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Abstract

The system GMM estimator for dynamic panel data models combines moment
conditions for the model in first differences with moment conditions for the model in
levels. It has been shown to improve on the GMM estimator in the first differenced
model in terms of bias and root mean squared error. However, we show in this paper
that in the covariance stationary panel data AR(1) model the expected values of
the concentration parameters in the differenced and levels equations for the cross-
section at time t are the same when the variances of the individual heterogeneity
and idiosyncratic errors are the same. This indicates a weak instrument problem
also for the equation in levels. We show that the 2SLS biases relative to that of the
OLS biases are then similar for the equations in differences and levels, as are the
size distortions of the Wald tests. These results are shown in a Monte Carlo study
to extend to the panel data system GMM estimator.
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1 Introduction

A commonly employed estimation procedure to estimate the parameters in a dynamic

panel data model with unobserved individual specific heterogeneity is to transform the

model into first differences. Sequential moment conditions are then used where lagged

levels of the variables are instruments for the endogenous differences and the parameters

estimated by GMM, see Arellano and Bond (1991). It has been well documented (see

e.g. Blundell and Bond (1998)) that this GMM estimator in the first differenced (DIF)

model can have very poor finite sample properties in terms of bias and precision when

the series are persistent, as the instruments are then weak predictors of the endogenous

changes. Blundell and Bond (1998) proposed the use of extra moment conditions that

rely on certain stationarity conditions of the initial observation. When these conditions

are satisfied, the resulting system (SYS) GMM estimator has been shown in Monte Carlo

studies by e.g. Blundell and Bond (1998) and Blundell, Bond and Windmeijer (2000) to

have much better finite sample properties in terms of bias and root mean squared error

than that of the DIF GMM estimator.

The additional moment conditions of the SYS estimator can be shown to correspond

to the model in levels (LEV), with lagged differences of the endogenous variables as

instruments. Blundell and Bond (1998) argued that the SYS GMM estimator performs

better than the DIF GMM estimator because the instruments in the LEV model remain

good predictors for the endogenous variables in this model even when the series are very

persistent. They showed for an AR(1) panel data model that the reduced form parameters

in the LEV model do not approach 0 when the autoregressive parameter approaches 1,

whereas the reduced form parameters in the DIF model do.

Because of the good performance of the SYS GMM estimator relative to the DIF

GMM estimator in terms of finite sample bias and rmse, it has become the estimator

of choice in many applied panel data settings. Among the many examples where the
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SYS GMM estimator has been used are the estimation of production functions and

technological spillovers using firm level panel data (see e.g. Levinsohn and Petrin (2003)

and Griffith, Harrison and Van Reenen (2006)), the estimation of demand for addictive

goods using consumer level panel data (see e.g. Picone, Sloan and Trogdon (2004)) and

the estimation of growth models using country level panel data (see e.g. Levine, Loayza

and Beck (2000) and Bond, Hoeffler and Temple (2001)). The country level panel data

in particular are characterised by highly persistent series (e.g. output or financial data)

and a relatively small number of countries and time periods. The variance of the country

effects is furthermore often expected to be quite high relative to the variance of the

transitory shocks. As we show here, these characteristics combined may lead to a weak

instrument problem also for the SYS GMM estimator.

For a simple cross-section linear IV model, a measure of the information content of

the instruments is the so-called concentration parameter (see e.g. Rothenberg (1984)).

In this paper we calculate the expected concentration parameters for the LEV and DIF

reduced form models in a covariance stationary AR(1) panel data model. We do this

per time period, i.e. we consider the estimation of the parameter using the moment

conditions for a single cross-section only for any given time period. We show that the

expected concentration parameters are equal in the LEV and DIF models when the

variance of the unobserved heterogeneity term that is constant over time (σ2η) is equal to

the variance of the idiosyncratic shocks (σ2v). This is exactly the environment under which

most Monte Carlo results were obtained that showed the superiority of the SYS GMM

estimator relative to the DIF GMM estimator. However, the equality in expectation of

the concentration parameters indicates that there is also a weak instrument problem in

the LEV model when the series are persistent.

If the expected concentration parameters are the same, why is it that the extra

information from the LEV moment conditions results in an estimator that has such
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superior finite sample properties in terms of bias and rmse? We first of all show that

the bias of the OLS estimators in the DIF and LEV structural models are very different.

The (absolute) bias of the LEV OLS estimator is much smaller than that of the OLS

estimator in the DIF model when the series are very persistent. Using the results of Stock

and Yogo (2005), we argue and show in Monte Carlo simulations that the biases of the

LEV and DIF cross-sectional 2SLS estimators, relative to the biases of their respective

OLS estimators, are the same. Therefore the absolute bias of the LEV 2SLS estimator

is smaller than that of the DIF 2SLS estimator when the series are persistent.

Results in Stock and Yogo (2005) further indicate that we expect the size distortions

of the Wald tests to be similar in the cross-sectional 2SLS DIF and LEV models when

the expected concentration parameters are the same. This is confirmed by a Monte Carlo

analysis. When the expected concentration parameters are small, which happens when

the series are very persistent, the size distortions of theWald tests can become substantial.

As the SYS 2SLS estimator is a weighted average of the DIF and LEV 2SLS estimators,

with the weight on the LEV moment conditions increasing with increasing persistence

of the series, the results for the SYS estimator mimic that of the LEV estimator quite

closely.

The expectation of the LEV concentration parameter is larger than that of the DIF

model when σ2η is smaller than σ2v, and the relative biases of LEV and SYS 2SLS es-

timators are smaller and the associated Wald tests perform better than those of DIF.

The reverse is the case when σ2η is larger than σ2v. Also, unlike for DIF, the LEV OLS

bias increases with increasing σ2η/σ
2
v and therefore the performances of the LEV and SYS

2SLS estimators deteriorate with increasing σ2η. These results are shown to extend to the

panel data setting when estimating the model by GMM and are in line with the finite

sample bias approximation results of Bun and Kiviet (2006) and Hayakawa (2005), and

explain the poor performance of the SYS GMM Wald test when data are persistent, as
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found by Bond and Windmeijer (2005).

For the covariance stationary AR(1) panel data model our results therefore show that

the SYS GMM estimator has indeed a smaller bias and rmse than DIF GMM when the

series are persistent, but that this bias increases with increasing σ2η/σ
2
v and can become

substantial. The Wald test can be severely size distorted for both DIF and SYS GMM

with persistent data, but the SYS Wald test size properties deteriorate further with

increasing σ2η/σ
2
v. These results follow from the weak instrument problem that is also

present in the LEV moment conditions.

The setup of the paper is as follows. Section 2 introduces the AR(1) panel data

model, the moment conditions and GMM estimators. Section 3 briefly discusses the con-

centration parameter in a simple cross-section setting. Section 4 calculates the expected

concentration parameters for the DIF and LEF models for cross-section analysis of the

AR(1) panel data model, presents the OLS biases and some Monte Carlo results on (rel-

ative) biases and Wald tests size distortions for the 2SLS estimators. Section 5 presents

Monte Carlo results for the GMM panel data estimators. Section 6 concludes.

2 Model and GMM Estimators

We consider the first-order autoregressive panel data model

yit = αyi,t−1 + uit, i = 1, ..., N ; t = 2, ..., T, (1)

uit = ηi + vit

where it is assumed that ηi and vit have an error components structure with

E (ηi) = 0, E (vit) = 0, E (vitηi) = 0, i = 1, ...,N ; t = 2, ..., T (2)

E (vitvis) = 0, i = 1, ..., N and t 6= s, (3)

and the initial condition satisfies

E (yi1vit) = 0, i = 1, ..., N ; t = 2, ..., T. (4)
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Under these assumptions the following (T − 1) (T − 2) /2 linear moment conditions are
valid

E
¡
yt−2i ∆uit

¢
= 0, t = 3, ..., T, (5)

where yt−2i = (yi1, yi2, ..., yit−2)
0 and ∆uit = uit − ui,t−1 = ∆yit − α∆yi,t−1.

Defining

Zdi =


yi1 0 0 · · · 0 · · · 0
0 yi1 yi2 · · · 0 · · · 0
. . . · · · . · · · .
0 0 0 · · · yi1 · · · yiT−2

 ; ∆ui =


∆ui3
∆ui4
...

∆uiT

 ,
moment conditions (5) can be more compactly written as

E (Z 0di∆ui) = 0, (6)

and the GMM estimator for α is given by (see e.g. Arellano and Bond (1991))

bαd =
∆y0−1ZdW

−1
N Z 0d∆y

∆y0−1ZdW
−1
N Z 0d∆y−1

where ∆y = (∆y01,∆y02...∆y0N )
0, ∆yi = (∆yi3,∆yi4, ...,∆yiT )

0, ∆y−1 the lagged version

of ∆y, Zd = (Z 0d1, Z
0
d2, ..., Z

0
dN)

0 and WN is a weight matrix determining the efficiency

properties of the GMM estimator. Clearly, bαd is a GMM estimator in the differenced

model and we refer to it as the DIF-GMM estimator, and moment conditions (5) or (6)

as the DIF moment conditions.

Blundell and Bond (1998) exploit additional moment conditions from the assumption

on the initial condition (see Arellano and Bover (1995)) that

E (ηi∆yi2) = 0, (7)

which holds when the process is mean stationary:

yi1 =
ηi

1− α
+ εi, (8)
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with E (εi) = E (εiηi) = 0. If (2), (3), (4) and (7) hold then the following (T−1)(T−2)/2
moment conditions are valid

E
¡
uit∆yt−1i

¢
= 0, t = 3, ..., T, (9)

where ∆yt−1i = (∆yi2,∆yi3, ...,∆yit−1)
0. Defining

Zli =


∆yi2 0 0 · · · 0 · · · 0
0 ∆yi2 ∆yi3 · · · 0 · · · 0
. . . · · · . · · · .
0 0 0 · · · ∆yi2 · · · ∆yiT−1

 ; ui =


ui3
ui4
...

uiT

 ,
moment conditions (9) can be written as

E (Z 0liui) = 0, (10)

with the GMM estimator based on these moment conditions given by

bαl =
y0−1ZlW

−1
N Z 0ly

y0−1ZlW
−1
N Z 0ly−1

,

where we will refer to bαl as the LEV-GMM estimator, and (9) or (10) as the LEV moment

conditions.

The full set of linear moment conditions under assumptions (2), (3), (4) and (7) is

given by

E
¡
yt−2i ∆uit

¢
= 0 t = 3, ..., T ; (11)

E (uit∆yi,t−1) = 0 t = 3, ..., T,

or

E (Z 0sipi) = 0, (12)

where

Zsi =


Zdi 0 · · · 0
0 ∆yi2 0

. .
. . . .

0 0 · · · ∆yiT

 ; pi =
·
∆ui
ui

¸
.
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The GMM estimator based on these moment conditions is

bαs =
q0−1ZsW

−1
N Z 0sq

q0−1ZsW
−1
N Z 0sq−1

with qi = (∆y0i, y
0
i)
0. This estimator is called the system or SYS-GMM estimator, see

Blundell and Bond (1998), and we refer to moment conditions (11) or (12) as the SYS

moment conditions.

In most derivations below, we further assume that the initial observation is drawn

from the covariance stationary distribution, implying that E (ε2i ) =
σ2v
1−α2 in (8).

3 Concentration Parameter

Consider the simple linear cross section model with one endogenous regressor x and kz

instruments z

yi = xiβ + ui (13)

xi = z0iπ + ξi,

for i = 1, ..., N , where the (ui, εi) are independent draws from a bivariate normal distrib-

ution with zero means, variances σ2u and σ
2
ε, and correlation coefficient ρ. The parameter

β is estimated by 2SLS: bβ = x0PZy

x0PZx
,

where PZ = Z (Z 0Z)−1 Z 0.

It is well known that when instruments are weak, i.e. when they are only weakly

correlated with the endogenous regressor, the 2SLS estimator can perform poorly in finite

samples, see e.g. Bound, Jaeger and Baker (1995), Staiger and Stock (1997) and Stock,

Wright and Yogo (2002). With weak instruments, the 2SLS estimator is biased in the

direction of the OLS estimator, and its distribution non-normal which affects inference

using the Wald testing procedure.
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A measure of the strength of the instruments is the concentration parameter, which

is defined as

µ =
π0Z 0Zπ

σ2ξ
.

When it is evaluated at the OLS, first stage, estimated parameters

bµ = bπ0Z 0Zbπbσ2ξ ,

it is clear that bµ is equal to the Wald test for testing the hypothesis H0 : π = 0, and

bµ/kz equal to the F-test statistic. Bound, Jaeger and Baker (1995) and Staiger and Stock
(1997) advocate use of the first-stage F-test to investigate the strength of the instruments.

Rothenberg (1984) shows how the concentration parameter relates to the distribution

of the IV estimator by means of the following expansion

bβ = β +
π0Z 0u+ ξ0PZu

π0Z 0Zπ + 2π0Z 0ξ + ξ0PZξ
, (14)

and so
√
µ
³bβ − β

´
=

σu
σξ

A+ s√
µ

1 + 2
³

B√
µ

´
+ S

µ

,

where

A =
π0Z 0u

σu
√
π0Z 0Zπ

; B =
π0Z 0ξ

σξ
√
π0Z 0Zπ

s =
ξ0PZu

σξσu
; S =

ξ0Pξ
σ2ξ

.

(A,B) is bivariate normal with zero means, unit variances and correlation coefficient ρ.

s has mean kzρ and variance kz (1 + ρ2) and S has mean kz and variance 2kz. It is clear

that when µ is large,
√
µ
³bβ − β

´
behaves like the N (0, 1) random variable B.

Using weak instrument asymptotics, Stock and Yogo (2005) tabulate critical values

for the first-stage F-statistic to test whether given instruments are weak. They do this

separately for the maximum bias of the IV estimator, relative to the bias of the OLS

estimator, and for the maximum Wald test size distortion.
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4 Cross section results for the AR(1) panel data
model

Although the data are not generated as in the cross-section model (13), we can write the

structural equation and the reduced form model for the AR(1) panel data model in first

differences for the cross-section at time t as

∆yit = α∆yi,t−1 +∆uit

∆yi,t−1 = yt−20i πdt + dti,t−1.

For the general expression of the expected value of the concentration parameter divided

by N we get

E

µ
1

N
µdt

¶
=

π0dtE
¡
yt−2i yt−20i

¢
πdt

σ2dt
.

For the model in levels we have for the cross-section at time t

yit = αyi,t−1 + ηi + vit

yi,t−1 = ∆yt−10i πlt + lti,t−1

and the expected concentration parameter is given by

E

µ
1

N
µlt

¶
=

π0ltE
¡
∆yt−1i ∆yt−10i

¢
πlt

σ2lt
.

In the Appendix we show that, under covariance stationarity of the initial observation,

E

µ
1

N
µdt

¶
=

(1− α)2
¡
σ2v + (t− 3)σ2η

¢
(1− α2)σ2v + ((t− 1)− (t− 3)α) (1 + α)σ2η

and

E

µ
1

N
µlt

¶
=

(t− 2) (1− α)2 σ2v
(1− α2) σ2v + ((t− 1)− (t− 3)α) (1 + α) σ2η

,

from which it follows that

E
¡
1
N
µdt
¢

E
¡
1
N
µlt
¢ =

¡
σ2v + (t− 3)σ2η

¢
(t− 2) σ2v

=
1

t− 2
µ
1 + (t− 3) σ

2
η

σ2v

¶
.
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Therefore

E

µ
1

N
µdt

¶
= E

µ
1

N
µlt

¶
if t = 3,

and for t > 3

E

µ
1

N
µdt

¶
> E

µ
1

N
µlt

¶
if σ2η > σ2v

E

µ
1

N
µdt

¶
= E

µ
1

N
µlt

¶
if σ2η = σ2v

E

µ
1

N
µdt

¶
< E

µ
1

N
µlt

¶
if σ2η < σ2v.

Figure 1 graphs the values of E
¡
1
N
µdt
¢
and E

¡
1
N
µdl
¢
as a function of α for t = 6 and

various values of σ
2
η

σ2v
=
©
1
4
, 1, 4

ª
. The values of the concentration parameters decrease with

increasing α. The concentration parameter for the LEV model is much more sensitive to

the value of the variance ratio σ2η
σ2v
than the concentration parameter of the DIF model.

Figure 1. E
¡
1
N
µ
¢
as a function of α, t = 6 and σ2η

σv
=
©
1
4
, 1, 4

ª
.

4.1 Discussion

The fact that the concentration parameters are the same for the IV estimators based on

the DIF or LEV moment conditions for t = 3 and for t > 3 when σ2η = σ2v seems contrary

to the findings in Monte Carlo studies, see e.g. Blundell and Bond (1998) and Blundell,

Bond and Windmeijer (2000) who use a covariance stationary design with σ2η = σ2v = 1,
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and where bαl outperforms bαd in terms of bias and rmse, especially when the series become

more persistent, i.e. when α gets larger. The identification problem is apparent in the

DIF model, where the reduced form parameters approach zero when α approaches 1. This

is in sharp contrast to the reduced form parameters in the LEV model that approach 1
2

when α approaches 1. This was the argument used by Blundell and Bond (1998) to assert

the strength of the LEV moment conditions for the estimation of α for larger values of

α.

There are two questions to be addressed. Firstly, why are the behaviours of the two

estimators so different in terms of bias and rmse when they have the same expected

concentration parameter? Secondly, how does the weak instrument problem in the LEV

model manifest itself?

To answer the first question one has to realise that the structural models are different

for DIF and LEV, with different endogeneity problems and therefore different biases of

the OLS estimator in the two equations. For the DIF model

∆yit = α∆yi,t−1 +∆uit,

the OLS estimator for the cross-section at time t is given by

bαdOLS = α+
∆y0t−1∆ut
∆y0t−1∆yt−1

,

and the limiting bias of the OLS estimator is, again assuming covariance stationarity,

plim (bαdOLS − α) = −1 + α

2
.

For the LEV model

yit = αyi,t−1 + ηi + vit,

the OLS estimator is given by

bαlOLS = α+
y0t−1ut
y0t−1yt−1

,
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and the limiting bias of the OLS estimator is given by

plim (bαlOLS − α) = (1− α)

σ2η
σ2v

σ2η
σ2v
+ 1−α

1+α

which reduces to plim (bαlOLS − α) = (1− α2) /2 when σ2η = σ2v.

The asymptotic absolute bias of bαlOLS is therefore (much) smaller than that of bαdOLS

for high values of α. Stock and Yogo (2005) relate the value of the concentration para-

meter to the absolute bias of the 2SLS estimator, relative to the absolute bias of the OLS

estimator. When the concentration parameters are the same, we expect therefore that the

relative biases are the same for the DIF and LEV 2SLS estimators. But the absolute bias

of the LEV 2SLS estimator will then be smaller than that of the DIF estimator. From

the results of Stock and Yogo (2005) we further expect the Wald test statistics to behave

similarly when testing parameter restrictions. When the concentration parameters are

small there will be significant size distortions.

4.2 System Estimator

For the cross-section at time t the SYS estimator combines the moment conditions of the

DIF and LEV estimators. The OLS estimator in the SYS "model"µ
∆yt
yt

¶
= α

µ
∆yt−1
yt−1

¶
+

µ
∆ut
ut

¶
(15)

is given by

bαsOLS =
¡
∆y0t∆yt + y0t−1yt−1

¢−1 ¡
∆y0t−1∆yt + y0t−1yt

¢
and is clearly a weighted average of the DIF and LEV OLS estimators

bαsOLS = eγbαdOLS + (1− eγ) bαlOLS

where

eγ = ∆y0t∆yt
∆y0t∆yt + y0t−1yt−1

13



and

plimeγ = 1− α

2 + 1
2

σ2η
σ2v

1+α
1−α

.

The bias of the OLS estimator will therefore behave like the bias of the LEV OLS

estimator when α → 1 and/or σ2η/σ
2
v → ∞, as eγ → 0 in these cases. The asymptotic

bias of bαsOLS is given by

plim (bαsOLS − α) =
(1− α2)

³
α− 1 + σ2η

σ2v

´
(3− 2α) (1− α) +

σ2η
σ2v
(1 + α)

.

Figure 2 shows the asymptotic biases of the DIF, LEV and SYS OLS estimators as a

function of α for different values of σ2η/σ
2
v =

©
1
4
, 1, 4

ª
. It is clear from this picture that

the LEV and SYS OLS biases are much smaller than the DIF OLS bias for higher values

of α.

Figure 2. Asymptotic biases of OLS estimators, σ2η/σ
2
v =

©
1
4
, 1, 4

ª
.

The SYS 2SLS estimator for cross section t is also a weighted average of the DIF and

LEV cross sectional 2SLS estimators

bαs = eδbαd +
³
1− eδ´ bαl

where eδ = bπ0dZ 0
dZdbπdbπ0dZ 0

dZdbπd + bπ0lZ 0
lZlbπl ,

14



see also Blundell, Bond and Windmeijer (2000), with

plimeδ = E
¡
1
N
µd
¢

E
¡
1
N
µd
¢
+

σ2l
σ2d
E
¡
1
N
µl
¢

and again eδ → 0 if α → 1 and/or σ2η/σ
2
v → ∞. Clearly, the absolute bias of the SYS

2SLS estimator will be smaller than the maximum of the absolute biases of the DIF and

LEV 2SLS estimators.

Combining the results of the OLS biases, values of the concentration parameters in

the DIF and LEV models and relative weights on the DIF and LEV moment conditions in

the SYS 2SLS estimator, we expect the absolute bias of the SYS estimator to be small for

large values of α, but that this bias is an increasing function of
σ2η
σ2v
. This happens because

the bias of the LEV OLS estimator is an increasing function of σ
2
η

σ2v
, the LEV concentration

parameter a decreasing function of σ2η
σ2v
, and the weight

³
1− eδ´ an increasing function in

σ2η
σ2v
, implying that more weight will be given to the LEV moment conditions.

Clearly, the SYS 2SLS estimator is not efficient as there is heteroskedasticity and

correlation between the errors in model (15). We will focus on the 2SLS estimator here

in the cross-section analysis and consider the efficient 2-step GMM estimator below when

considering the full panel data analysis.

4.3 Some Monte Carlo Results

To investigate the finite sample behaviour of the estimators and Wald test statistics

we conduct the following Monte Carlo experiment. We compute the OLS and 2SLS

estimators for LEV, DIF and SYS for the cross section t = 6 for the model specification

yi1 =
ηi

1− α
+ εi;

yit = αyi,t−1 + ηi + vit;

εi ∼ N

µ
0,

σ2v
1− α2

¶
; ηi ∼ N

¡
0, σ2η

¢
; vit ∼ N

¡
0, σ2v

¢
,
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for sample sizeN = 200; σ2v = 1, and different values of α = {0.4, 0.8} and σ2η =
©
1
4
, 1, 4

ª
.

There are 4 instruments for the DIF and LEV 2SLS estimators, whereas the SYS 2SLS

estimator is in this cross-sectional case based on the 8 combined moment conditions.

Tables 1 and 2 present the estimation results for 10, 000 Monte Carlo replications for

α = 0.4 and α = 0.8 respectively.

The results in Tables 1 and 2 confirm the findings and conjectures stated in the

previous sections. The DIF OLS (absolute) bias is larger than the LEV OLS bias in all

cases, especially when the series are more persistent with α = 0.8. The relative biases of

the DIF 2SLS and LEV estimators are, however, the same when σ2η = σ2v. These relative

biases are equal to 0.052 and 0.057 respectively when α = 0.4, in which case the expected

concentration parameters are equal to 46.75. The relative biases are larger, 0.310 and

0.312 respectively when α = 0.8. For this case the expected concentration parameters

are much smaller and equal to 6.35, which corresponds to a first-stage F-statistic of

6.35/4 = 1.58.

The relative bias of the DIF 2SLS estimator does not vary much with the different

values of σ2η when α = 0.4, whereas that of the LEV 2SLS estimator does. It is only

0.029 when σ2η =
1
4
, but increases to 0.169 when σ2η = 4. These are exactly in line with

the larger variation in the values of the expected concentration parameter for the LEV

model. They are 132.7 when σ2η =
1
4
and 13.0 when σ2η = 4, compared to 58.1 and 42.3

respectively for the DIF model. The absolute bias of the DIF 2SLS estimator is smaller

than that of the LEV 2SLS one when σ2η = 4, but larger in the other cases.

When α = 0.8, there is a similar pattern to the results of the relative biases. For the

LEV 2SLS model it now decreases to 0.11 when σ2η =
1
4
, with the expected concentration

parameter equal to 20.9. It increases to 0.68 when σ2η = 4 and the expected concentration

parameter is only 1.68. As explained before, we see that the weak instrument problem

for the LEV moment conditions, given α, becomes more severe with increasing σ2η/σ
2
v. As
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both the OLS bias and the relative bias increase with increasing σ2η, so does the absolute

bias of the 2SLS estimator. When α = 0.8, the absolute bias of the LEV 2SLS estimator

ranges from 0.015 when σ2η =
1
4
to 0.132 when σ2η = 4.

The SYS 2SLS estimator has a slightly smaller relative bias than the DIF and LEV

ones when σ2η = σ2v. It is 0.03 when α = 0.4 and 0.24 when α = 0.8. Unlike the results

for the LEV 2SLS estimator, the relative bias actually increases when σ2η =
1
4
, although

the absolute bias is quite small, especially when α = 0.8. The relative bias is quite large

in that case because the bias of the SYS OLS estimator is very small. When σ2η = 4 the

relative and absolute biases of the SYS 2SLS estimator are similar to that of the LEV

2SLS estimator, albeit slightly smaller.

Table 1. Cross Section Estimation Results for α = 0.4, N = 200, t = 6 and σ2v = 1

DIF LEV SYS
Coeff StDev RelBias Coeff StDev RelBias Coeff StDev RelBias

σ2η =
1
4

OLS -0.3005 0.0670 0.6208 0.0555 0.2243 0.0566
2SLS 0.3698 0.1734 0.0431 0.4064 0.0915 0.0289 0.3890 0.0810 0.0627
E (µ) 58.06 132.7
σ2η = 1
OLS -0.3005 0.0670 0.8196 0.0407 0.5230 0.0491
2SLS 0.3637 0.1892 0.0518 0.4240 0.1131 0.0572 0.4038 0.0953 0.0306
E (µ) 46.75 46.75
σ2η = 4
OLS -0.3005 0.0670 0.9416 0.0239 0.8118 0.0292
2SLS 0.3604 0.1973 0.0566 0.4917 0.1565 0.1694 0.4622 0.1223 0.1511
E (µ) 42.31 13.02
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Table 2. Cross Section Estimation Results for α = 0.8, N = 200, t = 6 and σ2v = 1

DIF LEV SYS
Coeff StDev RelBias Coeff StDev RelBias Coeff StDev RelBias

σ2η =
1
4

OLS -0.1003 0.0699 0.9382 0.0246 0.8239 0.0281
2SLS 0.5973 0.4041 0.2251 0.8150 0.0841 0.1088 0.7925 0.0825 0.3136
E (µ) 9.15 20.92
σ2η = 1
OLS -0.1003 0.0699 0.9798 0.0142 0.9380 0.0153
2SLS 0.5210 0.4636 0.3100 0.8562 0.0920 0.3123 0.8336 0.0901 0.2433
E (µ) 6.35 6.35
σ2η = 4
OLS -0.1003 0.0699 0.9945 0.0074 0.9827 0.0074
2SLS 0.4844 0.4852 0.3505 0.9324 0.0852 0.6808 0.9169 0.0785 0.6396
E (µ) 5.45 1.68

Figures 3 and 4 display p-value plots for the Wald test for testing H0 : α = α0 with

α0 the true parameter value. When σ2η = σ2v = 1, the size properties of the Wald tests

based on the DIF and LEV 2SLS estimates are virtually identical, which is as expected

as the concentration parameters are equal in expectation. It is also clear that when

α = 0.8, the size properties of the Wald tests are very poor, with a large overrejection of

the null reflecting the low value of the concentration parameters. The size properties of

the Wald test based on the SYS 2SLS estimation results are better than those based on

the DIF and LEV 2SLS results, but again very poor when α = 0.8. When σ2η =
1
4
the

size properties of the Wald tests based on the LEV and SYS 2SLS estimation results are

quite good, even when α = 0.8, whereas they are very poor when σ2η = 4. The Wald test

results based on the DIF 2SLS estimates are not very sensitive to the value of σ2η. These

results are again in line with expectation given the results of the previous section.
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σ2η=
1
4

σ2η= 1 σ2η= 4

Figure 3. P-value plots, Wald test H0 : α = 0.4.

σ2η=
1
4

σ2η= 1 σ2η= 4

Figure 4. P-value plots, Wald test H0 : α = 0.8.

4.4 Mean Stationarity Only

In all the derivations so far we assumed covariance stationarity of the initial condition.

When we assume mean stationarity only, i.e.

yi1 =
ηi

1− α
+ εi

with E (ε2i ) = σ2ε, we show in the Appendix that for t = 3

E

µ
1

N
µl3

¶
> E

µ
1

N
µd3

¶
if σ2ε <

σ2v
1− α2

E

µ
1

N
µl3

¶
< E

µ
1

N
µd3

¶
if σ2ε >

σ2v
1− α2

,
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so that, when t = 3, the expected concentration parameter for the LEV model is larger

than that of the DIF model when the variance of the initial condition is smaller than the

covariance stationary level and vice versa.

5 Panel Data Analysis

The concept of the concentration parameter and its relationship to relative bias and size

distortion of the Wald test does not readily extend itself to general GMM estimation,

see e.g. Stock and Wright (2000) and Han and Phillips (2006). Estimation of the panel

AR(1) model by 2SLS, using all available time periods and the full set of sequential

moment conditions for the DIF and SYS models (6) and (12) will result in a weighted

average of the period specific 2SLS estimates. Weighting by the efficient weight matrix

will lead to different results, but we expect the weak instrument issues as documented in

the previous section for the DIF and LEV cross-sectional estimates to carry over to the

linear GMM estimation. This is indeed confirmed by our Monte Carlo results presented

here.

Table 3 presents Monte Carlo estimation results for the AR(1) model with normally

distributed ηi and vi, with N = 200, T = 6, α = 0.8 and σ2v = 1, varying σ
2
η =

©
1
4
, 1, 4

ª
.

We present 2SLS and 1-step and 2-step GMM estimation results. We use for the initial

weight matrix for the 1-step GMM DIF estimator WN =
PN

i=1 Z
0
diAZdi where A is a

(T − 2) square matrix that has 2s on the main diagonal, −1s on the first subdiagonals,
and zeros elsewhere. This is the efficient weight matrix for the DIF moment conditions

when the vit are homoskedastic and not serially correlated, as is the case here. For the

1-step GMM SYS estimator we use the commonly used initial weight matrix WN =PN
i=1 Z

0
siHZsi where H is a 2 (T − 2) square matrix

H =

·
A 0
0 IT−2

¸
,

where IT−2 is the identity matrix of order T − 2.
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The pattern of results for the 2SLS estimates is quite similar to that found for the

t = 6 cross-section as reported in Table 2. The DIF 2SLS estimator displays somewhat

larger relative biases, whereas the LEV 2SLS estimator has smaller relative biases than

in the cross-section. SYS has smaller relative and absolute biases at σ2η = 1 and σ2η = 4,

but the direction of the biases remain the same.

Use of the efficient initial weight matrix reduces the bias of the 1-step GMM DIF

estimator significantly. This is due to the fact that the comparison bias is now no longer

the OLS bias in the first differenced model, but the bias of the within groups estimator,

which is smaller. There is no clear pattern to the bias of the SYS one- and two-step

GMM estimators in comparison to the 2SLS estimator.

Table 3. Panel Data Estimation Results, N = 200, T = 6, α = 0.8 and σ2v = 1

DIF LEV SYS
Coeff StDev RelBias Coeff StDev RelBias Coeff StDev RelBias

σ2η =
1
4

OLS -0.0999 0.0327 0.9382 0.0114 0.8238 0.0182
2SLS 0.5807 0.1624 0.2437 0.8119 0.0561 0.0858 0.7789 0.0736 0.8866
1-step 0.7338 0.1306 0.7983 0.0672
2-step 0.7336 0.1403 0.8117 0.0598 0.7973 0.0596
σ2η = 1
OLS -0.0999 0.0327 0.9799 0.0063 0.9381 0.0086
2SLS 0.4692 0.2122 0.3675 0.8502 0.0679 0.2792 0.8129 0.0792 0.0932
1-step 0.6721 0.1814 0.8299 0.0730
2-step 0.6639 0.2009 0.8438 0.0424 0.8182 0.0684
σ2η = 4
OLS -0.0999 0.0327 0.9946 0.0032 0.9828 0.0036
2SLS 0.4012 0.2395 0.4431 0.9239 0.0635 0.6369 0.8891 0.0751 0.4875
1-step 0.6175 0.2131 0.8997 0.0700
2-step 0.6007 0.2410 0.9133 0.0792 0.8841 0.0789

Figure 5 displays the p-value plots of the Wald tests for testing H0 : α = 0.8 based

on the DIF and SYS GMM estimation results, where the Wald tests based on the 2-

step GMM results use the Windmeijer (2005) corrected variance estimates. The pattern

of size properties is very similar to that for the cross-section analysis. The Wald test
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based on the SYS GMM estimation results has better size properties than that based

on the DIF GMM estimation results when σ2η =
1
4
, especially for the 1-step SYS GMM

estimator. The size behaviours are very similar when σ2η = 1, but the SYS Wald tests

size properties are much worse than that of the DIF Wald tests when σ2η = 4.

σ2η =
1
4 σ2η = 1 σ2η = 4

Figure 5. P-value plots, Wald test H0 : α = 0.8.

6 Conclusions

We have shown that the concentration parameters in the reduced forms of the DIF

and LEV cross-sectional models are the same in expectation when the variances of the

unobserved heterogeneity (σ2η) and idiosyncratic errors (σ
2
v) are the same in the covariance

stationary AR(1) model. The LEV concentration parameter is smaller than the DIF one

if σ2η > σ2v and it is larger if σ
2
η < σ2v. Therefore, the well-understood weak instrument

problem in the DIF model also applies to the LEV model, especially when σ2η ≥ σ2v,

with both concentration parameters decreasing in value with increasing persistence of

the data series. The weak instrument problem does manifest itself in the magnitude of

the bias of 2SLS relative to that of OLS, which we show are equal for DIF and LEV

when σ2η = σ2v. The LEV 2SLS estimator has a smaller finite sample performance in

terms of bias though, because the OLS bias of the LEV structural equation is smaller
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than that of DIF, especially when the series are persistent. The weak instrument problem

further manifests itself in poor performances of the Wald tests, which we show to have

the same size distortions in the DIF and LEV models when σ2η = σ2v. We show that these

properties generalise to the system GMM estimator.

Having established this potential weak instrument problem for the system GMM

estimator, for inference one should therefore consider use of testing procedures that are

robust to the weak instruments problem. The Kleibergen (2005) Lagrange Multiplier test

and his GMM extension of the Conditional Likelihood Ratio test of Moreira (2003) are

possible candidates, as is the Stock and Wright (2000) GMM version of the Anderson-

Rubin statistic. Newey and Windmeijer (2007) show that the behaviours of these test

statistics are not only robust to weak instrument asymptotics, they are also robust to

many weak instrument asymptotics, where the number of instruments grow with the

sample size, but with the model bounded away from non-identification. Newey and

Windmeijer (2007) also propose use of the continuous updated GMM estimator (CUE,

Hansen, Heaton and Yaron (1996)) with a new variance estimator that is valid under

many weak instrument asymptotics. They show that the Wald test using the CUE

estimation results and their proposed variance estimator performs well in a static panel

data model estimated in first differences. As the number of potential instruments in this

panel data setting grow quite rapidly with the time dimension of the panel, this may be

a sensible approach also for the system moment conditions.

As a final remark, the direction of the biases of the DIF (downward) and LEV (up-

ward) GMM estimators in the AR(1) panel data model are quite specific to this model

specification. In different models these biases may be different and the SYS GMM esti-

mator may have a larger absolute bias than the DIF GMM estimator. For example in

23



the static panel data model

yit = xitβ + ηi + vit

xit = ρxi,t−1 + γηi + δvit + wit

the DIF GMM estimator may have a smaller finite sample bias than the SYS GMM

estimator when the xit series are persistent, but |δ| is small and |γ| is large, as then the
endogeneity problem and OLS bias in the DIF model may be less than that of the LEV

model.
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7 Appendix

7.1 Concentration parameters in cross-section analysis

The model in first differences for the cross-section at time t is given by

∆yit = α∆yi,t−1 +∆uit

∆yi,t−1 = yt−20i πdt + dti,t−1.

For the general expression of the expected value of the concentration parameter divided

by N we get

E

µ
1

N
µdt

¶
=

π0dtE
¡
yt−2i yt−20i

¢
πdt

σ2dt

but as

πdt =
£
E
¡
yt−2i yt−20i

¢¤−1
E
¡
yt−2i ∆yi,t−1

¢
and

σ2dt = E
³¡

∆yi,t−1 − yt−20i πdt
¢2´

we get
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Under covariance stationarity

E
¡
yt−2i yt−20i

¢
=

σ2η

(1− α)2
ιt−2ι0t−2 +

σ2v
1− α2

Gt−2

where
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α 1
...

...
. . . α

αt−3 · · · α 1

 .
The inverse of E

¡
yt−2i yt−20i

¢
is given by (see e.g. Ridder and Wansbeek (1990))
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and ej is the j-th unit vector of order t− 2.
We further have that
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Further
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Combining these results in
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For the model in levels we have for the cross-section at time t

yit = αyi,t−1 + ηi + vit

yi,t−1 = ∆yt−10i πlt + lti,t−1

and the expected concentration parameter is given by
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Again, under covariance stationarity, we have that
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and
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7.2 Mean stationarity only

We now relax the assumption of covariance stationarity, while maintaining mean station-

arity, i.e. we specify the initial condition as

yi1 =
ηi

1− α
+ εi

with E [ε2i ] = σ2ε.

For t = 3, we get in this case

πd3 =
E (y1∆y2)

E (y21)
= − (1− α)σ2ε

σ2η
(1−α)2 + σ2ε

= −(1− α) σ2ε
σ2y1
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σ2d3 = E (∆y2)
2 − 2πdE (y1∆y2) + π2d3E

¡
y21
¢

= σ2v + (1− α)2 σ2ε + πd3 (1− α)σ2ε

µd3 =
π2d3y

0
1y1

σ2d3

=
π2d3

σ2v + (1− α)2 σ2ε + πd3 (1− α) σ2ε
y01y1.

E

µ
1

N
µd3

¶
=

³
(1−α)σ2ε

σ2y1

´2
σ2v + (1− α)2 σ2ε − ((1−α)σ2ε)2

σ2y1

σ2y1

=

((1−α)σ2ε)
2

σ2y1

σ2v + (1− α)2 σ2ε − ((1−α)σ2ε)2
σ2y1

For the levels model we get

πl3 =
E (y2∆y2)

E
¡
(∆y2)

2¢
=

σ2v − α (1− α)σ2ε
σ2v + (1− α)2 σ2ε

and

σ2l3 = E
¡
y22
¢− πl3E (y2∆y2)

=
σ2η

(1− α)2
+ σ2v + α2σ2ε −

(σ2v − α (1− α)σ2ε)
2

σ2v + (1− α)2 σ2ε
.

The concentration parameter is therefore given by

µl3 =
π2l3∆y02∆y2

σ2l3

=

³
σ2v−α(1−α)σ2ε
σ2v+(1−α)2σ2ε

´2
σ2η

(1−α)2 + σ2v + α2σ2ε − (σ2v−α(1−α)σ2ε)2
σ2v+(1−α)2σ2ε

∆y02∆y2
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and so

E

µ
1

N
µl3

¶
=

(σ2v−α(1−α)σ2ε)
2

σ2v+(1−α)2σ2ε
σ2η

(1−α)2 + σ2v + α2σ2ε − (σ2v−α(1−α)σ2ε)2
σ2v+(1−α)2σ2ε

.

Calculating these expectations shows that E
¡
1
N
µl3
¢
> E

¡
1
N
µd3
¢
if σ2ε < σ2v

1−α2 and

E
¡
1
N
µl3
¢
< E

¡
1
N
µd3
¢
if σ2ε > σ2v

1−α2 , i.e. the expected concentration parameter in the

levels model is larger than that of the differenced model if the variance of the initial

condition is smaller than the covariance stationary level and vice versa.
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