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Abstract  

This paper examines a three-period model of an investment decision in a network industry 

characterized by demand uncertainty, economies of scale and sunk costs. In the absence of regulation 

we identify the market conditions under which a monopolist decides to invest early as well as the 

underlying overall welfare output. In a regulated environment, we first consider a monopolist facing no 

downstream competition but subject to a price cap on the downstream retail (final good) market. We 

identify the welfare-maximising regulated prices using the unregulated market output as a benchmark. 

In particular, we show that the optimal regulation depends on market conditions (that is, the nature of 

demand) and there are three possible outcomes: (i) price regulation does not improve welfare; (ii) 

regulated prices include an option to delay value and provide a positive payoff to the firm; and (iii) 

regulated prices yield a zero payoff to the firm. Second, we consider a vertically integrated network 

provider that is required to provide access to downstream competitors. We show that when the 

regulator has only one instrument, namely the access price, an option-to-delay pricing rule generates 

(weakly) higher welfare than the Efficient Component Pricing Rule (ECPR), except under very specific 

conditions. 
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1. Introduction 
 

The role of monopoly price regulation has experienced a significant shift in many countries. At its 

inception, following a wave of corporatisation and privatisation of government owned enterprises, 

price regulation was designed to promote static efficiency through the establishment of cost 

reduction mechanisms in an environment where capacity constraints were lax in many industries. 

Despite the development of several distinct regulatory methodologies, prices have by and large 

been set in order to secure a zero net present value (NPV) for regulated firms.1  

 

However, sustained economic growth over the past decade as well as substantial technological 

change in industries such as telecommunications have created an environment where significant 

amounts of investment are necessary to provide new services or update existing ones. 

Consequently, a second wave of regulatory reform across the world has shifted the focus of price 

regulation from promoting static efficiency towards supporting dynamic efficiency and, 

consequently, providing appropriate investment incentives. 

 

The tension between price regulation and investment incentives is highlighted, for example, in the 

current debate on the deployment of fibre-optic infrastructure and so-called Next Generation 

Networks (NGNs). This debate is characterised by firms requiring regulatory certainty before they 

invest in order to avoid circumstances in which they would be required to provide access to the 

new infrastructure at prices that would yield a zero net present value if the new service is 

successful, but access seekers would not share the losses if the new service fails. It is also 

anticipated that the relationship between price regulation and investment incentives will be 

increasingly important in a low carbon emissions world where substantial amounts of renewable 

and gas-fired micro generation will be introduced into the electricity system. The achievement of 

such change will necessitate significant new investment to adapt and expand existing electricity 

networks, mainly because renewable energy involves site-specific power plants.2 

 

Although it is not the responsibility of regulators to provide firms with incentives to make particular 

investments (for example in NGNs), it is important that the incentives for efficient investment are 

not distorted. This requires a regulatory framework that correctly accounts for the risks faced by 

firms when investing in a new network facility. These risks are related to the combination of two 

underlying characteristics: (demand) uncertainty and irreversibility. 

 

                                                 
1  For instance, the revenue cap regulation applied to electricity transmission in Australia states that 
regulated firms have a maximum revenue allowance that covers the operating expenses and the return on 
investment, that is, maximum revenue is set to remunerate the cost of capital yielding a zero NPV.  
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Future cash flows in almost all network industries depend significantly on uncertain events such 

as the evolution of technology, tastes, general economic conditions and natural events as well as 

competition from newly developed close substitutes. While most, if not all, firms in a competitive 

economy arguably face such uncertainty, the combination of demand uncertainty and large 

irreversible investments are important characteristics of network industries. If the investments 

were reversible in the case of insufficient cash flows to cover the capital costs, an investor would 

be able to recover any losses through the resale of its assets. Similarly, the irreversibility concept 

would be of less concern in the absence of uncertainty. 

 

Investments in network industries are irreversible for two main reasons. Firstly, for some types of 

investment, recovery through resale is simply not possible. For example, in telecommunications it 

is not economically viable to remove and resell copper or fibre-optic cable that has been placed 

underground. Secondly, even if certain equipment can be uninstalled and resold, it is likely to be 

industry-specific and thus its value dependent on the economic conditions of the industry. Even if 

a firm wanted to resell an asset, it is unlikely that other firms would be willing to buy the 

equipment, particularly at a price that recovered the investment made.3 

 

The combination of uncertainty, irreversibility and investment timing flexibility provides the 

building blocks of the option to delay theory. Although the option to delay’s concept has been 

extensively studied in competitive markets,4 its implications on regulated prices and investment 

incentives are less well understood. Indeed, there has been much debate on this subject recently.  

 

For instance, in the context of telecommunications, the New Zealand Commerce Commission 

stated that “the obligation to provide interconnection services removes the option for access 

providers to delay investment in their fixed Public Switched Telephone Networks.5 If this option 

has a value, the costs of foregoing the option are a cost that should be reflected in 

interconnection prices” (Commerce Commission 2002). In its latest cost of capital consultation, 

the telecommunications regulator in the United Kingdom proposed that “Ofcom should begin to 

develop a framework by which regulatory policy might reflect the value of these options (real 

options)” and “a key area identified by Ofcom as being one in which the value of wait and see 

options might be significant was that of next generation access networks” (Ofcom 2005).  

 

Under real options theory, a firm will invest in a project today if its NPV is higher or equal then the 

NPV of investing at anytime in the future. Therefore, as a result of such options to delay, profit-

                                                                                                                                                  
2 A site-specific power plant is an electric generating facility that can be only built in one specific location 
due to natural conditions. For example, a hydro power plant or wind farm.  
3 See, for example, Pindyck (2004). 
4 See, for example, Dixit and Pindyck (1994) and Trigeorgis (1996). 
5 A Public Switched Telephone Network (PSTN) is the traditional phone system. Also referred to as the 
'landline' network, it uses a copper wire network to carry voice and data.  
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maximising firms might choose not to undertake an investment even though its NPV is positive. In 

these cases, it follows that a regulator who sets the price so that to ensure that the NPV is equal 

to zero will distort the firm’s investment decision. As a result, traditional regulation, which focuses 

on setting the price at some notion of long run average cost so that the NPV of the investment is 

zero, might not provide the correct investment incentives as it fails to take into account the cost of 

uncertainty that the firm has to bear if it were to invest early.  

 

In this paper we examine a simple three-period model of an investment decision in a network 

industry characterized by demand uncertainty, economies of scale and sunk costs. In this model 

a firm may invest in the first period or wait until the second period to decide whether to invest in 

the network. Uncertainty does not resolve itself until the last period.  

 

In the absence of regulation we identify the market conditions (i.e., the nature of demand) under 

which an unregulated monopolist decides to invest early as well as the underlying overall welfare 

output. The unregulated monopoly outcome is then set as the benchmark that the regulator will 

try to improve upon.  

 

We first consider a monopolist firm facing no downstream competition but subject to a price cap 

on the downstream retail (final good) market. Our focus is on regulatory interventions where the 

regulator commits ex-ante to a set of prices that are not contingent on demand. 6  Thus, our 

‘regulatory game’ is such that the regulator makes a one-off offer and the firm then decides 

whether to invest early or not. We rule out the regulator’s ability to commit to demand contingent 

prices. Such commitment might not be possible as a result of political pressures that emerge 

when the realised state of demand calls for high prices in order to be consistent with full capital 

maintenance. This is the well-known regulatory expropriation problem.    

 

In this ex-ante regulated environment, we identify the welfare-maximising regulated prices. In 

particular, we show that there are three possible optimal scenarios: regulated prices that provide 

a zero payoff to the firm, regulated prices that include an option to delay value and provide a 

positive payoff to the firm and no regulation. From a policy perspective, this indicates that 

regulated prices that exclude an option to delay and that are designed to yield zero economic 

profits might not be optimal. 

 

We also consider a vertically integrated network provider that is required to provide access to 

downstream competitors. We show that when the regulator has only one instrument, namely the 

access price, an option-to-delay pricing rule generates (weakly) higher welfare than the Efficient 

Component Pricing Rule (ECPR), except under very specific circumstances.  

                                                 
6 Another possible type of ex-ante regulation for new network services is the notion of a ‘regulatory 
holiday’. See Hausman (1999). 
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The basic idea is that access prices under the option-to-delay pricing rule are (weakly) lower than 

those following the ECPR. The main reason is that under an option-to-delay pricing rule, even an 

inefficient entrant can constraint the monopoly rents that the incumbent can extract, whereas an 

ECPR price embeds full monopoly rents.  

 

As we discuss in the next section, this paper differs from earlier literature in at least three 

significant aspects. First, it explicitly considers the process by which a regulator sets regulated 

prices. Second, it shows that the design of welfare-maximising price regulation depends on 

market conditions. Third, it investigates optimal access pricing and unlike Pindyck (2004) who 

advocates an ECPR-type methodology, we find that except under very specific conditions, an 

access price that accounts for the option to delay value is welfare-superior to the ECPR. 

 

This paper is organized as follows. Section 2 surveys the recent literature on regulation and the 

option to delay. Section 3 sets out the investment decision model in an unregulated industry. In 

Section 4 we compute the NPV and the option to delay value associated with the unregulated 

monopolist investment decision. Section 5 investigates the effect of retail price regulation in the 

incentives to invest. In Section 6 we examine the effects of access price regulation on the firm’s 

investment decision under downstream competition and compare two types of regulation, namely 

those based on the ECPR and those based on an option to delay rule. Section 7 concludes the 

paper.  

 

2. Literature Review 
 

One of the earliest set of papers related to this topic was Teisberg (1993 and 1994). Both articles 

focus on a firm’s decision to delay investment, choose shorter-lead-time technologies (even if 

they are more expensive) and abandon partially completed projects when this firm is faced with 

uncertain and asymmetric profit and loss restrictions due to regulation.  

 

The value to the firm of the investment project is a function of the uncertain value of a completed 

project in the future and the direct costs of completing construction. The value to the firm of a 

completed project depends on exogenous regulatory treatments of cost allowances, financing 

costs and abandoned projects.  

 

The analysis uses a stylized representation of exogenous cost allowance policy. The value of an 

already completed project is assumed to be known. However, the value of a project that is not yet 

complete is uncertain. The expected change on the project’s value is the expected rate of return 

on an operating project less a regulatory term representing expected changes in cost allowances. 

 5



Future uncertainty about the value of a completed project is due to future regulatory outcomes as 

well as future market conditions.  

 

The modelling framework used in both papers also assumes that the financing cost policy is such 

that the investment generates no positive cash flows until it is completed. Finally, a stylised 

abandonment policy is considered, in which the firm recovers an exogenously specified fraction of 

previously sunk costs when the project is abandoned.  

 

Teisberg (1993) shows that when the firm faces uncertain and asymmetric profit and loss 

restrictions it invests in smaller, shorter-lead-time plants, or simply delay investment. Firms 

choose smaller projects to reduce the expected size of regulatory penalties and shorter-lead-time 

projects to reduce the chance that the realised usefulness of the plant due to regulatory 

uncertainty will be very different from the original expectations. Decisions to delay investment 

also result from asymmetric profit and loss restrictions. 

 

Teisberg (1994) provides a numerical analysis of optimal construction strategies based on the 

model developed in Teisberg (1993). The analysis presents four results: the value of flexibility to 

delay or abandon construction, the effects of uncertainty on the project value and on the decision 

threshold for investment, the value of a shorter construction lead time (shorter lead time 

technology), and the effects of abandonment policy. It shows, for instance, that the value of the 

options to delay and abandon construction may be very substantial. Also, it shows that the value 

of the investment project under regulation is lower than in an unregulated case and the more 

uncertainty there is, the more regulation reduces the investment project’s value. 

 

It follows from Teisberg (1993, 1994) that the project’s value under regulation is lower than in its 

absence. As a result, regulation might lead a firm to delay its investment.  As in Teisberg, we 

develop a model that compares the investment decision of an unregulated monopolist and a firm 

that is subject to price regulation. However, we explicitly consider the process by which the 

regulator sets regulated prices and characterise the socially optimal price regulation.  

 

Other important references include those by Hausman (1999) and Hausman and Myers (2002).  

While Teisberg investigates the impact of regulatory uncertainty on firm’s investment decisions, 

these authors focus on access pricing methodologies and asymmetric rights between incumbent 

and entrants in the telecommunications and railroad industries. Moreover, they argue that 

regulated prices in these industries should reflect the importance of sunk costs and the 

irreversibility of investments. 
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In particular, Hausman (1999) argues that the U.S. Telecommunications Act of 1996 in the form 

of its access pricing methodology (TSLRIC) 7 can lead to serious negative effects on innovation 

and new investment in the local telephone network because it does not account for the interaction 

of uncertainty with sunk and irreversible costs of investment. The author concludes that a mark 

up factor must be applied to the investment cost component of TSLRIC. Hausman points out that 

this mark up is the value of the free option that regulators force incumbent providers to grant to 

new entrants, where an option is the right but not the obligation to purchase the use of the 

unbundled elements of the incumbent’s network.  

 

Hausman and Myers (2002) make the same point as Hausman (1999) but their focus is on the 

railroad industry. The authors estimate the size of the differences between the returns calculated 

using the regulator’s pricing methodology and an alternative method that includes the interaction 

of uncertainty with sunk and irreversible costs of investment by applying a real options approach 

(using Monte Carlo Simulation). They find that the required return calculated from a regulator’s 

model ignoring these factors is lower than the optimal amount; the size of the error vis-à-vis the 

optimal amount lies between 30% and 84.4%.  

 

As in Hausman (1999) and Hausman and Myers (2002) we investigate access pricing in the 

context of infrastructure investment. However, we explicitly determine an access pricing policy 

that accounts for the option to delay value. Moreover, we show that the format that the welfare-

maximising price regulation will take depends on market condition.    

 

Finally, Pindyck (2004) address the impact of the network sharing arrangements mandated by the 

U.S. Telecommunications Act of 1996 on investment incentives, with a focus on the implications 

of irreversible investment. As in Hausman (1999), Pindyck argues that because the entrant does 

not bear the sunk costs, this leads to an asymmetric allocation of risk and return that is not 

properly accounted for in the pricing of the network services. Pindyck argues that such 

asymmetric allocation of risk and return creates a significant investment disincentive.  

 

In contrast with Hausman (1999), Pindyck (2004) investigates the relationship between regulation 

and uncertainty by using discrete modelling frameworks. More specifically, Pindyck (2004) 

considers two distinct frameworks to analyse the link between the option to delay and regulated 

prices.  

 

The first framework consists of a single firm assessing a network investment that will generate 

cash flows in perpetuity. The firm can invest in the first period or wait until the second period to 

                                                 
7  TSLRIC (Total Service Long-Run Incremental Cost) is a cost-based pricing methodology reflecting 
"forward-looking costs" of an efficient operator, comprising direct costs, the cost of capital, and a share of 
common costs.  
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decide whether to invest in the network. The cash flow in the first period is known, but the cash 

flow in the second period can either increase or decrease. This uncertainty is resolved in the 

second period and from there onwards the same cash flow (high or low) will eventuate each year. 

The required investment amount is unchanged from the first to the second period – that is, the 

real cost of investment decreases over time. Thus, the combination of uncertain cash flows and a 

declining investment requirement in real terms creates an incentive for the firm to delay. The cost 

of waiting is the first period cash flow, which is foregone when the firm delays its investment. This 

framework is used to explain the basic concept of option value. Additionally, in order to illustrate 

the problem of ex post access regulation, Pindyck uses a numerical example of irrational 

behaviour by a firm; that is, it is optimal to wait but the firm invests early nonetheless. Pindyck 

then uses this example to show that under a low demand scenario the incumbent firm has a 

negative payoff while the entrant avoids any losses by not taking up access to the network. 

Pindyck suggests that access prices should incorporate an option to delay value to compensate 

the incumbent for this asymmetric risk.  

 

Pindyck also examines a hypothetical example where an incumbent installs a 

telecommunications switch that can be utilized by an entrant. As in the previous example, it is 

optimal for the incumbent to wait until uncertainty is resolved but the firm invests anyway. In this 

example, the author suggests that this would be the case where the investment is mandatory and 

the firm has a duty to serve. Pindyck shows that when there is entry, the entrant’s expected gain 

is precisely the incumbent’s expected loss. In order to correct access prices to account for the 

option to delay value, Pindyck suggests that the entrant’s expected cash flow should be set equal 

to zero and consequently the incumbent would be indifferent between providing access to 

entrants and providing the retail service itself (an ECPR-type methodology).  

 

As in Pindyck (2004) we use a three period model to investigate access pricing in the context of 

infrastructure investment. However, our modelling framework differs from Pindyck’s in several 

ways. First, in our model the cash flow in the first period is uncertain whereas this amount is 

known in Pindyck’s model. Second, in our framework uncertainty does not resolve itself until the 

last period while in Pindyck (2004) uncertainty is resolved in the second period. Finally, in order to 

isolate the effect of demand uncertainty on the option to delay value we consider that the 

investment outlay is financially neutral over time. In Pindyck (2004) the real cost of investment 

decreases over time. 

 

Importantly, while Pindyck advocates in favour of an ECPR-type methodology to account for the 

interaction between irreversibility and demand uncertainty, we find that, except under very 

specific conditions, an access price that accounts for the option to delay value generates at least 

the same welfare than an ECPR-based price.   
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3. The Investment Decision Model 
 

This Section develops a simple three-period model framework to investigate the role of the option 

to delay on investment decisions in network industries. Our framework encompasses four 

common characteristics of network industries: timing flexibility when making the investment 

decision, demand uncertainty, investment irreversibility and natural monopoly.    

 

We consider a firm’s decision regarding whether to build a network in order to provide a new 

service. It takes one period to build the network. The firm can build the network at  or at 

, with services starting at  or 

0=t

1=t 1=t 2=t , respectively. If the firm does not invest at 0=t , it 

has the right but not the obligation to invest at 1=t . If the firm invests at , it will have the 

cash flows from periods  and 

0=t

1=t 2=t

2=t

. On the other hand, if the firm invests at  it will only 

get the cash flow from period . Thus, there is a cost of waiting when the firm delays its 

investment (the first period cash flow). Also, we assume that when indifferent as to investing, the 

firm invests and when indifferent between investing at 

1=t

0=t  or at 1=t , the firm invests at 0=t . 

 

The investment outlay to build the network at 0=t  is equal to I , whereas the outlay to build it at  

 is equal to , where  is the project’s cost of capital. Thus, the investment 

expenditure is financially neutral over time. Moreover, the investment is sunk and there are no 

maintenance or operational costs to run the network. 

1=t ( )Ik+1 k

 

At  the inverse demand function is characterized by a choke price equal to . At any price 

below or equal to  the demand, denoted  by , will be either equal to  (where ) or 

equal to  (where ) with probabilities 

1=t
_

1P
_

1P

0

1q uQ 1>u

dQ 1<< d θ  and ( )θ−1
_

1P

, respectively, where Q  is the 

expected demand at . The demand at a price above  is always equal to zero. 0=t
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At  the inverse demand function is characterized by a choke price equal to . At any price 

below or equal to  the demand, denoted by , will be either equal to , or  

with probabilities , 

2=t
_

2P

Q
_

2P

2θ

2q u 2 udQ Qd 2

( )θθ −12  and ( )21 θ− , respectively. The demand at a price above  is 

always equal to zero. 

_

2P

 

Under these conditions, the gross value of future cash inflows will fluctuate in line with the 

random fluctuations in demand (Figure 1). Note that demand uncertainty creates an incentive for 

the firm to delay its investment decision until 1=t . Note also that this uncertainty does not 

resolve itself until the last period. 

 

u QP
_

1

( )θ−1

θ

d QP
_

1

1=t

θ

θ

( )θ−1

( )θ−1

QuP 2
_

2

u d QP
_

2

QdP 2
_

2

2=t0=t

u QP
_

1

( )θ−1

θ
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_

1

1=t

θ

θ

( )θ−1

( )θ−1

QuP 2
_

2

u d QP
_

2

QdP 2
_

2

2=t0=t  
 Figure 1 

 

The network is used to provide services to final consumers. The technology is such that the 

production of the final good requires one unit of the network service and one unit of a generic 

input with unit prices  at  and  at 1c 1=t 2c 2=t . Therefore, at 0=t  the firm’s cost function to 

provide the downstream service is given by: 

( ) ( ) ( )
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

+
+=

+
+

+
+=

2
22

21

2
2211

210

1

11
,

k
qcIqC

k
qc

k
qcIqqC

                                             (1) 
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where  and  are the cost functions when investing at 0C 1C 0=t  and at , respectively, 

evaluated at time . It is clear from (1) that the provision of network services constitutes a 

natural monopoly.  

1=t

0=t

 

In the next section we analyse the investment decision of an unregulated monopolist who does 

not anticipate that its prices will be regulated. 

  

4. Pricing the NPV and the Option to Delay in the 
Absence of Regulation 
 

An unregulated monopolist is considering whether to invest in a network facility to provide a new 

service. When making its investment decision, this firm knows the choke prices consumers would 

pay for its new service as well as the expected demand under the alternative states of the world. 

At this stage, the monopolist does not anticipate that its prices will be regulated. 

 

First, we calculate this investment decision as a standard NPV. Note that if the firm invests at 

 the project has an expected net value at 0=t 1=t  equal to 

 

( )
( )

( )

_ _
2

2 2 2 2_

1 1

1

1

P c u Q P c udQ
NV P c uQ

k

θ θ
θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥= − +⎜ ⎟ +⎢ ⎥⎝ ⎠
⎢ ⎥⎣ ⎦

( )
( )

( )

+

( )

_ _
2

2 2 2 2_

1 1

1
1 1

1

P c udQ P c d Q
P c dQ k I

k

θ θ
θ

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥+ − − + − +⎜ ⎟ +⎢ ⎥⎝ ⎠
⎢ ⎥⎣ ⎦

 

 

Financial theory suggests that the cost of capital of a project is determined by its cash flows’ risk 

profile. Remember that the future cash inflows will fluctuate in line with the random fluctuations in 

demand. In particular, recall that demand at each period equals the demand from the previous 

period multiplied by u  or  with probabilities θ  and ( )d −θ1

( ) ( kdu +=−+ 11

. It follows then that 

)θθ . 
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Thus, discounting the ( )θNV

IQ −⎥
⎦

⎤

 at the opportunity cost of capital  we obtain a NPV equal to 

. The same NPV can be calculated using a risk-neutral valuation. In 

a risk-neutral world, all assets would earn the risk-free return 

k

cPcP⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ − 2

_

21

_

1

r , and so expected cash flows 

(weighted by the risk-neutral probabilities, p and ( )p−1 ) could be appropriately discounted at 

the risk-free rate. The risk-neutral probability is stated in Lemma 1 below. The proof of the 

Lemma is in the Appendix. 

 

Lemma 1: The risk-neutral probability is given by 
( )

du
drp

−
−+

=
1

. 

 

Thus, the NPV of this investment decision, denoted by NPV , is equal to 

 

  

( )
( )

( )
( )

_ _

1 1 2 2 1 1
NV NV p

NPV P c P c Q I
k r
θ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − − = =⎜ ⎟ ⎜ ⎟⎢ ⎥ + +⎝ ⎠ ⎝ ⎠⎣ ⎦

                         (2) 

where 

( )
( )

( )

_ _
2

2 2 2 2_

1 1

1

1

p P c u Q p P c udQ
NV p p P c uQ
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⎡ ⎤⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥= − +⎜ ⎟ +⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

+ . 

( )
( )

( ) ( )

_ _
2

2 2 2 2_

1 1

1
1 1

1

p P c udQ p P c d Q
p P c dQ r I

r

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥+ − − + − +⎜ ⎟ +⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

Given the values of the parameters, the NPV is fixed at NPV . In the next section we will 

calculate the changes in the NPV as prices are set by the regulator rather than the firm. 

 

The risk-neutral methodology will now be used to calculate this investment decision as a call 

option, that is, if the firm does not invest at 0=t  it has the right but not the obligation to invest at 

. The rationale for using the risk-neutral methodology can be explained as follows. As the 

cash flows risk profile of the deferral option is different from the standard NPV, these cash flows 

cannot be discounted using the same cost of capital  as in the NPV case. Thus, instead of 

1=t

k
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calculating the correct risk-adjusted discount rate applied to the expected cash flows from the 

project (given deferral), we simply calculate the risk-neutral probabilities and then discount the 

cash flows using the risk free rate.8 

 

Note from Figure 2 below that (i) the benefit of waiting is that the firm avoids negative payoffs and 

(ii) the cost of waiting is the first period cash flow, which is foregone when the firm delays its 

investment decision.  
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Figure 2 

 

The expected return on the option, denoted by ,  must also equal the risk-free rate in a risk-

neutral world, that is,   

___

OD

( )
r

ODppODOD
+
−+

=
−+

1
1___

 

or 

( ) ( ) ( )
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IrdQcPMaxpIruQcPpMax
OD
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⎡
+−⎟

⎠
⎞

⎜
⎝
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=
1

0;110;1 2

_

22

_

2___
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It is easy to see from (3) that the option to delay only has value when . Since our goal is 

to investigate the relation between the option to delay and regulation we assume throughout the 

paper that this inequality holds. Note also from (3) that when considering the option to delay (OD) 

as a function of demand, there are three ranges that play an important role in our analysis. In the 

first range, both states of demand, high and low, yield negative payoffs. In this case the option to 

delay is equal to zero. In the second range only the high demand scenario yields a positive payoff 

2

_

2 cP >

                                                 
8 A more formal rationale is provided by Teisberg (1994) who points out that in an option pricing model 
the value of the investment opportunity is derived from the market value of the project. This implies that 
the riskless rate, rather than the cost of capital, should be used in the valuation of the investment as the risk 
of the project is incorporated in the market valuation of the project. It follows then that the cost of capital is 
exogenous and any changes in its value are captured by the market value of the project. 
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and the slope of the function is ⎟
⎠
⎞

⎜
⎝
⎛ −

+ 2

_

21
cP

r
pu

. In the third range, both scenarios yield positive 

payoffs and the slope of the function is . As with the NPV, given parameter values, 

 has a fixed value. In the next section we investigate how regulation affects the value of OD. 

⎟
⎠
⎞

⎜
⎝
⎛ − 2

_

2 cP

___
OD

___

OD
 

In order to decide whether, and when, to invest in the network facility the firm must compare the 

values of  and  which are given by (2) and (3), respectively.
______
NPV

___
OD 9 Recall that the benefit of 

waiting is that the firm avoids negative payoffs while the cost of waiting is the first period cash 

flow, which is foregone when the firm delays its investment. Thus, it is clear that the comparison 

between the market value of the  and the  at 
______
NPV 0=t depends on , the term 

that drives the first period net revenue. There are four different possibilities depending on the 

magnitude of this term, which are listed in Lemma 2. Its proof and figures covering the various 

cases are in the Appendix. 

⎟
⎠
⎞

⎜
⎝
⎛ − 1

_

1 cP

 

Lemma 2: Table 1 below summarizes the unregulated monopolist investment decision outputs 

given . ⎟
⎠
⎞

⎜
⎝
⎛ − 1

_

1 cP

 
Condition The firm never 

invests if  
The firm invests at 1=t  when 

uQq =1  if  

The firm always 

invests at  if  1=t
The firm invests at 0=t  if 

01 <⎟
⎠
⎞_

1− cP⎜
⎝
⎛

0=−OD (Fig 3) 0
____

=OD  0>+OD  and  
0>+OD

0>−OD

 and 

 
- 

01 =⎟
⎠
⎞

⎜
⎝
⎛ _

1− cP  (Fig 4) 0
____

=OD  0>+OD  and  0=−OD - 0>+OD  and   0>−OD

01

_

1 >⎟
⎠
⎞

⎜
⎝
⎛ − cP  (Fig 5) 0

____
=OD  

0>+OD
______
NPV

,  and 

 

0=−OD
____
OD<

- 
0>+OD

______
NPV

,  and 

 

0≥−OD
____
OD≥

01

_

1 >⎟
⎠
⎞

⎜
⎝
⎛ − cP  (Fig 6 and 7) 

0
____

=OD
______
NPV <

 and 

 
____
OD

- - 0≥≥ ODNPV
__________

 

Table 1 

                                                 
9 Clearly, NPV is the net present value of investing at 0=t  and OD is the net present value of investing at 

.  1=t
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Lemma 2 shows how market conditions (choke prices and expected demand) affect the firm’s 

investment decision. It remains for us to compute the total welfare associated with each decision. 

First, if the firm invests at  ( ) the total welfare at 0=t
__________
ODNPV ≥ 0=t  is given by: 

 
______

0 NPVWM α=                     (4) 

 

where 1<α  denotes the weight assigned to firm’s profits. Second, if the firm invests at 1=t  

independently of the demand scenario ( ,  and ) the total welfare 

at  is given by:  

__________
ODNPV < 0>+OD 0>−OD

0=t

 

                                           (5) 
⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛ −= IQcPW LH

M 2

_

2
, α

 

Finally, if the firm invests at  only in case demands turns out to be high ( , 

 and ) the total welfare at 

1=t
__________
ODNPV <

0>+OD 0=−OD 0=t  is given by: 

 
H
t

H
M pW 1== πα        (6) 

Where 
( )

_

2 2

1 1
H
t

P c uQ
I

r
π =

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎢=
+⎢ ⎥

⎢ ⎥⎣ ⎦

⎥− denotes the present value of profits when the firm invests at 

 if demand is high. Of course, the total welfare associated with no investment is equal to 

zero. 

1=t

 

5. Retail Price Regulation 

 

This section investigates the effect of retail price regulation on the incentives to invest. More 

specifically, we consider a monopolist firm that faces no downstream competition and is subject 

to a price cap on the downstream retail (final good) market. The regulator and the firm both 

observe the choke prices (  and ) and are fully informed about the nature of demand 
_

1P
_

2P
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uncertainty and the cost function. The regulator sets regulated prices  and  that will prevail 

at  and at , respectively, in order to maximize total welfare: 

RP1
RP2

1=t 2=t
 

RMax W CS απ= +                   (7) 

 

1where CS denotes consumer surplus, π  is the firm’s profit and <α  denotes the weight given 

to firm profits.10  

 

This paper departs from most of the modern literature on regulation (Laffont and Tirole 1993) by 

abstracting from the existence of asymmetric information between the regulated firm and 

regulator. Our focus is instead on a situation where the costs of the project ( I ) can be 

determined with certainty. Perhaps our model can be seen as a reduced form approach where 

the regulated firm puts in a claim regarding the cost of the project and the regulator decides 

accurately the amount that it will allow the firm to recover through regulated prices.11 Moreover, 

our focus is on a specific investment to provide a new service, for instance, a new technology in 

the telecom industry. In such cases the investment is subject to scrutiny by audit firms hired by 

the regulator, by society at large and also by potential competitors. This additional scrutiny may 

mitigate the existence of asymmetric information vis-à-vis the more standard case where a 

regulated monopolist undertakes a marginal investment, which is only subject to the scrutiny of 

the regulator.  

 

Our focus is on ex ante regulation. That is, we assume that the regulator sets  and  at 

 before the resolution of demand uncertainty. Although it is true that a regulator could 

extract the entire surplus by offering an ex post demand contingent price contract, we assume 

that a regulator cannot commit to such contract. This assumption is consistent with regulatory 

practice around the world. Moreover, it suffices there to be a small probability that, ex post, the 

regulator will renege on the promise of a high retail price (e.g., if demand turns out to be low) for 

the firm not to invest at . 

R
1

RP2P

0=t

0=t
 

Thus, we focus on a ‘regulatory game’ where the regulator makes a one-off offer which consists 

of ex ante non-demand contingent maximum prices  and  that the firm will be allowed to RP1
RP2

                                                 
10 In our set up the horizontal demand implies that when 1=α  any reduction in the firm’s profit (through 
lower prices) would be equal to an equivalent increase in the consumer surplus. Thus, when 1=α  in our 
model, a regulator cannot improve upon the outcome of the unregulated market. 
11 For an empirical analysis of the difference between firms’ claims and regulatory cost allowances in 
Australia see Breunig, Hornby, Menezes and Stacey (2006).   
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charge at  and at , respectively. The firm then decides whether to invest at  or at 

 (if demand turns out to be high).  

1=t 2=t 0=t

1=t
 

As we shall demonstrate below, the optimal regulation depends on the impact of the regulated 

prices on the comparison between the Net Present Value and the Option to Delay value. There 

are three cases to consider, where each case corresponds to one of the three different ranges of 

the Option to Delay function in an unregulated market. The next three propositions characterise 

the optimal set of regulated prices for each of these cases. Their proofs and figures covering the 

various cases are in the Appendix. Below we will use the following terminology, 
IC  denotes 

the average fixed cost of investing at 

=
Q

( )1
H

r I
uQ

C
+

=0=t  for expected demand Q ,  is the 

average fixed cost of investing at 1=t  under high demand, and 
( )1

L =
r I

C
dQ
+

1

 is the average 

fixed cost of investing at  under low demand. 1=t

0=

2P

R

=t

 

Proposition 1: Suppose . If , the unregulated outcome is 

optimal. If , the optimal ex ante demand non-contingent price contract is 

 and . In both cases the firm will invest at . 

0
__________

=≥ ODNPV

_

22 PP R =

0
__________

== ODNPV
____

> OD

)
_

2c+ −

______
NPV

(1 1cRP C= + 0=t

 

Proposition 1 characterises the optimal regulated prices when the option to delay value in an 

unregulated market is equal to zero. It is easy to see that when  the best the 

regulator can do is to replicate the choke prices  and . When , however, 

the regulator is able to set  and   so that the net present value under regulation 

becomes zero. Since the option to delay value remains unchanged, we have  

and the firm still invests at . In this case the regulator can extract the entire surplus from the 

firm – by transferring it to the consumer – without distorting the decision of investing at . This 

is socially optimal since the overall welfare function puts a greater weight to the consumer’s 

surplus than the firm’s profit as

0
__________

== ODNPV
______ ____
NPV OD>

NPV

_

1P

2

_

2P 0=

____
= OD

0=t

_

1P P<

0

1<

_

2 PP R =

0=

α .    

 

Note that the sum of  and  is equal to RP1
RP2 ( )1 2C c c+ + . That is, when , 

regulated prices that are equal to the average cost but do not  include an option to delay value 

0
__________

=> ODNPV
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provide the socially optimal investment incentives. This is the type of regulation that has been 

applied throughout the word over the last decades. Proposition 1 makes the useful but obvious 

point that standard regulation is optimal when the option to delay has no value.  

 

The next proposition determines the optimal price regulation when the payoff of investing in an 

unregulated market at  under high demand is positive while the payoff in the low demand 

scenario is negative. That is, we look at the case where  and .  

1=t

0>+OD 0=−OD
 

As we will see below (Proposition 2b), under some circumstances it might not be possible for the 

regulator to extract all the surplus from the firm without distorting the decision of investing at 

. In such cases, the minimum prices that induce the firm to invest early provide an option to 

delay value, which can be lower than or equal to the option to delay value in an unregulated 

market.  

0=t

 

In such cases, it is also convenient to define a constant , which is determined implicitly by 

regulation, as the value above the average total cost of investing at 

0>M

1=t  (if demand is high) such 

that we have . This is the price regulation that provides the minimum option to 

delay value to the firm such that it invests early. The price that satisfies this condition is 

____
ODODNPV <=

Q

ODNPV ⎟
⎠
⎞−

______

0 R
HP C

PP R
⎜
⎝
⎛

−=
_

22

=%

. Since we are referring to the second range of the option to delay 

function this price also satisfies the following condition .  Then, there is 

a value  such that .  

2cCL +< 2P R <2cCH +

>M 2 2c M= + +

 

Proposition 2a: Suppose there is an expected demand level  such that 

 and that the actual expected demand is such that 

,  and  (see Figure 7). The optimal ex ante demand non-

contingent price contract is  and  (the firm invests at ). 

Q%

_ _ _ _

1 2 1 2( , , ) ( , , ) 0NPV P P Q OD P P Q=%

__________

ODNPV > 0>+OD −OD
_

11 PP R =

0=

P ( )
_

1212 PccCR −++= 0=t

  

Proposition 2b: Suppose there is an expected demand level  such that 

,  and  (see Figure 5). When the actual 

expected demand  is such that ,  and , the optimal ex 

Q%

0

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ ~_

2

_

1

~_

2

_

1 ,,,, QPPODQPPNPV

~
QQ =

0>+OD

______

NPV =

0=−OD

0>+OD
____

OD =−OD
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ante demand non-contingent price contract is  and 
_

11 PP R = 2 2
R

HP C c= +  if 

______

1
H
t

NPVp α
π =

>  (the 

firm invests  at  only if demand is high) or  and  if 1=t
_

11 PP R =
_

22 PP R =

______

1
H
t

NPVp

______
NPV

α
π =

≤  (the firm   

invests at ).  When the actual expected demand Q  is such that ,  

and , the optimal ex ante demand non-contingent price contract is  and 

 if  

0=t

0=

2 2c+

____
OD>

1P R

0>+OD
_

1P=−OD

HP C=R *p p>  (the firm invests  at 1=t

*

 only if demand turns out to be high) or 

 and  if 
_

1P=1P R
2 HP C= + 2c M+R p p≤ (the firm   invests at ), where 0=t

( ) ( )
_ _

2 2c 1 c1H HC
*p

1
H
t

Q α

π =

P C M P M Q I
⎧ ⎫

−
⎡ ⎤⎛ ⎞+ ⎛ ⎞ +− + + − +⎨ ⎬
⎩ ⎭

0

⎜ ⎟
⎝ ⎠

⎜ ⎟
⎝ ⎠⎢ ⎥
⎣ ⎦= .  

 

Proposition 2a characterises the conditions under which the regulator is able to extract the entire 

profit from the firm without changing its decision of investing at =t . When there is an expected 

demand such that the net present value and the option to delay value are equal to zero in an 

unregulated market, the regulator can set prices equal to the average total costs (  and 

) and the firm invests at 

_

1P=1P R

( 1c )
_

1P2c −+2P R C += 0=t . In this case, regulated prices that are 

equal to the average costs but do not include an option to delay value provide the socially optimal 

investment incentives.  

 

Proposition 2b characterises the conditions under which the regulator cannot set prices below a 

certain level without changing the firm’s decision of investing at 0=t

t

. For instance, to induce the 

firm to invest at  when  the regulator must provide to the firm an option to 

delay value that is equal to the option to delay value in an unregulated market. However, doing so 

might not be socially optimal as the total welfare when the firm invests at  might be higher 

than the total welfare when the firm invests at 

____
OD

______
NPV =

1=

0=t

0=t

. The reason is that the prices that the 

regulator needs to set to induce the firm to invest at 1=t

 firm to inve

 are lower than the prices that induce 

the firm to invest at . 0=

um 

t

the minim

 

In particular, prices that induce the st at 1=t  when

 prices, total regulated reve

 demand

nue is

 is high are 

 equal to the equal to 
_

1P  and 1
R =P 2 2HP C c= +R . Under these
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average total costs of investing at 1=t  and the entire profit ransferred to consumers. 

However, the firm will onl 1

 is t

y invest at =t  if demand is high. Proposition 2b shows that this 

alternative is optimal when 

______

H , w
1t

NPVp α
π =

> here  
______
NPVα  is the firm’s profit when the firm invests 

early -- this is the welfare that is lost when the firm invests at 1=t

HP C

 -- while  represents the 

d welfa

 

 case optimal 

gulation will be one of the following: (i

H
tp 1=π

this

M

expected  consumer surplus an  when the firm delays its investment.  

The same rationale can be applied to the case where 
__________
ODNPV > . In 

re

) 1P R
_

1  and R
_

11 PP R =P= 2 2c= + + , or (ii) re  and 

2 2H
RP C c= + . Under (i) the firm invests at 0=t  (at these prices 

____
OD OD< ). Under (ii) 

the firm invests at 1

NPV =

=t  if demand is hig  case  on the probability of 

nd state. For a sufficiently high probability (

h. Which  is optimal dep
*

ends

the high dema p p> te that the 

numerator of p  is the sum of the consumer surplus generated by prices below market levels 

and 

) (ii) is optimal. No

*

α  multiplied by the firm’s profit, which is equal to the minimum option to delay value such 

that the firm invests early ( ODOD < ). Note that this is the amount that is lost when there is an 

investment delay. However, an investment at 1

____

=t  causes an increase in the consumer surplus 

t 1=

 

The next propositions characterise the optimal ation when the payoff of investing in an 

unregulated market at 1=t  under low demand is positive (i.e., 

such that the expected welfare at this period is eq

 and that t

(se

ual to pπ

ice regul

nge

he ac

Figu

2 1

H . 

xpe

op

2

pr

will see below 

at the optimal regulatory policy in the third ra  of the option to delay function has the same 

tual e cted de such that 

e re 7). The timal and non-

1

0>−OD ). We 

mand is 

ex ante dem

th

characteristics as seen in the second range of this function.   
 

Proposition 3a: Suppose there is an expected demand Q%  such that 

_ _ _ _

1 2 1 2( , , ) ( , , )P P Q OD P P Q= =% %

ODNPV > , 0>OD  and OD

contingent price contract is 
_

11 PP R =

NPV 0

0>  

 and 

__________
+ −

( )
_

RP C c c P= + + −  (the firm invests at 0=t ). 
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 Proposition 3b: Suppose there is an expected demand  such that 

,  and  and the actual expected demand 

 is such that ,  and OD (see Figure 5). The optimal ex ante 

demand non-contingent price contract is  and 

Q%

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ ~_
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_
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~_

2

_

1 ,,,, QPPODQPPNPV

Q
__________

ODNPV > OD

0>+OD

0>+

1P R =

0=−OD

0>−

R
HP C

_

P1 2 2c= +  if *p p>

2 2c

 (the firm invests  

at  only if demand turns out to be high) or  and 1=t
_

1P=1P R RP CH M= + +  if *p p≤ (the 

firm   invests at ). 0=t
  

Proposition 3c: Suppose that ,  and (see Figure 4). The 

optimal ex ante demand non-contingent price contract is  and  if  

__________
ODNPV = 0>+OD 0>−OD

_

11 PR =P 2 2
R

HP C c= +

**p p>

**

, (the firm   invests at t  only if demand is high) or  and  if 1=
_

11 PP R = 2 2
R

LP C= + c

p p≤  (the firm invests  at ), where 0=t

( )
_ _

1 1

1

P c

=

⎡⎛ − +⎜⎢⎝⎣
2 2L LP C c Q α

π

⎡ ⎤⎛ ⎞− +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦**p = H
t

+ C Q I
⎧ ⎫⎤⎞ −⎨ ⎬⎟ ⎥⎠ ⎦⎩ ⎭ . 

 

Preposition 3a is similar to Proposition 2a. That is, when there is an expected demand such that 

the net present value and the option to delay value are equivalent to zero in an unregulated 

market, the regulator can set prices equal to the average total costs (  and 

) and the firm invests at 

_

11 PP R =

( )
_

1212 PccCP R −++= 0=t

______
NPV

_

1P

. In this case, regulated prices that are 

equal to the average costs but do not include an option to delay provide the socially optimal 

investment incentives. Proposition 3b is equivalent to Proposition 2b. That is, when there is an 

expected demand such that the net present value is equal to the option to delay value in the 

second range of the OD function and the actual expected demand is such that the net present 

value is higher than the option to delay value ( ), both conditions holding in an 

unregulated market, the optimal regulation will be one of the following two possibilities: (i) 

 and  or (ii)  and 

____
OD>

R
_

11 PP R = 2
R

HP C= + 2c M+ 1P R = 2 HP C c2= + . The determination of 

which regulation is optimal depends on the probability of the high demand state. As above, 

approach (ii) is optimal when *p p> .  
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Proposition 3c yields a new result. When the choke price in the first period is equal to the 

marginal cost of producing the service at the same period ( ) we have  in the 

third range of the option to delay function (see Figure 4). Then, the minimum prices that induce 

the firm to invest at  are  and 

1

_

1 cP =

2c

__________
ODNPV =

0=t
_

11 PP R = 2
R

LP C= + . These prices include an option to 

delay value for the firm. Once more, to determine the optimal regulated prices, one must compare 

these prices with those that induce the firm to invest at 1=t  under high demand (i.e.,  

and ). In a similar manner to Proposition 3b above, the latter is optimal when the 

probability of the high demand state is sufficiently high (i.e., 

_

1P=1P R

2
R

HP C c= + 2

**p p> ). Note that the numerator of 

 is the sum of the consumer surplus generated by prices below market levels and **p α  

multiplied by the firm’s profit, which is equal to the minimum option to delay value such that the 

firm invests early ( ); this amount is lost when there is an investment delay. However, 

an investment at  causes an increase in the consumer surplus such that the expected 

welfare at this period is equal to .  

____
ODOD <

1=t
H
tp 1=π

 

Note that . This follows as the welfare generated by an early investment is higher under 

 and  than under  and 

*** pp >

RP C
_

11 PP R = 2 2H c M= + +
_

11 PP R = 2
R

LP C c2= +

2cCM L

. The reason is that in 

the first regulation the minimum option to delay value that is necessary to induce the firm to invest 

early is lower than in the second case, that is, 2cCH +<++ . Under the first price 

setting the regulator is able to extract more profit from the firm without changing its decision of 

investing early.  

 

6. Access Regulation  
 

This Section studies the effect of access price regulation on the firm’s investment decision and 

total welfare. Our benchmark is an unregulated, vertically integrated firm who does not have to 

provide access to its network. This firm invests at 0=t

2

, charges consumers prices for the new 

service that are equal to  at  and  at 
_

1P 1=t
_

2P =t , and serve the entire demand at these 

prices.  Under the benchmark the incumbent has no incentive to allow access to its network by 

downstream competitors. 
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To consider the effects of access price regulation, we assume that the regulator requires the 

incumbent to provide access to its network and sets the access prices. There are infinitely many 

potential entrants with the same technology as the incumbent and retail unit costs equal to  at 

 and  at 

Ec1

1=t Ec2 2=t . Firms compete à la Bertrand and consumers prefer to buy from the 

incumbent when prices are identical. We focus on two distinct access pricing methodologies: The 

Efficient Component Pricing Rule (ECPR) and the Option to Delay Pricing Rule (ODPR). 

 

The important conceptual distinction between the analysis of retail price and access price 

regulation lies on the assumption of an infinite number of potential downstream competitors under 

the latter. When competitors are more efficient retailers than the incumbent, then access price 

regulation can always improve over the outcome of an unregulated monopolist who does not 

need to provide access to its network.  

 

The more interesting and novel result is that even when the incumbent is more efficient than 

entrants, the threat of entry can be used to change the option value of the incumbent under an 

ODPR-based access price, whereas an ECPR-based access price preserves any monopoly 

rents. This means that under some market circumstances and when the probability of the high 

demand state is sufficiently high, we show below that a welfare-maximising regulator might be 

able to reduce the access price to a point where the firm will invest at  to earn a zero 

expected payoff.  

1=t

 

6.1. The Efficient Component Pricing Rule - ECPR 

 

The ECPR is a regulatory pricing rule that links retail and wholesale prices. It reflects the 

incumbent’s true opportunity cost of selling one unit of access to an entrant and so comprises the 

resource costs of providing access as well as the revenue loss from selling one less unit in the 

retail market. At the ECPR, the incumbent is indifferent between providing access to entrants or 

providing the retail service itself.12  

 

Thus, we can define the access price contract following the ECPR as: 

  

1

_

11 cPAECPR −=  and   2

_

22 cPAECPR −=

 

                                                 
12 See, for example, Willig (1979) and Baumol (1983). 
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At this access prices the incumbent firm would be indifferent between providing access to the 

entrant and receiving  and  or providing the retail service itself and receiving  

and . Under the ECPR any entrant with retail marginal costs  and  such that 

 can enter the market, provide the retail service and fulfil the entire 

demand at prices   and  such that the sum of the entrant’s net revenue in both 

periods is equal to zero and the incumbent’s decision of investing at 

ECPRA1

)2

ECPRP1

ECPRA2

ECPRP2

1

_

1 cP −

2

_

2 cP −

( )2c E <+

Ec1

0

Ec2

( 11 ccc E +

=t  is not distorted. This is 

summarised as follows.  

 

Proposition 4: When ( ) ( )2121 cccc EE +<+

0

 the ECPR yields higher overall welfare and the 

same investment at  as an unregulated industry that is not required to provide access. =t
 

Note that when the potential entrant is less efficient than the incumbent (i.e., 

) an ECPR-based access price yields the same outcome as  an 

unregulated monopolist as entry does not take place. 

( ) ( 2121 cccc EE +≥+ )

  

6.2 The Option to Delay Pricing Rule - ODPR 
 

We define the access price contract following the Option to Delay Pricing Rule (ODPR) as: 

  

111 cPA RODPR −=  and  222 cPA RODPR −=

 

That is, the access price under ODPR is equal to the difference between the maximizing-welfare 

retail price and the incumbent’s marginal cost at each period. Table 6 in the Appendix shows all 

possible access prices under the ODPR.13 It follows that access prices under ODPR are lower or 

equal than prices under the ECPR. Thus, we can define a variable  that satisfies 0≥Z

( ) ( ) ZAAAA ODPRODPRECPRECPR =+−+ 2121 . That is, 

 

( ) ZPPPP RR =+−⎟
⎠
⎞

⎜
⎝
⎛ + 21

_

2

_

1    (8) 

 

Below we show how the outcome under Bertrand competition downstream depends on Z  and on 

the incumbent’s and entrant’s marginal costs.  
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Proposition 5a characterises the market conditions where access prices under the ODPR and 

ECPR are identical while Propositions 5b and 5c characterise the market conditions where 

access prices under ODPR are lower than under the ECPR. In Proposition 5b access prices 

under ODPR are the minimum prices such that the incumbent firm invests early while in 

Proposition 5c access prices under ODPR are the minimum prices such that the incumbent firm 

invests at  when demand is high. The proofs of Propositions 5a to 5c are in the Appendix.  1=t
 

Proposition 5a: When the unregulated market is characterised by one of the following 

conditions: (i)   and (ii) , ,  and 0
__________

== ODNPV
__________

ODNPV = 0>+OD 0=−OD H
t

NPVp
1

______

=

≤
π

α
, 

the ODPR generates the same overall welfare than the ECPR.  

 

Proposition 5b: Suppose the unregulated market is characterised by one of the following 

conditions: (i) , (ii) there is an expected demand level Q  such that 

,  and , and the actual expected demand 

 is such that , ,  and , (iii) there is an expected 

demand  such that 

0
__________

=> ODNPV

⎜
⎝
⎛=⎟

⎠
⎞ ~_

2

_

1 ,, QPPOD

__________

ODNPV >
_ _

1 2( ,NPV P P

%

⎟
⎠
⎞

⎜
⎝
⎛ ~_

2

_

1 ,, QPPNPV

Q OD

Q% ,

0>+OD

0>+ OD

) ( ,Q OD P

0=−OD

0 p

2 , ) 0Q

≥−

_ _

1 P

*p≤

= =%

0≥−

%

0

)

, and the actual expected demand is 

such that ,  and OD and (iv) , , 

and . When the potential entrant is less efficient than the incumbent and 

, the ODPR generates the same overall welfare as an unregulated 

industry that is not required to provide access. When the potential entrant is less efficient than the 

incumbent and 

__________
ODNPV > +OD
**pp ≤

( ) Zc ++ 21

( ) (

>

0>−OD

( ) ccc EE ≥+ 21

__________
ODNPV = 0>+OD

( )c ZcEcccc E ++<+≤+ 121 212 , the ODPR generates higher overall 

welfare than an unregulated industry that is not required to provide access. When the potential 

entrant is more efficient than the incumbent (i.e., ( ) ( )2c1c21 cc EE +<+ ) the ODPR generates 

higher overall welfare than the ECPR. In addition, the ODPR-based access price is lower than the 

ECPR-based access price.  

 

                                                                                                                                                  
13 In order to avoid exclusionary conduct, this methodology must be applied in combination with an 
imputation test which assures that the incumbent firm will charge retail consumers a price greater than or 
equal to the cost of providing the service. 
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Proposition 5c: Suppose the unregulated market is characterised by one of the following 

conditions: (i) , ,  and 
__________

ODNPV = 0>+OD 0=−OD H
t

NPVp
1

______

=

>
π

α
, (ii) there is an expected 

demand level Q  such that ,  and ,and  

the actual expected demand Q  is such that , ,  and  

and (iii) , , and . When the potential entrant is less 

efficient than the incumbent and 

%

____
OD= +OD

⎟
⎠
⎞

⎜
⎝
⎛ ~_

2

_

1 ,, QPP

____

OD> OD

− **p>

=⎟
⎠
⎞~

2 , ODQ

______

NPV

0> p

Zc

⎜
⎝
⎛ __

1 , PPNPV

0> OD

c E

0>+OD

0>+ OD

0=−OD

0 p >≥− *p
______
NPV

+≥2 2

c

, the ODPR generates a lower or equal overall 

welfare than an unregulated industry that is not required to provide access. When the potential 

entrant is less efficient than the incumbent and Zcc E +<≤ 222 , the ODPR generates higher 

overall welfare than an unregulated industry that is not required to provide access if 

where ***pp >

( )
( )

( ) ⎥
⎦

⎤uQ
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥

⎦

⎤

−
cI

NPV
______

α

α

22 cc E

+
−

r
cE

1
22

⎢
⎢
⎢
⎢

⎣

⎡
⎜
⎝
⎛P

_

2

+

⎟
⎠
⎞−

r

uQc E

1

2

=***p . When the potential entrant is 

more efficient than the incumbent (i.e., < ) the ODPR generates higher overall welfare 

than the ECPR if where ****pp >
( )

( )
⎥
⎥
⎥
⎥

⎦

⎤

−

+

I

NPV
______

α

⎢
⎢
⎢
⎢

⎣

⎡

⎢⎣
⎡ +

=
cc1

*

+

⎜
⎝
⎛ −

−

cP

c E

1

_

2

12

⎟
⎠
⎞

−

r

uQ

c

E

E

2

2 ⎥⎦
⎤

p ** * . In addition, the 

ODPR-based access price is lower than the ECPR-based access price. 

 

Proposition 5a characterises the market conditions where access prices under the ODPR and 

ECPR are identical. Under such conditions the ODPR generates the same welfare as the ECPR. 

Proposition 5b characterises the market conditions where access prices under ODPR are the 

minimum prices such that the incumbent firm still invests early. In this case, there are three 

possible outcomes under Bertrand competition between the incumbent and (infinitely many) 

potential entrants.  

 

First, when the entrant is less efficient than the incumbent and ( ) ( ) Zcccc EE ++≥+ 2121 , the 

entrant can only offer retail prices above the choke prices. As a consequence, the incumbent 
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serves the market at the choke prices. Welfare under the ODPR is equivalent to an unregulated 

market and also to the ECPR.  Second, when the entrant is less efficient than the incumbent and 

( ) ( ) ( ) Zcccccc EE ++<+≤+ 212121  the threat of entry leads the incumbent to reduce its 

prices such that ( ) ( )E
ODPR

E cA 221 ++ODPREE cAPP 121 +=+

( ) ( )2121 cccc EE +<+

 and . Under this 

condition the incumbent still serves the entire market under the ODPR. However, since the retail 

prices under ODPR are lower than the choke prices and the incumbent firm still invests early, this 

access regulation generates a higher welfare than the unregulated market and also the ECPR. In 

fact, under the ECPR potential entry only impacts prices when the entrant is more efficient than 

the incumbent. Third, when the potential entrant is more efficient then the incumbent, that is, 

 the incumbent cannot offer the same price conditions as the entrant’s and 

consequently the entrant serves the market. Since access prices under the ODPR are lower than 

under the ECPR, retail prices under the former regulation are lower than those under the latter 

regulation as well. In fact, when the entrant serves the market retail prices are equal to the sum of 

access prices and marginal costs. Also, the firm invests at 

_

2

_

121 PPPP EE +<+

0=t

1

 under both access regulations. 

Thus, ODPR generates higher welfare than the ECPR.  

 

Proposition 5c characterises the market conditions where access prices under ODPR are the 

minimum prices such that the incumbent firm invests at =t

0

 when demand is high – recall that 

under the ECPR the incumbent firm always invest at =t .  There are also three possible cases. 

First, when the entrant is less efficient than the incumbent and ZcEc +≥ 2

______
NPV

__________
ODNPV =
__________
ODNPV >

cc E

2

α

 the entrant can only 

offer a retail price above the choke price . As a consequence, the incumbent serve the market 

at the choke price. Note that in this case the welfare under the ODPR is equal to . We 

know that in an unregulated market welfare is given by . Also, our benchmark is a 

monopolist firm that invests at , that is, . Thus, if , the ODPR 

generates the same welfare than an unregulated industry and when , the ODPR 

generates less welfare than an unregulated industry.  

_

2P

__________
ODNPV ≥

____
ODα

0=t

 

Second, when the potential entrant is less efficient than the incumbent and Zc +< 2

HC+

≤ 22

E
E cP = 22

, 

the threat of entry leads the incumbent to reduce its price such that  and 

. Note that the incumbent still serves the market but this access regulation extracts part 

of the firm’s profit, transferring it to the consumer surplus. In this case we will have an optimality 

rule that will depend on 

_

22 PP E <

α  and p . Under the ODPR consumer surplus is positive while in an 
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unregulated market it is zero. However, the incumbent firm invests at 0=t  in an unregulated 

market and at  in case demand turns out to be high under the ODPR. Then, the ODPR will 

be optimal only if the probability of the high demand state is larger than 

1=t
***p . Note that the 

denominator of  is the sum of the consumer surplus and the incumbent’s profit under the 

ODPR. This surplus (weighted by the probability of the high demand state 

***p

p ) must be larger 

than the firm’s profit in an unregulated market weighted by α  -- the amount that is lost when the 

firm delays its investment – to be socially optimal to have investment at 1t =  as induced by an 

ODPR-based access price. 

 

Third, when the potential entrant is more efficient then the incumbent (i.e., ), both the 

incumbent’s and entrant’s profits are equal to zero. In this case, the entire profit is transferred to 

the consumer surplus. However, as in the previous case under the ECPR the incumbent firm 

invests at  and under the ODPR at 

2c<2c E

0=t 1=t  in case demand turns out to be high. Once more, 

the ODPR will be optimal only if the probability of the high demand state is larger than ****p . Note 

that the denominator of  is the consumer surplus under the ODPR. This surplus (weighted 

by the probability of the high demand state 

****p

p ) must be larger than the sum of the consumer 

surplus generated by lower retail prices and the firm’s profit weighted by α  under the ECPR -  

the amount that is lost when the firm delays its investment – for an ODPR-based access price to 

be optimal. 

 

Thus, we have shown that the ODPR generates (weakly) higher welfare than the ECPR, except 

under very specific circumstances.  The main reason is that under an option-to-delay pricing rule, 

even an inefficient entrant can constraint the monopoly rents that the incumbent can extract, 

whereas an ECPR price embeds full monopoly rents.  

 

7. Conclusion 
 

In this paper we examine a simple three-period investment model in a network industry 

characterized by demand uncertainty, economies of scale and sunk costs. In this model a firm 

may invest in the first period or wait until the second period to decide whether to invest in the 

network.  

 

This paper differs from the earlier literature in that it explicitly determines the optimal price 

regulation when investments are sunk and irreversible. In general, whether optimal regulated 

prices should incorporate an option to delay value will depend on demand conditions.  
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In particular, in the absence of retail competition, there are three possible optimal scenarios: 

regulated prices that provide a zero payoff to the firm, regulated prices that include an option to 

delay value and provide a positive payoff to the firm and no regulation. From a policy perspective, 

this indicates that regulated prices that exclude an option to delay and that are designed to yield 

zero economic profits might not be optimal.  

 

When retail competition is possible, we show that an access price that incorporates an option to 

delay value (ODPR) often yields higher welfare than the ECPR. This contrasts with Pindyck 

(2004) who found that when there is entry the entrant’s expected gain is identical to the 

incumbent’s expected loss. Pindyck suggests that in order to account for the option to delay value 

the access price should be set according to an ECPR-based methodology; the price at which the 

incumbent would be indifferent between providing access to entrants or providing the retail 

service itself. At this price, the entrant’s expected cash flow would be set equal to zero. In 

contrast, when entry is possible in our model, the entrant’s expected gain in equilibrium is equal 

to zero - this follows from the assumption of a perfectly elastic supply of entrants - and the 

incumbent’s expected loss equals the expected increase in consumer surplus. In this 

environment and under most circumstances, the ODPR-based access price, which is lower or 

equal than the ECPR is sufficient to provide the appropriate investment incentives and generates 

at least the same welfare. It is also important to note that in contrast with the ECPR methodology, 

under ODPR-based access price the potential entrant constrains the monopoly power of the 

vertically integrated firm even when the entrant is less efficient than the incumbent. In this case, 

the incumbent is required to charge a lower retail price to block entry by an inefficient entrant.  
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Appendix  
 
Proof of Lemma 1: In a risk-neutral world, all assets would earn the risk-free return r , and so 

expected cash flows (weighted by the risk-neutral probabilities, p and ) could be 

appropriately discounted at the risk-free rate. Note that in this case the investment outlay to build 

the network at  is equal to . 

( p−1 )

1=t ( )Ir+1

 

Likewise, it is easy to see that in a risk-neutral world the expected return on the investment must 

equal the risk-free rate, that is,   

 

( )1 .pR p R+ − r+ − =  

 

The risk-neutral probability  p  can be obtained from the equation above where 

 

( )

( ) ( )
1

1
1

1
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_
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Proof of Lemma 2: The graphs below (Figures 3 to 7) show payoff associated with investment 

decisions where  and  are functions of Q . These figures were constructed using the 

same values of , , , 

___
OD
_

2P 1c

______
NPV

2c I , r ,  and . However, each figure is draw with a different value 

for . The monopolist learns the expected demand  and then decides whether to invest in the 

network facility. 

u d
_

1P Q

  

Figure 3 below shows that if  then  for all values of expected demand 

. The reason is that there is no advantage of investing at 

01

_

1 <⎟
⎠
⎞

⎜
⎝
⎛ − cP

_________
ODNPV <

Q 0=t  because the first period cash 

flow is negative for all Q .  

 

Q

______
NPV

Payoff

____

OD

Q

______
NPV

Payoff

____

OD

 
Figure 3 

 

Table 2 below summarizes the investment decision outputs when : 01

_

1 <⎟
⎠
⎞

⎜
⎝
⎛ − cP

 

Investment Decision Condition  

The firm never invests if 0
____

=OD  

The firm invests at  if 1=t uQq =1 ,  and  0>+OD 0=−OD

The firm always invests at 1=t  if 0>+OD  and  0>−OD
Table 2 
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If , the first period net revenue is always equal to zero and then  for all 

expected demand Q  (Figure 4). Moreover,  when .  

01

_

1 =⎟
⎠
⎞

⎜
⎝
⎛ − cP

__________
ODNPV ≤

__________
ODNPV = 0>−OD

Q

______

N PV

Payoff

____
O D

Q

______

N PV

Payoff

____
O D

 
Figure 4 

 

Note that when Q  is such that , the firm would invest at 0>−OD 1=t  in all states of demand. 

Thus, in this case the firm is indifferent between investing at 0=t

0

 and at . Table 3 below 

summarizes the investment decision outputs when : 

1=t

1

_

1 =⎟
⎠
⎞

⎜
⎝
⎛ − cP

 

Investment Decision Condition  

The firm never invests if 0
____

=OD  

The firm invests at  if  1=t uQq =1 ,  and  0>+OD 0=−OD

The firm is indifferent between investing  at 

 or at  (and we will assume that the 

firm invests at ) if 

0=t 1=t

0=t
0>OD 0> ODNPV =+  and OD  ( ) −

__________

Table 3 
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If  then N or a sufficiently large Q . Moreover, under this condition there 

are three possible cases that basically depend on the magnitude of ⎟⎜ − 11 cP . We will proceed to 

define these cases as ⎟⎜ − 11 cP  in   

01

_

1 >⎟
⎠
⎞

⎜
⎝
⎛ − cP

__________
ODPV >  f

⎠
⎞

⎝
⎛ _

c

⎠
⎞

⎝
⎛ _

reases:

 

In the first case, there is a Q  such that ,  and  (Figure 5). 

For all expected demand larger or equal than that ,  and as a consequence the 

firm will invest at . 

0
__________

>= ODNPV

Q
______
NPV

0>+OD
____
OD≥

0=−OD

0=t
 

Q

______
N P V

P ayoff

____
O D

 
Figure 5 

 

Table 4 below summarizes the investment decision outputs: 

 

Investment Decision Condition  

The firm never invests if 0
____

=OD  

The firm invests at  if 1=t
uQq =1 , ,  and 

  

0>+OD
______
NPV <

0=−OD
____
OD

The firm invests at  if  0=t __________
ODNPV ≥ ,  and   0>+OD 0≥−OD

Table 4 
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In the second case  for the large expected demand Q , named , such that 

 (Figure 6). Once more, for all expected demand larger or equal than Q ,  

and as a consequence the firm will invest at 

__________
ODNPV = *Q

*0
____

=OD
__________
ODNPV ≥

0=t . 

 

Q

______

N PV

P ayoff

____

O D

Q

______

N PV

P ayoff

____

O D

 
Figure 6 

 

Table 5 below summarizes the investment decision outputs: 

 

Investment Decision Condition  

The firm never invests if 0
____

=OD  and  
__________
ODNPV <

The firm invests at  if  0=t 0
__________

≥≥ ODNPV  

Table 5 

 

In the third situation there is a  such that   (Figure 7). Once more, for all 

expected demand larger or equal tha Q D  and as a consequence the firm will 

invest at t

*QQ <

n

0
__________

== ODNPV
____
O≥ , 

______
NPV

0= . 
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Q

______
NPV

Payoff

____

OD

Q

______
NPV

Payoff

____

OD

 
Figure 7 

 

Note that the investment decision outputs are also given by Table 5 above. � 

 

Proof of Proposition 1: If  there is no need for regulation as the best the 

regulator can do is to replicate the unregulated market outcomes by setting  and 

. Indeed, if the regulator sets the regulated prices below market levels the firm will not 

invest. If  then the regulator can set, for instance, 

0
__________

== ODNPV

0=

_

11 PP R =
_

22 PP R =
__________

> ODNPV

( 1cC ++= )
_

22 Pc − 2P

0=

______

Q
NPV_

11 PP R −=  and  such that we have . In 

this case the firm invests at t  and total welfare is equal to:  

_

2PR = 0
____

== ODNPV
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⎛
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Q
NPVPQ

Q
NPVPPWR 2

_
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_

1

______
_

1

_

1 α      (9) 

 

The welfare obtained with this regulatory policy must be compared to the unregulated market 

welfare. The difference between (9) and (4) is equal to ( ) . This is the optimal 01
______

>− NPVα
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regulation since these are the minimum prices that induce the firm to invest in the network facility. 

� 

 

Proof of Proposition 2a: Suppose there is an expected demand Q  such that 

 and the actual expected demand is such that 

,  and . In this case it is easy to see that the regulator is able to 

extract the entire profit from the firm and it will still invest at 

%

_ _ _ _

1 2 1 2( , , ) ( , , ) 0NPV P P Q OD P P Q=%

__________
ODNPV > 0>+OD =−OD

=%

0

0=t . This price setting is  

and 

_

11 PP R =

( )21 cc −+
_

1P+

______

C
Q

NPV
=−

_

22 PP R =   and the total welfare at 0=t  is given by: 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−+⎟

⎠
⎞

⎜
⎝
⎛ −+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−= IQc

Q
NPVPcPQ

Q
NPVPPWR 2

______
_

21

_

1

______
_

2

_

2 α      (10) 

 

The welfare obtained with this regulatory policy must be compared to the unregulated market 

welfare. It can be seen that the difference between (10) and (4) is equal to . This 

is the optimal regulation since these are the minimum prices that induce the firm to invest in the 

network facility. � 

( ) 01
______

>− NPVα

 

Proof of Proposition 2b: Suppose there is an expected demand Q  such that 

,  and . 

%

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ ~_

2

_

1

~_

2

_

1 ,,,, QPPODQPPNPV 0>+OD 0=−OD

 

When  we have    and . Under this scenario an 

unregulated monopolist invests at 

~
QQ =

__________
ODNPV =

0

0>+OD 0=−OD

=t , welfare is given by (4) and is equal to .  
______
NPVα

 

On one hand, since  the minimum regulated prices that induce investment at 
__________
ODNPV = 0=t  

are  and . Indeed, it is easy to see that any price setting below market levels 
_

11 PP R =
_

22 PR =P
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induces the firm to invest at  if demand turns out to be high or even to not invest. In this 

case the overall welfare is equivalent to the unregulated market welfare, that is, . 

1=t

2P R

______
NPVα

1

CH
R +<

 

On the other hand, the minimum regulated prices that induce investment at  if demand turns 

out to be high is  and . If the regulator were to set  then 

the firm would not invest. 

=t

2P
_

11 PP R = 2cCH += 2c

 

In this case the overall welfare is equal to  
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Thus, this price regulation is optimal only if . Then, we have 
______

1 NPVp H
t απ >= H

t

NPV

1

______

=

>
π

α

OD <=

 a M

p . 

 

When  is such that ,  and , the minimum regulated prices that 

induce investment at  are   and  such that . As 

 and  we have 2c . Then, there is 0> , such 

2c+  a OD

Q

0>

2
R =

____
OD

L

______
NPV >

0=t

0=

CM <

0>+OD
_

11 PP R =

 2cCH <+

nd NPV

0=−OD
_

22 PP R <

CL
R +<

____
ODNPV

+OD

that P

−OD

2c ++

2P

CH = . The total welfare 0=  is given  at t by: 
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On the other hand, the minimum regulated prices that induce investment at  if demand turns 

out to be high are  and . In this case the overall welfare is given by (11).   
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Then, the price setting  and  is optimal when  1P R = 22 cCP H
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Proof of Preposition 3a: Suppose there is an expected demand Q  such that 

 and the actual expected demand Q  is such that 

,  and . It is easy to see that the optimal prices are the same as 

in Proposition 2a since the regulator is able to extract all the rents from the firm while it still 

invests at . � 

%

_ _ _ _

1 2 1 2( , , ) ( , , ) 0NPV P P Q OD P P Q=%

__________
ODNPV > 0>+OD >−OD

0=t

=%

0

 

 Proof of Preposition 3b: Suppose there is an expected demand  such that 

,  and  and the actual expected demand 

 is such that ,  and . As seen in Proposition 2b, the minimum 

regulated prices that induce investment at 

Q%
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=t  is   and  such that 

 and the total welfare under these prices at 
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11 PP R = McCP H
R += 22

0

+
____
ODODNPV <= =t

1

 is given by (12). On the 

other hand, the minimum regulated prices that induce investment at =t  if demand turns out to 

be high is  and . In this case the overall welfare is equal to (11). The 

optimal strategy rule is the same as the one included in Proposition 2b. � 

_

11 PP R = 2 CP H
R = 2c+

 

Proof of Preposition 3c: Suppose ,  and Q  are such that ,  

and . On one hand, the minimum regulated prices that induce investment at 

1

_

1 cP =
_

2P
__________
ODNPV = 0>+OD

00>−OD =t  is  

 and  such that .
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On the other hand, the minimum regulated prices that induce investment at  if demand turns 

out to be high is  and P . In this case the overall welfare is given by (11). 
These prices are optimal when  

1=t
_

11 PP R = 22 cCH
R +=

 
                                                 
14 Note that there is a market condition such that . In this case . ODODNPV ==

__________

2

_
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Table 6 below shows the different access prices under ODPR. We will proceed to characterize 

welfare under this access regulation.  
ODPR Access Pricing 

Cases Conditions
 

Access Prices 

1 0
__________

== ODNPV 1

_

11 cPAODPR −= 2

_

22 cPAODPR −=  and  

2 0
__________

=> ODNPV
_

221 PcCAODPR −+= 2

_

22 cPAODPR −=  and  

3 
____
ODNPV = 0>+ 0=−

1

_

11 cPAODPR −= 2

_

22 cPAODPR −=

1

_

11 cPAODPR −= H
ODPR CA =2

______
, OD  and OD  

 and  

or 

 and  

4 

__________
OD> 0>+ 0≥−

1

_

11 cPAODPR −= MCA H
ODPR +=2

1

_

11 cPAODPR −= H
ODPR CA =2

NPV , OD  and OD  

 (Figure 5) 

 and  

or 

 and  

5 

____
OD 0>+ 0≥−

1

_

11 cPAODPR −=
_

112 PcCAODPR −+=
______

>NPV , OD  and OD  

 (Figure 7) 
 and  

6 
__________

ODNPV = 0>+ 0>−
, OD  and OD  

1

_

11 cPAODPR −=  and  L
ODPR CA =2

or 

1

_

11 cPAODPR −=  and  H
ODPR CA =2

Table 6 

 

Propositions 4 and 5a are straightforward. We proceed to demonstrate Proposition 5b. 

 

Proof of Proposition 5b: Table 7 below shows the three possible outcomes under Bertrand 

competition between the incumbent and (infinitely many) potential entrants: 
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Entrant’s Marginal Cost Retail Prices at 1=t 2=t and at  

Retail 
Service 

Provided By 

( ) ( cccc EE +≥+ 2121 ) Z+
_

1P
_

2P  and   Incumbent 

( ) ( ) ( ) Zcccccc ++<+≤+ EE 212121    

EP1
EP2 and  such that 

( ) ( )E
ODPR

E
ODPREE cAcAPP 221121 +++=+  

Incumbent 

( ) ccc <+ ( )
EP1

EP2
2121 cEE +  

 and  such that 

( ) ( )E
ODPR

E
ODPREE cAcAPP 221121 +++=+  

Entrant 

Table 7 

 

We will proceed to characterise welfare under the ECPR. Note first that under this access 

regulation the incumbent always invest at 0=t . Note also that under the ECPR, entry only 

occurs when . So, when ( ) ( 2121 cccc EE +<+ ) ( ) ( )2121 cccc EE +≥+ , the welfare generated 

by the ECPR and by an unregulated market are equivalent. On the other hand, when 

 we have the following welfare function at ( )21 cc EE <+ ( )21 cc + 0=t : 
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    ( ) ( )( ) ( )( )[ ]{ }QcAPcAPIQAA E
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E
ECPRECPRECPRECPR

22211121 +−++−+−++α  (14) 

 

Now, we proceed to analyse the ODPR. When the entrant is less efficient than the incumbent and 

 it is easy to see that the entrant can only offer retail prices above the 

choke prices. As a consequence, the incumbent serve the market at the choke prices. Welfare 

under the ODPR is equivalent to an unregulated market. When the potential entrant is less 

efficient than the incumbent and 

( ) ( ) Zcccc EE ++≥+ 2121

( ) ( ) ( ) Zcccccc EE ++<+≤+ 212121

0

 the ODPR creates the 

following overall expected welfare function at =t : 
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When ( ) ( ) ( ) Zcccccc EE ++<+≤+ 212121

( ) ( ) ( )( ) 02121 >+−++ QccccZ EE

, we must compare the ODPR with the unregulated 

monopoly case. The difference between (15) and (4) is equal to 

1−α .  
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When the potential entrant is more efficient then the incumbent (i.e., ( ) ( )2121 cccc EE +<+ ), 

ODPR yields the following overall expected welfare function at 0=t : 
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In this case, we compare the ODPR with the ECPR. The difference between (16) and (14) is 

equal to ( ) 01 >− ZQα . � 

Proof of Proposition 5c: We will proceed to analyse the cases where  and 

. The incumbent does not know the entrant’s costs. So, under this policy the firm will 

invest at  only if demand turns out to be high. Also, we can define   

where . Table 8 below shows the three possible outcomes under Bertrand competition 

between the incumbent and (infinitely many) potential entrants: 

1

_

11 cPAODPR −=

cCP H += 2

_

2

H
ODPR CA =2

=t

0>Z

1 Z+

 

Entrant’s Marginal Cost Retail Price at 2=t  

Retail 
Service 

Provided 
By 

ZcE +≥ 2
_

2Pc2    Incumbent 

Zc +< 2cc E≤ 22    EP2  such that  HE
E CcP += 22 Incumbent 

22 cc E <  EP2  such that  HE
E CcP += 22 Entrant 

Table 8 

 

When the entrant is less efficient than the incumbent and Zcc E +≥ 22  it is easy to see that the 

entrant can only offer a retail price above the choke price. As a consequence, the incumbent 

serves the market at the choke price. However, the incumbent only invests at  if demand is 

high. Thus, welfare under the ODPR is equal to . We know that in an unregulated market 

welfare is given by . We also know that under our benchmark the firm invests at 

1=t
H
tp 1=πα

______

NPVα 0=t , 

that is, . Thus, if  the ODPR generates the same welfare than an 
__________
ODNPV ≥

__________
ODNPV =
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unregulated industry and when  the ODPR generates less welfare than an 

unregulated industry. 

__________

ODNPV >

 

When the potential entrant is less efficient than the incumbent and Zccc E +<≤ 222

HE C+2 2P E <

0

, the threat 

of entry leads the incumbent to reduce its prices such that  and . In this 

case the ODPR creates the following overall expected welfare function at 

E cP =2

_

2P

=t :  

 

( )

( )
( )( ) ([ ]

( )
)

r
IruQccCp

uQ
+α

r

cCPp
W EH

EH

ODPR +
+−−+

+

⎟
⎠
⎞

⎜
⎝
⎛ +−

=
1

1
1

22
2

_

2

                   (17) 

     

Once more, we must compare the ODPR with the unregulated monopoly case. The difference 

between (17) and (4) is positive only if 
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When the potential entrant is more efficient then the incumbent (i.e., 22 cc E < ), ODPR yields the 

following overall expected welfare function at 0=t

( )

 (note that the incumbent’s and entrant’s 

profits are equal to zero):  
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The difference between (18) and (14) is positive only if 

( )

( )

****

______

p
NPV

=
⎥⎦
⎤

2

_

2

2121

1
I

r

uQcP

cccc
p

E

EE

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+

⎟
⎠
⎞

⎜
⎝
⎛ −

⎢⎣
⎡ +−−+

>
α

. � 

 43


	373
	RealOptionsSubmissionJREgEcCamachoMenezesMay2008
	1. Introduction
	2. Literature Review
	3. The Investment Decision Model
	At  the inverse demand function is characterized by a choke price equal to . At any price below or equal to  the demand, denoted by , will be either equal to , or  with probabilities ,  and , respectively. The demand at a price above  is always equal to zero.
	Under these conditions, the gross value of future cash inflows will fluctuate in line with the random fluctuations in demand (Figure 1). Note that demand uncertainty creates an incentive for the firm to delay its investment decision until . Note also that this uncertainty does not resolve itself until the last period.
	                                             (1)

	4. Pricing the NPV and the Option to Delay in the Absence of Regulation
	An unregulated monopolist is considering whether to invest in a network facility to provide a new service. When making its investment decision, this firm knows the choke prices consumers would pay for its new service as well as the expected demand under the alternative states of the world. At this stage, the monopolist does not anticipate that its prices will be regulated.
	First, we calculate this investment decision as a standard NPV. Note that if the firm invests at  the project has an expected net value at  equal to
	Financial theory suggests that the cost of capital of a project is determined by its cash flows’ risk profile. Remember that the future cash inflows will fluctuate in line with the random fluctuations in demand. In particular, recall that demand at each period equals the demand from the previous period multiplied by  or  with probabilities  and . It follows then that .
	.

	5. Retail Price Regulation
	6. Access Regulation 
	6.1. The Efficient Component Pricing Rule - ECPR

	7. Conclusion
	References
	Appendix 


