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Abstract
Efficient, accurate, multi-dimensional, numerical integration has be-

come an important tool for approximating the integrals which arise in

modern economic models built on unobserved heterogeneity, incomplete

information, and uncertainty. This paper demonstrates that polynomial-

based rules out-perform number-theoretic quadrature (Monte Carlo) rules

both in terms of efficiency and accuracy. To show the impact a quadra-

ture method can have on results, we examine the performance of these

rules in the context of Berry, Levinsohn, and Pakes (1995)’s model of

product differentiation, where Monte Carlo methods introduce consider-

able numerical error and instability into the computations. These prob-

lems include inaccurate point estimates, excessively tight standard errors,

instability of the inner loop ‘contraction’ mapping for inverting market

shares, and poor convergence of several state of the art solvers when com-

puting point estimates. Both monomial rules and sparse grid methods

lack these problems and provide a more accurate, cheaper method for

quadrature. Finally, we demonstrate how researchers can easily utilize

high quality, high dimensional quadrature rules in their own work.

Keywords: Numerical Integration, Monomial Rules, Gauss-Hermite Quadra-
ture, Sparse Grid Integration, Monte Carlo Integration, pseudo-Monte
Carlo, Product Differentiation, Econometrics, Random Coefficients, Dis-
crete Choice.
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1 Introduction
Efficient, accurate, multi-dimensional, numerical integration has become an im-
portant tool for approximating the integrals which arise in modern economic
models built on unobserved heterogeneity, incomplete information, and uncer-
tainty. Failure to compute these integrals quickly and accurately can prevent a
problem from being numerically stable or computationally tractable, especially
in higher dimensions. In this paper, we show that the twin goals of computa-
tional efficiency and accuracy can be achieved by using monomial rules instead
of simulation and that these rules work well even in multiple dimensions. We
support these claims by comparing monomial1 rules to several popular methods
of numerical integration – both polynomial-based (sparse grid integration (SGI),
and Gaussian product rules) and Monte Carlo – and show that monomial rules
are both more accurate and often an order of magnitude cheaper to compute
for a variety of integrands, including low and high order polynomials as well
as the market share integrals in Berry, Levinsohn, and Pakes (1995)’s ‘industry
standard’ model of product differentiation (BLP hereafter). Furthermore, we
also demonstrate how the use of Monte Carlo integration introduces numerical
error and instability into the BLP model whereas polynomial-based methods do
not. These numerical issues include inaccurate market share integrals, artifi-
cially small standard errors, instability of the inner loop ‘contraction’ mapping
for inverting market shares, and the convergence of even state of the art solvers
when computing point estimates.

A good quadrature rule delivers high accuracy at low computational cost.
High accuracy comes from either using more points and/or choosing those points
more cleverly. Cost depends on minimizing evaluations of the integrand – i.e.
minimizing the number of nodes. A good numerical approximation to an inte-
gral should minimize the number of nodes while sacrificing as little accuracy as
possible.2 Fortunately, researchers now have access to a variety of high perfor-
mance quadrature3 methods – many of which have been available since the 1970s
(Stroud, 1971) – one or more of which should suit the problem at hand. Monte
Carlo methods are the primary option for very high dimensional problems, but
for many multi-dimensional problems, the analyst can often obtain a cheaper,
more accurate approximation by choosing a polynomial-based quadrature rule,
such as monomial rules or sparse grid integration, – even for ten, 15, or more di-
mensions.4 Because most integrals in economics are analytic, polynomial-based

1Monomials are the simplest possible basis for multidimensional polynomials. Each basis
function is simply a product of the coordinates, each raised to some power. E.g., x3

1x
2
2x

1
5. A

formal definition follows below on page 10.
2We have also found that using a good quadrature rule in the computation of an objective

function can significantly decrease the number of iterations a solver needs to converge to an
optimum.

3Some authors (e.g. Cools, 2002) use quadrature to refer to one dimensional integrals and
cubature to refer to integrals of dimension ≥ 2. We will always use quadrature to refer to any
integration rule, regardless of the dimension.

4What actually constitutes a high dimensional problem will depend on the computing
resources and numerically properties of the integral.
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methods should provide accurate, efficient numerical approximations.
Our paper builds on Heiss and Winschel (2008) which showed that sparse

grid integration outperforms simulation for likelihood estimation of a mixed logit
model of multiple alternatives. However, we make several new contributions
including that simulation introduces false local optima and excessively tight
standard errors; that polynomial-based rules approximate both the level and
derivatives of integrals better than pMC; that quadrature rules affect solver
convergence; that polynomial rules outperform Monte Carlo for low to moderate
degree monomials but both are poor for higher degrees; and, that monomial rules
provide a lower cost alternative to SGI.

We illustrate how to use modern quadrature rules in the context of Berry,
Levinsohn, and Pakes (1995)’s ‘industry standard’ model of product differenti-
ation (BLP hereafter). Their paper develops an innovative method for studying
both vertical and horizontal aspects of product differentiation by using a random
coefficients multinomial logit with unobserved product-market characteristics.5
But, the results of their model depend heavily on the numerical techniques
used to approximate the market share integrals: any errors in computing these
integrals – and, more importantly, the gradient of the the GMM objective func-
tion – have far reaching consequences, rippling through the model, affecting the
point estimates, the standard errors, the convergence of the inner loop mapping,
and even the convergence of the solver used to compute the GMM parameter
estimates. To substantiate these claims, we generate multiple synthetic6 data
sets and then compute the product-market share integrals, sjt ˆ(θ), at a variety
of parameter values, θ̂, for several popular integration rules (Gaussian-Hermite
product rule, monomial rule, sparse grids and pseudo-Monte Carlo). Although,
the original BLP papers use importance sampling (Berry, Levinsohn, and Pakes,
1995, 2004), an informal survey of the BLP literature shows, with few exceptions
(Conlon, 2010), most BLP practitioners (Nevo, 2000a,b, 2001) use pseudo-Monte
Carlo integration without any variance reduction methods. Thus, errors from
inaccurate (pMC7) quadrature rules could potentially affect much of the BLP
literature.

In our integration experiments, monomial rules are superior to Monte Carlo
integration. Sparse grid integration is also much more accurate and efficient than
pMC. These rules are easy to implement and apply to a wide range of problems of
moderate size. The benefits are obvious: more accurate computation at a lower
computational burden, both crucial for obtaining convincing point estimates
and standard errors.

In addition, the failure of a state-of-the-art solver such as KNITRO (Byrd,
Nocedal, and Waltz, 2006) or SNOPT (Gill, Murray, and Saunders, 2002) of-
ten means that the Hessian is ill-conditioned or that a problem is numerically

5Another contribution of their paper is a GMM-based, nested fixed point algorithm to
estimate the model.

6We will clarify exactly what ‘pseudo-Monte Carlo’ means below.
7We often refer to Monte Carlo rules as pseudo-Monte Carlo or pMC because of the pseudo

random numbers used to generate these nodes. Quasi-Monte Carlo is an alternative, number-
theoretic method. See 2.2 and Judd (1998).
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unstable. The former usually indicates that a model is not well identified (nu-
merically) because the mapping from data to parameters is nearly singular.
Using an inferior quadrature rule, such as Monte-Carlo, can mask these prob-
lems because the noisiness of pMC creates false local basins of attraction where
the solver converges, creating incorrect point estimates and excessively small
standard errors. By combining a high-quality solver and quadrature rule a re-
searcher can get early feedback that identification problems may be present.

Furthermore, the logit-class of models is prone to numerical instability be-
cause the exponential function quickly becomes large. Consequently, poorly
implemented code will suffer from a variety of floating point exceptions, in-
cluding overflow, underflow, and NaNs8. Typically, these problems will cause a
good solver to abort. However, these problems will tempt some researchers to
try different draws until they find a good set which avoids the problem regions
of parameter space instead of addressing the underlying problem. Better to
identify the source of the problem and correct it with robust code and proper
box constraints for the solver.

We begin the paper by surveying current best practice for numerical inte-
gration, explaining the strengths and weaknesses of several popular methods for
computing multi-dimensional integrals. In addition, we compute several metrics
to illustrate the superiority of polynomial-based quadrature rules to simulation.
Next, we briefly review the BLP model of product differentiation to establish a
basis to understand how it performs under different quadrature rules. Then, we
estimate the BLP model using monomial, sparse grid integration, and Monte
Carlo methods. We examine the point estimates, standard errors, and conver-
gence properties of the under these different rules to demonstrate that monomial
rules provide correct point estimates and standard errors while simulation meth-
ods introduce false local optima into the GMM objective function, leading to
incorrect point estimates and standard errors. Finally, we conclude.

2 Multi-Dimensional Numerical Integration
For more than four decades, researchers have had access to well-understood rules
to compute multi-dimensional integrals on a variety of domains accurately and
efficiently (Stroud, 1971). All quadrature methods approximate an integral as
a weighted sum of the integrand evaluated at a finite set of well-specified points
called nodes. I.e., a quadrature method approximates the integral

I [f ] :=

ˆ
Ω
w (x) f (x) dx, Ω ⊂ Rd, w (x) ≥ 0 ∀x ∈ Ω

as
8NaN is computer-speak for ‘not a number’ and indicates that a floating point computation

produced an undefined or unrepresented value such as ∞/∞, ∞ · 0, and ∞ − ∞. NaNs are
part of the IEEE-754 floating point standard. What happens when a program generates a
NaN depends on the platform, typically either the process receives a signal to abort or the
operating system silently handles the floating point exception and the computation produces
the special floating point value NaN.
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Q [f ] :=
R�

k=1

wkf (yk) , yk ∈ Ω,

where w (x) is the weight function such as 1, exp (−x), or exp
�
−x

�
x
�

depending
on the problem. The region of integration, Ω, is also problem dependent. And,
{wk} and {yk} are the quadrature weights and nodes, respectively. R refers to
the number of nodes (or draws) and N to the number of replications. Thus,
N = 100 and R = 1, 500 means that we computed the integral 100 times using
1, 500 different draws each time.9

For example, a simple Monte Carlo rule would set wk = 1/R, ∀k, and draw
yk from a suitable probability distribution, namely w (x). Another common
example is the mixed, or random-coefficients, logit with Ω = Rd, f (x) the
multinomial logit for some taste coefficient, and w (x) = exp

�
−x

�
x
�
. Then,

assuming a pMC rule, yk is drawn from the (Normal) distribution for the coef-
ficients.10

The art of numerical integration lies in choosing these nodes and weights
strategically so that the approximation achieves the desired accuracy with few
points and, thus, minimal computational expense. A solution is said to be exact
when I [f ] = Q [f ]: i.e., the approximation has no error. Many rules give an
exact result for all polynomials below a certain degree. Because polynomials
span the vector space of ‘well-behaved’ functions, any integral of a function
which is smooth and differentiable – or better yet analytic – should have a
good numerical approximation. More often, though, the approximation will not
be exact. The quality of the approximation also depends on other properties
of the integrand such as the presence of sharp peaks, kinks, high frequency
oscillations, high curvature, symmetry, and the thickness of the tails all of which
often lead to non-vanishing, high order terms in a Taylor series expansion. A
good approximation, as well as minimizing error and the number of (expensive)
function evaluations, should converge to the true value of the integral as the
number of nodes goes to infinity Stroud (1971).

The two primary methods for choosing the quadrature nodes and weights
are number theoretic and polynomial-based methods (Cools, 2002). The for-
mer refers to Monte Carlo (or simulation) methods whereas the later includes
product rules based on the Gaussian quadrature family of methods as well as
monomial rules and sparse grid integration. In general, polynomial-based meth-
ods are both more efficient and more accurate. Heiss and Winschel (2008) warn
that polynomial-based methods poorly approximate functions with large flat

9This notation is based on Cools (2002).

10If you are integrating over a normal density w̃ (u) = (2π |Ω|)
−
d

2 exp

�
−
1

2
uTΣ−1u

�
, you

must perform a change of variables using the Cholesky decomposition CC
�
= 2Σ so x = C−1u

produces yields the Gaussian weighting function w (x) = exp (−x�x). The convenience of this
form becomes clear once you have a set of quadrature nodes {yj} and need to transform them
for a specific problem. See 2.1.

5



regions or sharp peaks, and, by extension, regions with high frequency oscilla-
tions. The later two problems are also likely to affect MC methods as we show
in 2.4. In the BLP example below, monomial rules have no trouble in the tails
because of the Gaussian kernel. However, for very high dimensional integration
MC rules may be the only option because the ‘curse of dimensionality’ makes
even the most efficient polynomial rule intractable. MC methods can also be su-
perior when integrating over irregularly shaped regions, unless there is a clever
variable transform.11 If the integrand has kinks, jumps, or other singularities
more work is usually required, such as performing separate integrations on the
different sides of the kink or using an adaptive rule. But, many economic ap-
plications have ten or fewer dimensions and well-behaved integrands (analytic,
smooth, and bounded), making these problems well-suited for monomial rules.

2.1 A One-Dimensional Example

To illustrate these issues, consider a one-dimensional random coefficients multi-
nomial logit (MNL) model. An agent i chooses the alternative j ∈ J which yields
the highest utility Uij = αi (log yi − log pj)+zTj β+�ij , where �ij follows a Type
1 Extreme Value distribution and the taste shock is a one dimensional random
coefficient on price, αi ∼ N

�
α, σ2

�
. Because of the distributional assumption

on �ij , the market shares conditional on type αi are12

sij (αi) =
exp

�
−αi log pj + zTj β

�
�
k
exp

�
−αi log pk + zTk β

�

(See Train (2009) for details.). Consequently, the total market share of good j
is the just the expectation of the conditional market share integral for j:

sj =

ˆ

Ω

sij (αi) f (αi) dαi

=

∞̂

−∞

sij (αi)
1√
2πσ2

exp

�
− 1

2σ2
[αi − ᾱ]2

�
dαi

=
1√
π

∞̂

−∞

sij
�√

2σu
�
exp

�
−u2

�
du

≈ 1√
π

R�

k=1

wksij
�√

2σyk
�
.

11Genz (1993) uses a clever transformation to converted a bounded probit into integration
over a hypercube.

12Note that the log (yi) term cancels out of the market share expression, because of the well-
known property of logit distributions that individual-specific characteristics drop out unless
they are interacted with choice-specific attributes.
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{wk} and {yk} are the R weights and nodes for a Gauss-Hermite quadrature rule.
I performed a one-dimensional ‘Cholesky’ transformation to convert from the
economic problem to the mathematical formula. We chose the Gauss-Hermite
rule because it has the appropriate weighting function, exp

�
−x2

�
, and integra-

tion region, R. This choice causes the Normal density to disappear from the
sum used to approximate the integral.

In the following two sections, we survey the two main types of rules: Monte
Carlo and polynomial-based.

2.2 Monte Carlo Integration

Monte Carlo integration is one of the most popular choices for numerical inte-
gration because it is easy to compute and conceptually simple.13 This method
computes the integral by taking draws from an appropriate distribution and may
includes other techniques to increase accuracy and speed, such as importance
sampling, Halton draws, and antithetic draws (Train, 2009). In its simplest
form, simulation weights all nodes equally by setting the weights ωk = 1/R,
where R = |{yk}|, and the nodes are drawn from a suitable distribution. The
weight function is set to 1/R because the draws come from the corresponding
distribution. Consequently, simulation is easy to implement and also works over
irregular-shaped regions or with functions which are not smooth, even if MC
methods do not always produce the most accurate approximations.

The Law of Large Numbers is used to justify MC rules: draw enough points
and the result must converge to the ‘truth’ without bias. Unfortunately, accu-
racy only improves as

√
R – so the number of nodes must be increased by a

factor of 100 for each additional digit of accuracy. Consequently, a more sophis-
ticated quadrature rule will usually outperform Monte Carlo for moderate-sized
problems because adding well-chosen nodes improves the integral approximation
more quickly than the same number of randomly-chosen points. In practice,
Monte Carlo draws are generated using an algorithm for generating apparently
random numbers, such as Mersenne twister (Matsumoto and Nishimura, 1998),
which can pass the statistical tests associated with random numbers. These
numbers are known as pseudo random and the corresponding Monte Carlo
method is know as pseudo-Monte Carlo (pMC) integration. Because pseudo-
random numbers are not truly random, the Law of Large Numbers only applies
to theoretical discussions of MC methods based on true random numbers, not
the pseudo-random implementations commonly used for numerical integration.
Thus, researchers should be wary of using proofs which only hold for true ran-
dom numbers and not for pseudo random numbers. A poor random number
generator can compromise results. See Judd (1998) for further discussion of the
potential pitfalls.

More sophisticated methods of taking draws – quasi-Monte Carlo methods,
importance sampling, and antithetic draws – remedy some of the deficiencies of

13Certainly, it appears simple until faced with the implementation of a good source of
‘random’ numbers.
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simple pMC. quasi-Monte Carlo (qMC) rules use a non-random algorithm which
will not pass all of the statistical tests of randomness but instead provides bet-
ter coverage of parameter space by constructing equidistributed nodes, resulting
convergence which is often much faster than pMC methods. The weights, as in
the case of pMC, are wj = 1/R. In an earlier draft, we used a qMC quadrature
rule with Niederreiter sequences14 to estimate the BLP model. In theory, it
should considerably out-performed a pMC rule. We chose a Niederreiter rule
which produces good results for a variety of problems while retaining the sim-
plicity of pMC rules (Judd, 1998). In practice, we found that using even 5, 000
nodes for the 5 dimensional integrals we consider below, qMC was not a sig-
nificant improvement on pMC. Consequently, we do not discuss qMC further.
Nevertheless, qMC is easy to implement and performs at least as well as pMC.

Another common mistake is to use the same set of draws for each integral.
For example, in BLP, there are J × T market share integrals, where J is the
number of products per market and T is the number of markets. Instead of
taking J × T sets of draws (J × T ×R total draws), most researchers take only
R draws and use the same R draws for each of the J ×T integrals. By taking a
new set of draws for each integral simulation errors will cancel to some extent
and can considerably improve the quality of the point estimates because the
individual integrals are no longer correlated (McFadden, 1989).

In summary, the basic problems of simulation remain regardless of the simu-
lation rule: it is dirty and can produce inaccurate results, as Berry, Levinsohn,
and Pakes (1995) point out:

... we are concerned about the variance due to simulation error.
Section 6 develops variance reduction techniques that enable us to
use relatively efficient simulation techniques for our problem. Even
so, we found that with a reasonable number of simulation draws the
contribution of the simulation error to the variance in our estimates
(V3) is not negligible.

2.3 Polynomial-based Methods

We compare simulation to three multi-dimensional polynomial-based rules: Gaus-
sian product rules, sparse grid integration, and monomial rules. Often these
rules are said to be exact for degree d because they integrate any polynomial
of degree d or less without error.15 A common example in one-dimension is the
Gaussian-family of rules: with R nodes they exactly integrate any polynomial
of degree 2R − 1 or less. Consequently, polynomial rules require many fewer
nodes than pMC, making them both parsimonious and highly accurate for most
integrands. The higher the degree, the more accurate the approximation of the
integral but the higher the cost because the integrand must be evaluated at

14The current industry standard is to use Halton draws and Kenneth Train’s code, which
is available on his website(Train, 1999).

15At least, theoretically. With finite precision of arithmetic there may be extremely small
errors from truncation and round off.
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more nodes. The actual choice of nodes and weights depends on the the rule
and the weighting function in the integral. For smooth functions which are well
approximated by polynomials – such as analytic functions – a good quadrature
rule should always outperform simulation, except perhaps in extremely high
dimensions where MC methods may be the only option. Like MC rules, poly-
nomial approximations of integrals converge to the true value of the integral as
the number of nodes approaches infinity, i.e. lim

R→∞
Q [f ] = I [f ].

To use a Gaussian rule, simply determine which rule corresponds to the
weighting function and parameter space of the integral in question. Then look
up the nodes and weights in a table or use the appropriate algorithm to calculate
them. See Judd (1998) for a description of all the common rules. Note: it is
often necessary to use a change of variables, such as a Cholesky decomposition
of a variance matrix.

2.3.1 Gaussian Product Rule

The Gaussian product rule uses a straight-forward method to construct nodes
and weights: compute nodes by forming all possible tensor products of the nodes
and weights which are associated one dimensional rule which is appropriate for
the integral’s domain and weighting function. I.e., each of the d-dimensional
node zk’s individual coordinates are one of the one-dimensional nodes. The set of
nodes, then, is all possible zs which are on the lattice formed from the Kronecker
product of the one-dimensional nodes. See Figure 1 in Heiss and Winschel
(2008). The weights are the product of the weights which correspond to the
one-dimensional nodes. For example, consider a two-dimensional rule with one
dimensional nodes and weights {y1, y2, y3} and {w1, w2, w3}, respectively. Then
the product rule has nodes Y = {(y1, y1) , (y1, y2) , (y1, y3) , . . . , (y3, y3)}. The
corresponding weights are W = {w1 · w1, w1 · w2, w1 · w3, . . . , w3 · w3}. And the
approximation for the integral is Q [f ] =

�
k∈I

w̃kf (ỹk), where I indexes W and

Y, and ỹk ∈ Y and w̃k ∈ W.16 See the example code in 4 for the actual
algorithm.

Consequently, we must evaluate the function at Rd points to approximate a
d-dimensional integral, which quickly becomes much larger than 10, 000, often
a practical upper limit on the number of nodes which are feasible with current
computer technology.17 We use product of formulas which have the same num-
ber of nodes in each dimension – i.e. are exact for the same degree – so that we
know roughly what degree polynomial can be integrated exactly (Cools, 1997).
If the formulas are not exact to the same degree, then we know only upper

16To be more formal, consider a set of one-dimensional nodes and weights, {yk, wk}Rk=1. The
d-dimensional product rule is the set of nodes zk ∈

�
×d

m=1yim
�
. Let C (zk) be a function which

returns an ordered list of the indexes (i1, i2, . . . , id) of the one-dimensional nodes forming the
coordinates of the d-dimensional vector zk. Then each node zk =

�
yi1 , yi2 , . . . , yid

�
and has

weight wi1 · wi2 · . . . · wid , the product of the one-dimensional weights corresponding to the
one dimensional nodes of zk.

17Disclaimer: future readers should be mindful of the level of technology which was available
at the time this paper was written.
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and lower bounds on what polynomial will integrate exactly. One problem with
product rules is that many extra terms will be integrated exactly because of
the product between the one-dimensional bases. For example, consider a prob-
lem with three dimensions and five nodes per dimension. The one-dimensional
Gaussian formula will be exact for all polynomials of degree 2∗5−1 = 9 but the
corresponding product rule will also exactly compute higher-order terms such
as x9

1x
3
2x

1
3, where xi is the variable for the i-th dimension. Thus, there is some

indeterminacy about what will be exactly integrated by a product rule: this
extra accuracy may be unnecessary and result in extra computational burden.

2.3.2 Sparse Grid Integration

We also consider sparse grid integration (SGI) which is closely related to the
Gaussian product rules. SGI uses a subset of the nodes from the product rule
and rescales the weights appropriately. The advantage of SGI is that it exploits
symmetry so that it requires many fewer points, making it more efficient to
compute with little or no loss in accuracy. In addition, the nodes and weights
for higher levels of exactness are easier to compute for SGI than for monomial
rules. We use a Konrad-Patterson rule for choosing nodes as explained in Heiss
and Winschel (2008). Our experiments show that SGI is very competitive with
monomial rules in many cases. However, when the lowest possible computational
costs matter, the monomial rule is the best option because it delivers the highest
accuracy with fewest nodes.

2.3.3 Monomial Rules

Monomial rules exploit symmetries even more effectively than SGI and provide
very accurate approximations with surprisingly few nodes, even for moderate
dimensions (Stroud, 1971; Cools, 2003). Formally, a monomial in x ∈ Rd is the

product
d
Π
i=1

xαi
i where αi ∈ W and W ≡ {0, 1, 2, . . .} . Thus, monomials are the

simplest possible basis for the set of multi-dimensional polynomials. The total
order is just the sum of the exponents

�
i
αi. xα is a compact notation which

refers to the monomial
d
Π
i=1

xαi
i . Like the Gaussian rules, monomial rules are

constructed so that they will exactly integrate all monomials less than or equal
to some total order. Monomial rules are more efficient than Gaussian product
rule in part because they do not exactly integrate any unnecessary higher order
terms.

The performance gains from monomial rules are clear, but the cost comes
in computing the rule’s nodes and weights. Fortunately for researchers many
efficient, accurate rules have already been computed for standard kernels and
parameter spaces (Cools, 2003; Stroud, 1971). Thus, a practitioner only needs

10



to look up the appropriate monomial rule in a table 18,19 and can then compute
the integral as the weighted sum of the integrand at the nodes. Unfortunately, if
you need a rule which doesn’t exist you will need the help of a specialist (Cools,
1997).

See Section 4 explains how to use the 983 node Stroud monomial rule 11-1
– which is exact for degree 11 polynomials in five dimensions – to compute the
BLP market share integrals. For the BLP integrals, the Gaussian product rule
required about ten times more nodes for insignificant gains in accuracy.

2.4 Precision and Accuracy

We now provide a quick comparison between all of these rules using the code
we developed to validate that our implementation produced the ‘same’ answer
as required by theory.20 The polynomial rules correctly integrate all monomi-
als less than or equal to their respective degrees and produce poor results for
monomials of higher degree. However, we also performed these tests using 100
replications of a pMC rule with R = 10, 000 draws which lead to a surprising
result: pMC performed poorly for the low order monomials, with error increas-
ing with the degree of the monomial, yet it also produced poor results for high
order monomials where we expected it would outperform the polynomial rules.
We conjecture that pMC works well only when the high-order terms in a Taylor
series expansion are very small, something which is explicit in the construction
of monomial rules. These results are summarized in Table 1 which shows the
difference between the theoretical value and the value computed with each rule.
The first three columns are the results for the Gaussian-Hermite Product rule
with 35, 55, and 75 nodes – i.e., 3, 5, and 7 nodes in each of the 5 dimensions;
next the Konrad-Patterson sparse grid rule which is exact for degree 11; then,
the left and right versions21 of rule 11-1 in Stroud (1971), also exact for degree
11; and, finally, the two right most columns show the mean absolute error and
the standard error for the pMC rule with 100 replications. The monomials are
listed by increasing degree. Note that the Gauss-Hermite product rules will ex-
actly integrate any monomial rule as long as the coordinates in each dimension
are raised to some power less than or equal to 2R − 1 where R is the num-
ber of one dimensional nodes used in the tensor product. Sparse grid and the
monomial rules are exact for any monomial whose degree is less than or equal

18Typically, a small amount of computation is required because the table will only provide
each unique set of nodes and weights. A researcher must then calculate the appropriate
(symmetric) permutations of the unique nodes to generate all possible nodes.

19A monomial rule may have several equivalent sets of nodes and weights because the system
of equations used to compute the monomial rule may have multiple solutions. For example,
Stroud rule 11-1 has two solutions, which we refer to as ’Left’ and ‘Right’ after the two columns
in the table which list the different solutions. The performance of these solutions will vary
slightly based on the shape of the problem.

20The results should be the ‘same’ up to the limits of standard numerical errors such as
truncation and round-off error.

21Often multiple monomial rules exist for a given domain, degree, and weight function
because there multiple solutions to the systems of equations which is used to generate the
rules. See Cools (1997) for an introduction.
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to 11. For odd monomials, the difference in performance is even more stark:
the polynomial rules are 0 to the limits of numerical precision whereas pMC
has significant error, especially as the degree of the monomial increases. These
results, in our opinion, considerably strengthen the case for using sparse grid or
monomial rules because pMC is never better.22

2.4.1 Bias and Noise

When choosing which quadrature rule to use, a researcher should consider how
it will affect their results. Simulation methods have become extremely popu-
lar because of their ease of use, especially for applied econometrics. However
simulation, as discussed at length in Train (2009), can suffer from both bias
as well as noise. The nature of the bias depends on the type of estimator: for
Method of Simulated Moments (MSM) the bias is zero unlike Maximum Simu-
lated Likelihood (MSL) and Maximum Simulated Score (MSS). The bias occurs
because the bias term is linear only for MSM: consequently, Jensen’s inequality
shows that MSL and MSS must be biased. The noise term will approach zero
asymptotically if R, the number of draws, approaches infinity faster than

√
N ,

the number of observations. Consequently, researchers who use MSL or MSS
should remember to correct for this bias.

Polynomial-rules, on the other hand, only suffer from approximation error
and that to a much lesser degree than Monte Carlo methods. Thus, the error is
much smaller for these methods, making them much better suited for empirical
and other problems than simulation. With polynomial rules, researchers can also
consider more efficient econometric methods such as MLE instead of GMM.

22We also computed these tests for Halton draws generated by MATLAB R2010b’s
qrandstream facility which did not perform significantly better than pMC.
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3 The Basics of BLP
We now quickly review the features and notation of Berry, Levinsohn, and
Pakes (1995)’s model in order to examine how different quadrature rules af-
fect estimation results. BLP has become one of the most popular structural
models of product differentiation because it fits empirical data well by using a
flexible form which combines both random coefficients and unobserved product-
market characteristics, ξjt, enabling the model to explain consumers’ tastes for
both horizontal and vertical product differentiation. The model produces re-
alistic substitution patterns:23 the random coefficients can handle correlations
between different choices, overcoming the Independence from Irrelevant Alterna-
tives (IIA) problem that is a feature of logit models, and ξjt captures unobserved
heterogeneity in product quality, preventing bias in parameter estimates from
product traits which the econometrician cannot observe. Nevo (2000a) provides
a detailed and accessible explanation of the model. BLP is now sufficiently
established that the several recent textbooks (Train, 2009; Davis and Garcés,
2009) also cover it.

Throughout this paper, we base our notation on a simplified version of the
notation in Dubé, Fox, and Su (2009). Thus, we consider T markets which each
have J products plus an outside good. Each product j ∈ J in market t ∈ T has
K characteristics xjt and price pjt as well as an unobserved, product-market
shock, ξjt. The market could be a time period, as in the original BLP papers
on automobiles, or a city, as in Nevo’s papers on ready-to-eat breakfast cereal.
The shock ξjt is observed by consumers and firms but not by the econometri-
cian. This shock captures vertical aspects of product differentiation whereas
the random coefficients model horizontal differentiation: all consumers value a
larger ξjt but rank product characteristics differently according to their type.
Lastly, yi is consumer i’s expenditure and drops out of the model because it is
not interacted with any product-specific characteristics.

BLP assume consumers are rational, utility maximizers who choose the good
which maximizes their utility. Let consumer i’s utility from purchasing product
j in market t be24

Uijt = Vijt + �ijt

with

Vijt = αi (yi − pjt) + x�
jtβi + ξjt.

�ijt is an IID, Type I Extreme value shock, which leads to a simple closed form
solution for market shares, conditional on consumer types, (αi, βi). In practice,
yi and pjt are often the logarithm of the respective quantities, which ensures

23The substitution patterns will be incorrect if congestion in product space matters. See
Berry and Pakes (2007) and, for an application where congestion matters, Nosko (2010).

24Some researchers specify log (yi − pjt) instead of (yi − pjt) to capture income effects
(Petrin, 2002).
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that the utility is homogeneous of degree zero. Similarly, the utility of choosing
the outside, ‘no purchase’ option (j = 0 by convention) is25

Ui0t = αiyi+ �i0t.

The coefficients αi and βi are type-specific ‘random coefficients’ – i.e., they
depend on a consumer’s type and are drawn from some distribution in order to
capture unobserved differences in consumers’ tastes:26

�
αi

βi

�
=

�
ᾱ
β̄

�
+Σνi

where all consumers have the same mean taste preferences ᾱ and β̄. The un-
observed taste shock νi is a K +1 column vector (because there are K product
characteristics plus price) and has distribution νi ∼ Pν . The variance of the
taste shock is Σ, a (K + 1) × (K + 1) matrix . Pν is usually assumed to be
multivariate normal. Following convention, we refer to the model’s parame-
ters as θ where θ = (θ1, θ2), θ1 =

�
ᾱ, β̄

�
, the parameters for mean utility, and

θ2 = (vec (Σ)), the parameters for the standard error of the random coefficients.
Thus, θ refers to all of the parameters to be estimated.

It is convenient to partition the utility into the mean utility

δjt (ξjt; θ1) = x
�

jtβ̄ − ᾱpjt + ξjt,

which is the constant utility that any consumer type gains from choosing product
j in market t, regardless of type, and a type-specific preference shock

µijt =
�
−pjt x

�

jt

�
(Σνi) .

µijt has mean zero and captures individual heterogeneity. µijt is a scalar because�
−pjt x

�

jt

�
is a K + 1 row vector and Σνi is a K + 1 column vector. Some

researchers permit αi < 0 which can produce a positive price coefficient for
some consumer types. A possible solution is to assume that αi is log-normally
distributed. In other applications αi < 0 may make sense if price is a signal of
quality.

Researchers typically assume that �ijt ∼ Type I Extreme Value so the market
shares, conditional on consumer type ν,27 have a closed-form analytic solution,
the multinomial logit.

25Berry, Levinsohn, and Pakes (1995) specify Ui0t = αiyi + ξ0t + σ0tνi0t + �i0t.
26Some researchers also include demographic information in the random coefficients. We

ignore demographics in order to focus on the numerical properties of the model.
27Note: the consumer type, ν, is scaled by Σ, the Cholesky decomposition of the variance

matrix of the random coefficients.
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sjt (δ (ξ; θ1) |θ1, θ2 ) =
exp [δjt + µijt (ν)]�

k
exp [δkt + µikt (ν)]

.

Then the unconditional share integrals are the just the expectation of the regular
MNL choice probabilities with respect to ν:

sjt (δ (ξ) |θ1 ) =

ˆ

RK+1

exp [δjt + µijt (ν)]�
exp [δkt + µikt (ν)]

φ (ν) dν.

Here φ (ν) is the standard Normal probability density function. We restrict Σ
to be diagonal as in the original BLP papers.28 The random coefficients logit
can in theory model any choice probabilities given a suitable mixing distribution
(McFadden and Train, 2000; Train, 2009).29 In practice, researchers choose a
Normal distribution for the random coefficients because it is tractable. But, we
don’t know of any papers which actually test this assumption. Burda, Harding,
and Hausman (2008) specify a more flexible mixing distribution; it may be
possible to apply their method to test the performance of the assumption of
logit + Normal. Nevertheless, logit + Normal should work well as long as the
real-world mixing distribution is smooth and single-peaked because the tails will
not contribute much to the integral.

Historically, a nested fixed point (NFP) algorithm based on Rust (1987) is
used to estimate the model: : the outer loop computes the point estimates of θ̂
by minimizing a GMM objective function whose moments are constructed from
ξjt; the inner loop solves the nonlinear system of equations equating predicted
and observed shares for the mean utilities, δjt (θ), and, hence, ξjt. The original
implementation (Berry, Levinsohn, and Pakes, 1995; Nevo, 2000a) uses a con-
traction mapping to perform this inversion. Thus, the researcher codes an outer
loop to solve the program

θ̂ = arg max
θ

�
Z

�
ξ
��

W
�
Z

�
ξ
�

and an inner loop to recover δ via a contraction mapping

exp
�
δn+1
jt

�
= exp

�
δnjt

�
× Sjt/sjt

�
δnjt; θ2

�
,

where Sjt are the observed market shares, sjt the predicted market shares, and
δnjt the n-th iterate in a sequence which hopefully converges to the true mean
utilities. Given the mean utilities, the product market shock is simply

28Nevo (2001) estimates the off-diagonal elements. We expect that the advantages of mono-
mial rules would be even more apparent when estimating a model with off-diagonal elements.

29McFadden and Train (2000) is a very general result and applies to elasticities and mo-
ments as well as choice probabilities. Consequently, the mixed logit can approximate general
substitution patterns to arbitrary accuracy.
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ξjt = δjt − [−pjt xjt] θ1.

Berry, Levinsohn, and Pakes (1995) proves that this mapping is a contraction
and Nevo (2000a) advocates using this exponential form to improve numerical
performance by avoiding computing logarithms which are more costly than expo-
nentiation.30 In addition, Gandhi (2010) shows that the market share equations
are invertible. Reynaerts, Varadhan, and Nash (2010) develop other methods
for numerically inverting the market share equations which are faster and more
robust as well as discussing some of the convergence problems of the contraction
mapping.

Numerical integration affects both choice probabilities and the inversion of
the market share equation. Consequently, numerical errors in computing in-
tegrals can propagate through both of these channels. With the above GMM
specification, the gradient of the GMM objective function depends on the gradi-
ent of δ, which in turn depends on the gradient of the inverse of the market share
equation, s−1 (S; θ). This provides a channel for numerical errors in computing
not just the share integrals but also the gradient of the market share integrals
to propagate, affecting both the point estimates and the standard errors. As
discussed below, one big advantage of monomial rules over pMC is that they
provide a more accurate approximation for both an integral and its gradient.

When estimating the BLP model below, we use the same moment conditions
as Dubé, Fox, and Su (2009). These moment conditions depend on the product
of the unobserved product-market shock, ξ, and a matrix of instruments. The
matrix of instruments consists of various products of product attributes and a
set of synthetic instrumental variables which correlated with price but not ξ.
See Dubé, Fox, and Su (2009)’s code for details.

In this paper, we use Mathematical Programming with Equilibrium Con-
straints (MPEC) (Su and Judd, 2008) to estimate the BLP model because it is
faster and more robust than NFP. MPEC relies on a modern, state of the art
solver such as KNITRO or SNOPT, to solve the model in one optimization step
using constraints:

max
θ,δ,η

η
�
Wη

s.t. s (δ (ξ) ; θ) = S

η = Z
�
ξ.

By adding the extra variable η, we improve the sparseness pattern which makes
the problem easier to solve and more stable numerically.31 Furthermore, MPEC

30In simple heuristic tests, we find that the contraction mapping has poor convergence
properties, fails to satisfy the sufficiency conditions of the Berry, Levinsohn, and Pakes (1995)’s
theorem 10% of the time, and often has a contraction rate close to or exceeding 1.

31With modern solvers, the sparseness pattern and type of non-linearities are more impor-
tant than the number of variables.
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solves for the mean utilities implicitly via the constraint that observed market
shares equal predicted market shares, increasing both speed and stability.

Besides nested fixed point and MPEC, there are several other estimation
approaches including control functions (Petrin and Train, 2006), a two step
procedure with maximum likelihood and instrumental variables (Train, 2009),
and Bayesian (Jiang, Manchanda, and Rossi, 2009). Most of these methods
exploit the fact that if you can estimate the mean utilities δjt then you can then
recover the product-market shock ξjt.

The asymptotic and finite sample properties of BLP are still not well under-
stood. Berry, Linton, and Pakes (2004) prove asymptotic normality assuming
J → ∞. Berry, Haile, and of Economic Research (2010) show the model is iden-
tified under the ‘Large Support’ assumption. Skrainka (2011) uses large scale
simulations to characterize finite sample performance.

3.1 Example: Computing BLP Product-Market Shares

Given the above assumptions, the monomial (or Gauss-Hermite or sparse grid)
approximation for the integral is

sjt ≈ 1

π(K+1)/2

�

k





exp [δjt + µijt (ψk)]�

m
exp [δmt + µimt (ψk)]

ωk






where (ψk, ωk) are the nodes and weights for an suitable quadrature rule with
Gaussian kernel and K + 1 is the dimension of νk.32 The factor π−(K+1)/2

comes from the normalization of the Normal density. The choice of monomial
rule depends on the number of dimensions of the integral, desired level of exact-
ness (accuracy), the domain of integration, and the mixing distribution a.k.a.
weighting function.

For a Monte Carlo method, the approximation is

sjt ≈ 1

R

�

k

exp [δjt + µijt (ψk)]�
m

exp [δmt + µimt (ψk)]

for R nodes ψk drawn from the Normal distribution. Note that these two formula
have the same structure: a weighted sum of the integrand evaluated at a set of
nodes. For a Monte Carlo method, the weight ωk → 1/R.

4 The Experiments: Simulation vs. Quadrature
We compare how pMC, monomial, Gaussian product, and sparse grid quadra-
ture rules affect the computation of several key quantities in the BLP model. We
compare how these rules perform when computing the market share integrals,

32K + 1 for the K product characteristics plus price.
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Parameter Value

J 25
T 50

θ1· ≡
�
β̄

�
, ᾱ

� �
2 1.5 1.5 0.5 − 3

��

θ2· ≡ diag (Σ)
1/2 � √

0.5
√
0.5

√
0.5

√
0.5

√
0.2

��

R 100

Table 2: Parameters Used to Generate Monte Carlo Data sets.

point estimates, standard errors, and the unobserved heterogeneity ξjt, all of
which are critical components of the model. Of course, we use a state of the art
solver (KNITRO or SNOPT) and algorithm (MPEC) for these experiments.

4.1 Experimental Setup

Our experiments use five different Monte Carlo data sets which we generated
from unique seeds and the parameters shown in Table 2 using MATLABTM’s
rand and randn functions. We use the same values as Dubé, Fox, and Su (2009)
(DFS hereafter), except that we use fewer products and markets and chose
different seeds.33 We refer to these data sets via their seeds, which we label
1 to 5. To ensure that there is some noise in each data set, as in real-world
data, we compute the ‘observed’ market share integrals using a pMC rule with
R = 100 nodes.34 Currently, these parameter values result in a market share
of about 90% for the outside good, which seems reasonable for a differentiated,
durable good such as an automobile. That many of the observed market shares
are exceedingly small could lead to inaccuracies in the corresponding computed
market shares because both types of quadrature rules can be unreliable in large
regions of flatness. We only consider diagonal Σ to facilitate validation and to
maintain consistency with the most BLP papers and DFS.

We focus on how each quadrature rule affects the point estimates – i.e.
whether a state of the art solver and algorithm (MPEC) could consistently
and efficiently find a unique global optimum. For each data set and quadra-
ture rule, we compute the optimum for the following setups: (1) five ran-
domly choose starts near the two-stage least squares (2SLS) logit estimate;
(2) multiple starts taken about the average of the best point estimates for
θ̂ for the 55 Gauss-Hermite product rule; and, (3) for pMC only, multiple
Monte Carlo draws of nodes for the same starting value. In all cases, we com-
pute standard errors using the standard GMM sandwich formula Var

�
θ̂
�

=
�
Ĝ

�
WĜ

�−1
Ĝ

�
W Λ̂WĜ

�
Ĝ

�
WĜ

�
where Ĝ is the gradient of the moment con-

33Their code provided the starting point for the code which we developed to explore
the impact of quadrature rules on BLP. We downloaded the code from JP Dubé’s website
(http://faculty.chicagobooth.edu/jean-pierre.dube/vita/MPEC%20code.htm), Fall 2009.

34For the rest of the paper, we use R to refer to the number of draws in a Monte Carlo
simulation and N as the number of replications.

19

http://faculty.chicagobooth.edu/jean-pierre.dube/vita/MPEC%20code.htm


ditions, W the weighting matrix formed from the instruments,
�
Z

�
Z
�−1

, and

Λ̂ the covariance of the moment conditions,
�
j∈J

�
t∈T

zjtz
�

jtξ
2
jt. In addition, we

compare the level of the market share integrals calculated by the different rules.
Future research should also examine how quadrature rules affect the approxi-
mation of the gradient and Hessian of the objective function, which are more
important than the level of market shares in determining the point estimates
and standard errors.

In our computations, we use the following numerical integration techniques:
pseudo-Monte Carlo (pMC), Gaussian Hermite product rule, sparse grid integra-
tion (SGI) (Heiss and Winschel, 2008), and Stroud monomial rule 11-1 (Stroud,
1971). Because we have assumed that the mixing distribution of the random
coefficients is Normal, we compute the pMC nodes by drawing between 1, 000
and 10, 000 nodes from a standard Normal distribution using MATLABTM’s
randn function. We use the same draws for each market share integral, sjt,
as in DFS. Current ‘best practice’ seems to be 5, 000 points so 10, 000 nodes
will enable us to put reasonable bounds on the accuracy of simulation-based
BLP results. Berry, Levinsohn, and Pakes (1995) use pMC with importance
sampling in an attempt to reduce variance, but importance sampling is just
a non-linear change of variables and should not significantly improve the per-
formance of pMC. Lastly, using different draws for each market share integral
would improve the point estimates because the simulation errors tend to can-
cel out and improve the GMM estimates because the share equations are no
longer correlated (McFadden, 1989).35 However, taking separate draws for each
integral requires more memory and could considerably increase computational
burden through increase I/O costs.36

For polynomial-based rules, we use quadrature rules which are designed for
a Gaussian kernel, exp−x2

, because the mixing distribution is Normal. Con-
sequently, the correct one-dimensional rule to generate the nodes and weights
for the multi-dimensional product rule is Gaussian-Hermite. The product rule
consists of all Kronecker products of the one-dimensional nodes and the weights
are the products of the corresponding one dimensional weights. The algorithm
is:37

function [ Q_NODES, Q_WEIGHTS ] = GHQuadInit( nDim_, nNodes_ )
% Get one-dimensional Gauss-Hermite nodes and weights
tmp = gauher( nDim_ ) ;

35Quantifying the actual benefit of separate draws is an open research question and merits
further investigation.

36Swapping occurs when a process’s memory demands are greater than the physical RAM
available, causing operating system’s virtual memory facility to keep transferring memory
between RAM and disk.

37gauher uses the algorithm in Press, Teukolsky, Vetterling, and Flannery (2007) to com-
pute the Gaussian-Hermite nodes and weights. Many researchers mistrust Press, Teukolsky,
Vetterling, and Flannery (2007), however we tested the nodes and weights on the relevant
moments to verify that they were indeed correct.
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% extract quadrature information for one dimension
vNodes = tmp( :, 1 ) ;
vWeights = tmp( :, 2 ) ;
% calculate three dimensional nodes and weights
% Q_WEIGHTS = kron( vWeights, kron( vWeights, vWeights ) ) ;
Q_WEIGHTS = vWeights ;
for ix = 2 : nDim_

Q_WEIGHTS = kron( vWeights, Q_WEIGHTS ) ;
end
% Make sure that the right-most dimension (ixDim = nDim_) varies
% most quickly and the left-most (ixDim = 1) most slowly
Q_NODES = zeros( nDim_, nNodes_^nDim_ ) ;
for ixDim = 1 : nDim_

Q_NODES( ixDim, : ) = kron( ones( nNodes_^(ixDim - 1), 1 ), ...
kron( vNodes, ones( nNodes_^(nDim_ - ixDim), 1 ) ) ) ;

end

% Correct for Gaussian kernel versus normal density
Q_WEIGHTS = Q_WEIGHTS / ( pi ^ ( nDim_ / 2 ) ) ;
Q_NODES = Q_NODES * sqrt( 2 ) ;

Note that the Normal density requires renormalization of the nodes and weights
because the Gaussian kernel, unlike the Normal density, lacks a factor of 1/2
in the exponent as well as the factors of π−1/2 used for normalization. We
experimented with product rules for five dimensions38 which used 3, 4, 5, 7, or
9 nodes in each dimension. We found that using more nodes than 7 in each
dimension did not improve accuracy but greatly increased computational cost
because of the curse of dimensionality: for a five dimensional shock the product
rule with 7 nodes per dimension requires 75 = 16, 807 nodes to compute a share
integral (whereas 9 nodes per dimension would require 95 = 59, 049.).

Sparse grid integration rules function similarly to product rules but exploit
symmetry so that fewer points are required. We use the Konrad-Patterson al-
gorithm for a Gaussian kernel, as described in Heiss and Winschel (2008), and
compute nodes and weights for a five-dimensional problem which is exact for
polynomials of total order 11 or less using their MATLABTMcode.39 We chose
this configuration so that SGI is exact for the same total order as the monomial
rule. For this level of accuracy, 993 nodes are required, a substantial improve-
ment on the product rule and only ten more than the monomial rule. However
even a small increase in accuracy requires a rapid increase in the number of
nodes, e.g. exactness for total order 13 requires 2, 033 nodes. See their paper
for the details.

Lastly, we use Stroud (1971)’s monomial rule 11-1 for a Gaussian kernel.
38The dimension is five because the synthetic data has four product characteristics plus

price.
39The code can be downloaded from http://www.sparse-grids.de/.
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Stroud (1971) provides two solutions,40 both of which provide comparable per-
formance and integrate exactly all five-dimensional monomials of total order 11
or less using only 983 nodes. To implement the rule, we wrote a function which
computed the nodes and weights from the data in Stroud’s text. 41 This simply
involves a lot of book-keeping to compute the correct permutations of the node
elements using Stroud’s data.

Now we briefly discuss our choice of the SNOPT solver, how we configured
it, and numerical stability.

4.1.1 Solver Choice and Configuration

Because different solvers work better on different problems, we tried both the
KNITRO and SNOPT solvers on BLP. Both solvers use efficient, modern al-
gorithms: KNITRO supports active set and interior point algorithms (Byrd,
Nocedal, and Waltz, 2006) whereas SNOPT uses a sequential quadratic pro-
gramming (SQP) method (Gill, Murray, and Saunders, 2002). For details about
these algorithms see Nocedal and Wright (2000). Although KNITRO out per-
forms MATLAB’s fmincon non-linear solver, it converged to an optimum much
less frequently and quickly than SNOPT.42 We suspect SNOPT outperforms
KNITRO because the latest version has better support for rank deficient prob-
lems. Skrainka (2011) develops a C++ implementation of BLP which further
improves the robustness of SNOPT when solving the BLP model by enabling
SNOPT’s LU rook pivoting option. This result is another indication of (near)
rank deficiency and ill-conditioning. Consequently, if the objective function is
nearly flat – i.e., poorly identified numerically – SNOPT should be more sta-
ble. In addition, interior point methods, such as those used by KNITRO, do
not work well on nonconvex problems. SNOPT uses an SQP method which
can handle the local nonconvexities caused by simulation for almost all of the
datasets which we generated.

To get the most out of the solver, we fine-tuned the solver’s options. In
addition, for both solvers we specified the sparseness pattern and supplied hand-
coded derivatives (gradient and Hessian of the objective function; Jacobian of
the constraints) in order to increase numerical stability and performance. We
also set box constraints to prevent the solver from searching bad regions of
parameter space, as discussed below in 4.1.2. Lastly, we set the tolerance to
1e− 6, which is a typical outer loop tolerance for BLP.

4.1.2 Numerical Stability Considerations: Overflow and Underflow

During our initial experiments we soon became concerned that the BLP model,
despite some support for identification (Berry, Linton, and Pakes, 2004; Berry,

40We label the two versions of rule 11-1 as ‘Left’ or ‘Right’, according to whether we use
the set of nodes and weights in the left or right column of his Table Er2

n : 11-1 on pp. 322-323.
41Our monomial code is available at www.ucl.ac.uk/∼uctpbss/public/code/HighPerfQuad.
42Che-Lin Su reports that KNITRO is faster when you supply an analytic Hessian for the

constraints.
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Haile, and of Economic Research, 2010), was not identified – or at least not
numerically identified given the limits of current computers. We found that
SNOPT’s error code EXIT=10 with INFORM=72 did not mean that the solver
had failed to converge. Instead, SNOPT sets these flags when it encountered
market shares which were indeterminate, i.e. the computations produced a
NaN.43 ,44 In some cases, the constraint that logSjt = log sjt, i.e. that the logs
of the observed and calculated market shares are equal, diverged to −∞ when
the shares were nearly zero. This problem occurred because the market share
calculation is numerically unstable when the utility from the chosen alternative
is extremely large.

These problem frequently occurs with logit-based models because the ex-
ponential function diverges quickly to infinity for even moderately-sized ar-
guments.45 Consider the typical straight-forward implementation of the logit

where f (V ; j) =
exp (Vj)�
k
exp (Vk)

, for some vector of utilities, V , and choice j. This

implementation is unstable because if Vj → ∞ then f (V ; j) → ∞
∞ ≡ NaN. This

situation usually occurs when evaluating quadrature nodes which are in the tail
of the distribution and contribute little to the market share/choice probability.
However, this formulation does allow one to compute a vector wk = exp (Vk)
and then compute choice probabilities from w, which greatly speeds up com-
putation because it decreases the number of evaluations of exp (·), which is an
expensive function to compute. We found that the code was more than 10×
slower without this optimization on a 2.53 GHz dual-core MacBook Pro with 4
GB of 1067 MHz DDR3 RAM.46

By re-expressing the logit as the difference in utilities, f̃ (V ; j) =
1�

k
exp (Vk − Vj)

,

we can solve the stability problem. This specification is equivalent to f (V ; j)
but much more stable: the difference in utilities are typically small whereas util-
ity itself can be large and lead to overflow. The cost is that we are no longer able
to work in terms of w = exp (V ) and must perform more operations. See the
code for details. This is a common example of the engineering need to trade-off
speed versus robustness.

However, the BLP model uses an outside good with V0 = 0 so the logit is
43NaNs result from trying to compute quantities which are undefined such as dividing by

zero, ∞ · 0,
∞
∞

, and ∞−∞.
44Many higher-level languages such as MATLAB treat these error conditions by setting a

variable’s value to Inf or NaN. However, the researcher must explicitly check for these condi-
tions using isinf() and isnan(). In general, the CPU generates a floating point exception
when these conditions occur. The operating system will then raise the signal SIGFPE to the
process and the process can either catch the signal by installing a signal handler or ignore it,
which is often the default.

45In some senses, the literature suffers from selection bias in that researchers who failed to
write numerically stable code never publish so we never see these papers.

46Test runs on an 8 core Mac Pro with 32 GB of RAM were considerably faster although
MATLAB used only two of the cores. Consequently, the bottleneck appears to be swapping
and not CPU cycles.
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now f (V ; j) =
exp (Vj)

1 +
�

k
exp (Vk)

and, consequently, our trick no longer works.

Instead, we use box constraints which are tight enough to prevent the solver
from examining regions of parameter space which lead to overflow yet loose
enough that we are unlikely to exclude the global optimum. Typically, the box
constraints are ±15×

���θ̂
��� for θ1 and θ2 and ±108 for the other variables, δ and

g = Z
�
ξ.

Nevertheless, this does not fully address the underlying problem of exceeding
the limits of MATLAB’s numerical precision. Recently, we developed a state
of the art implementation of BLP in C++ which solves these issues (Skrainka,
2011).47 This implementation uses MPEC, high performance quadrature rules,
and a high quality solver (SNOPT). In addition the code uses the Eigen tem-
plate library to perform linear algebra efficiently and work in higher precision
arithmetic which has twice the precision of MATLAB.48 Initial investigations
show that higher precision completely solves these overflow and underflow prob-
lems. Skrainka’s implementation also computes the same huge standard errors
consistently for all polynomial rules, resolving the difficulty in reliably calculat-
ing standard errors which we report in 5.2.3: this problem is an artifact of the
double precision arithmetic used by MATLAB.

Lastly, we start the solver at multiple different points which are randomly
chosen about the average of the initial point estimates. If the solver converges to
the same point for all starts, then it is likely to be the global optimum. On the
other hand, if the solver converges to many different points, there are multiple
local optima.

5 Results
The polynomial rules out-perform simulation in all respects: they produce more
accurate results at much lower computational cost. Of all the rules, the Gauss-
Hermite product rule with 75 nodes should be considered the ‘gold standard’
and serves as our benchmark for the other rules because it is exact for degree 13
monomials as well as many higher moments. We obtained broadly similar results
for all five Monte Carlo data sets. However, all rules performed consistently well
on data set 3. Estimates using data sets 4 and 5 varied considerably based on the
quadrature choice, especially the standard errors. Data sets 1 and 2 performed
between these two extremes.

We now discuss how the different rules affect computed market shares, point
estimates, standard errors, and numerical identification.

47This code is available upon request.
48Namely, in C++ we code all floating point quantities as ‘long double’, which is a 16-byte

floating point type whereas the default type, ‘double’, is 8 bytes. Double precision is also what
MATLAB uses internally. Because Eigen is a template library, it defines ‘generic’ operations,
making it easy to instantiate the necessary code for whatever type is appropriate. In our code,
we use long double, however, it is possible to use higher or lower precision according to the
demands of the problem.
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5.1 Computation of Predicted Market Shares

One of the first computations we performed was to compute the predicted BLP
market share integrals for T = 50 markets and J = 25 products with each
quadrature rule. These results provided both a quick check that our code was
performing correctly and a visual comparison of the rules. We computed the
market share integrals for each data set at ten different parameter values near
the MPEC point estimates, θ̂MPEC . We selected these parameter values by
first computing the GMM estimates using MPEC49 and then computing an
additional nine parameter values where θ is drawn from a Normal distribution
with θ ∼ N

�
θ̂MPEC , diag

�
(0.25)2

���θ̂MPEC

���
��

, i.e. the standard errors are
25% of the magnitude of the point estimates. These computations show a cloud
of points for the N = 100 different pMC calculations of each integral (R = 1, 000
draws) with the polynomial rules centered in the middle, as we would expect:
pMC is unbiased so the polynomial results should be near the average of the
Monte Carlo values. Figure 1 plots relative error of the market share integrals
at θ̂MPEC versus mean market share. The relative error is with respect to

the mean pMC market share, spMC
jt =

N�
n=1

spMC(n)
jt , where spMC(n)

jt is the n-

th replication of (j, t) market share integral computed using pMC. The green
circles represent the pMC cloud of values calculated for different replications of a
specific (j, t) product-market pair; the magenta pentagon the 75 node Gaussian-
Hermite product rule; the red and blue triangles the ‘Left’ and ‘Right’ Stroud
rules; and the yellow diamond the sparse grid integration rule. We only show
this figure for data set 1 at θ̂MPEC because the story is essentially the same
for other data sets50. These plots clearly show the simulation noise in the
computation of market shares sjt: the different MC share values form a green
‘pMC cloud’ in which the polynomial based rules are located in the center of
the cloud. This is exactly where you would expect the true share value to
be located because MC is unbiased as N → ∞. Often, it was necessary to
magnify the figures many times in order to detect any difference between the
polynomial-based rules. This figure demonstrates the much higher accuracy of
the monomial and sparse grid rules. An example of a close up for one market
share integral is plotted in Figure 2: again, the noise in the pMC calculations
and the consistency of the polynomial rules are clearly evident. However, the
‘Right’ Stroud rule did produce one share value which was far outside the MC
cloud and also far from the values for the other polynomial rules. In addition,
this rule also produced a negative share value, as discussed in 5.1.2, and was
more likely to generate numerically undefined results during optimization.

49Historically, point estimates were computed with BLP’s nested, fixed point algorithm
(NFP). However, we use MPEC to compute our point estimates because it is much more
robust and, in theory, both algorithms produce equivalent values at the global optimum (Su
and Judd, 2008; Dubé, Fox, and Su, 2009).

50One exception is data set 3 which had one share integral whose value was well outside
the Monte Carlo cloud when computed with Stroud rule 11-1 Right. The other is data set 5
which has extremely low variance for the integrals computed with pMC.
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Figure 1: Relative Share Error for Different Quadrature Rules
Figure 1 shows the relative error of the product-market share integrals, sjt,
computed using different quadrature rules versus market share, sjt. The relative
error is calculated with respect to the mean pMC share value for each integral.
The pMC rule is computed with R = 1, 000 nodes and N = 100 replications.
Because of simulation noise, these replications form a ‘Monte Carlo’ cloud about
the values computed using the polynomial rules, which are located at the center
of these clouds. Note: the error is greatest for shares with small standard errors
because these integrals are the most difficult to compute correctly.

Figure 2: Close-Up of a Market Share Integral.
Figure 2 shows a close-up of the different computed values for a specific product-
market share integral. Note how all the polynomial rules compute the exact
same value to a very high degree of precision and are located at the center of
the Monte Carlo cloud.
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To quantify the performance of the different rules, we computed the max-
imum and average absolute deviation for the predicted share values from the
product rule with 75 nodes at θ̂MPEC over all shares.51 Although, it may not
be the best representation of the ‘truth’, the Gaussian product rule is the most
precise rule which we compute because of the additional, higher order terms.
Consequently, we use it as our benchmark. Table 3 shows that pMC tends to
have higher maximum absolute errors even for a large number of draws and
that these errors are several orders of magnitude larger than the monomial and
sparse grid rules. Note that even for large numbers of nodes such as 10, 000,
which is a large number of draws by contemporary standards, pMC produces
much less accurate results, despite using ten times more points. In addition, SGI
should perform more like the product rule than the monomial rule because SGI
uses a subset of the nodes in the Gaussian product rule, whereas the monomial
rule uses entirely different nodes and weights. Furthermore, sparse grids set of
nodes drops product rule nodes which are in the tail of the weight function and
have little weight on them. Dropping them, if anything, should improve numer-
ical stability because the extremal nodes can cause numerically indeterminate
results in the logit.

The results in Table 3 only tell part of the story. The biggest differences
between the Gauss-Hermite product rule with 75 nodes and the other quadrature
rules occur for the largest share values. For larger shares an error of 10% or so
appears as a huge maximum absolute error whereas the maximum absolute error
for smaller shares may appear small even if a rule differs from the benchmark
by several orders of magnitude because the share value is essentially zero . In
these cases, relative error is a better measure of performance. Examining the
histograms for the maximum absolute error shows that for the polynomial rules
there are only a few integrals with significant differences from the benchmark
75 node product rule whereas for pMC there is a fat tail of shares which differ
considerably.

Tables 4 through 8 show the computational costs (seconds) of computing the
point estimates for the different rules.52 The CPU Time column refers to the
total time the solver took to compute an optimum and hence depends on both
the speed of the quadrature rule and how quickly the solver converged. We see
that the most efficient polynomial rules – SGI and monomial rule 11-1 – are more
than a factor of ten faster than the pMC rule with R = 10, 000 draws as well
as being more accurate. pMC with R = 10, 000 draws and the Gauss-Hermite
product rule with 75 nodes are both much slower then the monomial and sparse
grid rules because they use many more nodes, which primarily determines the
increase in computational costs. We discuss the other columns below in 5.2.

Increasing the number of simulation draws from 100 to 10, 000 does little
to improve the accuracy of the integral because pMC convergence improves as

51I.e., the maximum absolute error is max
j,t

����sjt
�
θ̂MPEC

�
− sProductRule

jt

�
θ̂MPEC

����
�
.

52Quoted CPU times are for a 2.53 GHz Intel Core 2 Duo MacBook Pro running OS/X
10.6.4 in 64-bit mode with 4 GB of 1067 MHz DDR3 RAM, 6MB L2 cache, and 1.07 GHz
bus.
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Rule Type Nnodes Max Abs

Error

Ave Abs

Error

Pseudo- Simple Random Draws 100 7.28782e-02 6.73236e-04
Monte 1,000 2.59546e-02 2.19284e-04
Carlo 10,000 7.05101e-03 6.82600e-05
Product Gauss-Hermite 35 = 243 1.20663e-03 1.60235e-05
Rule 45 = 1, 024 2.51442e-04 2.51356e-06

55 = 3, 125 4.94445e-05 5.42722e-07
75 = 16, 807 0 0

Monomial Left Column 983 1.35871e-02 2.80393e-05
Rule 11-1 Right Column 983 1.14304e-02 4.01983e-05
Sparse

Grid

Konrad-Patterson (K = 6) 993 4.98042e-04 4.09252e-06

Table 3: Comparison of Integration Rules
The columns titled Max Abs Error and Ave Abs Error refer to the
maximum and average absolute error observed for the market shares computed
for each rule with respect to the benchmark Gaussian-Hermite product rule
with 7 nodes in each of the 5 dimensions. The Monte Carlo rules use N = 1
replication. All values are computed at θ̂MPEC based on R = 1, 000 draws.

√
R. Because most of the products have very small market share – for the five

synthetic data sets, about 90% of predicted shares are less than 0.01 – we con-
jecture that only a few products in each market determine the parameter values
and that estimating these market shares correctly is necessary in order to obtain
accurate point estimates for θ̂. The larger predicted market shares also have
larger standard error, where standard error is computed over the N different
pMC share replications . The small market shares have smaller errors not be-
cause they are calculated more accurately but because they are essentially zero.
This effect becomes starker with more simulation draws. Another issue is that
the parameter value used to compute the shares will affect which combinations
of product and market produce the largest shares. Simple experiments show
that 10% or more of shares can move into or out of the top decile of predicted
share values.

When comparing the own-price elasticities computed with pMC (R = 1, 000)
and SGI, the values appear very similar (See Figure 3), with most of the dif-
ference in elasticities clumped at zero. But, most market share integrals are
extremely close to zero. Consequently, we expect elasticties of small shares to
be nearly same for both rules, based on the following argument. With linear
utility and a simple logit, the own price elasticity is ejt = −αpjt (1− sjt). If
sjt ≈ 0 then ejt ≈ −αpjt and the residual should be close to zero. Using this
intuition for the mixed logit, even with random coefficients, if the market shares
are small then the elasticities are likely to agree. For the larger product-market
shares, the deviations in elasticity can be 10% or more, showing that pMC does
not approximate the derivatives of the integrals as well as SGI. Results for the
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Figure 3: Comparison of Computed Own-Price Elasticities for Sparse Grid and
pMC
Figure 3 shows the distribution of residuals which are the difference between
the elasticities calculated with polynomial rules and the mean of the pMC share
computations for N = 100 replications with R = 1, 000 draws.

monomial rule are identical.
Clearly, the polynomial rules provide a much more accurate approximation of

the level and gradient of the market share integrals than pMC. In addition, SGI
and monomial rules are much more efficient for a given level of accuracy because
they require far fewer nodes than pMC. Furthermore, computing the level of the
market share integrals is less important than accurately computing the gradient
and Hessian of the objective function and the Jacobian of the constraints because
these derivatives determine the optimum – i.e. point estimates and standard
errors. As we discuss in 5.2.1, the polynomial-based rules also outperform pMC
when approximating higher order derivatives.

5.1.1 Simulation Error and Bias

Numerical integration is an approximation and like all approximations has error.
The quality of the a quadrature rule depends on how quickly the rule converges
as R → ∞ and the bounds on its error. pMC rules converge as R−1/2 (Judd,
1998). Consequently, you must increase the number of nodes R by a factor of
100 to gain an extra decimal place with pMC. For polynomial-based rules, if
the Riemann–Stieltjes integral exists, the product rule will converge (Stroud,
1971). Multi-dimensional error bounds formulas do exist but they are suffi-
ciently complicated that Stroud (1971) only states very simplified versions of
the theorems. The key point is that the polynomial rules should converge and
have much tighter error bounds than MC methods because their error depends
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on higher order terms in a Taylor series expansion. Initially, we thought that
pMC could out perform polynomial rules when high order terms of the Taylor
series of the integrand did not vanish quickly. As we discussed in 2.4, simulation
does not preform significantly better than polynomial rules for when these high
order terms are significant. Consequently, polynomial rules should have less
error for most problems.

Section 3 explained how integration errors can propagate through the model
either via the choice probabilities or the gradient of δ (i.e. the inverse of the
market shares, s−1 (S; θ). Error enters the share integrals from integrating over
the distribution of the random coefficients which affect the BLP model via the
mean zero, type-specific preference shock µijt. Errors in computing this shock
propagate through the model and are further distorted by the multinomial logit
transformation which can be flat, concave, or convex depending on parameter
values. From Jensen’s inequality we know that the expectation of a concave
(convex) function is more (less) than the function of the expectation. Conse-
quently, simulation error percolates through the multinomial logit form to pro-
duce either positive or negative error. Two facts suggest that pMC causes much
more error and bias than the monomial rule: (1) the expectation of µijt with a
pMC rule is on the order of 10−3 even with R = 10, 000 draws about 10−17 for
the monomial rule; and (2) the correlation coefficient of µijt and the simulation
error, ejt = sMC

jt − sMonomial
jt , is about −0.2 conditional on |ejt| > 10−4.53

5.1.2 Negative Market Shares

Because some weights for monomial and sparse grid rules are negative, the ap-
proximation for a market share integral could be negative. However, this is only
likely for extremely small shares where the polynomial approximation is poor
in a region of parameter space where the integral is essential zero everywhere,
i.e. flat. We only observed one negative value out of the 625, 000 integrals cal-
culated.54 This value was approximately −10−9 (i.e. effectively zero) and was
occurred with the ‘Right’ version of the monomial rule.

5.1.3

5.2 Robustness of Point Estimates and Standard Errors

We computed the point estimates and standard errors for each synthetic data
set at five starting values.55 Tables 4-8 show f_k, the value of the GMM

53Here, mean (µijt) ≡
1

R

�
i
µijt.

54Five Monte Carlo data sets, each with R = 100 replications of the J × T = 1250 share
integrals results in 5× 100× 1, 250 = 625, 000.

55Initially, we simply computed these optima for the same five starting values for each rule
and data set. However, the solver often aborted with numerical problems. Imposing box
constraints which were sufficiently loose to include a large region of parameter space yet rule
out extremal regions of parameter space solved this problem for most quadrature rules and
data sets. Many of these numerical problems are caused by floating point underflow/overflow.
Ultimately, we resolved the problem by rewriting our code in C++ and using higher precision
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objective function at the optimum, as well as the CPU time in seconds required
for SNOPT to converge to the point estimate.56 If the value of f_k is the same
for all starts, then the solver has likely found a unique global optimum. For the
most accurate rule, the Gauss-Hermite product rule with 75 nodes, the solver
always finds the same f_k for each start. For SGI and the monomial rule,
the solver always found the same optimum for every starting value and data set
except for one start for data set 5. Furthermore, both SGI and the monomial rule
had the same problematic starting value. pMC, however, typically finds two or
three different optima for each data set, even when R = 10, 000 draws, because
Monte Carlo noise creates ripples in the surface of the objective function which
generate spurious local maxima. In addition these tables show that sparse grid
(993 nodes) and monomial rule (983 nodes) require the same amount of CPU
time as pMC with R = 1, 000 despite being more accurate than pMC with
R = 10, 000. Both of these polynomial rules are also a factor of ten faster than
pMC with R = 10, 000 draws.

The Point estimates57 (Tables 9-13) also indicate that pMC rules cause false
local maxima: by comparing θ̂ for different starts for a given data set, the
estimates which have the same value for f_k agree to three or more digits
while those with different f_k do not agree at all. On the other hand, the
polynomial rules – with the exception of the data set 5’s fifth start – agree to
many decimal places. pMC point estimates also suffer from increased variation
in θ̂, excessively tight standard errors (See 5.2.3), and confidence intervals which
do not contain the point estimates from the polynomial rules. In general, the
point estimates for θ̂1 are more often significant than those for θ̂2, the square
root of the diagonal elements of the variance of the random coefficients. That
θ̂2 is not sharply identified could be because the number of markets, T , is 50.
With more markets, we would observe more situations where there were similar
characteristics but different choices because of variation in the taste shocks.

Furthermore, for each rule there are several data sets where the true data
generating process (Table 2.) is not within the confidence interval formed from
the point estimates and standard errors. For example, the true value of θ11 is
2, but the point estimates for data sets 2, 3, and 5 are never close for any of
the rules. The point estimates for θ̂2 are further from the ‘truth’ more often
than those for θ̂1. Consequently, the BLP model appears to suffer from finite
sample bias. This problem could also be exacerbated because we estimate the
model without a pricing equation. Increasing the number of markets, T , should
improve the identification of θ2 in particular because then we will observe more

arithmetic. See 4.1.2.
56Quoted CPU times are for a 2.53 GHz Intel Core 2 Duo MacBook Pro running OS/X

10.6.4 in 64-bit mode with 4 GB of 1067 MHz DDR3 RAM, 6MB L2 cache, and 1.07 GHz
bus.

57Note: sometimes the solver finds negative values for θ2, which is the square root of the
diagonal elements of the variance matrix, Σ, for the random coefficients. In our code θ2 acts as
the scale on the quadrature nodes because we have assumed that Σ is diagonal. The symmetry
of the Gaussian kernel means that only the magnitude of θ2 matters, not the sign. To avoid
this confusion, we report

���θ̂2
��� for the point estimates of θ̂2.
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Dataset EXIT INFORM f_k CPU Time
1 0 1 33.23675 366.80
1 0 1 33.23675 753.15
1 0 1 33.85679 632.36
1 0 1 33.23681 687.31
1 0 1 38.53239 740.08
2 0 1 26.05084 457.01
2 0 1 24.60745 444.16
2 0 1 26.05084 526.40
2 0 1 26.05084 802.80
2 0 1 23.27163 855.66
3 0 1 19.76525 1071.80
3 0 1 19.76526 420.09
3 0 1 19.76524 783.48
3 0 1 19.76528 641.23
3 0 1 19.76524 635.87
4 0 1 28.19951 654.80
4 0 1 28.19951 1081.98
4 0 1 28.19951 820.40
4 0 1 28.19951 810.95
4 0 1 28.19951 796.42
5 0 1 203.50784 668.71
5 0 1 213.97591 503.92
5 0 1 203.50784 626.74
5 0 1 208.76144 489.06
5 0 1 208.76144 696.81

Table 4: Point Estimates: pMC with First 5 good starts and R = 1, 000 draws

situations where agents with similar attributes make different decisions. It would
also be useful to compare the GMM standard errors to bootstrap standard
errors.

We now look at these issues in more detail in 5.2.1 and 5.2.3.

5.2.1 Impact of Quadrature on Optimization

One of encouraging result of our experiments is that the point estimates com-
puted via MPEC + SNOPT for the polynomial-based rules are always the same
for all starting values when the solver found a valid solution, unlike the pMC
rules whose point estimates varied widely depending on the starting value. In
general, SNOPT and KNITRO encountered numerical difficulties – typically an
undefined computation for a conditional logit share of the form ∞/∞ – more
often with the polynomial-based rules than pMC because the polynomial rules
have better coverage of extreme areas of the parameter space, even though the
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Dataset EXIT INFORM f_k CPU Time
1 0 1 34.75771 8035.81
1 0 1 34.75772 5744.15
1 0 1 34.75771 3308.05
1 0 1 33.71660 3341.52
1 0 1 34.75776 7782.77
2 0 1 23.33186 7666.86
2 0 1 23.13213 6793.78
2 0 1 22.66818 7161.72
2 0 1 23.24129 7053.06
2 0 1 23.76645 8901.79
3 0 1 21.64541 8376.50
3 0 1 21.58369 8265.87
3 10 72 294.95326 178.32
3 0 1 21.69790 6567.52
3 0 1 21.95653 7835.28
4 0 1 22.49406 7955.48
4 0 1 22.49407 5446.51
4 0 1 26.12617 6544.76
4 0 1 26.12617 7427.27
4 0 1 26.22725 6852.28
5 0 1 260.57447 5450.45
5 0 1 279.95232 6514.08
5 0 1 299.22156 5555.86
5 0 1 299.22156 5444.99
5 0 1 279.95232 4403.82

Table 5: Point Estimates: pMC with R = 10, 000 draws

weights are quite small.58 That the pMC point estimates vary widely depending
on starting values indicates that the solver is finding false local maxima because
of the inaccuracies of the pseudo-Monte Carlo approximation to the integral.

Another important issue is that approximating the share integrals is less
important than accurately computing the gradient and Hessian of the GMM
objective function and the Jacobian of the constraints which the solver uses
to find a local optimum. The product rule and SGI affect solver convergence
similarly, which is unsurprising because the SGI nodes, as mentioned in 2.3.2,
are a subset of the product rule nodes. By omitting the nodes in the corners
of the product rule lattice, SGI is less likely to evaluate the objective function,
constraints, or the gradients at extremal points which produce NaNs and cause

58Dubé, Fox, and Su (2009) side-step these issues to some extent by using the MC draws
which were used to generated their synthetic data to compute the market share integrals.
Clearly, in a real world problem these shocks would not be observed by the econometrician.
When I redraw these shocks, their code produces NaNs for some starting values. In addition,
they use the same set of draws for each market share integral, sjt.
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Dataset EXIT INFORM f_k CPU Time
1 0 1 35.05646 7083.95
1 0 1 35.05639 9142.16
1 0 1 35.05644 4940.91
1 0 1 35.05639 6184.56
1 0 1 35.05651 5952.06
2 0 1 22.98928 15317.16
2 0 1 22.98929 14141.56
2 0 1 22.98927 14354.17
2 0 1 22.98928 9736.57
2 0 1 22.98928 10742.86
3 0 1 21.77869 7306.40
3 0 1 21.77873 6992.33
3 0 1 21.77872 5968.52
3 0 1 21.77869 5154.03
3 0 1 21.77870 6979.46
4 0 1 25.63232 7653.30
4 0 1 25.63232 6574.78
4 0 1 25.63232 8695.48
4 0 1 25.63232 6739.00
4 0 1 25.63232 9277.51
5 0 1 288.69920 6334.33
5 0 1 288.69920 7553.43
5 0 1 288.69920 7164.02
5 0 1 288.69920 8156.16
5 0 1 288.69920 5521.13

Table 6: Point Estimates: Gauss-Hermite with first 5 good starts and 75 nodes

the solver to abort.59
Note that increasing the number of draws to R = 10, 000 does not signifi-

cantly improve the optimum found by SNOPT with a pMC rule (Tables 9 and
10). Many of the point estimates and values of the optimum at the solution still
vary considerably depending on the starting value even when the solver reports
that it has found a local optimum. Clearly, even with 10, 000 draws, pMC still
introduces spurious local optima.

In the MPEC formulation of BLP, quadrature only affects the problem via
the constraint equating observed and predicted market shares. With simulation,
this constraint will be noisier and have local areas where simulation errors make
it possible to find a local optima. A key assumption of Gandhi (2010)’s proof
that the market share equation is invertible is monotonicity which fails in this
case. Furthermore, the optimizer adjusts parameters so that the spectrum of
the mapping is less singular and has local basins of attraction. The different

59If SNOPT encounters a NaN it will abort with EXIT=10 and INFO=72.
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Dataset EXIT INFORM f_k CPU Time
1 0 1 35.27236 616.63
1 0 1 35.27217 549.22
1 0 1 35.27212 269.22
1 0 1 35.27216 414.71
1 0 1 35.27212 432.32
2 0 1 22.97539 980.88
2 0 1 22.97541 910.89
2 0 1 22.97539 724.68
2 0 1 22.97539 865.45
2 0 1 22.97540 1026.54
3 0 1 21.78433 433.50
3 0 1 21.78430 557.89
3 0 1 21.78432 610.45
3 0 1 21.78437 352.71
3 0 1 21.78434 604.79
4 0 1 25.59501 515.58
4 0 1 25.59501 388.67
4 0 1 25.59501 496.07
4 0 1 25.59501 439.85
4 0 1 25.59501 586.94
5 0 1 293.89029 494.45
5 0 1 293.89029 571.11
5 0 1 293.89029 481.82
5 0 1 293.89029 556.80
5 0 1 487.40742 6535.28

Table 7: Point Estimates: SGI with first 5 good starts and 993 nodes (exact for
degree ≤ 11)

sizes of these basins affect how often solver finds them when searching for a
local minimum of the GMM objective function. We found that SNOPT could
often find an optimum when KNITRO would not converge because SNOPT
uses a sequential quadratic programming method which is more robust than
KNITRO’s interior point method when the objective function or constraints
are non-convex. In addition, SNOPT 7 was recently upgraded to handle rank
deficient systems: we found that enabling LU rook pivoting in SNOPT, although
a factor of two slower than the default algorithm, enabled the solver to find a
valid solution more often. 60

60We also found some evidence that a pMC rule may make the objective function more
sensitive to variations in the parameters θ, but more research is required to resolve this issue
definitively.
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Dataset EXIT INFORM f_k CPU Time
1 0 1 34.63546 644.52
1 0 1 34.63550 578.42
1 0 1 34.63556 449.30
1 0 1 34.63552 294.48
1 0 1 34.63548 443.86
2 0 1 23.24928 1174.66
2 0 1 23.24928 660.97
2 0 1 23.24928 922.52
2 0 1 23.24928 1150.00
2 0 1 23.24928 1022.48
3 0 1 21.79928 688.71
3 0 1 21.79931 373.36
3 0 1 21.79926 669.28
3 0 1 21.79926 483.89
3 0 1 21.79926 573.57
4 0 1 24.72862 435.54
4 0 1 24.72862 587.55
4 0 1 24.72862 739.98
4 0 1 24.72862 613.63
4 0 1 24.72862 657.03
5 0 1 277.89463 441.45
5 0 1 278.03790 441.77
5 0 1 277.89463 548.75
5 0 1 277.89463 1134.53
5 0 1 278.03790 656.13

Table 8: Point Estimates: Monomial with First 5 Good Starts.

5.2.2 Differences in Objective Function Values

We were initially surprised to discover in Tables 4-8 that the objective function
values, f_k, do not agree at the optimal point estimates. This occurs because
the value of the objective function in the MPEC formulation is g

�
Wg where

g = Z
�
ξ are the moment conditions. Using MPEC, we solve for g as part of the

optimization program: consequently, differences in g across quadrature rules at
the local optimum found by the solver produce different values of the objective
function. Errors in computing ξ – whether numerical or due to model misspec-
ification – accumulate and affect the optimal value of the moment conditions
which in turn produce different values of the objective function. Initial investi-
gations with a new C++ implementation using quad precision arithmetic and
LU rook pivoting to increase solver stability appear to eliminate these differ-
ences so that only about 10 out 1302 values of the solver solution (θ1, θ2, δ, g)
differ by more than 2%. However when using MATLAB, ξ̂ varies considerably
at the optima found by SNOPT even when θ̂ does not.
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5.2.3 Simulation, Identification, and Standard Errors

When computing standard errors, we found that simulation – unlike the polyno-
mial rules – produces excessively tight values and will lead researchers to think
that some parameters are well identified when they are not. Examining the
standard errors (Tables 9-13) shows that, in general, the pMC standard errors
are much smaller than those computed with polynomial rules. For some data
sets, such as data sets 4 and 5, the polynomial rules produce standard errors on
the order of 104 or larger vs. pMC errors of 10−1 even with using R = 10, 000
draws. For example, compare the results for θ̂21 and θ̂24 for data set 4 and θ̂21
and θ̂23 for data set 5. Standard errors computed using pMC show apparently
tight identification when in fact the Hessian is ill-conditioned. Because pMC in-
troduces spurious local optima and, concomitantly, pockets of higher curvature
it produces standard errors which are too tight.61 Consequently, pMC can mask
poor identification and practitioners will miss an important diagnostic that the
objective function is nearly flat because pMC does not approximate the gra-
dient and Hessian well. In fact, as the order of differentiation increases, pMC
performs increasingly poorly. Polynomial-based rules do not suffer from this
problem because they approximate the level, gradient, and Hessian correctly:
if a parameter had huge standard errors for one data set and rule, then it had
huge the standard errors for all rules and starts. Nevertheless, the quadrature
rules did not reliably detect large standard errors: the Gauss-Hermite product
rule with 75 nodes detected 4 cases out of 10× 5 = 50 parameters estimated;62
SGI and the monomial rule found 3 of the 4 found by the product rule; and,
pMC, even with R = 10, 000 draws, failed to find any. Recently, we began repli-
cated these results using the higher precision BLP implementation in Skrainka
(2011). Our initial results show that when using higher precision arithmetic,
all of the polynomial rules reliably compute the same large standard errors for
the same data sets and parameters, θ. Even with this BLP implementation,
the pMC rules still produce anomalously tight standard errors. Consequently,
pMC quadrature rules will cause a downward bias in standard errors and mask
(numerical) identification problems. Note, too, that because pMC produces
standard errors which are too tight, pMC will not produce reliable standard
errors with the bootstrap. Instead, polynomial-based rules are a better choice
because of their increased accuracy and efficiency.

In BLP, the substitution patterns are ‘diffuse’ and all goods are substitutes
for each other as opposed to the ‘local’ substitution patterns in pure charac-
teristics models, where cross-price elasticities are non-zero for only a finite set
of products (E.g., Berry and Pakes (2007); Shaked and Sutton (1982)). Con-
sequently, the model is very sensitive to both sampling error in the observed
market shares, Sjt, and simulation error in the computation of predicted mar-
ket shares, sjt (Berry, Linton, and Pakes, 2004). Particularly as J increases
(And, Berry, Linton, and Pakes (2004) require J → ∞ to prove that BLP is

61Just examine the formula for GMM standard errors which depends on the inverse of the
Hessian.

62I.e., we estimated ten parameters, θ̂, for five starts for each rule and data set

37



consistent and asymptotically normal) small simulation or sampling errors con-
siderably affect the value of ξ which is computed in the traditional NFP BLP
implementations.

The small sample properties of GMM is another potential source of difficulty
in estimating θ2 parameters well. Altonji and Segal (1996) show that optimal
minimum distance (OMD) estimators – i.e. GMM with the optimal weighting
matrix – perform poorly in small sample estimates of the variance because the
shocks which make the variance large also tend to increase the variance of the
variance. Consequently, because θ2 measures the standard error of the random
coefficients it is probably estimated with downward bias. This correlation could
also explain why Var (θ2) is often surprisingly large: when estimation uses more
accurate, polynomial rules is not masked by false correlation from simulation.

6 Conclusion
A head-to-head comparison of Monte Carlo and polynomial-based quadrature
rules for approximating multi-dimensional integrals of moderate size shows that
monomial rules provide superior accuracy at a computation cost which is at least
an order of magnitude smaller. Monomial rules are marginally more difficult to
implement than pMC, requiring a few well-defined permutations of the nodes
and weights found in a table look-up. An even easier option is to use sparse
grid integration which can generate a set of nodes and weights that provide
comparable accuracy, often with only a few more nodes. An important area
for future research is to develop monomial rules which explicit some of the
common structure of economic problems such using functions which are smooth,
bounded, and analytic.

When we applied these quadrature methods to BLP, it became clear that
the choice of quadrature rule affects the model’s results, including the computed
value of product-market share integrals, the values of the point estimates, and
the standard errors. In particular, pseudo-Monte Carlo rules produce very differ-
ent point estimates for different starting values – even with very large numbers
of draws – unlike the polynomial rules which always produce the same optimum.
pMC rules also generate excessively tight standard errors potentially hiding an
identification problem in the local basins of attraction created by the noisiness
of Monte Carlo integration.

Using a high-quality quadrature rule, then, provides an easy way to improve
the accuracy and efficiency of many numerical projects.
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