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Abstract: An imitation game is a finite two person normal form game in which the two

players have the same set of pure strategies and the goal of the second player is to choose

the same pure strategy as the first player. Gale et al. (1950) gave a way of passing from a

given two person game to a symmetric game whose symmetric Nash equilibria are in one-

to-one correspondence with the Nash equilibria of the given game. We give a way of passing

from a given symmetric two person game to an imitation game whose Nash equilibria are

in one-to-one correspondence with the symmetric Nash equilibria of the given symmetric

game. Lemke (1965) portrayed the Lemke-Howson algorithm as a special case of the Lemke

paths algorithm. Using imitation games, we show how Lemke paths may be obtained by

projecting Lemke-Howson paths.

Keywords: Computational economics, Symmetric games, Nash equilibrium, Computa-

tional complexity, Two person games, 2-Nash, PPAD, Imitation games, Lemke-Howson

algorithm, Lemke paths algorithm.

1 Introduction

An imitation game is a finite two person normal form game in which the two players

have the “same” sets of pure strategies. That is, they have the same number of pure

strategies, and there is a given bijection between the two sets of pure strategies that

identifies each pure strategy of the first player with a particular pure strategy of

the second player. The first player is called the mover ; she can have any payoff

matrix. The second player, who is called the imitator, receives a payoff of 1 if she

∗School of Economics, University of Queensland, Level 6, Colin Clark Building, St Lucia, QLD
4072 Australia.

†School of Economics, University of Queensland, Level 6, Colin Clark Building, St Lucia, QLD
4072 Australia.

1



2

plays “the same” pure strategy as the mover, and otherwise her payoff is 0, so her

payoff matrix is the identity matrix. Imitation games are evidently a special, and

seemingly rather simple, type of two person game.

It turns out that from the point of view of computation, imitation games, and

their Nash equilibria, are as complex as general two person games and their Nash

equilibria. This paper shows how, in two different settings, observations along these

lines complete a circle of ideas, with the result that phenomena that had for many

years seemed to be distinct are actually superficially different manifestations of a

single mathematical structure. In the remainder of the introduction we give very

brief and informal descriptions of our findings.

A general two person game is given by a pair (A,B) of m × n payoff matrices.

Gale et al. (1950) showed that if all the entries of A and B are positive and

C :=

[

0 A

BT 0

]

,

then the symmetric equilibria of the two person game (C,CT ) are in one-to-one

correspondence with the Nash equilibria of the given game. The Nash equilibria of

(A,B) are unaffected by the addition of a constant to all the entries of A and B,

so this gives a sense (described precisely in Section 3) in which any computational

problem related to the Nash equilibria of two person games is “easier” than the

corresponding problem for symmetric equilibria of symmetric games: given an algo-

rithm A for the corresponding problem, there is an algorithm for the given problem

consisting of adding a sufficiently large constant to all entries of A and B, forming

C as above, and then applying A to (C,CT ).

However, as we will see in more detail shortly, for any square matrix C the

symmetric equilibria of (C,CT ) are in natural one-to-one correspondence with the

Nash equilibria of the imitation game (C, I). Given an algorithm B for the given

problem related to Nash equilibrium, there is an algorithm for the corresponding

problem related to symmetric equilibria of symmetric games consisting of applying

B to (C, I).

Lemke and Howson (1964) gave a pivoting algorithm for computing a Nash equi-

librium of (A,B) that came to be known as the Lemke-Howson algorithm. Gener-

alizing slightly, it will be helpful to think of the input as consisting of a pair (A,B)

together with pair (p, q) whose components are an m-vector and an n-vector. Sub-
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sequently Lemke (1965) described a family of computational procedures that take

as input a pair (C, r) consisting of an p × p matrix C and an p-vector r. This

procedure, which came to be known as the Lemke paths algorithm, includes the

Lemke-Howson algorithm as the special case that arises when p = m + n and C is

derived from (A,B) as above. For each integer k ≥ 1 let ek := (1, . . . , 1) ∈ R
k. Our

contribution here is to show that the Lemke paths algorithm can by obtained by

applying the Lemke-Howson algorithm to (C, I) and (r, ep) ∈ R
2p.

This observation has an interesting application to the theory of the worst case

running times of these algorithms. Both for Lemke-Howson and Lemke paths,

there are multiple possible starting points, so that in order to show an exponential

worst case running time it is necessary to find a sequence of examples in which

the minimum—over all possible starting points—running time grows exponentially.

Morris (1994) gave a sequence of pairs (Cp, e
p) of this sort for the Lemke paths

algorithm. Elaborating on his methods, Savani and von Stengel (2006) construct a

sequence of examples of games for which the worst case running time of the Lemke-

Howson algorithm grows exponentially. As they mention (citing an earlier version

of this work) one can also obtain such a sequence directly from Morris’ examples,

by applying the Lemke-Howson algorithm to the two person game (Cp, I).

2 Symmetric Games and Linear Complementarity Problems

For each integer k ≥ 1 let ∆k be the standard unit simplex in R
k, i.e., the set of

vectors whose components are nonnegative and sum to one. A Nash equilibrium of

the game (A,B) is a pair (σ, τ) ∈ ∆m×∆n such that σT Aτ ≥ σ̃T Aτ for all σ̃ ∈ ∆m

and σT Bτ ≥ σT Bτ̃ for all τ̃ ∈ ∆n. A symmetric game is a game (C,CT ) where C

is a square matrix, and ρ ∈ R
m is a symmetric equilibrium of (C,CT ) if (ρ, ρ) is a

Nash equilibrium.

Proposition 2.1 (Gale et al. (1950)). Suppose A and B are m×n matrices whose

entries are all positive, and let

C :=

[

0 A

BT 0

]

.

For ρ ∈ ∆m+n the following are equivalent:
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(a) ρ is a symmetric equilibrium of (C,CT );

(b) there are σ ∈ ∆m, τ ∈ ∆n, and 0 < α < 1 such that:

(i) ρ = ((1 − α)σ, ατ),

(ii) (σ, τ) is a Nash equilibrium of (A,B), and

(iii) (1 − α)σT Aτ = ασT Bτ .

Proof. First suppose that ρ is a symmetric equilibrium of (C,CT ). We have ρ =

((1 − α)σ, ατ) for some σ ∈ ∆m, τ ∈ ∆n, and 0 ≤ α ≤ 1. In view of the identity

(σ, 0)T C(σ, 0) = 0 = (0, τ)T C(0, τ) and the fact that entries of B and C are all

positive, it cannot be the case that α = 0 or α = 1. Because α < 1, in the game

(B,C) the strategy σ is a best response for agent 1 to τ , and similarly τ is a best

response for agent 2 to σ. In addition, (σ, 0) and (0, τ) are both best responses to

ρ, so (1 − α)σT Bτ = ασT Cτ .

Now suppose that (b) holds. It is easily verified that (σ, 0) and (0, τ) are best

responses to ρ := ((1−α)σ, ατ) in (C,CT ), so any convex combination of (σ, 0) and

(0, τ), such as ρ, is also a best response to ρ.

An imitation game is a game (C, I) in which C is a square matrix and I is

the identity matrix. Whenever g and h are integers with g ≤ h we let [g, h] :=

{g, . . . , h}. For any integer k ≥ 1 the support of µ ∈ ∆k is

suppµ := { i ∈ [1, k] : µi > 0 }.

Let p be the number of rows and columns of C. An I-equilibrium of an imitation

game (C, I) is a mixed strategy ρ ∈ ∆p for the imitator such that

suppρ ⊂ argmax
i∈I

(Cρ)i.

Proposition 2.2. A mixed strategy ρ ∈ ∆p is an I-equilibrium of (C, I) if and only

if there is an ι ∈ ∆p such that (ι, ρ) is a Nash equilibrium of (C, I).

Proof. If (ι, ρ) is a Nash equilibrium of (C, I), then the support of ρ is contained in

the support of ι, because ρ is a best response to ι for the imitator, and the support

of ι is contained argmaxi∈I (Cρ)i, because ι is a best response to ρ for the mover.

Thus, the support of ρ is contained in argmaxi∈I (Cρ)i.
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Now suppose ρ is an I-equilibrium of (C, I). Because the set of best responses

to ρ contains the support of ρ, we may choose an ι ∈ ∆p that assigns all probability

to best responses to ρ (so ι is a best response to ρ) and maximal probability to

elements of the support of ρ (so ρ is a best response to ι).

In addition to symmetric equilibria of symmetric games, I-equilibria of imitation

games, and Nash equilibria of imitation games, a fourth formulation of the problem

will be important in what follows. A linear complementarity problem (LCP) is a

problem of the form

w + Cz ≤ r, z ≥ 0, w ≥ 0, 〈z,w〉 = 0

where the p× p matrix C and the vector r ∈ R
p are given and vectors z,w ∈ R

p are

sought. The LCP is said to be monotone if all the entries of C are positive. The

extensive literature on the linear complementarity problem is surveyed in Murty

(1988) and Cottle et al. (1992).

Proposition 2.3. For an p × p matrix C with positive entries and ρ ∈ ∆p the fol-

lowing are equivalent:

(a) ρ is a symmetric equilibrium of (C,CT );

(b) ρ is an I-equilibrium of (C, I);

(c) there is ι ∈ ∆m such that (ι, ρ) is a Nash equilibrium of (C, I);

(d) ρ := z/
∑p

i=1 zi where (w, z) with z 6= 0 is a solution of the LCP

w + Cz ≤ ep, z ≥ 0, w ≥ 0, 〈z,w〉 = 0.

Proof. The equivalence of (a) and (b) is immediate. The equivalence of (b) and (c)

is Proposition 2.2. To complete the proof we show that (b) and (d) are equivalent. If

(w, z) is a solution of the LCP with z 6= 0, then ρ := z/
∑m

i=1 zi is an I-equilibrium

of the imitation game (C, I), because the complementarity condition 〈z,w〉 = 0

means precisely that each pure strategy for the first agent is either unused (that is,

ρi = 0) or gives the maximal expected payoff. Conversely, if ρ is an I-equilibrium,

we can obtain a solution of the LCP by setting z := αρ where α > 0 is chosen to

make the smallest component of w := ep − Cz zero.
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The route by which two person games have traditionally been understood to

give rise to linear complementarity problems is as follows. Adding a constant to all

entries of either of the matrices A and B does not change the set of Nash equilibria

of a game (A,B), and in this sense requiring all of their entries to be positive is

without loss of generality. Let A and B be m×n matrices with positive entries, let

p := m + n, and for any natural number k let ek := (1, . . . , 1) ∈ R
k. Consider the

LCP

[

u

v

]

+

[

0 A

BT 0

][

x

y

]

=

[

em

en

]

, u, v, x, y ≥ 0, u · x = 0, v · y = 0.

There is a “trivial” solution (u, v, x, y) = (em, en, 0, 0). Any other solution neces-

sarily has both x 6= 0 and y 6= 0, and σ := x/
∑

xi and τ := y/
∑

yj constitute a

Nash equilibrium. Conversely, if (σ, τ) is a Nash equilibrium, and α and β are the

smallest positive numbers such that all components of A(βτ) and BT (ασ) are not

greater than 1, then u := em −Ay, v := en −BTx, x := ασ, and y := βτ constitute

a solution to the LCP above.

As Proposition 2.3 explains, the notion of an I-equilibrium of an imitation game

provides a distinct route by which games lead to LCP’s.

3 Computation

In this section we recall certain basic concepts of computer science and relate them

to the results above. A computational problem is a correspondence from a space

of allowed inputs to a space of allowed outputs, both of which are subsets of the

space of finite bit strings. An algorithm for such a problem is a Turing machine

that converts any element of the space of inputs into one of its allowed outputs. An

algorithm is polynomial time if its running time is bounded above by a polynomial

function of the size of the input. A computational problem is polynomial if it has a

polynomial time algorithm.

A computational problem is a decision problem if its space of outputs is {0, 1} =

{NO,YES} and for each input there is only one allowed output. The class of

polynomial decision problems is denoted by P. A decision problem is in NP if,

whenever the desired output is YES, there is a “witness” and a polynomial time

procedure taking the problem and the witness as inputs that verifies that the desired
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output is YES. For example, the problem of determining whether a graph has a k-

clique is in NP because any k-clique is a suitable witness. Clearly P ⊂ NP, and it

is thought to be extremely likely that the containment is strict, but whether this is

actually the case is one of the most prominent open problems in mathematics.

Given two computational problems P and Q, a reduction from Q to P is a pair

of maps, one of which takes an input x for Q to an input r(x) for P , and the other

of which takes an output y of P to an output s(y) of Q, such that s transforms any

of the desired outputs of P for r(x) to one of the desired outputs of Q for x. The

reduction is a polynomial time reduction1 if the size of the output of P for r(x) is

bounded by a polynomial function of the size of x and there are polynomial time

algorithms that compute the values of r and s.

Suppose C is a class of computational problems and P ∈ C. We say that P is

C-complete if every problem in C has a polynomial time reduction to P . Gilboa

and Zemel (1989) show that many decision problems related to Nash equilibria

of two person games (Is there more than one Nash equilibrium?, Is there a Nash

equilibrium assigning positive probability to a certain pure strategy?, etc.) are NP-

complete. Recently several new proofs (Conitzer and Sandholm (2003); Blum and

Toth (2004); Codenotti and Štefanovič (2005)) of these results have been given,

including one (McLennan and Tourky (2005)) using imitation games.

The computational problem of finding a Nash equilibrium of a finite two person

normal form game (A,B) is called 2-Nash. Papadimitriou (2001) has described the

problem of determining whether 2-Nash has a polynomial time algorithm as (along

with factoring) “the most important concrete open question on the boundary of P.”

The most important reason for this is the fact that 2-Nash is a fixed point problem

that is seemingly a small step beyond linear programming, which is in P.

Hirsch et al. (1989) studied a discrete version of Brouwer’s fixed point theorem

that is based on function evaluation. Specifically, one is given an “oracle” or “black

box” that computes the value of a function f : [0, 1]n → [0, 1]n, and the goal is to

find a point x satisfying ‖f(x)−x‖ ≤ 2−p. They show that if n ≥ 3 and x 7→ f(x)−x

is known to be Lipschitzian with Lipschitz constant L, then any algorithm must, in

the worst case, evaluate the function at at least (c(2p − 10)L)n−2 points, where c

is a positive constant. Specifically, they construct a collection of example functions

such that, when np is sufficiently large, any smaller number of function evaluations

1Other conditions on the reduction can also be considered (Papadimitriou, 1994a, Section 8.1).
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will necessarily fail to distinguish between two examples that have different fixed

points.

The fixed point problems that arise in practice typically come from applications

that endow them with additional structure. In order to systematically study the

possibility that such structure might allow more efficient computation, Papadim-

itriou (1994b) introduced the computational class PPAD. The search space of a

problem in PPAD is the set {0, 1}r of bitstrings of length r for some natural num-

ber r. An element of PPAD has two inputs. The first is a Turing machine M,

whose worst case running time is bounded by a polynomial function of r, with the

following properties. Given an input from the search space, M outputs a “prede-

cessor” in {0, 1}r (or an indication that the bitstring is a source) and a “successor”

in {0, 1}r (or an indication that the bitstring is a sink). The input cannot coincide

with either the predecessor or the successor, it is the successor of its predecessor

when it is not a source, and it is the predecessor of its successor when it is not a

sink. Thus the Turing machine computes a directed graph whose vertices are the

bitstrings and whose maximum in-degree and maximum out-degree are both one.

The second input is an element of the search space that is known to be a source.

The desired output is a bitstring that is either a sink or a different source.

Given a method of computing values of a continuous function from the n-

dimensional unit simplex to itself, the Scarf algorithm follows such a path in a

graph to an approximate fixed point. The algorithms described in subsequent sec-

tions are also based on following paths in graphs. Papadimitriou (1994b) showed

how to display the problem solved by the Scarf algorithm as a member of PPAD

if the function evaluations are performed by a Turing machine that is sufficiently

fast. Iterative search can be used to solve a problem in PPAD, but there is also the

possibility that for certain types of problems there may be algorithms that exploit

additional structure that will be embedded in M. The Lemke-Howson algorithm,

which is based on combinatoric search rather than topology, is a concrete instance

of this possibility.

Recently, culminating a rapid sequence of developments (Goldberg and Pa-

padimitriou (2005); Daskalakis et al. (2005); Daskalakis and Papadimitriou (2005);

Chen and Deng (2005a)) Chen and Deng (2005b) have given a polynomial time

reduction from PPAD to 2-Nash, so 2-Nash is PPAD-complete. Especially in

view of the result of Hirsch et al. (1989), it seems extremely unlikely that there is
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a polynomial time algorithm for PPAD, so this finding is regarded as compelling

evidence that there is no polynomial time algorithm for 2-Nash, even if it does not

quite amount to a complete proof.

Proposition 2.3 implies that there is a polynomial time reduction passing be-

tween any two of the following problems.

(i) 2-Nash.

(ii) Finding an I-equilibrium of an imitation game.

(iii) Finding a symmetric equilibrium of a symmetric game.

(iv) Finding a solution of an LCP w + Cz = r, z ≥ 0, w ≥ 0, 〈z,w〉 = 0 with all

entries of C and r positive.

This result complements the work described above: in addition to fully embodying

the complexity of PPAD, to a greater extent than had been known previously 2-

Nash turns out to be a unifying aspect of the computational theory of games and

linear complementarity problems.

4 The Lemke Paths Algorithm

In the remainder we study specific algorithms that have been applied to 2-Nash

and linear complementarity problems. In this section we study the Lemke paths

algorithm in its application to the LCP

w + Cz = r, z ≥ 0, w ≥ 0, 〈z,w〉 = 0,

where C is a p × p matrix and r ∈ R
p. (Except in special settings described later,

we impose no restrictions on the signs of the entries of C and r.) For z ∈ R
p let

w(z) := r − Cz. Let

Z := { z ∈ R
p : z ≥ 0 and w(z) ≥ 0 }.

If Z is nonempty it is a convex polyhedron.

A label is a pair λ = (λz , λw) in which λz and λw are subsets of [1, p]. For z ∈ Z

let ℓ(z) = (ℓz(z), ℓw(z)) where

ℓz(z) := { i = 1, . . . , p : zi > 0 } and ℓw(z) := { j = 1, . . . , p : wj(z) > 0 }.
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For a label λ let

Zλ := { z ∈ Z : ℓ(z) = λ }.

We say that λ is feasible if Zλ is nonempty. If λ is feasible, then Zλ is the relative

interior of a convex polyhedron.

We will only consider nondegenerate problems. Let |λ| := |λz| + |λw| where

the summands are the cardinalities of λz and λw. The pair (C, r) is nondegenerate

if Zλ = ∅ whenever |λ| < p and has the “expected” dimension |λ| − p whenever

it is nonempty. Various techniques are known for extending the Lemke paths and

Lemke-Howson algorithms to degenerate problems. For the most part we expect

the main point made here to extend to those techniques, but we will not consider

the issue explicitly.

A basis is a label β such that |β| = p. If β is feasible, then nondegeneracy

implies that Zβ is a singleton whose unique element will be denoted by zβ, and we

will usually write wβ in place of w(zβ). The basis is complementary if βz∪βw = [1, p]

or, equivalently, βz ∩ βw = ∅. When the LCP given by C and r is nondegenerate

its solutions are precisely the pairs (zβ, wβ) associated with feasible complementary

bases β.

An edge label is a label ε such that |ε| = p+1. If ε is feasible, then Zε is an open

line segment or an open ray (Z does not contain any lines because is contained in

the positive orthant of R
p) and its endpoints are points of the form zβ where β is a

feasible basis obtained by dropping one element of εz or εw.

Fix an ℓ = 1, . . . , p. A basis β is ℓ-almost complementary if βz ∩ βw ⊂ {ℓ}.

Note that if β is complementary, it is ℓ-almost complementary for any ℓ. When β is

ℓ-almost complementary but not complementary there is a missing label h such that

βz ∪ βw = [1, p] \ {h}. An edge label ε is ℓ-almost complementary if εz ∩ εw = {ℓ},

in which case εz ∪ εw = [1, p] because |ε| = p + 1. Let Zℓ be the union of the sets

Zε for all ℓ-almost complementary edge labels ε and the sets Zβ for all ℓ-almost

complementary bases β. The Lemke paths algorithm is derived from the geometric

properties of Zℓ.

If ε is an ℓ-almost complementary edge label and β is obtained from ε by drop-

ping one element of εz or εw, then β is ℓ-almost complementary. In particular, β is

feasible and ℓ-almost complementary whenever ε is a feasible ℓ-almost complemen-

tary edge label and zβ is an endpoint of Zε.

Suppose that β is a feasible basis and ε is obtained from β by adding one element,
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say i∗, to βz. Then ε is feasible. In detail, the solution set of the the system of

p− 1 equations that require that zi = 0 if i /∈ εz and wj = 0 if j /∈ εw consists of zβ

and two rays, on one of which zi∗ is positive, and at points on this ray near zβ the

variables zi for i ∈ εz and wj for j ∈ εw are all positive. A similar argument shows

that ε is feasible when it is obtained from β by adding one element to βw.

If β is feasible and complementary, there is precisely one way to obtain an ℓ-

complementary edge label by adding an element to either βz or βw, namely adding

ℓ to whichever set does not already contain it. Therefore zβ is an endpoint of Zε

for precisely one ℓ-almost complementary edge label ε. If β is feasible and ℓ-almost

complementary, but not complementary, then there are precisely two ways to add

an element to βz or βw to obtain an ℓ-almost complementary edge label, namely

adding the missing label to either of these sets. The two edges obtained in this way

are said to be adjacent in Zℓ.

The analysis above yields the following picture of Zℓ. It is a closed subset of R
p

that is the union of finitely many points, open line segments, and open half lines.

It is a one dimensional manifold with boundary that has finitely many connected

components, each of which is homeomorphic to the circle, [0, 1], [0, 1), or (0, 1).

The points zβ for complementary feasible bases β are the boundary points of this

manifold.

The general idea of the Lemke paths algorithm is to begin at either an open half

line in Zℓ or a point zβ associated with a complementary feasible basis. It follows

the connected component of Zℓ containing the starting point, “pivoting” from one

vertex to the next until it arrives at either a boundary point or a half line. The

computation is considered successful if it terminates at some zβ, and termination

at a half line is regarded as failure.

The phrase “Lemke paths algorithm” is a bit imprecise insofar as additional

conditions are required before one has an algorithm in the sense of a well defined

computational procedure that is guaranteed to halt in finite time. Specifically, there

must be a way to find a half line in Zℓ or a complementary feasible basis β. The con-

nected component of Zℓ containing the starting point cannot be homeomorphic to a

circle, so the pivoting procedure beginning there cannot cycle and must eventually

terminate at zβ for some complementary feasible β or at a half line.

As is explained in Lemke (1965) and other sources, a variety of assumptions on

the given data allow one to find starting points of the process for which success
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is guaranteed. Consider, for example, the possibility that all the entries of C are

negative. Then ε = ({ℓ}, [1, p]) is an ℓ-almost complementary edge label for which

Zε is a ray. Moreover, this is the only ℓ-almost complementary edge label that can be

associated with a ray: if { z0 + αz : α > 0 } is Zε for some ℓ-almost complementary

edge label ε, then z ≥ 0 and z 6= 0, so εw = [1, p] because every component of

Cz is negative. Thus this case provides both easily located starting points and a

guarantee of success. Another such case is when all the entries of C and r are

positive: ([0, p], ∅) is feasible and complementary, hence a starting point of a path

in each Zℓ. Since Z is bounded, the algorithm cannot terminate at a half line.

The numerical implementation of the pivoting procedure of the Lemke paths

algorithm, and related algorithms below, is usually described in terms of updating

a “tableau,” and may be thought of as a matter of using the sorts of pivots involved

in Gaussian elimination to update a coordinate system that, at each step, has as

its coordinates the variables zi for i ∈ βz and wj for j ∈ βw for some ℓ-almost

complementary β, translated to place the origin at zβ. Detailed descriptions of this

numerical procedure can be found in many sources, but our analysis will not refer

to them.

5 Lemke Howson from Lemke Paths

In order to display the Lemke-Howson algorithm as a special case of the Lemke paths

algorithm we now specialize to the case of an LCP in which the matrix has the block

structure that occurs in the application to two person games. Let p = m + n where

m and n are both positive integers, and let A and B be m × n matrices. We study

the LCP

[

u

v

]

+

[

0 A

BT 0

][

x

y

]

=

[

p

q

]

, u, v, x, y ≥ 0, u · x = 0, v · y = 0.

For x ∈ R
m and y ∈ R

n let

v(x) := q − BT x ∈ R
n and u(y) := p − Ay ∈ R

m.

Let

Z := { (x, y) ∈ R
m × R

n : x ≥ 0, y ≥ 0, u(y) ≥ 0, and v(x) ≥ 0 }.
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Then Z := X × Y where

X := {x ∈ R
m : x ≥ 0 and v(x) ≥ 0 } and Y := { y ∈ R

n : y ≥ 0 and u(y) ≥ 0 }.

Under the identifications r = (p, q), z = (x, y), and w = (u, v) the components

of p, x, and u have indices in [1,m], and the components of s, y, and v have indices

in [m + 1,m + n]. A label is now

λ = (λz , λw) =
(

(λx, λy), (λu, λv)
)

where λx, λu ⊂ [1,m] and λy, λv ⊂ [m + 1,m + n]. For x ∈ X let

ℓx(x) := { i ∈ [1,m] : xi > 0 } and ℓv(x) := { j ∈ [m + 1,m + n] : vj(x) > 0 },

and for y ∈ Y let

ℓy(y) := { j ∈ [m + 1,m + n] : yj > 0 } and ℓu(y) := { i ∈ [1,m] : ui(y) > 0 }.

We now have ℓz(x, y) = ℓx(x)∪ ℓy(y) and ℓw(x, y) = ℓu(y)∪ ℓv(x). For a label λ let

Xλ := {x ∈ X : ℓx(x) = λx and ℓv(x) = λv }

and

Yλ := { y ∈ Y : ℓy(y) = λy and ℓu(y) = λu }.

Clearly Zλ = Xλ × Yλ.

If λ is feasible, then linear algebra implies that the dimension of Xλ is at least

|λx|+ |λv| −n and the dimension of Yλ is at least |λy|+ |λu| −m, so nondegeneracy

implies that the dimension of Xλ is exactly |λx|+ |λv | − n and the dimension of Yλ

is exactly |λy| + |λu| − m. As before, a basis is a label β with

|βx| + |βy| + |βu| + |βv| = m + n.

If β is feasible, then |βx| + |βv| = n and |βy| + |βu| = m. An edge label ε is an

X-edge label if |εx| + |εv | = n + 1 and |εy| + |εu| = m, and it is a Y -edge label if

|εx| + |εv| = n and |εy| + |εu| = m + 1. When ε is feasible one of these two cases

holds, and we say that Zε is either an X-edge or a Y -edge as the case may be.
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Suppose that β is a feasible basis that is ℓ-almost complementary but not com-

plementary, and let h be the missing label of β. If 1 ≤ h ≤ m then the ℓ-almost

complementary edge label obtained by adding h to βx is an X-edge label and the

ℓ-almost complementary edge label obtained by adding h to βu is a Y -edge label. If

m+1 ≤ h ≤ m+n then the ℓ-almost complementary edge label obtained by adding

h to βv is an X-edge label and the ℓ-almost complementary edge label obtained by

adding h to βy is a Y -edge label. In either case, of the two edges in Zℓ that have zβ

as an endpoint, one is an X-edge and the other is a Y -edge, so that we may think of

any path in Zℓ as an alternation between moves in X and moves in Y . But without

further assumptions the projections of a path in Zℓ onto X and Y need not be one

dimensional manifolds.

The derivation of the Lemke-Howson algorithm per se is as follows. Suppose that

all the entries of A and B are positive, and that p = em and q = en. Then z = 0 ∈ R
p

is complementary, but does not correspond to a Nash equilibrium. For any ℓ there

is a path in Zℓ starting at 0 that leads to zβℓ
for some feasible complementary basis

βℓ. Necessarily zβℓ
6= 0, and complementarity, together with the block structure of

C, imply that xβℓ
6= 0 and yβℓ

6= 0, so that rescaling these vectors by dividing by the

sum of components gives a Nash equilibrium. If more than one equilibrium is sought

then, in addition to finding each zβℓ
, one can follow the paths in Zℓ′ beginning at

zβℓ
when ℓ′ 6= ℓ, then continue in this fashion recursively at any new equilibria that

are found. Wilson gave an example (reported in Shapley (1974)) of a game with

equilibria that are inaccessible in the sense that this procedure does not find them.

6 From Lemke-Howson to Lemke Paths

For the most part the material in the last two section has been well known since

Lemke (1965). We now present this paper’s contribution to the understanding of

these algorithms, which is a derivation of the Lemke paths, in a special case of the

framework above, as projections of the Lemke-Howson paths onto Y .

Continuing with the setup of the last section, we now specialize further, assuming

that n = m, that B = I is the m × m identity matrix, and that q = em. We now

have X = [0, 1]m. Let ρ : [m + 1, 2m] → [1,m] be the map ρ(j) := j − m. For any

label λ, Xλ 6= ∅ if and only if

λx ∪ ρ(λv) = [1,m]. (∗)
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A Y -label is a pair µ = (µy, µu) where µy ⊂ [m + 1, 2m] and µu ⊂ [1,m]. For

such a label let

Yµ := { y ∈ Y : ℓy(y) = µy and ℓu(y) = µu }.

If Yµ is nonempty we way that µ is feasible. For a label λ let π(λ) := (λy, λu) be

the derived Y -label. Then Yπ(λ) = Yλ, and |βx| + |βv | = m = |βy| + |βu| when β is

a feasible basis, so:

Lemma 6.1. A label λ is feasible if and only if π(λ) is feasible and (∗) holds. In

particular, if |λx| + |λv| = m (as is the case when β is a feasible basis) then

ρ(λv) = [1,m] \ λx. (∗∗)

A Y -basis is a Y -label α with |αy|+ |αu| = m. A Y -basis α is Y -complementary

if ρ(αy)∪αu = [1,m]. If β is a feasible basis, then π(β) is feasible and ρ(βv) = [1,m]\

βx, and if β is also complementary, then βu = [1,m] \ βx and ρ(βv) = [1,m] \ ρ(βy),

so that βu = [1,m] \ ρ(βy), i.e., π(β) is complementary. Thus:

Lemma 6.2. If a basis β is feasible and complementary, then π(β) is feasible and

complementary.

Conversely:

Lemma 6.3. If α is a complementary Y -basis, then

β :=
(

(ρ(αy), αy), (αu, ρ−1(αu))
)

is the unique complementary basis with π(β) = α, and α is feasible, then so is β.

Proof. Suppose that β is a basis such that π(β) = α, i.e., βy = αy and βu = αu.

If β is complementary, then βx = [1,m] \ αu and βv = [m + 1, 2m] \ αy, and since

α is complementary it follows that βx = [1,m] \ ρ(βv). That is, (∗) holds, so β is

feasible is α is.

An edge Y -label (not to be confused with a Y -edge label) is a Y -label δ with

|δy | + |δu| = m + 1. Fix an integer ℓ ∈ [1,m]. An edge Y -label δ is ℓ-almost

complementary if ρ(δy) ∩ δu = {ℓ}, in which case ρ(δy) ∪ δu = [1,m].
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Lemma 6.4. If a Y -edge label ε is feasible and ℓ-almost complementary or (ℓ +

m)-almost complementary, then the edge Y -label π(ε) is ℓ-almost complementary.

Conversely, if δ is a feasible ℓ-almost complementary edge Y -label, then there is

exactly one feasible ℓ-almost complementary Y -edge label ε such that π(ε) = δ and

exactly one feasible (ℓ+m)-almost complementary Y -edge label ε′ such that π(ε′) =

δ.

Proof. Let ε be a feasible Y -edge label. If ε is ℓ-almost complementary, then

ρ(εy) = ρ([m + 1, 2m] \ εv) = [1,m] \ ρ(εv) = εx = ([1,m] \ εu) ∪ {ℓ},

(the third equality is (∗∗)) so π(ε) is ℓ-almost complementary. If ε is (ℓ+m)-almost

complementary, then

ρ(εy) = ρ([m + 1, 2m] \ εv ∪ {ℓ + m}) = [1,m] \ ρ(εv) ∪ {ℓ}

= εx ∪ {ℓ} = ([1,m] \ εu) ∪ {ℓ},

so π(ε) is ℓ-almost complementary.

Suppose that δ is a feasible ℓ-almost complementary edge Y -label and ε is a

feasible Y -edge label with π(ε) = δ. If ε ℓ-almost complementary, then εv = [m +

1, 2m] \ δy, because ε is ℓ-almost complementary, and feasibility implies that εx =

[1,m] \ ρ(εv) = ρ(δy). It is easy to see that
(

(ρ(δy), δy), (δu, [m + 1, 2m] \ δy)
)

is, in fact, ℓ-almost complementary. If ε is (ℓ + m)-almost complementary, then

εx = [1,m] \ δu, because ε is (ℓ + m)-almost complementary, and feasibility implies

that εv = [m + 1, 2m] \ ρ−1(εx) = ρ−1(δu). Clearly
(

([1,m] \ δu, δy), (δu, ρ−1(δu))
)

is, in fact, ℓ-almost complementary.

A Y -basis α is ℓ-almost complementary if ρ(αy) ∩ αu ⊂ {ℓ}.

Lemma 6.5. If a basis β is feasible and ℓ-almost complementary or (ℓ + m)-almost

complementary, then π(β) is ℓ-almost complementary.

Proof. Above we saw that π(β) is complementary if β is complementary, so suppose

otherwise, and let h be the missing label: βz∪βw = [1, 2m]\{h}. There are four cases

according to whether β is ℓ-almost complementary or (ℓ+m)-almost complementary

and whether 1 ≤ h ≤ m or m + 1 ≤ h ≤ 2m.
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First, suppose that β is ℓ-almost complementary. If 1 ≤ h ≤ m, then

ρ(βy) = ρ([m + 1, 2m] \ βv) = [1,m] \ ρ(βv) = βx = ([1,m] \ βu) ∪ {ℓ} \ {h}.

If m + 1 ≤ h ≤ 2m, then

ρ(βy) = ρ([m + 1, 2m] \ (βv ∪ {h})) = [1,m] \ (ρ(βv) ∪ {h − m})

= βx \ {h − m} = ([1,m] \ βu) ∪ {ℓ} \ {h − m}.

Now suppose β is (ℓ + m)-almost complementary. If 1 ≤ h ≤ m, then

ρ(βy) = ρ([m + 1, 2m] \ βv ∪ {ℓ + m}) = [1,m] \ ρ(βv) ∪ {ℓ}

= βx ∪ {ℓ} = ([1,m] \ βu) ∪ {ℓ} \ {h},

and if m + 1 ≤ h ≤ 2m, then

ρ(βy) = ρ([m + 1, 2m] \ βv ∪ {ℓ + m} \ {h}) = ([1,m] \ ρ(βv)) ∪ {ℓ} \ {h − m})

= βx ∪ {ℓ} \ {h − m} = ([1,m] \ βu) ∪ {ℓ} \ {h − m}.

In all four cases π(β) is ℓ-almost complementary.

We now analyze the preimages of a feasible ℓ-almost complementary Y -basis.

There are two cases, according to whether α is complementary.

Lemma 6.6. Let α be a complementary feasible Y -basis, and let

β :=
(

(ρ(αy), αy), (αu, ρ−1(αu))
)

.

If ℓ /∈ αu, then there is no other feasible ℓ-almost complementary basis β′ with

π(β′) = α, and when ℓ ∈ αu there is exactly one such β′, and zβ and zβ′ are the

endpoints of a feasible ℓ-almost complementary X-edge. If ℓ+m /∈ αy, then there is

no other feasible (ℓ + m)-almost complementary basis β′ with π(β′) = α, and when

ℓ + m ∈ αu there is exactly one such β′, in which case zβ and zβ′ are the endpoints

of a feasible (ℓ + m)-almost complementary X-edge.

Proof. Let β′ be a feasible basis that is not complementary with π(β′) = α.
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Suppose that β′ is ℓ-almost complementary with β′
z ∩ β′

w = {ℓ} and β′
z ∪ β′

w =

[1, 2m] \ {h}. Then ℓ ∈ β′
u = αu, so ℓ + m /∈ αy = β′

y, and ℓ ∈ β′
x = [1,m] \ ρ(β′

v),

so ℓ + m /∈ β′
v, which means that h = ℓ + m. That is, when ℓ ∈ αu it must be the

case that

β′ =
(

(ρ(αy) ∪ {ℓ}, αy), (αu, ρ−1(αu \ {ℓ}))
)

.

Note that
(

(ρ(αy) ∪ {ℓ}, αy), (αu, ρ−1(αu))
)

is a feasible ℓ-almost complementary

X-edge label.

Now suppose that β′ is (ℓ + m)-almost complementary, with β′
z ∩ β′

w = {ℓ + m}

and β′
z ∪β′

w = [1, 2m]\{h} for some h. Then ℓ+m ∈ αy, so ℓ /∈ αu, and ℓ+m ∈ αv,

so that ℓ /∈ β′
x = [1,m] \ ρ(β′

v), which means that h = ℓ. That is, when ℓ + m ∈ αy

we have

β′ =
(

(ρ(αy) \ {ℓ}, αy), (αu, ρ−1(αu ∪ {ℓ}))
)

.

In this case
(

(ρ(αy), αy), (αu, ρ−1(αu ∪ {ℓ}))
)

is a feasible (ℓ + m)-almost comple-

mentary X-edge label.

Lemma 6.7. Suppose that α is a feasible Y -basis that is ℓ-almost complementary,

but not complementary, with ρ(αy)∪αu = [1,m]\{h}. Then there are precisely two

ℓ-almost complementary bases that project to α, say β and β′, and zβ and zβ′ are

the endpoints of a feasible ℓ-almost complementary X-edge. There are also precisely

two (ℓ + m)-almost complementary bases that project to α, say β and β′, and zβ

and zβ′ are the endpoints of a feasible (ℓ + m)-almost complementary X-edge.

Proof. Let β be a feasible basis with π(β) = α. Since π(β) is not complementary,

β cannot be complementary.

First suppose that β is ℓ-almost complementary. Since ∅ = βy ∩ βv = αy ∩ βv,

we have ρ(αy) ∩ ([1,m] \ βx) = ∅, i.e., ρ(αy) ⊂ βx. In addition, αu = βu, so

βx ⊂ ([1,m] \ αu) ∪ {ℓ} = ρ(αy) ∪ {h}. Thus the only possibilities for β are

(

(ρ(αy), αy), (αu, [m + 1, 2m] \ αy)
)

and
(

(ρ(αy) ∪ {h}, αy), (αu, [m + 1, 2m] \ (αy ∪ {h + m}))
)

,

and in fact both are feasible and ℓ-almost complementary. Note that

(

(ρ(αy) ∪ {h}, αy), (αu, [m + 1, 2m] \ αy)
)
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is a feasible ℓ-almost complementary X-edge label.

Now assume that β is (ℓ + m)-almost complementary. We have ∅ = αu ∩ βx =

αu ∩ ([1,m] \ ρ(βv)), so ρ−1(αu) ⊂ βv . In addition, αy = ρ−1([1,m] \αu ∪{ℓ} \ {h})

and βy = αy, so

βv ⊂ [m + 1, 2m] \ αy ∪ {ℓ + m} = ρ−1(αu) ∪ {h + m}.

Therefore it is only possible that β is either

(

([1,m] \ αu, αy), (αu, ρ−1(αu))
)

or
(

([1,m] \ (αu ∪ {h}), αy), (αu, ρ−1(αu ∪ {h}))
)

,

and in fact both are feasible and (ℓ + m)-almost complementary. Note that

(

([1,m] \ αu, αy), (αu, ρ−1(αu ∪ {h}))
)

is a feasible (ℓ + m)-almost complementary X-edge label.

Let Y ℓ be the union of the sets Yδ for all ℓ-almost complementary edge Y -labels

δ and the sets Yα for all ℓ-almost complementary bases α. Of course these are just

the concepts introduced in Section 4, now applied to the LCP

u + Ay = p, y ≥ 0, u ≥ 0, 〈y, u〉 = 0,

with the added twist that the components of y are indexed by the elements of

[m + 1, 2m]. All the results from that section apply.

The results above combine to give a simple picture of the relationship between

Y ℓ, Zℓ, and Zℓ+m. Let πY : Z → Y be the projection πY (x, y) := y, and for each

k = 1, . . . , 2m let πk
Y be the restriction of πY to Zk. Then πℓ

Y maps Zℓ surjectively

onto Y ℓ, and πℓ+m
Y maps Zℓ+m surjectively onto Y ℓ. Since X is bounded, any

X-edge in Zℓ or Zℓ+m is bounded and has compact closure, and each such closed

X-edge is mapped to a single point that has the closed X-edge as its preimage.

Outside of these X-edges πℓ
Y and πℓ+m

Y are injective. Except for the compressions

of X-edges, πℓ
Y and πℓ+m

Y are “topologically faithful”: the topology of Y ℓ is the

quotient topology induced by each of these maps, and the preimage under πℓ
Y (πℓ+m

Y )
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of a connected component of Y ℓ is a single connected component of Zℓ (Zℓ+m) that

is homeomorphic to it. In particular, any Lemke-Howson path in Zℓ or in Zℓ+m

projects onto a Lemke path in Y ℓ with half as many steps, after allowance for “off

by one” adjustments at the endpoints, and any Lemke path in Y ℓ has well defined

“lifts” to Lemke-Howson paths in Zℓ and Zℓ+m.

7 Concluding Remarks

We have shown that the solutions of several problems are in one-to-one correspon-

dence. This implies that the computational problem of finding a solution of one

of these problems is the same as the problem of finding a solution to any other.

That is, these problems are all avatars of 2-Nash. We have also shown that the

Lemke-Howson algorithm for 2-Nash and the Lemke paths algorithm for LCP’s are

essentially the same, thereby achieving a unified understanding of their exponential

worst case complexity.

In linear programming worst case complexity presents a relatively coarse and

somewhat misleading view of the subject: although the simplex algorithm has ex-

ponential worst case complexity, various investigations of its mean time complexity

show it to be quite fast. The results described in Section 3 show that from the

point of view of worst case complexity, any problem in PPAD is equivalent to

2-Nash, but it may still be the case that different problems have very different de-

grees of difficulty in practice. The Lemke-Howson algorithm routinely solves two

person games with hundreds of pure strategies, and recently Porter et al. (2004)

and Sun et al. (2006) have presented experimental evidence suggesting that simple

search methods can result in faster mean performance. We hope that a deeper

understanding of the complexity of 2-Nash will emerge from analysis of the mean

time complexity of Lemke-Howson, and perhaps other algorithms, for natural and

tractable distributions on the space of games.
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