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Abstract 
This paper assesses the empirical validity of Zipf’s Law for cities, using new data on 73 
countries and two estimation methods – OLS and the Hill estimator. With either estimator, 
we reject Zipf’s Law far more often than we would expect based on random chance; for 53 
out of 73 countries using OLS, and for 30 out of 73 countries using the Hill estimator. The 
OLS estimates of the Pareto exponent are roughly normally distributed, but those of the Hill 
estimator are bimodal. Variations in the value of the Pareto exponent are better explained by 
political economy variables than by economic geography variables. 
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1 Introduction 
 

One of the most striking regularities in the location of economic activity is how much 

of it is concentrated in cities. Since cities come in different sizes, one enduring line of 

research has been in describing the size distribution of cities within an urban system. 

 

The idea that the size distribution of cities in a country can be approximated 

by a Pareto distribution has fascinated social scientists ever since Auerbach (1913) 

first proposed it. Over the years, Auerbach’s basic proposition has been refined by 

many others, most notably Zipf (1949), hence the term “Zipf’s Law” is frequently 

used to refer to the idea that city sizes follow a Pareto distribution. Zipf’s Law states 

that not only does the size distribution of cities follow a Pareto distribution, but that 

the distribution has a shape parameter (henceforth the Pareto exponent) equal to 1.1  

 

The motivation for this paper comes from several recent papers2, which seek 

to provide theoretical explanations for the “empirical fact” that Zipf’s Law holds in 

general across countries. The evidence they present for the existence of this fact 

comes in the form of appeals to past work such as Rosen and Resnick (1980), or some 

regressions on a small sample of countries (mainly the US). One limitation of such 

appeals to the Rosen and Resnick result is that their paper is over 20 years old, and is 

based on data that dates from 1970. Thus, one pressing need is for newer evidence on 

whether Zipf’s Law continues to hold for a fairly large sample of countries.  

 

The present paper sets out to do four things: the first is to test Zipf’s Law, 

using a new dataset that includes a larger sample of countries. The second is to 

perform the analysis using the Hill estimator suggested by Gabaix and Ioannides 

(2002), who show that the OLS estimator is downward biased when estimating the 

Zipf regression, and that the Hill estimator is the maximum likelihood estimator if the 

size distribution of cities follows a Pareto distribution. Third, it non-parametrically 

analyses the distribution of the Pareto exponent to give an indication of its shape and 

                                                 
1 Although to be clear, it is not a “Law”, but simply a proposition on the size distribution of cities.  
2 A partial list includes Krugman (1996), Gabaix (1999), Axtell and Florida (2000), Reed (2001), 
Cordoba (2003), Rossi-Hansberg and Wright (2003). In addition, Brakman, Garretsen, Van Marrewijk 
and van den Berg (1999) and Duranton (2002) seek to model the empirical city size distribution, even 
if it doesn’t follow Zipf’s Law.  
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to yield additional insights. Finally, this paper sets out to explore the relationship 

between variation in the Pareto exponent, and some variables motivated by economic 

theory. 

 

Compared to Rosen and Resnick (1980), we find, first, that when we use OLS, 

for cities, Zipf’s Law fails for the majority of countries. The size distribution often 

does not follow a Pareto distribution, and even when it does, the Pareto exponent is 

frequently statistically different from 1, with over half the countries exhibiting values 

of the Pareto exponent significantly greater than 1. This is consistent with Rosen and 

Resnick’s earlier result. However, our result for urban agglomerations differs from 

their results. We find that, for agglomerations, the Pareto exponent tends to be 

significantly less than 1 using OLS (Rosen and Resnick find that, for agglomerations, 

the Pareto exponent is equal to 1). This could indicate the impact of increasing 

suburbanisation in the growth of large cities in the last 20 years. The OLS estimates of 

the Pareto exponent are unimodally distributed, while the Hill estimates are bimodal; 

this may indicate that at least one of the estimators is not appropriate. Finally, we 

show that political variables appear to matter more than economic geography 

variables in determining the size distribution of cities. 
  

The next section outlines Zipf’s Law and briefly reviews the empirical 

literature in the area. Section 3 describes the data and the methods, and section 4 

presents the results, along with non-parametric analysis of the Pareto exponent. 

Section 5 takes the analysis further by seeking to uncover any relationship between 

these measures of the urban system and some economic variables, based on models of 

the size distribution of cities. The last section concludes. 

 

 

2 Zipf’s Law and Related Literature 
 

The form of the size distribution of cities as first suggested by Auerbach in 1913 takes 

the following Pareto distribution: 
α−= Axy         (1) 

or 
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xAy logloglog α−=       (2) 

where x is a particular population size, y is the number of cities with populations 

greater than x, and A and α are constants (A,α > 0). Zipf’s (1949) contribution was to 

propose that the distribution of city sizes could not only be described as a Pareto 

distribution but that it took a special form of that distribution with α =1 (with the 

corollary that A is the size of the largest city). This is Zipf’s Law.  

 

 The key empirical article in this field is Rosen and Resnick (1980). Their 

study investigates the value of the Pareto exponent for a sample of 44 countries. Their 

estimates ranged from 0.81 (Morocco) to 1.96 (Australia), with a sample mean of 

1.14. The exponent in 32 out of 44 countries exceeded unity. This indicates that 

populations in most countries are more evenly distributed than would be predicted by 

the rank-size-rule. Rosen and Resnick also find that, where data was available, the 

value of the Pareto exponent is lower for urban agglomerations as compared to cities. 

  

More detailed studies of the Zipf’s Law (e.g. Guerin-Pace’s (1995) study of 

the urban system of France between 1831 and 1990 for cities with more than 2000 

inhabitants) show that estimates of α are sensitive to the sample selection criteria. 

This implies that the Pareto distribution is not precisely appropriate as a description of 

the city size distribution. This issue was also raised by Rosen and Resnick, who 

explored adding quadratic and cubic terms to the basic form, giving 

 2)(log'log')'(loglog xxAy βα ++=       (3) 

 32 )(log'')(log''log''')'(loglog xxxAy γβα +++=     (4) 

They found indications of both concavity (β’<0) and convexity (β’>0) with respect to 

the pure Pareto distribution, with more than two thirds (30 of 44) of countries 

exhibiting convexity. As Guerin-Pace (1995) demonstrates, this result is also sensitive 

to sample selection.3  

 

 There have also been papers which seek to test directly some of the theoretical 

models of Zipf’s Law; in particular, the idea, associated with Gabaix (1999) and 
                                                 
3 The addition of such terms can be viewed as a weak form of the Ramsey (1969) RESET test for 
functional form misspecification. In our sample, we find that the full RESET test rejects the null of no 
omitted variables almost every time. 
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Cordoba (2003), that Zipf’s Law follows from Gibrat’s Law. Black and Henderson 

(2000), for example, test whether the growth rate of cities in the US follows Gibrat’s 

Law. They conclude that neither Zipf’s Law nor Gibrat’s Law apply in their sample of 

cities. On the other hand, Ioannides and Overman (2003), using similar data but a 

different method, find that Gibrat’s Law holds in the US. This is an interesting 

development; however data limitations prevent us from being able to test for Gibrat’s 

Law, as the test requires data on the growth rate of cities.  

 

 While obtaining the value for the Pareto exponent for different countries is 

interesting in itself, there is also great interest in investigating the factors that may 

influence the value of the exponent, for such a relationship may point to more 

interesting economic and policy-related issues. Rosen and Resnick (1980), for 

example, find that the Pareto exponent is positively related to per capita GNP, total 

population and railroad density, but negatively related to land area. Mills and Becker 

(1986), in their study of the urban system in India, find that the Pareto exponent is 

positively related to total population and the percentage of workers in manufacturing. 

Alperovich’s (1993) cross-country study using values of the Pareto exponent from 

Rosen and Resnick (1980) finds that it is positively related to per capita GNP, 

population density, and land area, and negatively related to the government share of 

GDP, and the share of manufacturing value added in GDP.  

 

 

3 Data and Methods 
 
3.1 Data 

 
This paper uses a new data set, obtained from the following website: Thomas 

Brinkhoff: City Population, http://www.citypopulation.de. This site has data on city 

populations for over 100 countries. However, we have only made use of data on 75 

countries, because for smaller countries the number of cities was very small (less than 

20 in most cases). For each country, data is available for one to four census periods, 

the earliest record being 1972 and the latest 2001. This gives a total number of 

country-year pairs of observations of 197. For every country (except Peru and New 

Zealand), data is available for administratively defined cities. But for a subset of 26 
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countries (including Peru and New Zealand), there is also data for urban 

agglomerations, defined as a central city and neighbouring communities linked to it 

by continuous built-up areas or many commuters.  

 

 The precise definition of cities is an issue that often arises in the literature. 

Official statistics, even if reliable, are still based on the statistical authorities’ 

definition of city boundaries. These definitions may or may not coincide with the 

economically meaningful definition of “city” (see Rosen and Resnick (1980) or 

Cheshire (1999)). Data for agglomerations might more closely approximate a 

functional definition, as they typically include surrounding suburbs where the workers 

of a city reside. 

 

To alleviate fears as to the reliability of online data, we have cross-checked the 

data with official statistics published by the various countries’ statistical agencies, the 

UN Demographic Yearbook and the Encyclopaedia Britannica Book of the Year 

(2001). The data in every case matched with one or more of these sources.4 

 

The lower population threshold for a city to be included in the sample varies 

from one country to another – on average, larger countries have higher thresholds, but 

also a larger number of cities in the sample. The countries chosen all have minimum 

thresholds of at least 10,000. Our sample of 75 countries includes all the countries in 

the Rosen and Resnick sample, except for Ghana, Sri Lanka and Zaire.  

 

Some discussion of the sample selection criteria used here is in order. 

Cheshire (1999) raises this issue. He argues that there are three possible criteria: a 

fixed number of cities, a fixed size threshold, or a size above which the sample 

accounts for some given proportion of a country’s population. He objects to the third 

criterion as it is influenced by the degree of urbanisation in the country. However, it is 

                                                 
4 For example, the figures for South Africa, Canada, Colombia, Ecuador, Mexico, India, Malaysia, 
Pakistan, Saudi Arabia, South Korea, Vietnam, Austria and Greece are the same as those from the 
United Nations Demographic Yearbook. The figures for Algeria, Egypt, Morocco, Kenya, Argentina, 
Brazil, Peru, Venezuela, Indonesia, Iran, Japan, Kuwait, Azerbaijan, Philippines, Russia, Turkey, 
Jordan, Bulgaria, Denmark, Finland, Germany, Hungary, the Netherlands, Norway, Poland, Portugal, 
Romania, Sweden, Switzerland, Spain, Ukraine and Yugoslavia are the same as those from the 
Encyclopaedia Britannica Book of the Year. It should be noted that the Encyclopaedia Britannica Book 
of the Year 2001 lists Brinkhoff’s website as one of its data sources, thus adding credibility to the data 
obtained from this website. 
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simple to see that the other two criteria he prefers are also problematic: the first 

because for small countries a city of rank n might be a mere village indistinguishable 

from the surrounding countryside, whereas for a large country the nth city might be a 

large metropolis. While the limitation of the second criterion is that when countries 

are of different sizes, a fixed threshold would imply that a different fraction of the 

urban system is represented in the sample. The data as we use it seems in our opinion 

to represent the best way of describing the reality that large countries do have more 

cities than small countries on average, however, what is defined as a city in a small 

country might not be considered as such in a larger country.  

 

As an additional test, data was kindly provided by Paul Cheshire on carefully 

defined Functional Urban Regions (FURs), for twelve countries in the EC and the 

EFTA. This dataset, by more carefully defining the urban system, might be viewed as 

a more valid test of Zipf’s Law.  However, because the minimum threshold in the 

dataset is 300,000, meaningful regressions were run for only the seven largest 

countries in the sample (France, West Germany, Belgium, the Netherlands, Italy, 

Spain, and the United Kingdom). This serves as an additional check on the validity of 

the results obtained using the main dataset. The results using Cheshire’s dataset are 

similar to those obtained using Brinkhoff’s dataset and are not reported for brevity. 

 

 Data for the second stage regression which seeks to uncover the factors which 

influence α is obtained from the World Bank World Development Indicators CD-

ROM, the International Road Federation World Road Statistics, the UNIDO Industrial 

Statistics Database, and the Gallup, Sachs and Mellinger (1999) geographical dataset. 

The GASTIL index is from Freedom House. 

 

3.2 Methods 

 

Two estimation methods are used in this paper: OLS and the Hill (1975) method. 

Using OLS, two regressions are run: 

xAy logloglog α−=       (2) 
2)(log'log')'(loglog xxAy βα ++=      (3) 
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Equation (2) seeks to test whether α=1 and A=size of largest city, while equation (3) 

seeks to uncover any non-linearities that could indicate deviations from the Pareto 

distribution. Both these regressions are run for each country and each time period 

separately, using OLS with heteroskedasticity-robust standard errors. This is done for 

all countries although a Cook-Weisberg test for heteroskedasticity has mixed results. 

As an additional check, the regressions were also run using lagged population of cities 

as an instrument for city population, to address possible measurement errors and 

endogeneity issues involved in running such a regression. The IV estimators passed 

the Hausman specification test for no systematic differences in parameter values, as 

well as the Sargan test for validity of instruments. Results using IV are very similar to 

the ones obtained using OLS, and are not reported.5  

  

One potentially serious problem with the Zipf regression is that it is biased in 

small samples. Gabaix and Ioannides (2002) show using Monte Carlo simulations that 

the coefficient of the OLS regression of equation (2) is biased downward for sample 

sizes in the range that is usually considered for city size distributions. Further, OLS 

standard errors are grossly underestimated (by a factor of at least 5 for typical sample 

sizes), thus leading to too many rejections of Zipf’s Law. They also show that, even if 

the actual data exhibit no nonlinear behaviour, OLS regression of equation (3) will 

yield a statistically significant coefficient for the quadratic term an incredible 78% of 

the time in a sample of 50 observations.  

 

 This clearly has serious implications for our analysis. Gabaix and Ioannides 

(2002) propose the Hill (1975) estimator as an alternative procedure for calculating 

the value of the Pareto exponent. Under the null hypothesis of the power law, it is the 

maximum likelihood estimator. Thus, for a sample of n cities with sizes x1≥…≥xn, 

this estimator is: 

( )∑ −

=
−

−
= 1

1
lnln

1ˆ
n

i ni xx
nα       (5) 

while the standard error is given by: 

                                                 
5 However, there is a problem with using IV methods, as the instrumental variable is supposed to be 
correlated with the variable that is instrumented, on the assumption that there is a “true” value of the 
instrumented variable. But if we believe that a stochastic model of city growth is the correct data 
generating process, then there is no “true” value of the instrumented variable (city sizes). 
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The best known paper that has used the Hill estimator for estimating Zipf’s 

Law is Dobkins and Ioannides (2000), who find that the Pareto exponent is declining 

in the US over time, using either OLS or the Hill method. However, they also find 

that the Hill estimate of the Pareto exponent is always smaller than the OLS estimate, 

thus calling into question the appropriateness of the Hill method, at least for the US. 

Additional evidence from Black and Henderson (2000), who use a very similar 

dataset, suggests that the reliability of the Hill estimate is dependent on the curvature 

of the log rank – log population plot, something which we return to in section 4.3 

below. 

 

As an aside, it should be noted that, in comparing the two alternative 

estimators, the OLS estimator is a bit heuristic, since it simply finds the best fit line to 

a plot of the log of city rank to the log of city population. On the other hand, the Hill 

estimator starts out by assuming a Pareto distribution for the data, and finds the best 

(maximum likelihood) estimator for that distribution. However, if the distribution 

does not follow a Pareto distribution, then the Hill estimator is no longer the 

maximum likelihood estimator. 

 

We plot the kernel density functions for the estimates of the Pareto exponent 

using the OLS and Hill estimators to give a better description and further insights of 

the distribution of the values of the exponent across countries. The Pareto exponent is 

then used as the dependent variable in a second stage regression where the objective is 

to explain variations in this measure using variables obtained from models of political 

economy and economic geography.  
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4 Results 
 

In this section, we discuss only the results for the latest available year for each 

country, for the regressions (2) and (3) for Zipf’s Law and the Hill estimator. This is 

to reduce the size of the tables. Full details are available from the author upon request. 

 

4.1 Zipf’s Law for Cities 

 

Table 1 presents the detailed results of the OLS regressions of (2) and (3) and the Hill 

estimator for cities. For OLS, the largest value of the Pareto exponent (1.719) is 

obtained for Kuwait, followed by Belgium, whereas the lowest value is obtained for 

Guatemala at 0.7287, followed by Syria and Saudi Arabia. Unsurprisingly, the former 

two countries are associated with a large number of small cities and no primate city, 

whereas in the latter three countries one or two large cities dominates the urban 

system. The left side of Table 2 summarises the statistical significance of the Pareto 

exponent, using both OLS and the Hill estimator for cities. Using OLS, α is 

significantly greater than 1 for 39 of our 73 countries, while a further 14 observations 

are significantly less than one. This is consistent with Rosen and Resnick’s result, as 

they find that 32 of their 44 countries had a Pareto exponent significantly greater than 

1, while 4 countries had the exponent significantly less than 1.  

 

For the Hill estimator, the country with the largest value of the Pareto 

exponent is Belgium with a value of 1.742, followed by Switzerland and Portugal. 

The lowest values were obtained for South Korea, Saudi Arabia and Belarus. It is 

clear that the identity of the countries with the highest and lowest values for the 

Pareto exponent differ between the OLS and the Hill estimators. In fact, the 

correlation between the OLS estimator and the Hill estimator is not exceptionally 

high, at 0.7064 for the latest available period (the Spearman rank correlation is 

0.6823). This can be interpreted as saying that, because we use a different number of 

cities for each country, and since the OLS bias is larger for small samples, we should 

not expect the results of the OLS and Hill estimators to be perfectly correlated. Indeed 

we find a weak negative correlation between the difference in estimates using the two 

methods, and the number of cities in the sample (corr=-0.2575). 
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For statistical significance of the Hill estimator, one key result of Gabaix and 

Ioannides (2002) is that the standard errors of the OLS estimator are grossly 

underestimated. Thus, using the Hill estimator, 43 of the 73 countries (or 59 percent) 

in our sample for cities have values of the Pareto exponent that are not significantly 

different from the Zipf’s Law prediction of 1, with 24 countries having values 

significantly higher than 1, while only 6 countries have values significantly less than 

1. Hence the overall pattern of statistical significance of the Pareto exponent for the 

Hill estimator follows that of the OLS estimator, except that there are fewer 

significant values for the Hill estimator because the (correct) standard errors are larger 

than those estimated using OLS.  

 

The top half of Table 3 summarises the results of both OLS and Hill 

estimators for cities. The first set of observations labelled Full Sample shows the 

summary statistics for α for the latest available observation in all countries. We see 

that the mean of the Pareto exponent for cities using OLS is approximately 1.11. This 

lends support to Rosen and Resnick’s result (they obtain a mean value for the Pareto 

exponent of 1.13). For the Hill estimator, the mean of the Pareto exponent is 1.167, 

which is statistically different from the mean for the OLS estimator at the 5% level. 

This is consistent with the argument in Gabaix and Ioannides (2002), that OLS is 

biased downward in small samples. However, we also find that for 34 of the 73 

countires, the Hill estimate of the Pareto exponent is smaller than the OLS estimate, 

which may indicate a bias in the Hill estimator (recall that the Hill estimator is 

supposed to overcome the downward bias of the OLS estimator; Section 4.3 discusses 

this further). 

 

 Breaking down the results by continents, we find that, for both OLS and Hill 

estimators, there seems to be a clear distinction between Europe, which has a high 

average value of the Pareto exponent (the average being above 1.2 using OLS) and 

Asia, Africa, and South America, which have low average values of the exponent 

(below 1.1 using OLS).6 This indicates that populations in the Europe are more evenly 

spread over the system of cities than in the latter three continents. Indeed, 21 of the 26 
                                                 
6 A two-sample t-test shows that the average Pareto exponent for Europe is significantly different from 
that for the rest of the world as a whole. 
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European countries in our sample had α significantly greater than 1 using OLS. These 

findings raise the interesting question of why these differences exist between different 

continents. Could it be the different levels of development, or institutional factors? 

The next section will seek to identify the reasons for these apparently systematic 

variations. 

 

 Table 1 also provides the results of the value of the intercept term of the linear 

regression (2). As Alperovich (1984, 1988) notes, a proper test of Zipf’s Law should 

not only consider the value of the Pareto exponent, but also whether the intercept term 

A is equal to the size of the largest city. We find, perhaps unsurprisingly, that 

whenever the Pareto exponent is significantly greater than 1, the intercept term is also 

greater than the size of the largest city (this is almost by construction: in a log-rank – 

log-population plot, the largest city enters on the horizontal axis, so that, provided the 

largest city is not too far from the best-fit line, if the line has slope equal to 1, it must 

be that the vertical intercept is equal to the horizontal intercept). A comparison of the 

first and third panels of Table 2 confirms this result, as the estimates of the Pareto 

exponent and the intercept follow almost identical patterns. 

 

 For values of the quadratic term, the patterns are less strong. Recalling that a 

significant value for the quadratic term represents a deviation from the Pareto 

distribution, we find the following results. For the cities sample, 30 observations or 

41% display a value for the quadratic term significantly greater than zero, indicating 

convexity of the log-rank – log-population plot, while 20 observations (26%) have a 

value for the quadratic term significantly less than zero, indicating concavity of the 

log-rank – log-population plot. These results are again in the same direction as those 

obtained by Rosen and Resnick (1980), but less strong (they find that the quadratic 

term is significantly greater than zero for 30 out of 44 countries).  

 

 One additional result that arises out of the quadratic regression (3) is that 

including the quadratic term often dramatically changes the value or even the sign of 

the coefficient of the linear term. This is actually a fairly common result in the 

literature; Rosen and Resnick (1980) find that, in the quadratic regression (3), the 

linear term is positive for six of their 44 countries; this compares with 17 of our 73 

countries (in Table 1, α is a positive value, but the coefficient on the term (log x) in 
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the linear specification (2) is (-α)). This sign change in the linear term can be 

explained by the different interpretations of the linear term in equations (2) and (3). In 

a linear regression, the linear term gives the slope of the best-fit line. But in a 

quadratic regression, the linear term gives the location of the maximum or minimum 

point of the best-fit line7. 

 

Figures 1 and 2 graph the estimates for the Pareto exponent for all countries 

using the latest available observation, using the OLS and Hill estimators respectively, 

including the 95% confidence interval and sorting the sample according to values of 

the Pareto exponent (the confidence intervals do not form a smooth series since each 

country has a different standard error). The figures show graphically what the tables 

summarise. We find that the confidence intervals for the Hill estimator are larger than 

for the OLS estimator, and hence that we reject the null hypothesis that the Pareto 

exponent is equal to 1 more frequently using the OLS estimator (in the figures, a 

rejection occurs when no portion of the vertical line indicating the confidence interval 

intersects the horizontal line at 1.00).  

 

4.2 Zipf’s Law for Urban Agglomerations 

 

It is frequently claimed (see e.g. Rosen and Resnick (1980) or Cheshire (1999)) that 

Zipf’s Law holds if we define cities more carefully, by using data on urban 

agglomerations rather than cities. To see if this is in fact the case, we also run the 

OLS regressions (2) and (3), and the Hill estimator, for our sample of 26 countries for 

which data on urban agglomerations is available.  

 

The results for the latest available period for urban agglomerations are 

presented in Table 4, and are summarised in the lower half of Table 3. Using either 

OLS or the Hill estimator, the mean value of the Pareto exponent is lower for 

agglomerations than for cities (the value is 0.870 for OLS and 0.8782 for the Hill 

estimator). This is to be expected, since the Pareto exponent is a measure of how 

evenly distributed is the population (the higher the value of the exponent, the more 

                                                 
7 If the function is 2cxbxay ++= , then y is maximised when ( )cbx 2−= . Since our data points 
have values for x (the log of city size) between 9 and 17, it is possible that, if the quadratic term is 
negative, the maximum of y occurs at a positive value of x, thus implying a positive value of b.  
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even in size are the cities), and urban agglomerations tend to be larger relative to the 

core city for the largest cities than for smaller cities. Once again a slight pattern can 

be observed across continents; the small sample size however does not make this 

result particularly strong.  

 

The right side of Table 2 summarises the statistical significance of both OLS 

and the Hill estimator for agglomerations. Using OLS, the Pareto exponent for 

agglomerations is significantly greater than one for only two countries (the 

Netherlands and the United Kingdom), while fully 16 of the 26 observations for 

agglomerations were significantly less than one (a similar result albeit with weaker 

significance is obtained using the Hill estimator). Results for the intercept term of the 

linear regression (2) tracks the results for the Pareto exponent very closely. For the 

quadratic regression (3), we find that half of the observations (13 out of 26) have a 

value for the quadratic term not significantly different from zero, with 9 or 35% 

having a quadratic term significantly less than zero. 

 

 Therefore, the claim that Zipf’s Law holds for urban agglomerations (see 

Rosen and Resnick (1980), Cheshire (1999)), is strongly rejected for our sample of 

countries in favour of the alternative that agglomerations are more uneven in size than 

would be predicted by Zipf’s Law. Our interpretation of this finding is that, in more 

recent years, the growth of cities (especially the largest cities) has mainly taken the 

form of suburbanisation, so that this growth is not so much reflected in 

administratively defined cities, but shows up as increasing concentration of 

population in larger cities when urban agglomerations are used.  

 

4.3 Non-parametric analysis of the distribution of the Pareto exponent 

 

An additional way of describing the distribution of the Pareto exponent across 

countries is to construct the kernel density functions. The advantage of doing so is 

that it gives us a more complete description of how the values of the Pareto exponent 

are distributed – whether it is unimodal or bimodal, or whether it is normally 

distributed or not. In implementing this method, we use the latest available 

observation for each country. We construct the efficient Epanechnikov kernel 

function for the Pareto exponent for both the OLS and Hill estimators, using the 
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“optimal” window width (the width that minimises the mean integrated square error if 

the data were Gaussian and a Gaussian kernel were used), and including an overlay of 

the normal distribution for comparative purposes.  

 

Figure 3 shows the kernel function for the OLS estimator. It is slightly right 

skewed relative to the normal distribution, but is clearly unimodal (with the mode 

approximately equal to 1.09) and its distribution is quite close to the normal 

distribution. Figure 4 shows the kernel function for the Hill estimator. What is 

interesting (and a priori unexpected) is that the distribution is not unimodal. Instead, 

we find that there is no clearly defined mode, rather that observations are spread 

roughly evenly across ranges of the Pareto exponent between 0.95 and 1.35. 

Experimenting with narrower window widths (Figure 5, where the window width is 

0.06)8 shows that the distribution is in fact bimodal, with the two modes at 

approximately 1.0 and 1.32. 

 

Closer inspection of the relationship between the OLS estimator and Hill 

estimator of the Pareto exponent, and the value of the coefficient for the quadratic 

term in the OLS regression equation (3), reveals further insights as to what is actually 

happening. We find that, while the correlation between the OLS estimator of the 

Pareto exponent and the quadratic term is very low (corr=-0.0329 for the latest 

available period), the correlation between the Hill estimator and the quadratic term is 

high (corr=0.5063). Further, the correlation between the difference between the Hill 

estimator and the OLS estimator, and the quadratic term, is even higher (corr=0.7476) 

(see figure 6). What we find is that, in general, the Hill estimator is larger than the 

OLS estimator if the quadratic term is positive (i.e. the log rank – log population plot 

is convex), while the reverse is true if the quadratic term is negative. In other words, 

when the size distribution of cities does not follow a Pareto distribution, the Hill 

estimator may be biased. These results are similar to those obtained by Dobkins and 

Ioannides (2000) and Black and Henderson (2000) for US cities (see the brief 

discussion in section 3.2 above). Therefore, we should tread carefully in making 

conclusions from the results of the Hill estimator. 

                                                 
8 While the “optimal” window width exists, in practice choosing window widths is a subjective 
exercise. Silverman (1986) shows that the “optimal” window width oversmooths the density function 
when the data are highly skewed or multimodal. 
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5 Explaining Variation in the Pareto Exponent 
 

The Pareto exponent α can be viewed as a measure of inequality: the larger the value 

of the Pareto exponent, the more even is the populations of cities in the urban system 

(in the limit, if α=∞, all cities have the same size). There are many potential 

explanations for variations in its value. One possibility is a model of economic 

geography, as exemplified by Krugman (1991) and Fujita, Krugman and Venables 

(1999). These models can be viewed as models of unevenness in the distribution of 

economic activity. For certain parameter values, economic activity is agglomerated, 

while for other parameter values, economic activity is dispersed. The key parameters 

of the model are: the degree of increasing returns to scale, transport costs and other 

barriers to trade within a country, the share of mobile or footloose industries in the 

economy. From Chapter 11 of Fujita, Krugman and Venables (1999), there will be a 

more uneven distribution of city sizes (smaller Pareto exponent), the greater are scale 

economies, the lower are transport costs, the smaller the share of manufacturing in the 

economy, and the lower the share of international trade in the economy. These results 

can be explained as follows. The greater are scale economies in each manufacturing 

industry, the fewer the number of cities that will be formed, so that the greater is the 

average difference in sizes between cities. Similarly, lower transport costs imply that 

the benefits of locating close to the agricultural periphery are reduced, so that fewer 

cities are formed. Also, the smaller the share of manufacturing in the economy, the 

more cities will be formed, as the desire to serve the agricultural periphery induces 

firms to locate away from existing cities (these conclusions are reached from an 

analysis of Fujita, Krugman and Venables (1999) equation (11.12)). In addition, 

Chapter 18 of Fujita, Krugman and Venables (1999) shows that a greater extent of 

international trade weakens the force for agglomeration and leads to a more even 

distribution of economic activity.9 

 

But we can also think of political factors that could influence the size 

distribution of cities. Ades and Glaeser (1995) argue that political stability and the 

                                                 
9 Strictly speaking, to the best of our knowledge, existing models of economic geography are not able 
to generate a size distribution of cities that follows a Pareto distribution, without making additional 
assumptions (c.f. Brakman et al (1999)). They are however able to generate cities of different sizes, and 
here we seek to explore whether the variables associated with models of economic geography, impact 
on the size distribution of cities, in the way that is predicted by the models. 
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extent of dictatorship are key factors that influence the concentration of population in 

the capital city. They develop a model to justify this line of reasoning in terms of the 

size of the capital city, but their model can be reinterpreted in terms of the urban 

system as a whole. Political instability or a dictatorship should imply a more uneven 

distribution of city sizes (i.e. a smaller Pareto exponent). Thus, a dictatorship would 

be more likely to have a large capital city since rents are more easily obtainable in the 

national capital. However, regional capitals would also be a source of rents (albeit at a 

smaller scale than in the national capital). We should therefore see a hierarchy of 

cities where cities at each tier of the hierarchy are much larger in size than cities at a 

lower tier. Similarly, if the country is politically unstable, then if the government is 

unwilling or unable to protect the population outside large cities, we should find a 

more uneven distribution of city sizes since the population would flock to the larger 

cities. 

 

We also control for other variables that could influence the size distribution of 

cities, including the size of the country as measured by population, land area or GDP, 

and also for possible effects of being located in different continents.  

 

Thus our estimated equation is: 

 

itit uDUMMIESCONTROLPOLITICGEOG +++++= 43210 δδδδδα   (5) 

 

Where αit is the Pareto exponent, GEOG is the vector of economic geography 

variables: scale economies, transport costs, non-agricultural economic activity, and 

trade as a share of GDP (a detailed definition of the variables is given in the Data 

Appendix). POLITIC is a group of political variables: the GASTIL index of political 

rights and civil liberties, total government expenditure as a share of GDP, an indicator 

variable for the time the country achieved independence, and an indicator variable for 

whether the country had an external war between 1960 and 1985. The GASTIL index 

is our measure of dictatorship, while the timing of independence and external war are 

our measures of political stability10. Government expenditure can be interpreted in 

                                                 
10 Following Ades and Glaeser (1995), we would have liked to use as the measure of political 
instability, the number of attempted coups, assassinations or revolutions from the Barro-Lee (1994) 
dataset. However the years of their data do not match ours. 
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two ways: either as a dictatorship indicator, or as an indicator of stability (the greater 

the share of government in the economy, the smaller the effect of market forces on the 

economy. The government can redistribute tax revenues to reduce regional 

inequalities). CONTROL is a set of variables controlling for the size of the country; 

here the control variables used are the log of per capita GDP in constant US dollars, 

the log of the land area of the country, and the log of population. Finally, DUMMIES 

is the set of continent dummies.   

 

One potential concern is the effect of using an estimated coefficient from a 

first stage regression as a dependent variable in a second stage regression. Lewis 

(2000) shows that the danger in doing so is that there could be measurement error in 

the first stage estimate, leading to inefficient estimates in the second stage. 

Heteroskedasticity might also arise if the sampling uncertainty in the (second stage) 

dependent variable is not constant across observations. He advocates the use of 

feasible GLS (FGLS) to overcome this problem. However, Baltagi (1995) points out 

that FGLS yields consistent estimates of the variances only if T → ∞. This is clearly 

not the case for our sample; hence FGLS results are not reported. In addition, Beck 

and Katz (1995) show that FGLS tends to underestimate standard errors, and that the 

degree of underestimation is worse the fewer the time periods in the panel. They 

propose an alternative estimator using panel corrected standard errors with OLS, 

which they show to perform better than FGLS in the sense that it does not 

underestimate the standard errors, but still takes into account the panel structure of the 

data and the fact that the data could be heteroskedastic and contemporaneously 

correlated across panels. The regressions using panel-corrected standard errors are 

those that are reported below. 

 

Table 5 presents the results using the OLS estimate of the Pareto exponent as 

the dependent variable (running the regression with the Hill estimate as the dependent 

variable yields almost identical results). The number of observations is somewhat less 

than the full sample because data is not available for all countries in all years. 

Columns (1) to (3) present the results using all available observations. Column (1) is 

the model without size and continent controls. Of the economic geography variables, 

transport cost and the degree of scale economies are highly significant. However, they 
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enter with the opposite signs to what we expect from theory. The political variables 

fare better, with all variables being significant. The coefficients on the GASTIL index 

of political rights and the timing of independence enter with the theoretically 

predicted signs. However, the war dummy enters with the wrong sign; this could be 

explained by suggesting that large cities are more highly prized targets in a war, so 

that people will tend to leave large cities. Total government expenditure enters with a 

very strong positive coefficient, which indicates that greater government expenditure 

is associated with a more even distribution of cities. This suggests that large 

governments imply a more stable society.  

 

Including controls for country size and continent dummies (columns (2) and 

(3)) shows that the results of the economic geography variables are not robust, which 

contrasts with the strong robustness of the political variables. The only robustly 

significant economic geography variable is the degree of scale economies, and this 

enters with the opposite sign to what we would expect from existing theoretical 

models. The political variables remain highly significant. Therefore, our results 

suggest that politics plays a more important role than economy-wide economic 

geography variables in explaining variation in the Pareto exponent across countries.  

 

Columns (4) to (6) of Table 5 present results of the same regression, run for 

the sample excluding former communist countries, in the belief that in the rest of the 

world, free market forces play a more important role than political forces. Dropping 

the former communist countries improves the overall fit of the estimated equation, 

since R-squared increases. The signs of all significant variables remain unchanged. 

We do indeed find that the economic geography variables have increased significance, 

however as noted before they enter with the wrong sign vis-à-vis the theoretical 

model. Also, while the GASTIL index becomes less significant, the rest of the 

political variables remain highly significant although the war dummy continues to 

enter with the wrong sign. 

 

Of the control variables and the continent dummies, not much need be said. In 

the full specifications (3) and (6), they are mainly insignificant. This indicates that the 

economic geography and the political variables account for most of the variation in 

the Pareto exponent across continents noted in Section 4.  
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Comparing our results to previous findings, we find that our results for 

columns (3) and (6) of Table 5 (including all the variables and controls) are broadly in 

line with those of Alperovich (1993). However, we get somewhat different results 

from those of Rosen and Resnick, as they find that the Pareto exponent is positively 

related to per capita GNP, total population and railroad density, and negatively related 

to land area. One likely explanation for this difference in results is that our 

specification is more complete than the one used by Rosen and Resnick; this can also 

be seen from the larger R2 that we obtain (0.66) compared to their largest R2 of 0.23.  

 

 

6 Conclusion 
 

This paper set out to test Zipf’s Law for cities, using a new dataset and two alternative 

methods – OLS and the Hill estimator. Using either method, we reject Zipf’s Law 

much more often than we would expect based on random chance. Using OLS, we 

reject the Zipf’s Law prediction that the Pareto exponent is equal to 1, for 53 of the 73 

countries in our sample. This result is consistent with the classic study by Rosen and 

Resnick (1980), who reject Zipf’s Law for 36 of the 44 countries in their sample. We 

get the opposite result using the Hill estimator, where we reject Zipf’s Law for a 

minority of countries (30 out of 73). Therefore, the results we obtain depend on the 

estimation method used, and in turn, the preferred estimation method would depend 

on our sample size and on our theoretical priors – whether or not we believe that 

Zipf’s Law holds.  

 

 One new result which we obtain is that the average value of the Pareto 

exponent for urban agglomerations is less than 1 (and significantly so for over half the 

sample using OLS); Zipf’s Law fails for urban agglomerations. This is a new result, 

as previous work (e.g. Rosen and Resnick (1980)) have tended to find that the Pareto 

exponent is equal to 1 if data on urban agglomerations are used. This could be an 

indication of the increasing suburbanisation of large cities in the last 20 years, which 

would show up as increasing inequality between urban agglomerations. 
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In attempting to explain the observed variations in the value of the Pareto 

exponent, we sought to relate the value of the Pareto exponent to several variables 

used in models of the size distribution of cities. The data appears to be more 

consistent with a model of political economy as the main determinant of the size 

distribution of cities. Economic geography variables are important as well, but tend to 

enter with coefficients which are opposite in sign to theoretical predictions. 
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Table 1: Results of OLS regression of equations (2) and (3) and the Hill estimator, for 
the sample of cities, for latest year of each country.  
   OLS Hill 
COUNTRY YEAR CITIES α α’ β’ Log A α 
ALGERIA 1998 62 1.351** -2.3379 0.0408 18.7999** 1.3586* 
EGYPT 1996 127 0.9958 -2.9116** 0.0781** 15.0635 1.0937 
ETHIOPIA 1994 63 1.0653 -4.3131** 0.1425** 14.2275 1.3341* 
KENYA 1989 27 0.8169** -1.9487** 0.0486** 11.2945** 1.0060 
MOROCCO 1994 59 0.8735** -1.0188 0.006 13.0697** 0.9295 
MOZAMBIQUE 1997 33 0.859** 1.0146** -0.0811** 12.1286** 0.8107 
NIGERIA 1991 139 1.0409** -0.9491 -0.00375 15.9784** 1.0459 
SOUTH AFRICA 1991 94 1.3595** -1.1031 0.01076 19.1221** 1.2679* 
SUDAN 1993 26 0.9085 -0.2142 -0.0283 13.0723* 1.0066 
TANZANIA 1988 32 1.01 -1.8169 0.0348 13.6915 0.9089 
        
AUSTRALIA 1998 131 1.2279** 7.8935** -0.4055** 17.6039** 0.8012** 
        
ARGENTINA 1999 111 1.0437 2.9939** -0.1652** 16.1345** 0.9670 
BRAZIL  2000 411 1.1341** -0.0963** -0.0418** 18.3681** 1.0607 
CANADA 1996 93 1.2445** 0.4273 -0.0689 18.0872** 1.2526 
CHILE 1999 67 0.8669** -0.6516 -0.00915 13.0195** 0.7908* 
COLOMBIA 1999 111 0.9024** -0.804 -0.00404 14.0252** 0.9345 
CUBA 1991 55 1.09 -3.6859** 0.1093** 15.1299 1.3177 
DOMINICAN 
REPUBLIC 

1993 23 0.8473 -2.6376* 0.0749* 11.6874** 0.8029 

ECUADOR 1995 42 0.8083** -1.4086 0.0255 11.6871** 0.9015 
GUATEMALA 1994 13 0.7287** -3.6578** 0.1249** 9.71255** 1.2074 
MEXICO 2000 162 0.9725 1.9514** -0.1172* 15.8281 0.8127** 
PARAGUAY 1992 19 1.0137 -1.9584 0.0415 13.1465 1.2571 
USA 2000 667 1.3781** -1.9514** 0.0235** 21.3849** 0.9339 
VENEZUELA 2000 91 1.0631* -0.7249 -0.0139 15.8205** 1.4277** 
        
AZERBAIJAN 1997 39 1.0347 -5.2134** 0.1812** 13.6575 1.3605 
BANGLADESH 1991 79 1.0914 -4.1878** 0.1274** 15.6311 1.3545* 
CHINA 1990 349 1.1811** 1.4338** -0.1008** 19.5678** 0.9616 
INDIA 1991 309 1.1876** -0.7453 -0.0170** 19.3916** 1.2178** 
INDONESIA 1990 235 1.1348** -2.6325** 0.0610** 17.4209** 1.2334** 
IRAN 1996 119 1.0578** -1.5539 0.01985 16.2499** 1.0526 
ISRAEL 1997 55 1.0892* 1.4982** -0.1148** 14.8869** 1.0409 
JAPAN 1995 221 1.3169** -0.6325 -0.02655 20.6491** 1.2249** 
JORDAN 1994 34 0.8983** -2.4831** 0.0699** 12.0845** 1.0629 
KAZAKHSTAN 1999 33 0.9615 4.8618** -0.2444** 13.8818 0.8653 
KUWAIT 1995 28 1.719** 5.8975** -0.3547** 20.5508** 1.6859* 
MALAYSIA  1991 52 0.8716* 2.8194** -0.1622** 12.6602** 0.8419 
NEPAL 2000 46 1.1870** -2.0959 0.0405 15.5832** 1.2591 
PAKISTAN 1998 136 0.9623 -2.4838** 0.0607** 15.0410** 1.0626 
PHILIPPINES  2000 87 1.0804 3.4389** -0.1838** 16.4972** 0.8630 
SAUDI ARABIA 1992 48 0.7824** 0.02426** -0.0333* 11.9143** 0.7302** 
SOUTH KOREA 1995 71 0.907** -0.3178 -0.02251 14.5804** 0.6850** 
SYRIA 1994 10 0.7442* -1.4709 0.02796 10.8967** 1.0862 
TAIWAN 1998 62 1.0587** 0.1482** -0.0487** 15.7536** 0.9294 
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   OLS Hill 
COUNTRY YEAR CITIES α α’ β’ Log A α 
THAILAND 2000 97 1.1864** -4.9443** 0.1553** 16.6797 1.4184** 
TURKEY 1997 126 1.0536 -2.6659** 0.0642** 16.1683 1.1850 
UZBEKISTAN 1997 17 1.0488 -8.9535** 0.3048** 14.7941 1.5111* 
VIETNAM 1989 54 0.9756** -1.4203 0.0184** 14.1331* 0.8028 
        
AUSTRIA  1998 70 0.9876 -3.9862** 0.1358** 13.0823 1.4226** 
BELARUS 1998 41 0.8435** 0.6492** -0.0639** 12.2363** 0.7503* 
BELGIUM 2000 68 1.5895** -2.1862 0.02647 20.5048** 1.8348* 
BULGARIA 1997 23 1.114 -4.8424** 0.1531** 15.1382 1.2862 
CROATIA 2001 24 0.9207 -1.7693 0.03769 12.0916** 0.9551 
CZECH REPUBLIC  2001 64 1.1684** -3.5189** 0.1029** 15.6961** 1.2669 
DENMARK 1999 58 1.3608** -2.7601** 0.06274* 17.5639** 1.3753* 
FINLAND 1999 49 1.1924** -2.468** 0.0569** 15.6367** 1.3462 
FRANCE 1999 104 1.4505** -4.1897** 0.1137** 20.2497** 1.6388** 
GERMANY 1998 190 1.238** -0.3019** -0.0384** 18.6477** 1.2548** 
GREECE 1991 43 1.4133** -6.2019** 0.2036** 18.5979** 1.4804* 
HUNGARY 1999 60 1.124** -4.0186** 0.1254** 15.1636 1.2789 
ITALY 1999 228 1.3808** -3.9073** 0.1064** 19.8143** 1.4967** 
NETHERLANDS 1999 97 1.4729** -0.4333 -0.04491 20.0318** 1.4436** 
NORWAY 1999 41 1.2704** -4.5945** 0.1481** 16.2593** 1.4026 
POLAND 1998 180 1.1833** 0.3931** -0.0679** 17.2931** 1.0908 
PORTUGAL 2001 70 1.382** -4.1362** 0.1241** 17.7945** 1.6703** 
ROMANIA 1997 70 1.1092* -0.05598 -0.0445 15.9369** 1.0598 
RUSSIA 1999 165 1.1861** 1.2459* -0.0942* 18.9423** 1.0344 
SLOVAKIA 1998 42 1.3027** -4.4861** 0.1428** 16.5644** 1.4810* 
SPAIN 1998 157 1.1859** -0.06586 -0.04697 17.5737** 1.0969 
SWEDEN 1998 120 1.4392** -1.2181 -0.00991 19.1777** 1.2867** 
SWITZERLAND 1998 117 1.4366** -6.1258** 0.2229** 17.8549** 1.7386** 
UKRAINE 1998 103 1.0246 1.5787 -0.1058** 15.7615** 1.0197 
YUGOSLAVIA 1999 60 1.1827* -2.2817 0.04839 15.8798** 1.1670 
UNITED KINGDOM 1991 232 1.4014** -3.5503** 0.0894** 20.3123** 1.3983** 
Notes: * significant at 5%; ** significant at 1%; for α, significantly different from 1; for α’, 
significantly different from (-1); for β’, significantly different from 0; for log A, significantly different 
from the log of the population of the largest city. α is defined as a positive value; to compare the 
coefficients of log x in equation (2) and (log x)’ in equation (3), we compare (-α) with α’. 
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Table 2: Breaking down the results of OLS regressions (2) and (3) and the Hill 
estimator: Statistical significance (5% level) in the latest available observation, for 
cities and urban agglomerations. 

Cities  Agglomerations 
Summary results: OLS estimates of α 

Continent α<1 α=1 α>1  Continent α<1 α=1 α>1 
Africa 3 4 3  Africa 1 1  
N America  1 2  N America 2 1  
S America 4 4 2  S America 3 2  
Asia 5 8 10  Asia 3 2  
Europe 2 3 21  Europe 5 2 2 
Oceania   1  Oceania 2   
Total 14 20 39  Total 16 8 2 
         

Summary results: OLS estimates of β’ 
Continent β’<0 β’=0 β’>0  Continent β’<0 β’=0 β’>0 
Africa 1 6 3  Africa 1  1 
N America  1 2  N America 2 1  
S America 3 4 3  S America  5  
Asia 11 5 8  Asia 2 2 1 
Europe 4 7 14  Europe 3 4 2 
Oceania 1    Oceania 1 1  
Total 20 23 30  Total 9 13 4 
         

Summary results: OLS estimates of A (compared to largest city) 

Continent 
Less 
than 

Equal 
to 

Greater 
than  Continent 

Less 
than 

Equal 
to 

Greater 
than 

Africa 3 4 3  Africa 1 1  
N America  1 2  N America 1 2  
S America 5 2 3  S America 5   
Asia 6 7 10  Asia 2 3  
Europe 2 3 21  Europe 5 3 1 
Oceania   1  Oceania 2   
Total 16 17 40  Total 16 9 1 
         

Summary results: Hill estimator for α 
Continent α<1 α=1 α>1  Continent α<1 α=1 α>1 
Africa  7 3  Africa 1 1  
N America 1 1 1  N America 1 2  
S America 1 9   S America 1 4  
Asia 2 14 7  Asia  5  
Europe 1 12 13  Europe 1 8  
Oceania 1    Oceania 1 1  
Total 6 43 24  Total 5 21  
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Table 3: Summary statistics: by continent: Values of α using OLS and Hill estimators, 
for cities and agglomerations. 
OLS for cities Obs Mean Std. Dev. Min Max 
Full sample 73 1.1114 0.2042 0.7287 1.719 
Africa 10 1.0280 0.1910 0.8169 1.3595 
North America 3 1.2008 0.1705 1.0127 1.3451 
South America 10 0.9531 0.1363 0.7287 1.1391 
Asia 23 1.0633 0.2027 0.7442 1.719 
Europe 26 1.2306 0.1735 0.8435 1.540 
Oceania 1 1.2685  1.2685 1.2685 
      
Hill for cities Obs Mean Std. Dev. Min Max 
Full sample 73 1.1667 0.2583 0.6850 1.7422 
Africa 10 1.0762 0.1868 0.8107 1.3586 
North America 3 1.1772 0.2724 0.8751 1.4039 
South America 10 1.0255 0.1819 0.8028 1.3177 
Asia 23 1.1226 0.2602 0.6850 1.6859 
Europe 26 1.3063 0.2542 0.7503 1.7422 
Oceania 1 0.8398  0.8398 0.8398 
      
OLS for agglomerations Obs Mean Std. Dev. Min Max 
Full sample 26 0.8703 0.1526 0.5856 1.2301 
Africa 2 0.8661 0.3374 0.6275 1.1047 
North America 3 0.8941 0.0648 0.8345 0.9631 
South America 5 0.8510 0.1065 0.7025 0.9904 
Asia 5 0.8778 0.1316 0.6813 1.0001 
Europe 9 0.9111 0.1725 0.6349 1.2301 
Oceania 2 0.6844 0.1399 0.5856 0.7833 
      
Hill for agglomerations Obs Mean Std. Dev. Min Max 
Full sample 26 0.8782 0.2276 0.5058 1.5897 
Africa 2 1.0477 0.7665 0.5058 1.5897 
North America 3 0.7202 0.1714 0.5225 0.8273 
South America 5 0.8812 0.2084 0.5229 1.0567 
Asia 5 0.8837 0.1133 0.7286 1.0384 
Europe 9 0.9402 0.1178 0.6778 1.0903 
Oceania 2 0.6458 0.1939 0.5087 0.7829 
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Table 4: Results of OLS regression of equations (2) and (3), and the Hill estimator, 
for the sample of urban agglomerations, for latest year of each country  
   OLS HILL 
COUNTRY YEAR AGG α α’ β’ Log A α 
MOROCCO 1982 10 1.10466 -14.207** 0.48473** 15.8475 1.5897 
SOUTH AFRICA 1991 23 0.6275** 3.8188** -0.1747** 10.1609** 0.5058** 
        
AUSTRALIA 1998 21 0.5855** 0.9107 -0.05806* 9.4412** 0.5087** 
NEW ZEALAND 1999 26 0.7833** -0.8086 0.0011 10.8562** 0.7830 
        
ARGENTINA 1991 19 0.7025** -1.1177 0.01527 11.1267** 0.5229** 
BRAZIL  2000 18 0.9904 -1.1245 0.00444 16.5577 0.9737 
CANADA 1996 56 0.8345** -0.2635 -0.0225 13.0979** 0.8273 
COLOMBIA 1993 16 0.8278** -0.2378 -0.02141 12.9431** 1.0567 
ECUADOR 1990 43 0.9046 -2.0169 0.0474 12.7637** 0.9573 
MEXICO 2000 38 0.9631 -1.3863 0.01501 15.6724 0.8107 
PERU 1993 65 0.8295** -1.5843 0.03171 12.3510** 0.8955 
USA 2000 336 0.8847** 3.4992** -0.1669** 16.1013 0.5225** 
        
BANGLADESH 1991 43 0.8068** -2.9315** 0.08399** 12.1569** 0.9141 
INDIA 1991 178 0.9579** 0.1559** -0.0419** 16.2945 0.9001 
INDONESIA 1990 193 1.0001 -1.1315 0.00532 15.8411 1.0384 
JORDAN 1994 10 0.6813** 0.2377 -0.03703 9.7100** 0.7286 
MALAYSIA  1991 71 0.9429 3.3355** -0.1872** 13.7914 0.8370 
        
AUSTRIA  1998 34 0.7501** -0.6338 -0.0051 10.6591** 0.6778** 
DENMARK 1999 27 0.8166** -3.7224** 0.1235** 11.2213** 1.0903 
FRANCE 1999 114 1.02332 -1.5263 0.02014 15.7905 1.0643 
GERMANY 1996 144 0.8902** 0.5697** -0.0578** 14.6429** 0.8886 
GREECE 1991 15 0.6349** -3.987** 0.1324** 9.2190** 0.9499 
NETHERLANDS 1999 21 1.2301* 0.83 -0.08044 17.5350** 0.9703 
NORWAY 1999 19 0.8828* -1.7724 0.03853 11.7679** 0.9212 
SWITZERLAND 1998 48 0.9847 -0.1671 -0.0356** 13.7188 0.9557 
UNITED 
KINGDOM 

1991 151 1.0303* -0.9192 -0.0045 16.0465 0.9438 

Note: AGG: Number of urban agglomerations. * significant at 5%; ** significant at 1%; for α, 
significantly different from 1; for α’, significantly different from (-1), for β’, significantly different 
from 0; for log A, significantly different from the log of the population of the largest city. α is defined 
as a positive value; to compare the coefficients of log x in equation (2) and (log x)’ in equation (3), we 
compare (-α) with α’. 
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Table 5: Panel estimation of equation (5) (dependent variable = OLS coefficient of α) 
 (1) (2) (3) (4) (5) (6) 
Dep variable OLS OLS OLS OLS OLS OLS 
Transport cost -0.6151 

(3.00)*** 
-0.2763 
(1.13) 

-0.4064 
(1.36) 

-0.8702 
(3.48)*** 

-0.5014 
(2.56)** 

-0.6386 
(2.31)** 

Trade (% of GDP) -0.0928 
(1.71)* 

0.0370 
(0.51) 

-0.0240 
(0.30) 

-0.0459 
(0.89) 

0.0532 
(0.81) 

-0.0177 
(0.25) 

Non-agricultural 
economic activity 

-0.2411 
(0.73) 

-1.0137 
(2.37)** 

-0.5644 
(1.69)* 

-0.6002 
(1.99)** 

-1.4002 
(3.37)*** 

-0.7731 
(2.10)** 

Scale economies 0.4467 
(2.25)** 

0.4462 
(2.14)** 

0.4057 
(1.77)* 

0.4993 
(2.30)** 

0.4756 
(2.14)** 

0.4284 
(1.75)* 

GASTIL index of 
dictatorship 

-0.0375 
(1.96)* 

-0.0145 
(1.32) 

-0.0369 
(1.97)** 

-0.0307 
(1.59) 

-0.0028 
(0.21) 

-0.0284 
(1.67)* 

Total government 
expenditure 

0.7837 
(6.08)*** 

0.8013 
(6.30)*** 

0.7500 
(2.56)** 

1.0097 
(6.74)*** 

0.9598 
(5.68)*** 

0.9154 
(2.90)*** 

Timing of 
independence 

-0.0596 
(2.36)** 

-0.0686 
(2.82)*** 

-0.1429 
(3.96)*** 

-0.0974 
(3.80)*** 

-0.0984 
(3.52)*** 

-0.1692 
(4.75)*** 

War dummy 0.2211 
(3.71)*** 

0.1410 
(3.03)*** 

0.1474 
(2.36)** 

0.2437 
(4.42)*** 

0.1425 
(3.54)*** 

0.1659 
(3.05)*** 

Ln(land area)  0.0066 
(0.39) 

0.0288 
(1.59) 

 0.0097 
(0.64) 

0.0239 
(1.33) 

Ln(Population)  0.0548 
(3.50)*** 

0.0100 
(0.49) 

 0.0459 
(2.81)*** 

0.0032 
(0.16) 

Ln(GDP per 
capita) 

 0.0959 
(4.45)*** 

0.0585 
(2.05)** 

 0.1053 
(4.23)*** 

0.0467 
(1.34) 

Africa Dummy   0.1306 
(1.24) 

  0.0967 
(0.97) 

Asia Dummy   0.2069 
(1.85)* 

  0.1898 
(1.92)* 

North America 
Dummy 

  -0.0655 
(0.59) 

  -0.0184 
(0.16) 

South America 
Dummy 

  -0.1304 
(1.30) 

  -0.1459 
(1.32) 

Oceania Dummy   -0.0804 
(1.02) 

  -0.0375 
(0.50) 

Constant 1.1638 
(3.96)*** 

-0.1307 
(0.24) 

0.3961 
(0.69) 

1.4082 
(5.69)*** 

0.1885 
(0.38) 

0.8256 
(1.57) 

R-squared 0.4702 0.5778 0.6587 0.5403 0.6254 0.7007 
Observations 79 79 79 72 72 72 
Countries 44 44 44 40 40 40 
z statistics in parentheses  * significant at 10%; ** significant at 5%; *** significant at 1%  
OLS with panel-corrected standard errors results reported. 
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Figure 1: Values of the OLS estimate of the Pareto exponent with the 95% confidence 
interval, for the full sample of 73 countries for the latest available period, sorted 
according to the Pareto exponent. 

Values of OLS estimate of alpha w ith 95% confidence interval

Country, sorted by OLS estimate 
0 20 40 60 80

.5

1

1.5

2

 
 
 
Figure 2: Values of the Hill estimate of the Pareto exponent with the 95% confidence 
interval, for the full sample of 73 countries for the latest available period, sorted 
according to the Pareto exponent. 
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Figure 3: Kernel density function for Pareto exponent using the OLS estimator 
(optimal window width=0.076). 
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Figure 4: Kernel density function for the Pareto exponent using the Hill estimator 
(optimal window width=0.098). 
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Figure 5: Kernel density function for the Pareto exponent using the Hill estimator 
(window width=0.006, vertical lines at x=1.00 and x=1.32). 
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Figure 6: Relationship between difference between Hill and OLS estimators, and the 
value of the quadratic term in equation (3).  
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Appendix A1: Data Appendix 
 
This appendix describes the variables used in the regressions (the full list of data 

sources is given in the text). Unless otherwise mentioned, all data are from the World 

Bank World Development Indicators CD-ROM. 

 

Scale economies is the degree of scale economies, constructed as the share of 

industrial output in high-scale industries where the definition of high-scale 

industries is obtained from Pratten (1988). The method used is to obtain the 

output of 3-digit industries from the UNIDO 2001 Industrial Statistics 

Database, then use Table 5.3 in Pratten (1988) to identify the industries that 

have the highest degree of scale economies, and divide the output of these 

industries by total output of all manufacturing industries. 

Transport cost is transport cost, measured using the inverse of road density (total road 

mileage divided by land area). Source: United Nations WDI CD-ROM and 

International Road Federation World Road Statistics.  

Non-agricultural economic activity is the share of non-agricultural value-added in 

GDP 

GASTIL index is a combination of measures for political rights and civil liberties, and 

ranges from 1 to 7, with a lower score indicating more freedom. Source: 

Freedom House. 

Total government expenditure is total government expenditure as a share of GDP. 

War dummy is a dummy indicating whether the country had an external war between 

1960 and 1985. Source: Gallup, Sachs and Mellinger (1999). 

Timing of independence is a categorical variable taking the value 0 if the country 

achieved independence before 1914, 1 if between 1914 and 1945, 2 if between 

1946 and 1989, and 3 if after 1989. Source: Gallup, Sachs and Mellinger 

(1999). 

Trade (% of GDP) is the ratio of total international trade in goods and services to total 

GDP.  

Ln(GDP per capita) is the log of per capita GDP, measured in constant US dollars. 

Ln(land area) is the log of land area, measured in square kilometres. 

Ln(population) is the log of population. 
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