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[. Intr oduction

This paper studies thefe€ts of a positie relationship between nutrition and produityi
on the dynamics of gvath and structural change within adveector dual economy
model consisting of agriculture and indusifhis kind of relationship has recently found
more interest, both theoreticallpd@sgupta 1993) as well as empiricall{zggel 1994).

The idea of a technically determined relationship @t llevels of income between the
state of nutrition or health and labor produityi is familiar to deelopment economists.

It has been deeloped independently in the late 19504 kibenstein1957) andvlazum-
dar (1959) and became soon kwiro among deelopment economists as fieiency
Wage Hypothesis”. It@ned popularity in economics whé&itiglitz (1976) made the first
step to generalize the idea to the today under this label subsumed links beagesn w
and efficiency in terms of incentives, morale and effort-inteﬁsity.

For dereloping countries a number of empirical studieistethat estimate the influence
of nutrition or other nutrition-related health indicators on labor prodtgGtimostly in
agriculture BehrmanandDeolalikar (1988) reiew this literature and note a general pos-
itive relationship between nutrition and produityi although the criticize that seeral

of these studies seem to femffrom methodological problems caused by self-selection
bias or health endogeneitput also studies without major methodological problems
seem to support a positive relationship between nutrition and productivity.

Recently Fogel (1994) made an attempt to estimate the importance of this nutrition-pro-
ductwity relationship (NPR) for the @elopment process of Britain. Rather than confin-

ing his work to the agricultural sectohe estimated the fetts for the whole economy
including industry He concludes that impvements in gross nutrition account for 30%

of the increase in parapita income between 1790 and 198fel assigns one third of

this efect to increased labor force participation, and asserts that this rise had been caused
by improved nutrition which had strengthened the population and thus brought people
into the labor force who pveusly were too weak to evk. The remaining te thirds of

the growth effect are said to be due to an increased labor productivity in production.

Fogel recalls that especially the poorvkeabeen too weak for intensesk at the bgin-
ning of the industrial revolution around 1790:

[1ln France the bottom 10 percent of the labor forcedddke engy for regular work, and
the net 10 percent had enough egerfor less than three hours of lighbrk daily (0.52
hours of heay work). Although the English situationas somehat betterthe bottom 3 per-

1. For a short review of this development Baedhan(1993).



cent of its labor force laek the engy for ary work, kut the balance of the bottom 20 per-
cent had enough erggrfor about 6 hours of lightevk (1.09 hours of heg work) each day
(ibid., 373)

But also the wealthier part of the society seems to have been far less healthy than today:

[E]lven persons in the top half of the income distidn in Britain during the 18th century
were stunted andasted, sdéred far more gtensiwely from chronic diseases at young adult
and middle ages than is true today and died 30 years sooner thanibddagg3)

Fogel regrets that these nutritionahdtors are lagely nelected in “n&” and “old”
growth theory alile, although thecould easily be included as labemhancing technical
progress brought about, foxample, by impreements in agricultural production. This
paper mag&s an attempt to do so. In addition to the influence of nutrition on labor produc-
tivity in production (henceforth called static NPR) this paper also considers the influence
on the ability to increase produdty, namely on the produgity of the learning by
doing process (dynamic NPR). From the point ofw@ the n& growth theory pio-
neered by the ark of Romer(1986) and_ucas(1988), this gtension is only consequent:
First of all, the mechanisms behind produityiimprovements, be it inn@tions, human
capital accumulation, or learning by doing, mailp the main topic of this literature. And
secondlythis field of research is based on the insight that rather smatihgedfects can
outweigh level effects over time.

Therefore both, the static as well as the dynamic NPR are considered here and compared
to situations where either malnutritioedps productity permanently bele its maxi-

mum or no nutrition-produdtity relationship &ists. This comparison should yield some
insights about the influence of thefdient relationships on the gvth process. The
analysis is conducted within a dual economy model that includes an agricultural as well
as an industrial sectadin addition to gplicitly considering production of food, which is
responsible for the NPRs, this model typewafiaiscussion of gmth efects and struc-

tural change alié Both should a priori be garded as possibly important.eWwuld
especially vant to knev whether the xdstence of a NPR together with a technologically
stagnant agricultural sector can influence an ecoromstyucture. &llowing the dual
economy literature, we characterize the latter by the fraction of labor in agriculture.

A distinct feature of the NPRs discussed here is their importance only &vigls of
nutrition. In fact, some empirical studieges shav a ngative relationship at higherue

els of nutrition (see bely). However, the ading NPR with rising nutrition mals a
steady-state discussion of this mechanism impossible. When the economy finafly gro
with a constant rate, the NPR has already ceasedstio Eherefore a ta-step approach



is chosen. In the first baseline model, which does possess a steady-state equilibrium, is
presented and its properties are discussed. In the second step this model is modified to
capture diferent NPRs. Since dé@rences between the modifications cannot be discussed
analytically the actual comparison of the outcomes is then conducted on the basis of
numerical simulations. These simulations are numerical solutions to the nesogtti

mal control problems which are obtained by applying a modificatiddutiigan’s and
Sala-i-Martirnis (1991, 1993) time elimination method. The outcomes are complete time-
paths for all ariables conditional on the assumed parametieles and initial conditions.

The remainder of the paper isganized as follars: In section Il the basic steady-state
model of a dual economy is presented. Section IIl presents the model modifications to
capture diferent nutrition eects. In section IV the simulation method is discussed, and
in section V the different simulation outcomes are compared. Section VI concludes.

Il. The Dual Economy Model

The simple model of the dual economy is based on tr& of Jorgenson(1961) and a
later generalization byarembka(1970). While these twwassume constantwsag, the
model presented here is an optimal control model so that the nutriteart edn also
influence the sang and capital accumulation decision. The economy considered is dual
in the sense that dérent production functionsest for the traditional good, food, in the
first sector and the industrial or maacturing good, widgets, in the second sedidhmile

the former is produced from land and Igboput factors for the latter are labor and capi-
tal. The economy also sle a second asymmetry in consumptioaodr consumption
raises productivity up to a certain level while widget consumption does not.

For simplicity the economy is assumed to consist of a constant number of identical indi-
viduals, so that the decision problem of a singleviddal can be analyze2dEach indi-
vidual can spend a fractionof her inelastically suppliedavking time in the traditional
sector and the other fraction (h+n the modern sectofhe sectors are indicated by the
subscriptA andM respecirely. Food in the traditional sector is produced with a constant
returns to scale production function from labor and land. The latter is normalized to
unity. All agricultural output goes to labor and is consumed. Thuscgg@ta) consump-

tion of food can be expressed by:

2. The model can easily be extended to a growing labor force. However, since this does not change
any of the crucial results and only adds complexity to the problem, the labor force is assumed to
remain constant.



1) ¢y = A, xa<l.
A denotes the level of total factor productivity which grows with a constant.rate

In manufcturing widgets are produced by labor and capital with a Cobb-Douglas tech-
nology As usual the output can be either consumedvasied. Then westment — and
thus the change in the capital stock since there is no depreciation — is characterized by:

. L-
@ k=Mk “(1-n"-¢,

wherecy, denotes (pecapita) consumption of widgets. Similar to the agricultural sector
the state of technology in manufacturimdy grows with a constant exogenous uafe

The indvidual maximizes her utility which is @n by a tw-good CRRA function
where consumption of both goods enters in a Cobb-Douglas manner:

l1-0
O/ Yal-y
CAC
_ DM for o#1
(3) u(ca,Cy) = 0O l1-0 where gy<1l,0>0.
Eln (cher ") for 0=1

This function implies an elasticity of substitution between both goods of one. The inter-
temporal elasticity of substitution isal/the irverse of the Arrv-Pratt measure of rela-
tive risk aversion. Note thaj andcy, are not completely substitutable.

Equations (1) - (3) makup the basic functions for the optimal control problem the indi-
vidual has to sol, namely choosing a time path fy; ¢\, andn (the control ariables)
which is optimal because it maximizes utilityen the whole time period considered.
Given these paths and agn stock of capital at= 0, equation (2) implies a time path for
the capital stock. The time paths fok andA are gven exogenously The problem can
be simplified by substituting the production function for food, (1), into the utility func-
tion and thereby reducing the contralriables tocy, andn. Formalized the indidual’s
decision problem can then be writterf*as:
1-0
max [ (An") ycb_ y]

—pt
(4) N, Cy ! l-0 e dt

st k=MK “(1-n%-c,
wherep is the discount factor for future consumption.

3. Note that the output elasticity of labor is the same in both sectors. This assumption is not crucial
for the results obtained below but simplifies the analysis.
4. In the following we do not explicitly state the special form of the utility functiow forl.



The familiar way to tackle this problem is to selthe current-&lue Hamiltonian where a
shadow pricé is assigned to the capital accumulation constraint. The Hamiltonian is:

6 H, = +8 (MK % (1-n)%-c,,).

Hc is the sum of current-period utility and capitatastment; the latteralued at the
shadov price8. An optimal allocation must maximizé, at ezery point in time. This is
the case if the following four solution equations are satisfied:

oH, oY 1-y oo -1

OIS (1-y) | (Af") Y| Gi-e=0
oH v vt -

@) Tnc = ay[(Ana) cy V] nl-aoMk " (1-n% "t =0
oH, e ig o

© 6 =06p-6(1l-a)MK“(1-n)°

To be an optimal solution, the contralnablescy, andn must be chosen in aay that
satisfies the boundary conditions. These consist of an iratiaé \for capitalky, as well
as the transrsality conditiontliinme_ptek = 0. The solution must satisfy the Safency
conditions as well to ensure that it is indeed a maximum and not a minimaishawin
the appendix that Mamagariars suficiency conditions are alays met for the assumed
restrictions on the parameter values.

Within the system of equations (6) — (9), equation (6) describes the chajgeroévery
period. It must be balanced in ayvsuch that thealue of consuming a unit today must
equal the glue of saing it today and consuming the gl proceeds tomorva Equa-

tion (7) is a labor magk condition. Labor will be allocated between the sectors such that
the maginal utility from working in the diferent productions is equal. Equation (8) sim-
ply assures that the optimal path is also feasible, and (9gdethe rate of decrease of
the shadw price for capitaB.5 Equations (6) - (9) together with the traessality condi-

tion define thedmily of optimal paths. & consider only one of these paths, namely the
steady-state equilibrium where alinables grar with a constant though not necessarily
equal gravth rate® In the steady-state also thegtb rate of the shadoprice has to be

5. For a general economic interpretation of the optimal control technigDeréfan (1969).



constant and therefore from equation (9) thegmat product of capital is also a con-
stant:

) (1-o)MKk*(1-n)% = p—g = const.

Comparing this result with equation (8), one can see that thehgrate of capital can
only be constant if the fractiory, / k remains unchanged. Therefang andk have to
grow with the same rate in the steady-statefdb#intiation of equation (10) with respect
to time (acknwledging that the gneth rate of@ as well as are constant in the steady-
state) finally yields the growth rates of widget consumption and of capital:

fu

H
W 5o a

_ky
= (R) =
Therefore in the steady-state equilibrium thewghorate of perccapita consumption of
industrial goods depends only on technical progress in this sectan ay way on the
outcome of agriculture. One can obseas a further result a sowleat similar feature of
the model for the agricultural sectdihe grevth rate of pexcapita food consumption is
given by differentiating the agricultural production function (1) with respect to time as:
(AL

(12) e

= V.

Recall that the system of equations (6) — (9) must satisfy the érgafity condition
tIiﬁrnme_ptek = 0 which has not been slva so &r. This boundary condition can only be
met if the product 0B andk growvs with a rate smaller than the discount mate the
steady-state. Combining this condition with equations (6) and (11) yields:

13 p>(1-0) [W+ (1-vy) ﬂ
In the remainder this condition is assumed to hold.

The economyg structure can be characterizedhbshe fraction of labor in agriculture. In
the steady-state has to be constant; it cannot increase or decreasesffolts steady-
state value can be calculated from equations (6), (7), (10) and (11) as:

6. Since the fraction of labor in agricultural productigris a bounded control, it has to be constant
in the steady-state. At first this does not seem to be in accordance with the empirically observed
continuous decline of agriculture in the process of economic development. However, it is well
known that taking into account Engel’s law leads to a replication of this behavior. This is not
done in this model since it would only complicate the analysis without producing much addi-
tional insight. However, it can be added easily by introducing subsistence consumption for food
in the utility function as has been done, e.g.Matsuyamg1992) orWichmann(1995).



V(P (1-0) (W+ (1Y) b) +1)

M
p-(1-0)w+0o(1l-y), +WH

(14) n =

The steady-state value foiis positive and smaller one by transversality condition (13).

Equations (11), (12), and (14) can be used to study the influences of economic policies on
the steady-state. A rise in the rates of technical progressju leads to a larger growth

rate of consumption of the respeetisectors output according to (11) and (12). By dif-
ferentiation of (14) one can easily ghthat an increase in the rate of technical progress

in industry leads to a decrease of the labor fraction in agriculture. A rise in the rate of
agricultural technical progress, though, increasas long as > 0./ We regard this as

the most realistic ca$eThus, according to this compaxettistatic analysis, a rise |n

would be the appropriate pofito industrialize a country while a risevrwould lead to
deindustrialization.

This completes the description of the basic model. It isvshio the appendix that the
steady-state equilibrium is unique and saddle-path stable fagearkmge of parameter
values. The model is rather simple ikctkiding, for &«kample, Enge$ lawv or labor force
growth which are both considered important elements influencing econonetope

ment. While these elements could be easily added to the model, refraining from doing so
will make the mechanism of the nutrition-produitsi relationship clearer sincevier

effects interfere.

[ll. Model Extensions: Nutrition-Productivity Relationships

A relation between nutrition and prodwty can «ist in several diferent ways. First of

all, the efect might be of a static nature, that is, an increase in food consumption raises
output productiity in production. This déct might occur in agricultural as well as in
industrial production. Here these possibilities are discussed separategptthkir con-
sequences as clear as possible. Combining such a relationship in agriculture with one in
industry while certainly more realistic, auld only lead to superposition of their influ-
ences.

7.Foro<1 we gebn /av<0 .

8. Hall (1988), for example, has estimated values around X iovannini(1985) has obtained
similar low values for the intertemporal elasticity of substitution, in some estimations not even
significantly different from zero.



A further possibility is a dynamic relationship where an increase in food consumption
raises the produeiity growth rate. This could, forxample, happen via learning or
schooling since malnutrition not only reduceygbal ability ut also impairs mental
capabilities. Therefore the model igended to include the simplest possible element of
endogenous produetty improvements, namely learning by doing. The produigtiof

this learning by doing process is assumed to dependvedgitin the Igel of food con-
sumption. A NPR via learning by doing is of course onlgg/\crude approximation of
the true dynamic &cts of malnutrition. Empirical vedence suggests that the main
effects of malnutrition occur early in lif&lewweandJacoby(1995), for @ample, shw

that early childhood malnutrition causes delayed school enrollfaiitt (1984, 1990)
reviews studies shwing that children with seere malnutrition prior to school enrollment
perform significantly wrse on intelligence tests than betteurished children. If, vo-
ever such efects last bgond school age, the gro-up children, who were malnourished
as infants, will also perform worse in activities like technology adoption or learning.

To derive the model modifications, the NPR has to be specified first. A distinct feature of
the relationship discussed here is thatxists only at lev levels of nutrition. In &ct,
some empirical studiessen shav it to be ngative at higher leels. Strauss(1986), for
example, who analyze&fm households in Sierra Leone, estimated output elasticities of
perconsumer equalent calorie wailability in agricultural production and found this
elasticity to be 0.33 at the sample mearll®f family calorie aailability, 0.49 at 1500
calories per dayand 0.12 at 4500 calories per dapove a daily consumption of 5200
calories, the estimated elasticitasvngative. While this estimation describes relaty

well the upper part of the functional form, itsMer end is not clealStiglitz (1976)
hypothesizes a logistic functional fornutbacknaevledges that direct empiricavidence

is difficult to obtain and therefore the functional form remains an open queStsh.
gupta(1993) proposes a coneafunctional form. W follow Dasguptain defining nutri-

tion caused productivity in the following way:

TIC,

, >0
T+ Cp

(15) M(cy =

In this function productivityl increases with rising food consumptionbut is bounded
from above byt . It shows diminishing returns to food consumption but does not possess
a convex region like the logistic function. However, it is much easier to handle.

Consider first nutrition é&écts in agriculture itself. Assume that the agricultural produc-
tion function tales on the form ca = An®. As an additional restriction it is assumed
that the nutrition déct has the character of axternality The agent does not &knto



account in her optimization that increased food consumption raises her pribylaciil
thus the amount of foodvailable for consumption. Ratheshe assumes that grovs
exogenouslyLO The interpretation of the resulting dynamic equilibrium, which is ngt an
more an optimal equilibrium, folles Lucas(1988): If the agend’ expectations about the
exogenous path offl are met, if thus the actualva#opment ofl1 coincides with the
expected development, then the economy is said to be in a dynamic equilibrium.

The individual faces the following probIeH:
v 4 1-0
max [ (AMn%) ¢y y]

_pt
(16) N, ¢y ! l-0 et

st k=MK “(1-n%-c,
This leads to the current-value Hamiltonian:
1-0
Y oq_
[(An n) ¢y, V]

17 H, = o +O (MK~ (1-n)%~c,,)

with the following solution equations:

(18) % = (1- )[(Al‘lna)ycl_yjl_cc‘l—e =0
acy Y M M
ch oY 1- oo -1 1-a -1

(19) an:yo{(Al'ln)cM y] n —adMk " (1-n)%" =0
oH

¢ = k=MK"(1-n)%-c,

1) 6 =0p-8(1l-a)MK (1-n)®
wherel = m(1-1/(An")) 12

9. A more reasonable assumption would be a purely labor augmenting nutrition effect. However,
this would make the problem intractable.

10. The justification for this assumption is mainly simplicity. The optimal solution to this problem

becomes too complicate to be tractable — even numerically — especially for the third case of a
dynamic nutrition effect.
It is also intuitively clear what the differences between optimal and market solution should be.
Since the latter neglects the productivity enhancing effect of nutrition and thus of food produc-
tion, the market will allocate less labor than optimal to agriculture during the period where this
effect is relevant.

11. Thus, the model only considers the productivity rising effect of better nutrition, not the labor
force participation effect observed Bggel
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Equations (18) — (21) together with thaafiliar boundary conditions describe the equi-
librium. However contrary to the basic model there does rEt@ steady-state solution,
sincell neither remains constant nor gwithout bound. Rathgif A grows forever[l
asymptotically coverges tovards its upper limitrt. Therefore the process can only be
analyzed numericallyHowever, the properties of this asymptotic steady-state the econ-
omy eventually conerges to can be analyzed analyticallyv I 0, I will eventually be
close to its upper limitt . Then equations (18) and (19) simplify to:

oH 1-o

c ay Y 1-y -1 _
. = @y (am) g Gi-e =0

oH Y 1_ _ - -
Tnc = ya[(Anna) oy V] nt-oa6Mk "% (1-n)%"t =

Comparing this outcome with the result of the basic model presentee, alne can see

that the asymptotic steady-state of a model including a NPR equals the steady-state of a
model without!® This implies that in theery long run there is no dérence in graith

rates of the tw economies andren the structures (in terms of fractions of the labor force

in agriculture) are identical. There might be detténce, haever in levels of consump-

tion and capital as well as in the gt and deelopment gperience on the equilibrium

path towards the (asymptotic) steady-state.

Next, consider a NPRxé&sting only in industrial production.df this sector we can mak
the more reasonable assumption fhatorks in a labor augmentingay since there are

no analytical problems. After all, theovkers are the food consumers and become more
productive. Then the industrial production function changes into

22) Yy = MK [ (@-n)m°.

If the agent does not taknto account the relationship, the currealize Hamiltonian for
her optimal control problem becomes for this case:
1-0
Y 1_
[(And) oy y]

(23) H, = — +O(MK [ (1-n)N]% - ¢,,)

This current-value Hamiltonian leads to the solution equations:

12. This is simply a transformation of:= (mAMn%)/ (7t+ Afn%)
13. The parametet vanishes when deriving the steady-state in the same way as above.



11

(24) LHC = (1- )[(Ana)ycl_yjl_cc_l—e =0
acy Y M M
aH y _ 1-0 ~ _

(25) ainc = ya[(Ana) cy y] nl-adMk "% (1-n%N% =0
oH

¢ o 1-0d~a _ a_
50 k=Mk™ "M (1-n)" —-cy

(26)

@7) 6 =0p-8(1l-a)MK°N%(1-n)®
wherell = T[Ana/(n+ Ana) .

Again it is easy to see that in the asymptotic steady-statglgrates and structure of the
economy are equal to those in the basic model.

Finally, consider a dynamic NPR in indus%/In this case nutrition does influence the
growth rate of productity rather than its kel. To keep the model as simple as possible,
this relationship is assumed tigt in a learning mechanism. The model faloArrow
(1962) in assuming that learningraits are caused by capital accumulation. The contin-
uous introduction of ne capital goods confronts theowvker continuously with ne
occasions to learn. Learning, in turn, increases the stock wfiéahge and thus produc-
tivity. Following this idea, industrial production can be characterized as follows:

yy = MK [ (1-n)h]?

(28) -
where h:kr| and I = AN

5
T+ An

The lesel of human capital or kndedge is denoted by and works in a labor augment-
ing way. Capital accumulation increases this Wiexige with an elasticityl. This is
where the NPR enters. It is assumed thatkers learn better from the introduction of
new capital goods if their nutrition Vel is higher As before this ééct is bounded from
above.

Assuming agin that the agent takll as &ogenous, the currenedue Hamiltonian from
her optimization problem with substituted bk ! is:1®

14. The reason for not considering dynamic effects in agriculture is mainly technical. Since there
is no capital accumulation in this sector, the effect would have to work via the stock of knowl-
edge. Simulation of this relationship, however, is not possible with the method used here since
A is still time-depended but not any more exogenous. Cf. section IV.

15.Mangasariars sufficiency conditions are still met as longras 1.
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[ v, ]1—0
(An") ¢y Ca(-
(29) HC = 1_“(/; +9(Mk1 a(1-n) (l_n)G_CM)

This Hamiltonian has the solution equations:

(30) LHC = (1- )[(Ana)ycl_yjl_oc_l—e =0
ac,, Y M M
oH V79 (1

(32) Tn(: = ya[(Ana) CJI\-A V] n 1‘(19'\/”(1 a(l-mn (1_n)0(—1 -0
oH . _ B

() 55 =k=MK T (1),

33 6 =0p-08(L-a)MKeE"M (1_po

with T as in equation (28). In the samaynas abee the (asymptotic) steady-stasues
for grownth rates and the fraction of labor in agriculture can bevelériThese are slightly
different now which is due to the higher rate of technical progress in indﬁstry:

[FMD* _ k* _ H
(34) cyd (¥ T a(l-m
H M
Yp-(1-0) (yw+(1-y) —) t
@5 i = [ a(l-m (1 n)}

P-(L-0)W+o (1Y) g o * iy

Having derved the models’ solutions, the fdifent groavth and deelopment paths
described by the baseline model and the thag@ants from this section canwde com-
pared by numerical simulation.

V. Simulation Method

The three numerical problems to be sohare tw-point boundary &lue problems. This
name refers to theatt that one constraint isvgin at time zero (the startinglue fork)

and another at infinity (the traresgality condition). If the equilibrium path is unique,
there aists only one possible set of contralwes in each period that leads the economy

16. Therefore also the transversality condition changesistol - o) (yv + (1-v) 1“_ ) .
Note that a positive growth rate requimres 1. Forrt = 1 the model becomesaa(n eﬁ[&ogenous
growth model in theAK’-tradition,as has been pointed out to me by Uivalz
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towards the (asymptotic) steady-state. The latter can be used as second baaindary v
since it satisfies the trarexgality condition. A common numerical routine to goduch
problems is called “shooting”: choose startiradues for the controls, numerically inte-
grate forvard and see if you ke hit the second boundary condition. If not, aim higher or
lowerl” While simple, this method involves considerable amounts of computations.

For this reason a dérent method is chosen, namely the time elimination method pro-
posed byMulligan andSala-i-Martin (1991, 1993). This is an algorithm which is based
on the transformation of the original dynamic system from a time depend®ipint
boundary alue problem into a statesable dependent initialalue problem where the
initial value is the moded’ steady-state. The resulting equations areeddly yield those
values for the controlariables for eachalue of the stateariable that Eep the model on

the equilibrium path. Although the models discussed here onlg ha asymptotic
steady-state, the time elimination method can still be used with only a slight modifica-
tion.

The original method is applied as falle (nglect for a moment the nutritionfe€t): In a
first step the system with a constantvgito path solution is transformed into one where
all variables are stationary in the steady-state. This is done by definvinganables
which are constant in the steady-state (eg/ k). Those can be called statediK they
contain only stateariables and control-lkif they are made up of state and contrafiv
ables. N&t the original system is transformed into a system démdintial equations in
the nev variables.Using the chain rule of calculus, the resultingeténtial equations
can be used to obtain the slope of pofimctions which yield thealue of the controls to
be chosen for eaclalue of the stateariables in order to stay on the equilibrium p]:fth.
Taking the steady-state as initial condition, the pdlimctions can be derd by stan-
dard numerical routines. Here the routine NDSolvilathematicais usedt?

Including the nutrition déct into the model changes the method in the simplest case only
slightly: As long as therexests aly technical progress in agricultudd, will eventually
approach its upper bourm, although this might be in theery distant future. \& can

17. For an overview of these problems and numerical solution techniquésfée@ 993),Press
et al. (1992), oDixon et al.(1992).
18. This slope is derived in the following way: Suppose that the differential equations for a state-
like variablez and a control-like variable are given byz = &, (n,2 andn = &,(n,2 . Then
the time path for the control can be stated(§s= n(z(t)) and therefore
. n &(n2
n' (2 REAGY .

19. For details of this routine s@éolfram(1991).
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therefore devie as a first step the fifential equations in the wevariables which
depend orfl. If 1 were a constant, these equatiomaild be &actly of the type needed
for the time-elimination method.

Consider first the situation, where the nutritiofeeff occurs in the agricultural sector
itself. The dynamic system in termsagj, n, k, and@ is gven by equations (18) — (21). It
can be transformed into tBfential equations in the control-dikariablesz; =cy, / k and

n as well as the state-Bkwariablez, = M / k%, The resulting system of threefdifential
equations can be reduced by one equation since, due to equations (18) ardi$19),

(1—\/) a-1

always given ag, = y z,n(1-n) . This leaves:

a-1(y—-n)

v )

(36) Z,=2z,(L-0Z,(1-n)

o« (on+y(1-0))
y(1-n)

(n(1-n)) " (o (1-an) + (1-0) y(1-a) - (1-0) ya (f; ~1) (1-n))

(1-0) (u(1-y) + 21 = p + (1-a) (1-y) 2, (1-n)

(37) n =

wherel = 1t(1-1/(An%)) .

The second problem with a nutritiorfeft in the industrial sector is set up in a similar
way. Defininglzl andz, as before, we get the follang relationship between botlan-
ables:z, = v) z,nn% (1-n®~* .

The time dependent model given by equations (24) — (27) can be transformed into:

38) 2, = z,(p-az,N*(1-n)

).

a-1(y—-n)
Y

-
(1-)n| (1-0) (H (1Y) +W) ~p=p+av ((1-0) (1Y) ~1) (1) |

n=
n
(0 (1-an) + (1-0) y(1-a)) - a*((1-0) (1) -1) (1-7)
(39)
(1-) (1) 7y M)
+

0 (1-an) + (1-0)y(1- @) - ((1-0) (1) -1) (1-1)

wherefll is given by = (TAR°)/ (t+An°) .

Finally, for the dynamic nutrition &fct in industry the follwing variables can be
defined:z; = ¢y / k andz, = M / kK*@). Sincez, = v y z,n(1-n)° ! the out-
come reduces to two equations:
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a-1(y—-n)
Y

(40) 7, = z,(M-a(1-M)z,(1-n) )

n(2-n) [(1-0) (K (1) + W) —p-p +2,(1-a) (1-y) (1-0) (1-n)° "]
n= (a(1-an) + (1-0)y(1-a))

(41)
+zzn(l—n)o‘(no(l—O(—y+0(y) +afl(n-vy) (y(1-0) +0))

y(o(l-an) +(1-0)y(l-a))
wherel = (mAn")/ (m+An’).

For each of these three cases, combination of thereiiftial equations far andz, yields
the dervative of a single polig function. Havever, if the definition forf1 is substituted
into the equations to eliminafd, the diferential equation still depends @ which
malkes the problem time-dependem. Sohe this problem, we apply the time-elimination
method within a tw-step approach. Starting witlalues forAy andzyq, the trajectory
towards that (fictie) equilibrium wheré\ remains a#\; is calculated in the first step. The
outcome is a policfunctionn(z,, Ay), giving the optimal &lue forn. In the second step,
A is increased»»genously and, according to its diérential equation. Then the first
step is conducted am. Eentually agricultural produatity A will be so lage that the
nutrition efect disappears and the economyetalon the steady-statalues from the
baseline model® The intuition behind this procedure is the fallog: in every period
the stable trajectory conditional dnis calculated. & eachA exists a diferent trajec-
tory. The combination of m@ments on this trajectory (for andz,) and meements
between trajectories (due to changes)inlescribes ho the economyg variables golve
over time.

V. Simulation Results

To conduct the simulations, we choose the Wit parameteralues:p = 0.05,a = 0.7,
ando = 5 which are carentional \alues. The upper limit of the nutrition caused produc-
tivity, T, is set to unity in the static case andtte 0.05 in the dynamic scenaricrihe

20. Strictly speaking, this occurs only in infinite time. But for a numerical solution it is sufficient
to require that the difference be less than the precision used in solving the problem. For example,
with a rate of technical progress in agriculture of 3% per year and a starting vajjelopro-
ductivity 'l is very close tat after approximately 200 years. While this is longer than one would
sensibly expect, equation (15) could be easily modified to converge towards its limit more
quickly, for example by usingA2 instead ot,. However, since this would only complicate the
analytical parts of the solution while not yielding much new insight, equation (15) is left as
above.
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former, t= 1 corresponds to a situation without an NPR. Since in the Tattet is not
feasible (in the steady-statg/c,, = w/a (1 —-m) would go to infinity), we choose as

well asp half as large as in the static case implying the same steady-state growth rates of
widget consumption as well as the same steady-state fractions of labor in agriculture.

With these parameter values we conduct a simulation where in the beginning the agricul-
tural sector is technologically stagnant. At some point in time the rate of agricultural
technical progress becomes pesitie study the econong/’behaior after this shock

for two cases: normal agricultural technical progress=(0.02) and dst technical
progress\{ = 0.04). These tacases are simulated for each of the three possible NPRs.
In all cases does the rate of industrial technical progress remain congtant(a02.
Increasing its &lue does not influence nutrition caused progiigtbut only leads to a

new steady-state division of labor and a higher growth rate of widget consumption.

The outcome of these simulations is depicted in figures 1-4. Figures 1 and 2 contain the
two static NPRs in agriculture and industry while figures 3 and w #te dynamics of

the two possible relationships in indusﬁ%/The first ten periods shathe pre-shock case
wherev = 0 and nutrition caused prodwaty remains permanently beloits maximum

value. The solid line in each picture describes the benchmark case, namely the path an
economy wuld tale when the nutrition caused produitti is always at its maximurm

This baseline economy from section Il igpesed to the same shockvunA comparison

of both paths shws the influence of the NPR on the pre-shock steady-state as well as on
the transitional dynamicswards the ne steady-state equilibrium. A further benchmark
case also contained in the figures is the simple no-change scenario. Extending the time-
paths from the first ten periods into the future yields theldpment of an economy
where agriculture remains technologically stagnant.

Consider the static relationships first. Figure nshthe slav progress case and figure 2
the time paths withafst agricultural technical progress. Although agricultural and indus-
trial NPR are depicted togethéney can only be comparedtry carefully First of all, the
nutrition caused produeity I is labor augmenting in industryblabor and land aug-
menting in agriculture. And secongdbifferent starting &lues forA had to be chosen due

to computational problemg# = 1 for the industrial relationship aig = 3 for the agri-
cultural one.

21. Note that the number of simulation periods has been chosen differently between the pairs to
make the dynamics clearer.
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Figure 1: Static NPRs, Slo w Technical Pr ogress
Labor Force in Agriculture

Nutrition Caused Productivity

o
>
[\¥)

1
0415 it o0
041 i} 0.8
0405 A 0.7 7 e
04 I\ 0.6 e
// ////
o8
04 ‘I/ ///

t
20 0 60 80 100

_____

Legend solid line: baseline model(s); dotted line: agriculture effect; dashed line: industry effect.
Note: dashed and lower solid lines for food consumption coincide.

Nevertheless, seral obserations can be made: First of all, the simulationsastiaat
agricultural stagnation together with thastence of static NPRs does novéa lage
effect on the economg’structure. There is no obsable diference between theles

for the baseline economy and those with NPIR.dAh only obseevthe effiect derved in
section I, namely a rise ofafterv has been increased. Secontte fraction of labor in
agriculture increases sharply right after the shock and subsequently decreases ag
slowly towards its ne steady-state (with somev@rshooting). These peaks aregkar
with NPR than without. This is due to the suddenly increasedinadrutility of using
labor in agricultural production.df both NPRs it tas about 30 years until the economy
is close to its n& steady-stateatue forn. This is rather short compared to the time it
takes the economy to reach its upper limit of nutrition caused prodyciihe duration
of the latter hawvever is probably unrealistically long due to the functional form chosen.
Thirdly, the simulations show that the consequences from nutrition-productivity relation-

ships occur mainly in the sector wherexists. This is a consequence of the smadaf
on the division of labor between sectors.
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Figure 2: Static NPRs, F ast Technical Pr ogress

Labor Force in Agriculture Nutrition Caused Productivity
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Legend solid line: baseline model(s); dotted line: agriculture effect; dashed line: industry effect.
Note: dashed and lower solid lines for food consumption coincide.

Although the structural &dcts are small, the outpuffetts of both nutrition-produdctity
relationships are rather tg. The gp between dashed or dotted lines and the solid line(s)
is the fogone consumption which is lost due to thetfthat productity was not avays

at its highest possiblevel. This gap can be used to calculate the contidn of the NPR

to the increase of consumptiorarRhe static relationships this contrilon can be calcu-
lated as fraction of the initialagp between solid and dashed or dotted line to the total
increase of consumptiorver the time period consideréé For industry this rough cal-
culation yields a contriltion of about 6%\ = 0.02) and 5%\ = 0.04) and for agricul-
ture of 13% ¢ =0.02) and 2% | =0.04). Most of the alues are dr belav those
obtained byFogel, even more so since he has considered a time-period twice as long as
ours and the contriltion of the NPR decreases as thel®f (overall) productvity rises.

22. This assumes that nutrition caused productivity is at its maximum in the final period as is ap-
proximately the case in figure 2.



19

Figure 3: NPRs in Industr y, Slow Technical Pr ogress

Labor Force in Agriculture Nutrition Caused Productivity
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Legend solid line: baseline model(s); dotted line: static effect; dashed line: dynamic effect.
Note: All lines for food consumption coincide.

Figures 3 and 4 shothe outcome for the static and dynamic nutrition-progiigtrela-
tionships in industry togetheAccording to these plots the static relationship seems to
have lager consequences since upper solid and dashed line in the plots for widget con-
sumption are closer together thawéws solid and dotted lines. This reflects the influence

of the static NPR on tHevel of widget production which does notigt in this extend for

the dynamic relationship. Since the two levels of production deviate less in the latter sce-
nario, the time-paths are closer togettémwvever, in the long-run the dynamicfett is

more important. Wh static nutrition caused produdgty permanently belw its maxi-

mum, the grarth path of widget consumptionould run below bt parallel to the greth

path characterizing an economy whBre 1. With a dynamic relationship in such a sce-
nario, though, the pathomld be laver and flatterin figures 3 and 4 it auld be given by
extending the slope of the dashed path from the pre-shock period into the futurepThe g
between the tw paths wuld thus be wideningver time. In addition, the rate of techni-

cal progress as well as the highest possiblaevfor nutrition caused produgty are

only half as lage in the dynamic than in the static case. Using the same maxiaiuen v

in the latter scenario auld shift the grath path of widget consumption wa. In addi-

tion cutting the rate of technical progress in haliid also mak& the path flatteiTaking
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this into account, the dynamic nutrition-produit}i relationship becomesven more
important.

Figure 4: NPRs in Industr y, Fast Technical Pr ogress

Labor Force in Agriculture Nutrition Caused Productivity
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Legend solid line: baseline model(s); dotted line: static effect; dashed line: dynamic effect
Note: All lines for food consumption coincide.

The contrilution of the increases in nutrition caused proditgtito the raise in widget
consumption can be calculated in the foilog way for the dynamic casextend the first

ten years of the dashed line into the future. This line then describesttik gath of an
economy withll fixed belov its maximum. Compare theviel of food consumption
under this scenario with that from the simulation with dynamic NPR. After 100 years the
contribution of better nutrition to the increase in widget consumptionldvbe 55%
(v=0.02) or 50% \{ =0.04), respeciely. 50 years later these numbersuld hae
increased to 165% & 0.02) and 130%w(= 0.04), respectkely. These alues are consid-

erably lager than those obtained for the static relationship and alger Itltan those
obtained byFogel
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VI. Conclusions

This paper has shm that a relationship between nutrition and tivellef labor produc-
tivity can hae considerable &fcts on the gneth dynamics of an economWhile the
simulations hae shevn influences on the gndgh rates of consumption of both goods, the
influences on the economsystructure hae remained r@igible. The consequences of
such a relationship dependry much on the sector in which Kists. An efect in agri-
culture primarily influences thewel of food consumption while anfe€t in industry
influences mainly output of this sectdrthe nutrition productiity relationship is static,
these dkcts are only important for a certain length of time and becoglgite as total
factor productiity becomes lage compared to nutrition caused produitii In addition,
malnutrition has only level effects.

This is diferent for a dynamic nutrition-producitly relationship where better nutrition
increases the produetiy of the learning by doing process. Such a relationship has not
only level effects but also growthfe€ts. In a malnourished economy thevgtorates of
consumption remain permanently belthose possible with better nutrition. The contri-
bution of better nutrition to consumption grih is seeral times lager for a dynamic
relationship than for a static one.

The contrilwtion of nutrition-productiity relationships to the total increase in consump-
tion of food or manuwcturing goods implied by our model is considerabiyeiofor the

static relationships than stated Bygel (1994). Under presence of dynamiteefs, the
model implies much Iger contrilutions. These calculationsveato be tak& with care,
however While Fogels calculations are based on real data, the results of the model can at
best form the basis for a calibratioxeecise. The results are subject to the length of the
time period considered, the parametatues, as well as the specific functional forms
assumed.

Overall, the model has shvo the usefulness of numerical simulations for the analysis of
transitional dynamics. Since the long-run babiaof economies with or without NPRs is
identical, means for analyzing the transitional dynamics are crucial to understand the dif-
ferent behaior. Analytical solutions alone are not Baient. Since these transitional
dynamics of een standard models of gvth and deelopment as well as their implica-
tions are not really well understood, imped numerical methods and decreasing com-
puting costs will probably raise interest in these issues in the future.
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Appendix

1. Sufficiency of basic poblem: Mangasarians suficiency conditions are the folle-
ing: For a problem

00

maxIF (x, u) e "'dt
0

st. x=f(x u)

wherex denotes theector of state ariables andi the \ector of control ariables, the
necessary conditions are alsofignt if F(x, U) andf(x, U) are both jointly conage inx
andu andXA = 0 O t. A functionf(x) is concae on an open ceBx subseSin R" if and
only if for all x O Sand for alld,, (-1) A,(x) = 0 forr = 1,...,n, where the principal
minorsA,(x) of orderr in the Hessian matriiX'( x) are the determinants of the sub-matri-
ces obtained by deleting—r arbitrary ravs and then deleting thee—r columns haing
the same numberBérckandSydseetet991)

For the problem (4) we have

f(kng,) =MK% 1-n%-c,

For a function to be conga the Hessian determinant must bgatee semidefinite,
which is the case if the principal minors change signs. Considei(Kirst G ):

—a(1-o)MK ' (1-m* a(l-a)MK*(1-n)"" 0

a(l-o)MK(1-n) "% —(1-0a)aMk ¥ (1-n) "% 0
0 0 0

H =

It can be seen from; that two principal minors of order one aregagive since 1 & >0
and the third one is zero. All other principal minors are zero, too. f(kus, g,) is con-
cave ink, n, andcy.

Next consideF(k, n, G4). For this equation the Hessian is:



o 0 0 ]
1-0 1-0
1-y, A 0 1-y, .Y
L @y (-0) -1 (e (A ay(1-vy) (L-0) (¢ Y(AN"))
He = L n? ncy,
y 1-0 v 1-0
, -y -0 (cy Y(AN))  —(1-(1-y) (1-0)) (1-V) (cy Y(AR"))
i NGy cf,, ]

The terms on the diagonal (the principal minors of order one) are all less than or equal to
zero which are the required signs. Since one of the diagonal elements is zero, only one
minor of order two remains, namely:

2(1-o0)

. ay(l-(1-0) (1-y+ay) (1-y) (4 V(an%))
p = o >0.
M

The principal minor of order three (the Hesssatéterminant) is zero. Therefore the con-
clusion is thatMangasarians suficiency conditions are met by the assumptions about
parameter values.

2. Stability of basic model:Stability of the steady-state equilibrium can be chddhy
transforming the model (6) — (9) into a system ofedéntial equations inariables that
remain constant in the steady-state, juse lik section IV (cf.Benhabiband Perli
(1994)). With variableg, = cy; / k, z, =M/ kY, andn these equations are:

_ - -n
(A1) 2, = z,(u-0az,(1-n)° 1(yy)).

. n(l-n)[-p-p+ (1-0) (L(1-y) +W) ]
o(l-an) +(1-o0)y(1-a)

(A.2) (1-a) (1-y) zzn(l—n)a (on+y\(/1—o))
o(l-an) +(1-0)y(1-a)

1- -
wherez, = (yy)zzn(l—n)a g

These equations have the steady-state values

Y(p=(1-0) (w+ (1-y) ) +n)

p-(l-O)vv+0(1-v)§+vu

(A3) N =
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ap+u-(1-o0) (ay+ (1-y) W)

(1-y) (ap+p-(1-0) (ay+ (1-y)u)) J
ap+p-(1-o0) (ayw+ (I-y)p) —y(l-o)p
The equilibrium described by (A.3) - (A.4) is unique and locally stable (or the steady-
state gravth path is determinate &enhabibandPerli call it) if the systens Jacobian
evaluated at the steady-state has one gaaa with positre and one with a gative real
part. The Jacobian can be obtained from (A.1) and (A.2)aldated at the steady-state
given by (A.3) and (A.4). Heever the pression is rather complicate and the eigén
ues cannot be obtained analyticallye therefore gie the analytical solution for the spe-

A4) z =

a

a(l—a)[

cial case that = 1 and calculate eigealues for a lage range of plausible parameter
values for non-logarithmic utility numerically.

The eigenvalues aF are given by the solution to its characteristic equation

rP-Trd +Detd = 0

where TJ* is the trace of thewvaluated Jacobiadt and Ded* its determinant. Instead of
calculating the eigesalues by solving the characteristic equation — whiohld/result in

a huge mess — the Routh-Hurwitz conditions may be used. According to their theorem
the number of roots with posi@ real parts is equal to the number afiations of sign in

the following scheme (see alBenhabibandPerli (1994, Theorem 1):

1, -TrJ, Det]

Determinant and trace of the alealacobian for the special case 1can be obtained as:

a[wﬂ [p+u] [p+ (1-y+ay) ﬂ

(A5) Detd = - T
(1-a)| (-y+ay(1-a) ¢ +p(1-ay) |

A6) TrJ =p

It is easy to see that the determinantgagk negatig. Also the trace is strictly posié.
Therefore the scheme has the order (+, -, +) implyirg gign changes, and thusaw
eigervalues with positie real parts. Hence, the equilibrium is locally saddle-path stable
and unique.

For the more general case of nonddthmic utility no simple analytical solutions for the
Routh-Hurwitz conditions can be foundorRhe numerical calculationdathematicés
Eigemalue routiné® has been empyed. We hag chosem = 0.7 anch = 0.05 as abe.
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Foru, v, andy a lov and a high alue are chosen to obtain results for a broad range. The
variableo is varied over the range from 0.1 to 10. The results are given in table 1.

Table 1: Saddle Path Stability for Baseline Model

Y V1 \Y} (0] Y V1 \Y (0)
080 |@e [01-10 [[04] 0 | (A [0.1-10
0.02 |0.1-10 0.02 | 0.1-10
0.0/ [0.1-10 0.04 | 0.1-10
0.02 | (Le)A [0.1-10 0.02| (I)» |0.1-10
0.02 |0.1-10 0.02 | 0.1-10
0.0/ [0.1-10 0.04 | 0.1-10

Table 1 shass that the basic dual economy model is saddle path stable for a broad range
of parameter alues, not only for the special caseoof 1. We can therefore quite safely

rule out the possibility of multiple equilibria or instability for reasonable parameters.
Note that this does not mean that multiple equilibria or instability are impossible.

23. SeaNolfram(1991).



