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Abstract. An outcome is determined by a structural function in which the
e¤ect of variables of interest is transmitted through a scalar function of those vari-
ables - an index. Multiple sources of stochastic variation are permitted to appear as
arguments of the structural function, but not as arguments of the index. Conditions
are provided under which there is local identi�cation of ratios of partial derivatives
of the index.

1. Introduction
Many models used in applied microeconometric practice include more unobservable latent
variables than there are observable stochastic outcomes. The latent variables often repre-
sent unobserved characteristics of individuals and of the environment in which they make
decisions. The inclusion of such variables is common in, for example, models of durations
(see van den Berg (2001), in discrete choice models (see for example Brownstone and
Train (1998), Chesher and Santos Silva (2002), McFadden and Train (2000)) and in count
data models (see Cameron and Trivedi (1998)). There is a large econometric literature
concerned with random coe¢ cients models which permit this sort of excess heterogeneity.
(Chow (1984)). Excess heterogeneity also arises in other cases, for example when there is
measurement error.
It is common to �nd strong restrictions imposed in models that admit excess hetero-

geneity. Frequently the speci�cation is fully parametric as in the mixed multinomial logit
models of Brownstone and Train (1998). When parametric restrictions are not imposed
there are usually strong semiparametric restrictions. For example: most of the single spell
duration models used in practice that permit excess heterogeneity require there to be a
single latent variate that acts multiplicatively on the hazard function; measurement error
is usually required to be additive.
The aim of this paper is to explore the extent to which strong restrictions such as

these can be relaxed, while still preserving a model with the power to identify interesting
structural features.
In the models explored in this paper excess heterogeneity can arise from any �nite

number of sources. A crucial feature of the models is that they incorporate an index
restriction. The index restriction requires the e¤ect on an outcome of certain variables of
interest to pass entirely through a scalar function of those variables, an index, and that
this index be free of latent variates. Variables that appear in the index are permitted to
be endogenous in the sense that they may covary with the latent variates that appear in
the model.

�I am grateful to Whitney Newey for remarks on an earlier paper (Chesher (2002)) which stimulated
this work and to Lars Nesheim for helpful discussions. I thank the Leverhulme Trust for their support
through the Centre for Microdata Methods and Practice and the research project Evidence, Inference and
Enquiry.
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The structural features whose identi�ability is studied in this paper are ratios of deriv-
atives of the index at some speci�ed values of the variables that appear in the index. This
is therefore a study of local identi�cation. These ratios are referred to as index relative
sensitivity (IRS) measures because they measure the relative sensitivity of the index, and
therefore of the outcome, to variation in a pair of its arguments. Of course, when the
index is linear the ratios do not depend on the values of the arguments of the index. Then,
conditions su¢ cient to achieve local identi�cation of the value of an IRS measure achieve
global identi�cation of the ratio of coe¢ cients of the linear index.
IRS measures are often of interest in models for binary outcomes. For example in

discrete choice models of travel demand there is interest in the �value of travel time�
de�ned as the ratio of coe¢ cients on travel time and travel cost. There are other contexts
in which the relative sensitivity of an index to variation in its arguments is of interest. For
example in models of intrahousehold allocation there is interest in the relative sensitivity
of expenditures to variations in the incomes of two partners; in models for the duration
of unemployment there is interest in the relative sensitivity of unemployment duration
to variations in unemployment bene�ts and other household income or the wage prior to
unemployment. In all these cases one or more of the arguments of the index could be
endogenous. It is this which motivates this study of identi�cation.

1.1. The structural equation and the IRS measures. In the models studied in
this paper the outcome of interest, a random variable W , is determined by a structural
equation of the following form.

W = h0(�(Y1; : : : YM ; Z1; : : : ; ZK); Z
�
1 ; : : : ; Z

�
L; U1; : : : ; UN ) (1)

Here U � fUngNn=1 are latent variates, Y � fYmgMm=1 are observable continuously distrib-
uted endogenous random variables which covary with U , and Z � fZkgKk=1 are observable
continuously varying covariates whose covariation with U is limited to some degree to be
speci�ed. � is the index of interest, a scalar valued di¤erentiable function.
The variables Z� � fZ�l gLl=1 are discrete or continuously varying variables which may

appear in the structural function but not in the index. Identi�cation of the sensitivity of
structural functions to these variables is not considered. There could be other variables
entering the index which exhibit discrete variation. Their presence is not made explicit
in the notation and sensitivity of the structural function to variation in their values is not
considered here.
The IRS measures studied here are of the following form.

�a;b(y; z) �
Oa�(y; z)
Ob�(y; z)

; (a; b) 2 fy1; : : : ; yM ; z1; : : : ; zKg

Without further restriction, for example a linear index restriction, their values depend on
the values of y � fymgMm=1 and z � fzkgKk=1. Conditions su¢ cient for local identi�cation
of �a;b at a speci�ed point (�y; �z) will be considered.
The equations determining the elements of Y are written in reduced form:

Ym = hm(Z;Z
�; Vm); m 2 f1; : : : ;Mg (2)

where each function hm is a strictly monotonic function of Vm which is a continuously
distributed latent variate. Y is endogenous to the extent that V � fVmgMm=1 and U have
jointly dependent distributions.1

1An alternative triangular reduced form is also considered with Y1 = h1(Z;Z�; V1) and

Ym = hm(Ym�1; : : : ; Y1; Z; Z
�; Vm); m > 1.



Identification with excess heterogeneity 3

1.2. Examples. This Section gives examples of microeconometric models in which a
structural equation of the form (1) arises.

Example 1 - Mixed hazard models

Consider hazard functions for a continuously distributed duration (e.g. of unemploy-
ment) W conditional on observable Y = y, Z = z, Z� = z� and on unobservable, possibly
vector, E = e of the form:

�(wj�(y; z); z�; e) (3)

where � is a scalar valued function. The conditional distribution function of W given Y ,
Z, Z� and E is

FW jY ZZ�E(wjy; z; z�; e) = 1� exp(��(wj�(y; z); z�; e))

where �(wj�(y; z); z�; e) is the integrated hazard function, as follows.

�(wjy; z; z�; e) �
Z w

0

�(!j�(y; z); z�; e)d!

The conditional � -quantile function of W given Y , Z, Z� and E is

QW jY ZZ�E(� jy; z; z�; e) = ��1(� log(1� �)j�(y; z); z�; e)

where ��1 is the inverse integrated hazard function satisfying

a = �(��1(aj�(y; z); z�; e); �(y; z); z�; e)

for all a, y, z, z� and e.
With D distributed uniformly on (0; 1) independent of Y , Z, Z� and E, the following

structural equation delivers a random variable W whose conditional distribution given Y ,
Z, Z� and E has the hazard function � given in equation (3).

W = ��1(� log(1�D)j�(Y;Z); Z�; E)

De�ning U � (D;E) this is a structural equation of the form set out in equation (1).
Note that there is no requirement that the excess heterogeneity terms, E, act mul-

tiplicatively on the hazard function and there is no limit on the number of such terms
appearing in the model. The results of the paper concern identi�cation of IRS measures
when Y covaries with E.
The mixed hazard model for single spell data, treated in van den Berg (2001), has a

single source of excess heterogeneity, E, acting multiplicatively in the hazard function, as
follows.

�(W j�(Y; Z); Z�; E) = ��(W j�(Y; Z); Z�)� E

In this case the structural function for W is

W = ���1(� log(1�D)E�1j�(Y; Z); Z�)

where ���1 is the inverse of the function

��(wjy; z; z�) �
Z w

0

��(!j�(y; z); z�)d!

with respect to its w argument. Under the proportionate heterogeneity restriction the
two sources of stochastic variation coalesce into one, with implications for identi�cation
and estimation developed in Chesher (2002).
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Example 2 - Heterogeneous binary choice

An example of the sort of binary response model for W 2 f0; 1g that falls in the class
of models considered here is

P [W = 0jY;Z; Z�; E] = � (E0 + E1Z� + �yY + �zZ) (4)

where � is a known or unknown function from <1 ! (0; 1). Here Y , Z and Z� are
observable scalar variables and E � (E0; E1) contains latent variates. The covariate
Z� has a �random coe¢ cient�E1 and there is �random intercept�E0. The variate Y
is endogenous in the sense that it may covary with E. The coe¢ cients on Y and Z are
nonstochastic and their ratio �y=�z is the structural feature whose identi�cation is studied
in this paper.
Let D be uniformly distributed on (0; 1) conditional on E0, E1,Y , Z and Z�. Then

there is the following structural equation for W .

W =

�
0 ; D � � (E0 + E1Z� + �yY + �zZ)
1 ; D > � (E0 + E1Z

� + �yY + �zZ)

This has the form of equation (1) with U � (D;E), �(Y; Z) � �yY + �zZ. The linear
index restriction in (4) is a restriction additional to that considered in this paper and is
imposed just by way of example.
Blundell and Powell (2003) study identi�cation and estimation in binary choice models

with a linear index depending on endogenous variables, like (4), with a single source of
heterogeneity. The models studied by Brownstone and Train (1998) and McFadden and
Train (2000) have multiple sources of heterogeneity but they do not permit endogeneity.

1.3. Identi�cation. The strategy employed in developing identi�cation conditions for
IRS measures is now outlined. For this purpose the covariates Z� which appear in the
structural function (1) but not in the index � are assumed absent. Their presence would
not change the argument below except in inessential details.2

Let the joint distribution function of U given Z and V be denoted by FU jZV . Condi-
tions are placed on the equations for the elements of Y su¢ cient to ensure that

FU jZY (ujz; y) = FU jZV (ujz; v)jv=g(z;y)

where g(z; y) � fgm(z; ym)gMm=1 and each gm is the inverse function of hm with respect
to its Vm argument. Each function gm is such that, for all z and ym:

ym = hm(z; gm(z; ym)):

It follows directly that the conditional distribution function of the outcome of interest,
W , given Y = y and Z = z at W = w can be expressed as a function of w, z, the index
of interest, �(Y; Z), and the M indexes gm(Z; Y ), m 2 f1; : : : ;Mg, as follows.

FW jZY (wjz; y) = s(�(y; z); g1(z; y1); : : : ; gM (z; yM ); w; z)

The dependence of the function s on z through its last argument arises from the depen-
dence of FU jZV (ujz; v) on z. This dependence will typically be subject to restrictions.
The conditional distribution functions FW jZY and FY1jZ ; : : : ; FYM jZ are identi�ed by

de�nition, and, if Y and Z exhibit continuous variation around a point (�y; �z), their Y -
and Z-derivatives at that point are also identi�ed.

2At various points where there is conditioning on Z there would have to be conditioning on Z and
Z�. The point at which identi�cation is sought would be ( �w; �y; �z; �z�). There is no point at which partial
derivatives with respect to elements of Z� are considered and so no limitation on the covariation of Z�

and (U; V ) is needed.
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An IRS measure �a;b(�y; �z), (a; b) 2 fy1; : : : ; yM ; z1; : : : ; zKg is identi�ed if the deriva-
tives Oa�(�y; �z) and Ob�(�y; �z) are identi�ed up to a common non-zero �nite valued factor
of proportionality. This will happen if there are su¢ cient restrictions on the structural
equations (1) and (2) and on the distribution of (U; V ) conditional on Z to permit the
values of Oa�(�y; �z) and Ob�(�y; �z) to be deduced up to a common non-zero �nite val-
ued factor of proportionality from knowledge of the Y - and Z-derivatives of FW jZY and
FY1jZ ; : : : ; FYM jZ at (�y; �z).
In Section 2 precise identi�cation conditions are set out and a Theorem stating an

identi�cation result is stated. The proof is in the Appendix to the paper.
To give a �avour of the result of the Theorem, consider the case in which in the index

there is a single endogenous variable, Y1 and a covariate Z1. In the structural equation
for Y1 there is a covariate, Z2, variation in which does not a¤ect the value of the index at
(�y; �z). This local exclusion restriction, together with covariation restrictions requiring (a)
U given V is independent of Z � fZ1; Z2g and (b) that at a point (�y1; �z), with �z � f�z1; �z2g:

rz1FV1jZ = rz2FV1jZ = 0 (5)

imply the following:

�y1z1(�y1; �z) =
ry1FW jZY1 �ry1FY1jZ

�
rz2

FW jZY1
rz2

FY1jZ

�
rz1FW jZY1 �rz1FY1jZ

�
rz2

FW jZY1
rz2

FY1jZ

� (6)

where all functions are evaluated at (�y1; �z) and at any value of w.3 This serves to identify
�y1z1(�y1; �z). Note that the exclusion of U from the index results in �y1z1(�y1; �z) being
overidenti�ed - a condition manifested by the invariance of (6) to the choice of w.
When W is continuously distributed the derivatives of conditional distribution func-

tions that appear in (6) can be replaced by ratios of derivatives of conditional quantile
functions, as explained in Section 4. After some simpli�cation this results in the following
alternative to (6).

�y1z1(�y1; �z1) =
ry1QW jZY1 +

�
rz2

QW jZY1
rz2

QY1jZ

�
rz1QW jZY1 �rz1QY1jZ

�
rz2

QW jZY1
rz2QY1jZ

� (7)

Here QW jZY1 is shorthand for the �-quantile function of W given Z and Y1, and QY1jZ
is shorthand for the conditional �1-quantile of Y1 given Z. In (7) the arguments of these
quantile functions are evaluated at Y1 = �y1, Z = �z, at �1 = ��1, where ��1 satis�es

�y1 = QY1jZ(��1j�z)

and at any value of �.
The numerator and denominator of (7) are identical to the expressions given in Chesher

(2003) for respectively the Y1- and Z1-derivatives of a nonseparable structural function

W = h(Y1; Z1; U)

when U is a scalar and so the sole source of stochastic variation, in continuously distributed
W given Y1 and Z1. When there are multiple sources of stochastic variation the numerator
and denominator of (7) are not equal to these structural derivatives. However, with the
index and other restrictions imposed here, their ratio is equal to the ratio of the index
derivatives.

3The independence condition on U given V need only hold for V and Z in a neighbourhood of (�z; �v1)
where �v1 is such that h1(�z; �v1) = �y1.
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Estimates of an IRS measure can be built from parametric, semi- or nonparametric
estimates of conditional distribution functions and their derivatives, or, when W is con-
tinuously distributed, on estimates of conditional quantile functions and their derivatives.
This is brie�y discussed in respectively Sections 3 and 4.

1.4. Related literature. The basic idea employed in this paper dates back at least
as far as Tinbergen (1930) in which the problem of identi�cation in linear simultaneous
equations systems was attacked by developing conditions under which values of structural
form parameters could be deduced from values of parameters of regression functions - the
reduced form equations of the linear simultaneous system.
The conditional distribution functions FW jZY and FYmjZ , m 2 f1; : : : ;Mg are regres-

sion functions, namely of 1[W � w] on Z and Y , and of 1[Ym � ym] on Z,m 2 f1; : : : ;Mg.
The values of the Y - and Z-derivatives of the conditional distribution functions at ( �w; �y; �z)
are the coe¢ cients of a linear approximation to these regression functions, and these coef-
�cients are functions of the structural parameters of interest, namely the index derivatives
at (�y; �z). The latter are identi�ed when their values can be deduced from knowledge of
the values of these coe¢ cients. Viewed in this way it is not surprising that the identi�-
cation conditions and their development echo the classical linear simultaneous equations
identi�cation analysis given full expression in Koopmans, Rubin and Leipnik (1950).
Index restrictions like that considered here have been used in many other papers includ-

ing Han (1987), Powell, Stock and Stoker (1989), Newey and Stoker (1993), Chaudhuri,
Doksum and Samarov (1997) and Kahn (2001). Much of the semiparametric literature
dealing with models embodying index restrictions assumes away the issue of endogeneity.
Newey (1985), Lewbel (1998, 2000), Lewbel and Linton (2002), Honoré and Hu (2002),
Hong and Tamer (2003) and Blundell and Powell (2003) do consider endogeneity but, aim-
ing at identifying di¤erent structural features, employ di¤erent identifying restrictions, in
many respects stronger than those considered here.
Chesher (2003) takes a similar approach to that taken in this paper, providing con-

ditions under which values of partial derivatives of structural functions at a point of
interest are identi�ed. Critical among these conditions is the requirement that the num-
ber of sources of stochastic variation permitted by a model be equal to the number of
observable stochastic outcomes. This paper weakens this restriction but at the cost of
(a) imposing an index restriction and (b) obtaining identi�cation of IRS measures rather
than derivatives of structural functions.
The mixed hazard model with multiplicative heterogeneity studied in Example 1 in

Section 1.2 in which two sources of stochastic variation coalesce to one e¤ective source
was studied in Chesher (2002).

2. Identification of index derivatives

This Section introduces four assumptions and then states a Theorem concerning the iden-
ti�cation of index derivatives up to a common factor of proportionality. Some remarks
on the assumptions are provided as they are introduced. The Theorem is proved in the
Appendix to the paper.
In order to simplify the notation the covariates Z� which appear in the structural

equation (1) and in the examples of Section 1.2 are assumed absent. Their inclusion
requires minor changes to the assumptions and, with these amendments, results in no
change to the result of the Theorem.4

Assumption 1. W , Y � fYigMi=1, U � fUigNi=1 and V � fVigMi=1 are random
variables, with Y and V continuously distributed and Z � fZigKi=1are variables exhibiting

4This point is ampli�ed in the Appendix after the proof of the Theorem.
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continuous variation in a neighbourhood of a point �z. The support of U given V and Z
does not depend on the values of V or Z. The conditional density functions of Vm given
Z, m 2 f1; : : : ;Mg are positive valued at �z and their support does not depend upon the
value of Z.

The Theorem will concern the identi�cation of the values of index derivatives at a point
X � ( �w; �y; �z). The random variable W is the outcome of interest, Y is a list of potentially
endogenous variables. U and V are lists of unobservable, latent variates whose covariation
with Z, a list of covariates may be limited to some degree by Assumption 4 below. Y is
required to be continuously distributed, and Z is required to exhibit continuous variation,
because of the focus here on partial derivatives of a nonparametrically speci�ed index.5

Assumption 2. For any value of Z, U and V , unique values of W and Y are
determined by the structural equations

W = h0(�(Y; Z); U)

Ym = hm(Z; Vm); m 2 f1; : : : ;Mg

where � is a scalar valued function. Each function hm is strictly monotonic with respect
to variation in Vm.

The equations for the elements of Y are in classical reduced form, each element of Y
depending on Z and an element of V and not on other elements of Y .
An alternative set up has these equations in triangular reduced form, each Ym, m > 1,

depending on Ym�1; : : : ; Y1, Z and a latent variate ~Vm.
An advantage of the triangular reduced form representation is that the elements of

~V � f ~VmgMm=1 can be normalised to be mutually independently uniformly distributed on
(0; 1)M independent of Z. Then each function hm is the conditional ~Vm-quantile function
of Ym given Ym�1; : : : ; Y1.
A disadvantage of the triangular representation is that, at the point of nonparametric

estimation, there are higher dimensional functions to be estimated. So the representation
in Assumption 2 is used in what follows; the conclusions so far as identi�cation is concerned
are identical.
The inverse function of each hm with respect to Vm exists by virtue of the strict

monotonicity condition. It is denoted by gm. For any z and ym:

ym = hm(z; gm(ym; z)); m 2 f1; : : : ;Mg:

Let g(y; z) denote the M � 1 vector of inverse functions fgm(ym; z)gMm=1.
Under Assumptions 1 and 2 the conditional distribution function of W given Y and

Z is

FW jY Z(wjy; z) =

Z
� � �
Z

h0(�(y;z);u)�w

dFU jV Z(ujg(y; z); z) (8)

� s(�(y; z); g(y; z); w; z) (9)

= FW j�(Y;Z)g(Y;Z);Z(wj�(y; z); g(y; z); z)

and for m 2 f1; : : : ;Mg the marginal distribution function of Ym given Z is

FYmjZ(ymjz) = FVmjZ(gm(ym; z))jz) (10)

� rm(gm(ym; z); z): (11)

5 Identi�cation when endogenous variables have discrete distributions, is studied in Chesher (2003b).
The identifying restrictions of that paper do not permit excess heterogeneity.
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The function s de�ned in (9) and the functions r1; : : : ; rM de�ned in (11) play a crucial
role in the statement and proof of the Theorem.

Assumption 3. At X , de�ned after Assumption 1, the conditional distribution func-
tion of W given Y and Z, FW jY Z(wjy; z), is di¤erentiable with respect to y and z, and
for m 2 f1; : : : ;Mg the conditional distribution function of Ym given Z, FYmjZ(ymjz) is
di¤erentiable with respect to ym and z.

This relatively high level assumption on FW jY Z and FYmjZ , m 2 f1; : : : ;Mg, requires
di¤erentiability of the structural functions h0, �, and hm, m 2 f1; : : : ;Mg.
The conditional distribution function of W given Y and Z is not required to be dif-

ferentiable with respect to w, so W can be a discrete random variable.
The conditional distribution functions FW jY Z and FYmjZ , m 2 f1; : : :Mg are, by

de�nition, identi�able. Their derivatives at X with respect to elements of y and z are
identi�able because y and z exhibit continuous variation at X by virtue of Assumption 1.
The identi�ability of index derivatives therefore hangs on whether their values can

be deduced from knowledge of the derivatives of the conditional distribution functions
FW jY Z and FYmjZ , m 2 f1; : : : ;Mg.
It is now necessary to de�ne the following arrays of derivatives, all evaluated at X .

Arguments of functions are suppressed and s� denotes the value of the (scalar) partial
derivative r�s at X

Ry �

264 ry1FY1jZ � � � 0
...

. . .
...

0 � � � ryMFYM jZ

375 Rz �

264 rz1FY1jZ � � � rz1FYM jZ
...

. . .
...

rzKFY1jZ � � � rzKFYM jZ

375

Sy �

264 ry1FW jY Z
...

ryMFW jY Z

375 Sz �

264 rz1FW jY Z
...

rzKFW jY Z

375

�y � s� �

264 ry1�
...

ryM �

375 �z � s� �

264 rz1�
...

rzK�

375  �

264 rg1s=rg1rm
...

rgM s=rgM rM

375

sz �

264 rz1s
...

rzKs

375 rz �

264 rz1r1 � � � rz1rM
...

. . .
...

rzKr1 � � � rzKrM

375
The terms rgmrm, which �gure in the de�nition of the vector , are positive by virtue

of Assumption 1.6 The index derivatives, the structural features of interest, appear in the
de�nition of the vectors �y and �z multiplied by a common factor, s� which is the value
of the partial derivative r�FW j�(Y;Z)g(Y;Z);Z at X .

Assumption 4. De�ne � � �rz. There are G restrictions on �y, �z, , sz and �
as follows.

Ay�y +Az�z +A +Assz +A�� = a (12)

The arrays a and Ay, Az, etc., are nonstochastic conditional on Z = �z. s� is �nite and
nonzero.

6 In a triangular reduced form representation for the elements of Y the matrix rz is a zero matrix,
each term Ogmr is equal to 1 and the matrix Ry is upper triangular with (i; j) element, j � i, equal to
OyiFYj jYj�1:::Y1Z with obvious modi�cation for j = 1.
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Restrictions on sz limit the degree of covariation of U and Z given V . A typical
derivative in the vector sz is as follows.

Ozks =
Z
� � �
Z

h0(�(�y;�z);u)� �w

d
�
OzkFU jV Z(ujg(�y; �z); z)

��
z=�z

�
A derivative Ozks will be zero when the partial derivative OzkFU jV Z(ujg(�y; �z); z)

��
z=�z

is
zero for all u in the set de�ned by h0(�(�y; �z); u) � �w. In practice, since the structural
function is unknown, this can only be assured, when U is multidimensional, by requiring
U to be independent of Zk given V = g(�y; �z) for variations in z in a neighbourhood of �z.
However, when U is scalar and h0 is monotonic in U ,

jOzksj =
��OzkFU jV Z(h�10 (�(�y; �z); �w)jg(�y; �z); z)

��
z=�z

��
which can be zero under a restriction on the dependence of U on Zk given V = g(�y; �z) for
variations in zk in a neighbourhood of �zk, a restriction which is local to U = h�10 (�(�y; �z); �w).
This is the case considered in Chesher (2003) where it is shown that the index restriction
is not required to achieve identi�cation of partial derivatives of the structural function.
Restrictions on  limit the covariation of U and elements of V . Restrictions on rz,

which may imply restrictions on �, limit the degree of covariation of V and Z. Restrictions
on �y and �z limit the sensitivity of the index to elements of Y and Z.
Homogeneous restrictions7 on the index derivatives imply the same homogeneous re-

strictions on �y and �z. In the absence of parametric restrictions there will typically be
no prior knowledge of the value of s� so in practice non-homogeneous restrictions on �y
and �z are unlikely to arise.
After the following de�nitions the identi�cation Theorem can be stated.

� �

24 IM 0 Ry 0 0
0 IK Rz �IK IK
Ay Az A As A�

35  �

266664
�y
�z

sz
�

377775 � �

24 Sy
Sz
a

35
Theorem 1

Assumption 1 - 4 imply that � = � and that  is identi�ed if and only if rank(�) =
2M + 3K for which a necessary condition is G �M + 2K.

The proof is given in the Appendix to the paper.

The vectors �y and �z contain values of derivatives of the index at X , multiplied by a
common scale factor. They measure the sensitivity of the conditional distribution function
of W given Y and Z that arises from variations in Y and Z passing purely through the
index �. However they do not generally measure the sensitivity of the value delivered by
the structural equation h0 to variations in Y and Z passing purely through the index.
Accordingly they may be of no economic interest in themselves.
The IRS measures are ratios of index derivatives in which the common scale factor, s�,

is of course absent, so identi�cation of �y and �z implies identi�cation of IRS measures
as long as s� is nonzero, as required by Assumption 4.
In practice it will be common to impose the 2K restrictions sz = 0 and rz = 0, the

latter implying � = 0. These restrictions limit the covariation of (U; V ) and Z at Z = �z.
De�ne the following arrays.

�+ �

24 IM 0 Ry
0 IK Rz
Ay Az A

35  + �

24 �y
�z


35 �+ �

24 Sy
Sz
a

35
7For example zero restrictions and restrictions requiring equality of two or more index derivatives.
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The following Corollary is relevant to this case.

Corollary 1

Under Assumptions 1 - 4 and the additional restrictions (i) sz = 0, (ii) rz = 0, the
values of �y, �z and  are identi�ed if and only if

rank�+ = 2M +K (13)

for which a necessary condition is G �M . In that case de�ne

X � AyRy +AzRz �A x � AySy +AzSz � a (14)

If the rank condition (13) is satis�ed, then, for any rank M , M �G matrix P ,

 = (X 0P 0PX)
�1
X 0P 0Px

�y = Sy �Ry
�z = Sz �Rz:

The proof is in the Appendix to the paper.

As noted after Assumption 4, when U is multidimensional the condition sz = 0, im-
posed in Corollary 1, will be di¢ cult to maintain without restricting U to be independent
of Z given V . Suppose now that this independence restriction is imposed along with
rz = 0, as in Corollary 1 and, further, suppose that the restrictions of Assumption 4 do
not involve  (so A = 0) and are homogeneous (so a = 0).
De�ne the following arrays in which dependence of elements on the value, w, of the

outcome W is made explicit.

�O �

24 IM 0 Ry
0 IK Rz
Ay Az 0

35  O(w) �

24 �y(w)
�z(w)
(w)

35 �O(w) �

24 Sy(w)
Sz(w)
0

35
Here

�y(w) � O�s(�(�y; �z); g(�y; �z); w; �z)�y
�z(w) � O�s(�(�y; �z); g(�y; �z); w; �z)�z
m(w) � Ogms(�(�y; �z); g(�y; �z); w; �z)=Ogmrm; m 2 f1; : : : ;Mg

For some � � <1 and a bounded nonnegative valued function B(w) with
R
w2� dB(w) = 1,

de�ne

�O �
Z
w2�

�O(w)dB(w)

 O �
Z
w2�

 O(w)dB(w) �

266664
�Oy

�Oz

O

377775
with B(w) chosen so that �O and  O have bounded elements. There is the following
Corollary to Theorem 1.

Corollary 2

Under Assumptions 1 - 4 and the additional restrictions: (i) rz = 0, (ii) U is inde-
pendent of Z given V , (iii) A = 0, (iv) a = 0; �O 

O = �O, and  O is identi�ed if and
only if

rank�O = 2M +K
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for which a necessary condition is G �M .

The proof is straightforward on noting that �O O(w) = �O(w) implies �O O = �O.

The rank condition of Corollary 2 is the same as that of Corollary 1 with A = 0.
Corollary 2 leads to identi�cation of IRS measures as long as there exists a weighting
function B(w) such that

O�sO �
Z
w2�

O�s(�(�y; �z); g(�y; �z); w; �z)dB(w)

is nonzero and �nite, because �Oy = O�sO�y and �Oz = O�sO�z and the common factor
O�sO will then cancel upon forming up an IRS measure.

3. Estimation

Theorem 1 and its two Corollaries point to estimation procedures. For example, with
nonparametric estimates of the conditional distribution function derivatives, R̂y, R̂z, Ŝy
and Ŝz, estimates, �̂ and �̂, of � and �, can be assembled incorporating the restrictions
to hand, and a minimum distance estimator

 ̂ = argmin
 

�
�̂ � �̂

�0


�
�̂ � �̂

�
can be calculated using a suitable positive de�nite matrix 
.8

Corollary 1 points to explicit expressions for estimators of , �y and �z when the
restrictions rz = 0 and sz = 0 are imposed. Estimates of the arrays of distribution
function derivatives together with the restrictions to hand, lead to estimates X̂ and x̂ of
X and x in (14) and thus to the estimator

̂ =
�
X̂ 0P 0PX̂

��1
X̂ 0P 0Px̂

with �̂y = Ŝy � R̂ŷ and �̂z = Ŝz � R̂z ̂ following directly.
Corollary 2, which imposes additional restrictions, points to estimators based on inte-

grated (with respect to w) weighted derivatives of distribution functions.
In the overidenti�ed case the asymptotic e¢ ciency of the estimators will depend on

the choice of the matrices 
 and P . Asymptotically optimal choices can be developed
using results in the theory of extremum estimators - see Newey and McFadden (1994).
The identi�cation result has been obtained under index restrictions and it will be

desirable to impose these when the distribution function derivatives are estimated. One
might wish to impose additional semiparametric or parametric restrictions.

4. Identification via conditional quantile functions

So far the variates in Y have been required to be continuously distributed but the outcome,
W has not. Suppose now that the outcome W is continuously distributed conditional on
Y and Z lying in a neighbourhood of (�y; �z). In this case the matrices of conditional
distribution function derivatives that appear in Theorem 1 and Corollary 1 can be re-
expressed in terms of derivatives of conditional quantile functions.

8 In order to obtain consistent estimates of R̂y , R̂z , Ŝy and Ŝz it will be necessary to impose the
identifying restrictions proposed here over some region of which (�y; �z) is an interior point, and to impose
further conditions on the distribution of (U; V ) given Z.
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This is so because for a random variable A, continuously distributed conditional on B
lying in a neighbourhood of b,

ObFAjB(ajb) = �
ObQAjB(� jb)
O�QAjB(� jb)

����
�=FAjB(ajb)

(15)

OaFAjB(ajb) =
1

O�QAjB(� jb)

����
�=FAjB(ajb)

(16)

where FAjB and QAjB are the conditional distribution and quantile functions of A given
B = b. This follows directly from the de�nition of QAjB(� jb) as the inverse function of
FAjB(ajb) with respect to the argument a, that is:

� = FAjB(QAjB(� jb)jb).

Equations (15) and (16) do not hold when A has a discrete distribution given B = b
because in that case O�QAjB(� jb) is almost everywhere zero.
This Section explores an alternative, quantile function based approach to identi�cation

for the case in which the outcome W is continuously distributed given Y and Z lie in a
neighbourhood of (�y; �z). The development is done for the case considered in Corollary 1
in which rz = 0 and sz = 0. Also, there are assumed to be no restrictions on  and the
restrictions on �y and �z are assumed homogeneous, that is in (12), A = 0 and a = 0.
Let �� � f��mgMm=1 be probabilities such that each �ym is the ��m-quantile of Ym condi-

tional on Z = �z, that is, for m 2 f1; : : : ;Mg:

�ym = QYmjZ(��mj�z) ��m = FYmjZ(�ymj�z):

Let �� be such that �w is the ��-quantile of W given Y = �y and Z = �z, that is:

�w = QW jY Z(��j�y; �z) �� = FW jY Z( �wj�y; �z):

Note that the point X � ( �w; �y; �z) is identical to ~X � (��; �� ; �z). Assumption 1 is modi�ed
to require W given Y = �y and Z = �z to be continuously distributed with positive density
at W = �w.

Assumption 10. W , Y � fYigMi=1, U � fUigNi=1 and V � fVigMi=1 are random vari-
ables, with W , Y and V continuously distributed and Z � fZigKi=1are variables exhibiting
continuous variation in a neighbourhood of a point �z. The support of U given V and Z
does not depend on the values of V or Z. The conditional density functions of Vm given
Z, m 2 f1; : : : ;Mg are positive valued at �z and their support does not depend upon the
value of Z. The conditional density of W given Y = �y and Z = �z is positive valued at
W = �w.

De�ne the following arrays of quantile function derivatives. Arguments of functions,
all evaluated at ~X , are suppressed.

G� �

264 r�1QY1jZ � � � 0
...

. . .
...

0 � � � r�MQYM jZ

375 Gz �

264 rz1QY1jZ � � � rz1QYM jZ
...

. . .
...

rzKQY1jZ � � � rzKQYM jZ

375

Hy �

264 ry1QW jY Z
...

ryMQW jY Z

375 Hz �

264 rz1QW jY Z
...

rzKQW jY Z

375
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Using (15) and (16) the arrays, Ry, Rz, Sy and Sz, of conditional distribution function
derivatives can be re-expressed in terms of conditional quantile function derivatives as
follows.

Ry = G�1� Rz = �GzG�1� Sy = �
1

r�QW jY Z
Hy Sz = �

1

r�QW jY Z
Hz

The following reparameterisation is employed.

~�y � r�QW jY Z�y ~�z � r�QW jY Z�z ~ � r�QW jY ZG
�1
� 

Assumption 10 ensures r�QW jY Z > 0 and the nonsingularity of G� . There is then Corol-
lary 3 to Theorem 1.

Corollary 3

Under Assumptions 1 0, 2 - 4, and the additional restrictions (i) sz = 0, (ii) rz = 0,
with no restrictions on , and with homogeneous restrictions on ~�y and ~�z, the values of
~�y, ~�z and ~ are identi�ed if and only if

rank

24 IM 0 IM
0 IK �Gz
Ay Az 0

35 = 2M +K (17)

for which a necessary condition is G �M . In that case, with ~X and ~x de�ned by

~X � �Ay +AzGz ~x � AyHy +AzHz (18)

then if the rank condition (13) is satis�ed, for any rank M , M �G matrix P ,

~ =
�
~X 0P 0P ~X

��1
~X 0P 0P ~x (19)

~�y = �Hy � ~ (20)
~�z = �Hz +Gz~: (21)

The proof is in the Appendix to the paper.

Corollary 3 suggests an alternative route to estimation of IRS measures when W is
continuously distributed, as follows.

1. Calculate an estimate of the ��m-quantile of Ym given Z = �z for m 2 f1; : : : ;Mg.
This produces estimates, ŷm, of �ym for m 2 f1; : : : ;Mg.

2. Calculate estimates of the z-derivatives of the ��m-quantile of Ym given Z = �z for
m 2 f1; : : : ;Mg. This produces an estimate of Gz.

3. Calculate estimates of the y- and z- derivatives of the ��-quantile ofW given Y = ŷm
and Z = �z. This produces estimates of Hy and Hz.

4. Using the restrictions to hand (Ay and Az) substitute estimates in (18) and for a
suitable choice of P calculate an estimate of ~ using (19) and then of ~�y and ~�z
using (20) and (21).

5. Ratios of estimates of ~�y and ~�z are the desired estimates of ratios of elements of
�y and �z.
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With nonparametric identi�cation assured one could conduct estimation imposing ad-
ditional semiparametric or parametric restrictions. Even if that is not done it would be
sensible to impose the index restrictions that underlie the identi�cation result on the
conditional quantile estimates.
The rank condition of Corollary 3 is a special case of the single equation rank condition

given in Chesher (2003). However the estimation procedure proposed above di¤ers from
that proposed there because di¤erent �parameters�are being considered. Chesher (2003)
considers estimation of partial derivatives of a structural function whereas in this paper
partial derivatives of an index that appears as an argument of a structural function are
the objects of interest.
With more sources of stochastic variation than observable outcomes (the case N > 1

in this paper) the results of Chesher (2003) on identi�cation and estimation of derivatives
of structural functions do not apply. The index restriction used in this paper is a key to
making progress in problems with excess heterogeneity.

Appendix: Proofs

A1. Proof of Theorem 1

The partial derivatives of the conditional distribution functions (8) and (10) with
respect to elements, ym and zk of y and z are as follows. Arguments of functions, all
evaluated at X , are suppressed.

rymFW jY Z = r�srym� +rgmsrymgm (A1.1)

rzkFW jY Z = r�srzk� +
MX
m=1

rgmsrzkgm +rzks (A1.2)

rymFYmjZ = rgmrmrymgm (A1.3)

rzkFYmjZ = rgmrmrzkgm +rzkrm (A1.4)

In addition to the arrays of derivatives de�ned after Assumption 4, use will be made
of the following arrays.

gy �

264 ry1g1 � � � 0
...

. . .
...

0 � � � ryM gM

375 sg �

264 rg1s
...

rgM s

375

rg �

264 rg1r1 � � � 0
...

. . .
...

0 � � � rgM rM

375 gz �

264 rz1g1 � � � rz1gM
...

. . .
...

rzKg1 � � � rzKgM

375
Equations (A1.1) - (A1.4) imply the following expressions involving the arrays of deriva-
tives de�ned above and after Assumption 4.

Sy = s��y + gysg (A1.5)

Sz = s��z + gzsg + sz (A1.6)

Ry = gyrg (A1.7)

Rz = gzrg + rz (A1.8)

Note that rg is nonsingular because, by virtue of Assumption 1, each diagonal element
of the diagonal matrix rg is positive. So equations (A1.7) and (A1.8) imply that

gy = Ryr
�1
g

gz = (Rz � rz) r�1g
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and therefore, on substituting for gy and gz in (A1.5) and (A1.6) and rearranging, there
is the following.

r�s�y = Sy �Ryr�1g sg

r�s�z = Sz � (Rz � rz) r�1g sg + sz

Rewriting these equations in terms of �y � r�s�y, �z � r�s�z,  � r�1g sg and � � �rz
gives

�y = Sy �Ry
�z = Sz �Rz � � + sz

and forming up the arrays �, � and  as de�ned in Theorem 1 using the restrictions of
Assumption 4 yields the equation � = � as stated in the Theorem. The rank condition
follows directly on noting that  has 2M + 3K elements. The matrix � has M +G+K
rows which leads directly to the stated order condition. �

A2. Amendments when covariates Z� appear in the structural function

Suppose covariates Z� are included in the structural equation for W of Assumption 2,
as in (1). These covariates are required not to appear in the index � but they will appear
as arguments of the structural functions hm, m 2 f1; : : : ;Mg of Assumption 2. In the
assumptions and proof, conditioning on Z will be, throughout, on Z and Z�. The point
�z referred to in Assumption 1 will be (�z; �z�) and the point X � ( �w; �y; �z) referred to in
Assumption 3 and in the arrays de�ned before Assumption 4 will be X � ( �w; �y; �z; �z�).
Variation in Z� is not considered and so Assumption 4 and the statement of Theorem 1
are unchanged.

A3. Proof of Corollary 1

With the restrictions sz = 0, rz = 0, � and  simplify giving24 IM 0 Ry
0 IK Rz
Ay Az A

3524 �y
�z


35 =
24 Sy
Sz
a

35
from which the stated rank and order conditions follow directly. Taking this matrix
expression apart there is

�y = Sy �Ry
�z = Sz �Rz

and since
Ay�y +Az�z +A = a

on substituting in this last expression for �y and �z and rearranging there is the following
equation.

(AyRy +AzRz �A)  = AySy +AzSz � a (A3.1)

De�ne X � AyRy+AzRz�A and x � AySy+AzSz�a. Then (A3.1) can be written as
X = x. If the rank condition holds (which requires G � M) then, for any rank M �G
matrix P with rank M , there is

X 0P 0PX = X 0P 0Px
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and since, when the rank condition holds, by construction, X 0P 0PX has rank M ,

 = (X 0P 0PX)
�1
X 0P 0Px

which completes the proof of Corollary 1. �

A4. Proof of Corollary 3

Under the conditions stated the equations satis�ed by �y, �z and  are as follows.

�y = Sy �Ry
�z = Sz �Rz

Ay�y +Az�z = 0

In terms of quantile function derivatives these equations are as follows.

�y = � 1

r�QW jY Z
Hy �G�1� 

�z = � 1

r�QW jY Z
Hz +GzG

�1
� 

Ay�y +Az�z = 0

Multiplying left and right hand sides of these equations by r�QW jY Z (non zero by
Assumption 10) and rewriting in terms of the parameters ~�y, ~�zand ~ gives

~�y = �Hy � ~ (A4.1)
~�z = �Hz +Gz~ (A4.2)

Ay~�y +Az~�z = 0 (A4.3)

and the following matrix equation.24 IM 0 IM
0 IK �Gz
Ay Az 0

3524 ~�y
~�z
~

35 =
24 �Hy

�Hz

0

35
The rank and order conditions of the Corollary follow directly.
Substituting for ~�y and ~�z in (A4.3) using (A4.1) and (A4.2) and rearranging gives

(�Ay +AzGz) ~ = AyHy +AzHz

that is ~X~ = ~x using the de�nitions of ~X and ~x given in the Corollary. Arguing as in the
proof of Corollary 1 gives the rest of the required results. �
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