with B(`)×
γλk(z)dt in any other industry with B′ > 0 and B(1) = 1. Again, because of symmetry, dynamic
localisation economies apply equally to all industries in the same city. Consequently, they can be
confounded with dynamic urbanisation economies.

Profit maximisation by research firms in any second-nature industry z located in city a(z) of
population `a(z) implies that in equilibrium the value of a firm is no longer given by equation (10)
but instead by

[β + γ(n−m− 1)]υ(`a(z)) + γ ∑
z′ 6=z

υ(`a(z′)) = w
C(`a(z))
B(`a(z))

. (24)

Again the effects of city size are ambiguous as they make innovations more likely through the
dynamic urbanisation economies B(.) but also more costly since research labour must be com-
pensated for crowding costs in larger cities relative to smaller cities. Either may dominate. For all
cities to host some research labour, no city should be such that the probability of an own-industry
innovation per unit of numéraire spent is below the probability of a cross-industry innovation per
unit of numéraire in another city. Formally this implies that there should be no two cities a and a′

such that β B(`a)
C(`a)

< γ
B(`a′ )
C(`a′ )

.
The model can then be solved as previously using a no-arbitrage condition similar to (12) and

labour market clearing.17 The main source of difficulty is that closed forms solutions are impossible
to obtain even under very simple specifications for A(.), B(.), and C(.). This is because research in
an industry is no longer independent of its location and instead depends non-linearly on the whole
distribution of city sizes as made clear by equation (24). However from equations (23) and (24), it
is easy to see that the effects of crowding costs are to lower profits and to raise the costs of research
in larger cities. Both effects depress research employment in larger cities and make smaller cities
more likely to innovate relative to their population. Static urbanisation economies, through (23),
increase profits in larger cities and thus the incentive to innovate there. Dynamic urbanisation
economies, through (24), lower the costs of doing research in larger cities. Both effects contribute
to making larger cities more likely to innovate relative to their size. Hence when agglomeration
economies dominate, the distribution of city sizes is expected to become more skewed than that generated by
the benchmark above, whereas it should be less skewed when crowding costs dominate. This statement can
be verified using simulations.

Simulation results

For simplicity (and to restrict the number of degrees of freedom in the simulations), crowding
costs are assumed to offset static agglomeration economies, A(.) = C(.), but not dynamic extern-

17Although a reduced-form is used for tractability, the model in its urban features is very close to Henderson (1974)
with a trade-off between crowding costs and economies of agglomeration in a system of cities. The main difference
is that here industries are not perfectly mobile. Production can relocate only following cross-industry and cross-city
innovations. The issue of non-replicability in a static framework is discussed in-depth by Papageorgiou and Pines
(2000).

18



alities.18 Then, and also for simplicity, I only consider a reduced-form whereby the probability of
an innovation taking place in a city with i industries in steady-state is proportional to i × ψ(i),
where ψ(i) is the innovativeness of a city relative to its size. This reduced-form encapsulates
both dynamic agglomeration economies and crowding costs. As argued above, crowding costs
alone imply ψ(i)′ < 0 whereas dynamic agglomeration economies alone imply ψ(i)′ > 0. The
advantage of this reduced-form is that for calibration purpose equilibrium innovativeness (ψ(i))
can be proxied by some measures of innovative output at the city level like patent data. Data
on patent applications from the US Patent and Trademark Office support the idea of a non-linear
relationship between the number of patents per capita granted in cities (a proxy for ψ(.)) and their
population. The number of patents per capita increases with population but seems to peak at
around one million.19

To understand the mechanics of this extension, it is worth simulating first the same urban
system as previously with only dynamic agglomeration economies and no crowding cost so that
the probability of a city innovating is more than proportional to its size. Assume ψ(i) = iε with
ε > 0. In this case, the probability of a city innovating is proportional to i1+ε. The parameter
ε captures dynamic economies of scale: the probability of innovating within a given industry
increases by 1 + ε% when the size of its city increases by 1%.

The results in this case are the following. Increasing ε lowers the Zipf’s exponent in the upper
tail of the distribution. Stated differently, stronger agglomeration economies increase the skewness
of the upper tail of the distribution. This is rather intuitive since the expected growth of cities as
a function of their size now depends not only on the negative own-size effect described above
but also on the positive effect of dynamic agglomeration economies. Higher expected growth for
the largest cities makes them even larger and it comes at the expense of smaller cities. Those
which suffer the most are not the smallest cities with mostly immobile first-nature industries
but cities in the middle of distribution with many second-nature industries to lose. Hence, with
dynamic agglomeration economies, the concavity of the Zipf’s curve is reduced with respect to the
benchmark case or even reversed.

More specifically, for ε = 0.02, the Zipf’s exponent is equal to 1.01 for the 150 largest cities and
0.89 for the largest 280. The corresponding numbers for US CMSAs in 2000 are respectively 0.98 and
0.85. For ε = 0.04, the Zipf’s curve is now convex rather than concave. The Zipf’s exponents are
equal to 0.96 for the 150 largest cities and 1.04 for the largest 280. Interestingly, the Zipf’s exponents

18With crowding costs and static agglomeration economies, city population is not in general proportional to the num-
ber of industries. Hence, strictly speaking, only the distribution of the number of industries across cities is simulated.
Nonetheless, with static agglomeration economies offsetting congestion costs, employment in final production is the
same in all industries. Only research labour may differ. However research labour represents only a tiny fraction
of total employment in most industries. Hence, the proportionality between number of industries and population
is approximately preserved. The second effect of static agglomeration economies is on profits, w hich in turn aff ect
the dynamic incentives to innovate. These dynamic incentives can also be captured by the dynamic agglomeration
economies, B(.). Hence A(.) = C(.) is only a simplifying assumption which pins down employment in industries.

19When regressing the log of the average number of patents per capita between 1990 and 1999 for US CMSAs on their
log population and its square, log population has a positive and significant coefficient whereas the quadratic term has a
negative and significant coefficient. Since the relationship between patenting per capita and population is quite flat for
cities above 1 million, the maximum of the parabolic trend-line is very sensitive to the sample of cities one considers.
The most innovative US city during the 1990s was Rochester (NY) with a population around 1 million. Among the
largest cities, the most innovative is San Francisco with a population around 7 million.
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Figure 3. Augmented simulations and actual US city size distribution.
Source: US Census Bureau (2000 decennial census) and author’s simulations. The US Zipf’s curve is in grey. The two
curves in black represent the 10th and 90th percentile for each rank from 1 to 280 in the simulations. 1,000 simulations
of 4 million events were run with ψ(i) = i0.04−0.035i/(i+1). The grey dotted straight line represents the expected Zipf’s
curve for a Pareto distribution with exponent −1.

are not very sensitive to ε provided it remains below 0.06.This corresponds to net scale economies
of around 6% which is in the upper bound of what this literature suggests (see Henderson, 1999, for
a discussion of the empirical literature). The only counter-factual prediction of these simulations
is that for ε even as low as 0.01, the largest city is already much larger than the second largest
city by a factor of ten or more.20 This highlights the need to consider crowding costs along with
agglomeration economies.

I now consider some simulations with both crowding costs and dynamic agglomeration eco-
nomies. The general form is ψ(i) = iε(i). Figure 3 plots the 10th and 90th percentile for every
rank between 1 and 280 in the simulations for ε(i) = 0.04− 0.035i/(i + 1) together with the Zipf’s
curve for US CMSAs in 2000. The Figure also plots the Zipf’s curve for an urban system following
Zipf’s law from New-York downwards. This specification assumes a constant degree of increasing
returns of 4% in innovations. Crowding costs are rising with city size but they never fully offset
dynamic agglomeration economies. The shape of the locus representing the number of innovations
as a function of city size is very similar to that of patenting in US cities as a function of their size
with this specification.

With these parameter values, the mean Zipf’s exponent for the first 150 cities is equal to that of
US CMSAs at 0.98. The bands constructed from the 10th and 90th percentile contain the US Zipf’s
curve almost entirely. It is only in the very lower tail of the distribution that these bands are hit
due to their stepwise nature. The simulations capture the US city size distribution much better
than Zipf’s law (the dotted line). It is also interesting to note that the US urban system is widely
acknowledged to be close to its steady-state (Black and Henderson, 1998; Ioannides and Overman,

20Such ratio is very large for the US but not uncommon in the world (Soo, 2002). The intuition for such primacy is
quite simple. Consider the case of the two largest cities being initially of equal size. When ones gains a small advantage
after a few lucky draws, it becomes relatively better at innovating and thus draws new industries. These new industries
reinforce the strength of its innovation advantage, etc. This cumulative causation mechanism stops only when the
growth of the primate city is limited by the own-size effect described above.
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Figure 4. Augmented simulations and actual French city size distribution.
Source: INSEE (Urban areas data for 2000) and author’s simulations. The French Zipf’s curve is in grey. The two curves
in black represent the 10th and 90th percentile for each rank from 1 to 80 in the simulations. 1,000 simulations of 4 million
events were run with ψ(i) = i0.037−0.03i/(i+1). The grey dotted straight line represents the expected Zipf’s curve for a
Pareto distribution with exponent −1.

2002). Consequently if the model is able to replicate the US steady-state, it must also replicate the
US dynamic of relative urban growth.

Turning to the robustness of these simulations, a few comments are in order. First, the sim-
ulations do not show any knife-edge property. Very similar results are obtained when chan-
ging the negative term which captures congestion to 0.036 or 0.034 instead of 0.035. It is also
possible to replicate well the US Zipf’s curve with either stronger or weaker agglomeration eco-
nomies. For instance, very good results are also obtained with ε(i) = 0.02 − 0.016i/(i + 1) or
ε(i) = 0.06− 0.055i/(i + 1) (implying dynamic agglomeration economies of 2 and 6%). To replicate
the US city size distribution, the crucial element is to have ε(i) being a decreasing and convex
function which takes a small positive value (around 0.5%) for cities with population between 5
and 25 million.

Second, it is worth turning to another empirical distribution. France was chosen because the
concept of French urban area matches rather closely that of US CMSA. At the same time, the
French distribution is fairly different from that of the US. Firstly, cities are fewer: there are only
80 French urban areas with a population above 100,000. Secondly, the French Zipf’s coefficient
is much higher than in the US at 1.06. Thirdly the French urban system has a dominant city,
Paris, about seven times as large as the second largest city, Lyons. As a consequence of these
last two features, the Zipf’s curve is convex rather than concave in its upper tail. The simulations
are the same before except that I consider a population of 200 cities with initially 20 industries
each. For consistency with the total French urban population, each industry is assumed to employ
12,000 workers. Figure 4 plots the 10th and 90th percentile for every rank between 1 and 80 in the
simulations for ε(i) = 0.037 − 0.03i/(i + 1) together with the Zipf’s curve for the French urban
areas in 2000. Compared to the simulations for the US above, urban increasing returns are weaker.
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So is urban congestion.21 The Figure also plots the Zipf’s curve for an urban system following
Zipf’s law from Paris downwards. As made clear by the figure, the simulations do better than
Zipf’s law and can successfully replicate the French distribution.

Third, it is also possible to reproduce very closely an imaginary urban system following Zipf’s
law. For instance with the simulated "US" system, it suffices to make ε(i) more convex than in the
simulations reported above. When ε(i) is more convex, cities in the middle of the distribution tend
to be relatively less innovative than these in the upper tail. Hence they must be smaller in steady
state and this makes the Zipf’s curve straighter in the middle of the distribution.

Firm relocations

The results above show that it is possible to relax the assumption of no cost nor benefit to city
size made in the benchmark model. In this sub-section, the relaxation of another restrictive
set of assumptions is discussed. Recall that in the benchmark new innovations should either
immediately locate to a particular city (first-nature industry) or remain permanently in the city
where the innovation was produced (second-nature industry). It appears more realistic to assume
instead that all industries are such that their leader may relocate at times.

The empirical literature suggests that the real benefits of large cities may not lie in lower
production costs but in a higher propensity to innovate. In the model, this implies that congestion
costs may dominate static agglomeration economies after city size reaches a fairly low population
threshold, whereas dynamic agglomeration economies possibly always dominate congestion or
at least dominate them until a much higher population threshold is reached. With respect to the
notations, this implies C(`) > A(`) for ` > ` and B(`) > C(`) for ` > ` with ` > `. Under these
realistic conditions, successful innovators in large cities would like to relocate their production to
a smaller city where the costs of production are lower.

Such relocation may be costly and following the argument articulated by Duranton and Puga
(2001), it might be feasible only after a successful search for the best way to produce has been
conducted.22 In larger cities, searching may be easier and the intensity of the search is also greater
since the incentive to relocate is stronger. Consequently the probability of an industry leader being
able to relocate to a smaller city at any point in time should increase with city size. As shown by the
data in Duranton and Puga (2001), the amount of plant relocations is not negligible and relocating
plants usually go from large diversified cities to smaller and more specialised cities better suited
to their needs.

21Given that it is possible to replicate the French and US distribution with different functional forms, it is best to be
cautious about drawing conclusions regarding the relative values of agglomeration economies and congestion costs in
France and the US.

22In Duranton and Puga (2001), firms search for their ideal production process by sampling successively different
types of production processes which in turn require different sets on intermediate inputs. After every trial, the firm
learns if the process it just tried was its ideal production process or not. Since firms relocate only after hitting their
ideal production process, this implies a strong stochastic element in the relocation process. This learning process is fully
consistent with the assumptions of the benchmark model provided that any product innovation (i.e., a better quality)
must be followed by a process innovation (i.e., a stochastic search) with no relocation being feasible before the latter
takes place.
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In the benchmark, first-nature industries were needed to prevent cities from becoming empty
and remaining so forever. Stochastic relocations with a bias from large cities to small cities also
prevent this since empty cities end up receiving relocating industries. Hence this relocation mech-
anism makes it possible to relax the assumptions about industries being either first- or second-
nature and be more realistic in this respect. The other advantage of relocations (as assumed here)
regards the balance between agglomeration economies and crowding costs. As the simulations
above make clear, it is only when the dynamic agglomeration economies net of crowding costs
are small that realistic distributions of city sizes can be generated. If dynamic agglomeration
economies substantially outweigh crowding costs, the largest city becomes unrealistically large.
Relocations from large to small cities may allow for more flexibility in this respect since firms may
be leaving the largest cities when they get too large and thus prevent too much primacy from
occurring. However this extra realism in the assumptions and this greater flexibility with respect
to parameter values would necessitate a much more complex model. A fully-fledged model in this
direction is beyond the scope of this paper and is left for future work.

New industries, new cities and uneven initial conditions

For simplicity, the benchmark model also took the number of cities and industries as given.
However new products and industries keep being developed. Dobkins and Ioannides (2000) also
document significant entry of new cities in the US urban system over the 20th century. As shown
here, it is possible to relax this exogeneity of cities and industries but doing so requires making
significant changes to the basic framework. The model outlined in what follows no longer builds
on the quality-ladder framework but instead on the standard horizontal proliferation framework
developed by Romer (1990) and Grossman and Helpman (1991a, Chapter 3). It receives a full
treatment in Appendix B.

First, the Cobb-Douglas instantaneous utility function (1) must be transformed into a CES to be
consistent with the arrival of new industries since with Cobb-Douglas utility, there is no demand
for new goods. For simplicity only one quality level is considered for each good. These changes
lead to a different pricing strategy by monopolies (mark-up instead of limit pricing) but leave the
dynamic optimisation of consumers unchanged.

To allow for new industries, the research process must also be amended slightly. As in the
benchmark, there is a monopoly protected by a patent in each industry. Competitive research
firms can freely use each existing patent as a line of research. But, this time, it is with the goal of
developing new industries rather than improving existing ones. Individually, these research firms
face constant returns. However, there are decreasing returns to research in each line of research.
Such decreasing returns in research are easily justified by a duplication argument. When there are
neither costs nor benefits to city size, this assumption implies a symmetric research investment
across lines of research (i.e., industries) in equilibrium. Finally, all existing patents form a stock
of knowledge which also enters as a factor of production for new patents. This is a standard
assumption in the literature, which allows for self-sustaining growth to take place.23

23Recall that self-sustaining growth requires the number of new patents to be proportional to the existing number of
patents.
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As in the benchmark, research is geographically tied to production in each industry because of
local spill-overs. New industries can be either first- or second-nature. In first-nature industries,
each patent holder must go to a specific location. Only at this location can the patent be exploited.
Assuming that first-nature locations are always different, each new patent in a first-nature industry
leads to the creation of a new city. In second-nature industries, each patent can only be implemen-
ted by its innovator where it was developed.

Symmetry in the utility function and decreasing returns in each line of research imply equal
levels of output and profit across all industries. Then the research process implies an equal level
of research employment across industries. Hence in equilibrium all industries are symmetric with
respect to output, profit and research employment. This implies that the probability of a new
second-nature industry being developed in any city is proportional to its size. Consequently,
whenever an innovation takes place, it leads to the creation of a new city with some probability α

(the probability of a first-nature industry being created) or it is added to an existing city with the
probability that any particular city gets it is proportional to its population.

With respect to the number of patents, this model is thus equivalent to Simon (1955) and the
preceding assumptions can be viewed as microeconomic foundations for it. Then it is immediate
that the distribution of the stock of patents across cities follows a power law with exponent 1/(1−
α) where α is the probability of any new industry being first-nature. Again see the Appendix for a
complete derivation. Because of symmetry, the population in a city is proportional to its number
of patents. Consequently, the size distribution of cities also follows a power law with exponent
1/(1− α). Hence, this extension of the model can account for the creation of both new cities and
new industries.24

5. Concluding Comments

This paper started from the principle that any good theory of city size distribution should satisfy
three requirements: (1) ability to replicate observed patterns, (2) reliance on a plausible economic
argument, and (3) consistency with the idea that cities result from a trade-off between some
benefits from agglomeration and crowding costs. These three requirements can be satisfied by
embedding the Grossman and Helpman (1991a)’s quality-ladder model of growth in an urban
framework. Interestingly, the paper also shows that mimicking existing city size distributions is
not very difficult. Acknowledging Gabaix (1999a)’s results, it is my contention that several eco-
nomic mechanisms could satisfy this first requirement. As a consequence, the empirical challenge
is no longer to focus on the exact shape of the distribution of city sizes but instead to evaluate what
the real drivers of urban growth and decline are.

24However, product proliferation cannot be considered alone to explain and replicate existing city size distributions.
The reason is twofold. First, this process cannot generate Zipf’s exponents below unity. Second, to generate Zipf’s
exponent close to unity, an arbitrarily large number of new industries is needed. Nonetheless, this extension can play
an important accessory part in the main argument. Indeed, if one thinks of the creation of industries as taking place
before quality improvement are made possible, this extension should be viewed as a way to generate skewed "initial
conditions" in the quality-ladder model developed earlier.
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Appendix A. Steady-State City Size Distribution in the Benchmark

The number mi of cities of size i ≥ 2 grows by two units when a second-nature industry located in
a city of size i + 1 is successfully improved by a research firm located in a city of size i − 1. Since
there are n(n − 1) possible cross-industry innovations, imi+1 second-nature industries in cities of
size i + 1 and (i − 1)mi−1 potential sources of innovations in cities of size i − 1, this event occurs
with the probability:

imi+1

n
× (i− 1)mi−1

n− 1
, (A 1)

conditional on a cross-industry innovation taking place. Then, mi grows by one unit when an
industry relocates from a city of size i + 1 to a (different) city of any size except i and i − 1. Since
there are imi+1 industries which can be captured this way by n − i − imi − (i − 1)mi−1 industries,
this event takes place with the conditional probability:

imi+1

n
× n− i− imi − (i− 1)mi−1

n− 1
. (A 2)

Finally, mi also increases by one unit when research in a city of size i − 1 successfully improves a
second-nature industry located in a different city of any size but i and i + 1. Since there are (i −
1)mi−1 industries in cities of size i− 1 which can capture one of n−m− (i− 2)− (i− 1)mi − imi+1

industries, this event takes place with the conditional probability:

n−m− (i− 2)− (i− 1)mi − imi+1

n
× (i− 1)mi−1

n− 1
. (A 3)

The number mi of cities of size i ≥ 2 decreases by two units when a second-nature industry
located in a city of size i is successfully improved by a research firm located in another city of size
i. Since there are imi industries which can capture one of (i− 1)(mi − 1) industries, the conditional
probability of this event is:

(i− 1)(mi − 1)
n

× imi

n− 1
. (A 4)

Then, mi declines by one unit when an industry relocates from a city of size i to a city of any size
except i and i− 1. With (i− 1)mi industries which can be captured this way by n− imi− (i− 1)mi−1,
this event takes place with the conditional probability:

(i− 1)mi

n
× n− imi − (i− 1)mi−1

n− 1
. (A 5)

Finally, mi also decreases by one unit when research in a city of size i successfully improves a
second-nature industry located in a city of any size but i and i + 1. Since there are imi industries in
cities of size i which can capture one of n−m− (i− 1)mi − imi+1 industries, this event takes place
with the conditional probability:

n−m− (i− 1)mi − imi+1

n
× imi

n− 1
. (A 6)

Using (A 1)–(A 6), the steady-state condition (18) for i ≥ 2 yields after simplification

i(n− i)mi+1 = [(2i− 1)n− im− 2i(i− 1)]mi − (i− 1)(n−m− i + 2)mi−1 . (A 7)

25



Appendix B. Industry Proliferation in an Urban Setting

The model in this Appendix builds on the standard endogenous growth framework with expend-
ing product variety developed by Romer (1990) and Grossman and Helpman (1991a, Chapter 3),
whereas the model presented in the main text builds on Grossman and Helpman (1991a, Chapter
4). These two models are the two canonical models of modern growth theory.

Assumptions

Consider again a population normalised to one of long-lived households. Their instantaneous
utility is now given by

u(t) ≡ log

(
n(t)

∑
z=1

d(z,t)1−1/σ

) σ
σ−1

, (B 1)

where d(z,t) is again the consumption of the good from industry z at time t, n(t) is the number
of available goods, and and σ (> 1) is the elasticity of substitution between goods. In absence
of quality differentiation, there is a one-to-one mapping between goods and industries. Total
instantaneous consumption expenditure is given by E(t) ≡ ∑n(t)

z=1 p(z,t)d(z,t) where p(z,t) is the
price of good z at time t. The objective of consumers is still to maximise the discounted sum of
their future instantaneous utilities subject to an intertemporal budget constraint similar to (4). In
comparison with the benchmark presented in Section 2, the main change so far is to have a CES
instantaneous utility instead of a Cobb-Douglas. This change is necessary to accommodate the
arrival of an unbounded number of new goods and industries since with Cobb-Douglas utility
functions, there is positive demand only for a finite number of goods.

As previously, the consumer’s maximisation problem can be solved in two stages: first allocate
instantaneous expenditure, E(t), across goods to maximise u(t) and then choose the intertemporal
allocation of expenditure. The maximisation of instantaneous utility (B 1) for any given level of
expenditure implies the following instantaneous demand

d(z,t) =
E(t)p(z,t)−σ

∑n
z′=1 p(z′,t)1−σ

. (B 2)

After defining the aggregate price index P ≡
(
∑n

z=1 p(z)1−σ
) 1

1−σ and inserting (B 2) into (B 1),
intertemporal utility becomes

U =
∫ ∞

0
[log E(τ)− log P(τ)]e−ρτdτ . (B 3)

Equation (B 3) can now be used to solve the optimal consumption path whose solution is given
again by equation (7) together with the budget constraint and a transversality condition. After
normalising total expenditure E(t) to unity through the choice of numéraire, the nominal interest
rate is again equal to the discount rate, Ṙ = ρ.

Regarding technology, there are still two activities: the manufacturing of goods in existing in-
dustries and the development of new industries, each of which is developed by a single successful
innovator protected by an infinitely-lived patent. The number of industries is large so that each
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monopoly is of negligible size and takes the aggregate price index P as given. Manufacturing one
unit of a good still requires one unit of labour. Facing the demand function (B 2), the manufacturer
of good z maximises its instantaneous profits by charging p(z) = σ

σ−1 w, that is a constant mark-up
over marginal cost. Since all manufacturers behave in the same way, the equilibrium aggregate
price index is P = σ

σ−1 w and this pricing strategy implies instantaneous profits equal to

π(z) =
1

σn
. (B 4)

To allow for new goods/industries, the micro-economic foundations of the research process
must be amended slightly. Each patent now intervenes in three different instances in the pro-
duction process. First, it still serves as the basis to manufacture a given good for consumption.
The rent associated with this can still be fully appropriated by its innovator. Second, each patent
still constitutes a line of research which can be used by research firms to innovate. Third and
unlike previously, each patent is also part of the general stock of knowledge and, as such, it is
a pure public good. The general stock of knowledge enters as a factor in the development of
new goods together with research labour. Such general stock of knowledge is necessary to make
growth self-sustainable with an ever expending number of industries. Recall that self-sustaining
growth requires the expected number of new patents to be proportional to the number of existing
industries. After the change in the utility function, this constitutes the second difference with the
benchmark in Section 2.25

Competitive research firms face constant returns to scale. However, in each line of research,
there are aggregate decreasing returns. The justification is that, although every line of research
has the same potential to generate new ideas regardless of how fruitful it has been in the past, an
increase in research labour on a given line of research leads to some duplication. This duplication
of the research effort is viewed as a negative congestion externality that is not internalised by
research firms. More formally, any research firm k working on good z and investing λk(z) units of
research labour for a time interval of length dt succeeds in inventing a new good with probability
b(λ(z),n)λk(z)dt where λ(z) is the total research labour working on z. Because of duplication, the
individual hazard function b(n,λ(z)) decreases with λ(z): ∂b(n,λ(z))

∂λ(z) < 0. It also increases with the

total stock of knowledge, which is measured by the number of goods n: ∂b(n,λ(z))
∂n > 0. To allow for

self-sustaining and non-explosive growth, the aggregate hazard function for any line of research z
is assumed to take the following functional form:

B(λ(z),n) ≡ b(λ(z),n)λ(z) ≡ β(λ(z)n)1−φ , (B 5)

where β is again the efficiency of the innovation process and φ ∈ (0,1) is the intensity of congestion
in research. Finally aggregating across lines of research yields the instantaneous probability of an
innovation taking place in the economy

ι =
n

∑
z=1

B(λ(z),n) . (B 6)

25This is however a standard feature of growth models with expanding varieties. The main difference with respect
to these latter models is that they do not need horizontal differentiation to play a role in product development. This
assumption is important here since, together with local spill-overs, it pins down the location of research which would
otherwise be indeterminate.
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This idea of decreasing returns for each line of research is a third departure from the benchmark
derived in Section 2 (and it also constitutes a minor departure from the canonical expanding variety
framework). Constant returns to innovation in all lines of research would make the distribution
of research across industries irrelevant. Decreasing returns instead pin down the location of
research.26

Turning to cities, their number m(t) can increase over time. Workers are still freely mobile
and final goods freely tradable across cities. Initially there are more goods than cities and each
city hosts the production of at least one good. Again, there are neither advantage nor cost to city
size and each new patent leads to a new industry which may be first-nature with probability α or
second-nature with probability 1− α. With first-nature industries, each patent holder must go to
a specific location. Only at this location can the patent be exploited. Assuming that first-nature
locations are always different, each new patent in a first-nature industry implies the creation of a
new city. In second-nature industries, a patent can only be implemented by its innovator where
it was developed. As in the benchmark model of Section 2, local spill-overs make research firms
locate where the line of research they work on is implemented.

Steady-State growth and city size distribution

From equation (B 4), producers all make the same profit in equilibrium so that the present value
of the uncertain profit stream is the same across industries: υ(z,t) = υ(t) for all z. From equation
(B 4), if an innovation takes place between t and t + dt, profits are scaled down by a factor n(t)

n(t)+1 .

In steady-state, this implies that the value of any manufacturer is also multiplied by n(t)
n(t)+1 . Hence,

research firm k when investing λk(z) units of research over dt at a cost wλk(z)dt can expect to win
b(λ(z),n)× λk(z)× n

n+1 υdt. Profit maximisation by research firms implies that in equilibrium

w = b(λ(z),n)
n

n + 1
υ. (B 7)

Inserting equation (B 5) into (B 7) and re-arranging implies:

υ =
n + 1
βn2−φ

[λ(z)]φw . (B 8)

This equation implies that in equilibrium, the same quantity of research labour must be used in
each line of research: λ(z) = λ = Λ

n where Λ is total research labour.
Labour market clearing together with equation (B 2) and symmetry in manufacturing implies

Λ + 1
p = 1. Since p = σ

σ−1 w, this expression implies w = σ−1
σ

1
1−Λ . Inserting this into equation

(B 8) and using symmetry across industries implies a first key equation relating the value of
manufacturers to research employment:

υ =
σ− 1

σ

n + 1
βn2

Λφ

1−Λ
. (B 9)

Turning to the stock-market valuation of firms, manufacturers pay a dividend πdt over dt. The
value of a manufacturer appreciates by υ̇dt when no research firm succeeds in developing a new

26In the benchmark, such indetermination is avoided despite constant returns because of an advantage in own-
industry innovations. This advantage is absent here since cross-industry innovations are ruled out.
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patent, whereas it decreases by a factor n
n+1 in the opposite case. This loss occurs with probability ι,

the aggregate probability of any research firm being successful as defined in equation (B 6). Thus,
with any manufacturer, the expected rate of return for a shareholder is π + υ̇− ι π

n+1 . This return is
risky but can be perfectly diversified since by equation (B 4), aggregate profit is constant and equal
to 1

σ . Consequently, manufacturers are valued so that their stock-market return is equal to the safe
interest rate, Ṙ, which is itself equal to the subjective discount rate ρ. Hence the absence of arbitrage
implies a second key equation relating the value of manufacturers to research employment:

π + υ̇− ι
π

n + 1
= ρυ . (B 10)

Then note that in steady-state the absence of arbitrage opportunity for investors also implies that
the value of firms must remain constant between t and t + dt if no new patent is developed.
Inserting this together with (B 4), (B 6), and symmetry into equation (B 10) implies

υ =
1

ρσn

(
1− β

n
n + 1

Λ1−φ

)
. (B 11)

The steady-state values of Λ and υ solve equations (B 9) and (B 11). Λ is given by:

ρ(σ− 1)
n + 1

n
Λφ − β

(
1− β

n
n + 1

Λ1−φ

)
(1−Λ) = 0 . (B 12)

By inspection of equation (B 12), Λ is unique and interior. With rational investors, the no-arbitrage
condition (B 11) is always satisfied. If Λ is larger (resp. lower) than determined by (B 9), the value
of manufacturers goes down (resp. up) by (B 11) which decreases (resp. increases) the demand for
research labour. Hence, this steady-state is stable.

The comparative statics of the implicit equation (B 12) is straightforward. It indicates that ag-
gregate research labour (and hence the rate of innovation) decreases with ρ because of discounting.
It also decreases with σ since a higher elasticity of substitution across goods reduces profits for
manufacturers. The effect of the efficiency of innovation, β, is ambiguous. On the one hand, a
higher β makes research more efficient and thus reinforces the incentive to invest. On the other
hand, a higher rate of innovation depreciates the value of innovations. Equation (B 12) shows that
the first effect dominates when β is small whereas the second effect dominates when it is large. The
effect of φ, a measure of the decreasing returns in research, is also ambiguous for similar reasons.
An increase in φ implies more strongly decreasing returns in research and thus a lower incentive
to invest. At the same time, more congestion also decreases the rate of innovation which raises the
value of existing patents.

Regarding welfare, there are four sources of inefficiency in this model. First, research firms
do not take into account the surplus accruing to consumers when a greater number of products
is available. Nor do they take into account the negative effect of new patents on existing profits.
With CES preferences these two distortions exactly offset each other. The third distortion stems
from research firms not internalising the effect of their innovations upon future innovations. Such
intertemporal spill-overs imply that too little research labour is employed in equilibrium. The
magnitude of this inefficiency can be shown to rise with σ (Grossman and Helpman, 1991a, Chapter
3). The last inefficiency is specific to this paper: Research firms can expect to get their average
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and not their marginal expected returns since they do not internalise the congestion externality
in research. This leads to over-investment whose magnitude increases with φ, the intensity of
congestion. Overall the outcome is ambiguous. There may be too much or too little research in
equilibrium depending on the relative values of φ and σ.

Because of local knowledge spill-overs and symmetry across industries, it is immediate that
the population of a city where i patents are implemented is i

n : The population of a city is exactly
proportional to the number of goods it manufactures. Symmetry in research labour implies that,
conditional on an innovation taking place and leading to a second-nature industry, the probability
that any particular city gets it is proportional to its population.

With respect to the number of patents, this model is thus equivalent to Simon (1955). Con-
sequently, the size distribution of cities follows a power law with exponent 1/(1− α).

A short proof of this result is as follows.27 In steady-state, ratio of the number of cities with
i patents mi to the total number of patents n must be constant. This ratio can change for three
reasons. A city with i − 1 patents may gain one leading mi to increase by one unit. A city with i
patents may gain one leading mi to decrease by one unit. Finally a city of any size but i − 1 and i
can gain one patent which decreases the ratio mi

n . This implies the following steady-state condition:

E
(

∆(mi/n)
∆n

)
=

(1− α)(i− 1)mi−1 − (1− α)imi −mi

n2 = 0 . (B 13)

This immediately yields mi = (1−α)(i−1)
(1−α)i+1 mi−1. Substituting into the corresponding expressions

for mi+1, mi+2, etc, shows directly that mi in the upper tails is approximately a power law with
exponent 1/(1 − α). Since the population of a city is proportional to its number of patents, the
distribution of city sizes also follows a Pareto distribution with the same exponent.

27Simon (1955), Krugman (1996), and Gabaix (1999a) provide a more complete proof of this.
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