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Abstract

This paper considers parametric estimation problems with independent, identically,

non-regularly distributed data. It focuses on rate-efficiency, in the sense of maximal

possible convergence rates of stochastically bounded estimators, as an optimality criterion,

largely unexplored in parametric estimation. Under mild conditions, the Hellinger metric,

defined on the space of parametric probability measures, is shown to be an essentially

universally applicable tool to determine maximal possible convergence rates. These rates

are shown to be attainable in general classes of parametric estimation problems.
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1 Introduction

A general aim in large-sample statistical inference is to construct estimators that are

efficient in the sense that they converge to the target of estimation at the maximum

possible rate, and minimize asymptotic dispersion at this rate. Best convergence rates are

an important concern in non-parametric estimation problems, where they depend on the

dimensionality of the data and the degree of smoothness of the estimation target (e.g.,

Stone (1980, 1982); Rao (1982); Hall (1989); Donoho and Liu (1992))1. In most regular

parametric estimation problems, n−
1
2 is the best uniform convergence rate in a random

sample of size n, independent of the dimension of the data or the degree of smoothness of

the probability law beyond that required for regularity, and one can concentrate on finding

estimators that achieve the Cramér-Rao lower bound for the asymptotic covariance matrix.

However, there are exceptions even in some textbook parametric models - the triangular

density f(y; α, β) = 2 y−α
(β−α)2

, α ≤ y ≤ β, has a best rate of (n log(n))−
1
2 for α and a best

rate of n−1 for β, and the quadratic density f(y; θ) = 3y(2θ − y)/4θ3, 0 ≤ y ≤ 2θ, has a

best rate of (n log(n))−
1
2 for θ.2

This paper characterizes optimal uniform convergence rates for non-regular paramet-

ric estimation problems, utilizing the concepts of Hellinger distance between probability

densities and a Hellinger rate derived from this metric. Our results provide a bridge

between econometric textbook analysis of asymptotic efficiency in parametric and semi-

parametric estimation and the general treatments of non-parametric convergence rates in

the statistics literature. Non-regular parametric estimation problems are not common in

econometrics, but they have been receiving increasing attention in the applied literature on

auctions (Paarsch (1992)) and the literature on threshold regression models (Chan (1993);

Chan and Tsay (1998); Hansen (2000); Seo and Linton (2005)). Hirano and Porter (2003)

consider efficient estimation in a class of non-regular models - whose limit experiments

are not locally asymptotically normal, but can be approximated by locally shifted max-

1For example, Stone (1980) establishes that the best rate in terms of minimizing mean integrated squared

error for estimation in a sample of size n of a positive density of dimension m that is continuously differentiable

of degree k ≥ 0 with k-th derivative Lipschitz is n(k+1)/(2k+m+2).
2These densities have the regularity properties that they are positive and differentiable to all orders on the

interior of their support, but their log likelihoods behave badly at the boundaries of the support. They are

shown in Appendix B to be locally asymptotically quadratic, but not locally asymptotically normal, and to admit

estimators that attain the best rates. That demonstration illustrates the value of being able to first determine

the best rate for a problem, and then to use this rate to test whether the problem is locally asymptotically

quadratic.
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imum likelihood estimators that achieve asymptotic efficiency; see LeCam (1972, 1986).

The econometric literature on efficiency bounds in semi-parametric estimation include

Cosslett (1987), Horowitz (1993), Klein and Spady (1993), and Kahn and Tamer (2007).

Our analysis draws upon an extensive literature on convergence rate bounds, par-

ticularly methods used by Ibragimov and Has’minskii (1981) for estimation of location

parameters and by Donoho and Liu (1991a) for non-parametric density estimation. We ad-

dress four limitations of the Ibragimov and Has’minskii analysis. First, we obtain conver-

gence rates from properties of the parameterized problem, rather than generic properties

of parametric spaces of densities, facilitating application. Second, we avoid a restrictive

assumption that estimators be integrable, so that our analysis encompasses locally asymp-

totically quadratic (LAQ) problems that typically can only be shown to be stochastically

bounded (see LeCam (1986); LeCam and Yang (2000); Hajek (1970)). Third, we relax a

Hölder assumption on the Hellinger distance to allow cases where the best convergence

rate is not necessarily a power of sample size (LeCam and Yang (2000); Prakasa Rao

(1968)). Fourth, we are explicit about identification requirements.

A result closely related to this paper is due to Akahira (1991) and Akahira and Takeuchi

(1995). These authors show for the case of location parameters in general non-regular

models that a maximum bound on the convergence rate of parametric estimators can be

deduced from the absolute variation metric, which in turn can be bounded by functions

of the Hellinger metric. Our paper can be viewed as an extension of their results to

a wider class of parametric estimation problems. Another related result is the analysis

of Hellinger distance as a metric for convergence in the context of maximum likelihood

(ML) estimation. Van de Geer (1993, 2000) establishes rates of Hellinger consistency of

ML estimators under entropy conditions, drawing on the theory of empirical processes

(Pollard (1984, 1989)). Entropy-based rates of Hellinger consistency are not guaranteed

to be best, however, since entropy, as a measure of the complexity of the set of densities to

which the target density belongs, provides an upper bound on squared Hellinger distance

and, hence, not a sharp bound on the best possible rate.3 Moreover, the invoked entropy

conditions embed a uniform envelope or dominance condition on the set of densities. This

excludes some interesting non-regular cases from the analysis.

The analysis in this paper employs arguments based on the Hellinger distance. The

rate at which the distance between two parameter values converges to zero such that the

Hellinger distance of an i.i.d. sample is bounded away from zero and one in the limit,

henceforth referred to as the Hellinger rate, plays a central role in this analysis. After

3See, for example, Van de Geer (2000), example 7.4.6., and Birgé and Massart (1993).

3



reviewing the definition and main properties of Hellinger distance in Section 2, Section

3 of the paper establishes the existence of unique equivalence classes of Hellinger rates

under mild conditions on the data generating process, and it gives necessary and sufficient

conditions under which the Hellinger rate does not depend on the parameter value to be

estimated. Section 4 connects Hellinger rates to convergence rates in parametric estima-

tion. It establishes that, in the sense of Stone (1980), any attainable rate converges no

faster, and no bounding rate converges less fast than the Hellinger rate, and that, in fact,

the Hellinger rate constitutes a maximal bounding rate.4 It also identifies classes of para-

metric estimation problems in which estimators exist that achieve this bound. Section 5

concludes.

2 Hellinger Distance: Definition and Some Prop-

erties

Let (Y,B, µ) be a real-valued, σ-finite measure space with Borel σ-field B and Lebesgue

measure µ. Denote by {F (y; θ), θ ∈ Θ} a parametric family of probability measures on

B, where the parameter space Θ is an open bounded subset of Euclidean space. In what

follows, the scalar case Θ ⊂ R will be considered. Our analysis of the scalar case will also

apply when a target of estimation is scalar after re-parametrization of a vector parameter

problem5. Suppose further that F (y; θ) is absolutely continuous with respect to Lebesgue

measure, and f(y; θ) is the Radon-Nikodym derivative of F (y; θ).

Let h2(θ, θ′) = 1
2

∫
y

(√
f(y; θ)−

√
f(y; θ′)

)2
dy denote the squared Hellinger distance

of the parametric densities f(y; θ) and f(y; θ′), θ, θ′ ∈ Θ. Let H2
n(θ, θ′) denote the squared

Hellinger distance of the densities, evaluated at θ and θ′, respectively, of an i.i.d. sample

{yi, i = 1, . . . , n}.
The Hellinger metric is of interest because it enjoys a number of convenient properties.

1. Let ρ(θ, θ′) =
∫
y

√
f(y; θ)f(y; θ′)dy denote the affinity between the densities f(y; θ)

and f(y; θ′); see Matusita (1955). Expanding the square in the definition of Hellinger

distance,

h2(θ, θ′) = 1− ρ(θ, θ′).

4See the following section for a formal definition of attainable, bounding and maximal bounding rate.
5Our scalar analysis extends directly to the vector case when all parameters converge at the same rate. In

the case with different rates for each vector component, our analysis applies to a linear combination of a vector

of parameters, with a rate determined by the least rapidly converging component.
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2. For i.i.d. data,

H2
n(θ, θ′) =

1
2

∫

y1

· · ·
∫

yn




√√√√
n∏

i=1

f(yi; θ)−
√√√√

n∏

i=1

f(yi; θ′)




2

dy1 · · · dyn

= 1−
∫

y1

· · ·
∫

yn




√√√√
n∏

i=1

f(yi; θ)f(yi; θ′)


 dy1 · · · dyn

= 1− ρ(θ, θ′)n ∈ [0, 1].

Hence, the squared Hellinger distance for i.i.d. data involves a product of affinities.6

3. An identification condition that ρ(θn, θ0) → 1 only if θn → θ0 implies that the

Hellinger distance is a metric on the space of root densities, and that limn H2
n(θ, θ′) = 1

for θ 6= θ′.7 Since the affinity is related to the sample log-likelihood ratio

Λn(θ, θ0) = log

(
n∏

i=1

f(yi; θ)
f(yi; θ0)

)

by

E
[
exp

(
1
2
Λn(θ, θ0)

)]
=

∫
exp

(
1
2
Λn(θ, θ0)

) n∏

i=1

f(yi; θ0)dyi = ρ(θ, θ0)n,

this identification condition can be stated equivalently as follows: If θn does not converge

in probability to θ0, then plim infn→∞ Λn(θn, θ0) = −∞.8

4. Let σn, n = 1, 2, · · · be a decreasing sequence of positive scalars with limn σn = 0.

In a harmless abuse of terminology, σn will be called a convergence rate. For example,

σn = n−
1
2 is the convergence rate encountered in regular parametric estimation problems.

6Akahira and Takeuchi (1991) define an information measure based on Hellinger affinity, In(θ, θ′) =

−8 log ρ(θ, θ′)n. This measure is interpreted as the information between the product measures of the i.i.d.

sample, parameterized by θ and θ′, respectively.
7Nonnegativity, symmetry and reflexivity are obvious, identity of indiscernibles follows from the identification

definition, and the triangle inequality is the same as in the case of the L2 norm. Among the most frequently

used measures of divergence on the space of densities is the Kullback-Leibler divergence; it is not a distance

because it is not symmetric. Hellinger distance and Kullback-Leibler divergence are related by

H2
n(θ, θ′) ≤ 1− exp

(
−1

2
KLn(θ, θ′)

)
.

Therefore, convergence of the Kullback-Leibler divergence implies convergence of the Hellinger distance, but

not vice versa.
8The equivalence is supported by the following argument. Suppose that plim infn→∞ Λn(θn, θ0) > −∞.

Then, with a probability that remains bounded positive, the integrand in the expectation above is bounded

positive, implying that ρ(θn, θ0)n is bounded positive, which requires that ρ(θn, θ0) → 1.
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If convergence rates σn and σ′n satisfy lim infn→∞ σn/σ′n > 0, we write σn º σ′n and say

that σ′n is at least as fast as σn. If σn º σ′n and σ′n º σ′′n, then lim infn→∞ σn/σ′′n ≥
(lim infn→∞ σn/σ′n)(lim infn→∞ σ′n/σ′′n) > 0, implying σn º σ′′n. Then, º is a partial order

on convergence rates. If σn º σ′n, but not σ′n º σn, we write σn Â σ′n and say that

σ′n is faster than σn. We say that a convergence rate σn is a speed limit on a family of

convergence rates D if σ′n º σn for all σ′n ∈ D. We say σn is maximal if there exists no

convergence rate σ′′n Â σn that is also a speed limit for D.

The notion of rates of convergence employed in this paper builds on Stone (1980). Let

Tn denote a sequence of estimators of θ ∈ Θ that are functionals of an i.i.d. sample of

size n drawn from f(y; θ).

Definition: A convergence rate σn is attainable if there exists a sequence of estima-

tors Tn whose deviations from the target θ, scaled by σ−1
n , are uniformly stochastically

bounded; i.e.

lim
M→∞

lim sup
n→∞

sup
θ∈Θ

Pθ(σ−1
n |Tn − θ| > M) = 0.

A convergence rate is bounding if for every sequence of estimators Tn, deviations from the

target θ, scaled by σ−1
n , fail to converge uniformly in probability to zero; i.e.

lim
M→0+

lim sup
n→∞

sup
θ∈Θ

Pθ(σ−1
n |Tn − θ| > M) > 0.

A convergence rate is optimal or best if it is both attainable and bounding. We show

later (in Lemma 6) that a bounding convergence rate is a speed limit on the family of

attainable convergence rates, so that any attainable rate that achieves a speed limit must

be optimal, and the achieved speed limit must be maximal.

The main result of the paper exploits the fact that in the i.i.d. case, the limit of the

squared Hellinger distance H2
n(θ, Tn) and uniform stochastic boundedness of σ−1

n |Tn − θ|
can be related via the Cauchy-Schwartz inequality.

3 Hellinger Rates

3.1 Theory

Having reviewed the Hellinger metric and its main properties, this section uses this met-

ric to define Hellinger rates. A sequence of lemmas illuminates conditions under which

Hellinger rates exist, form unique equivalence classes and enjoy certain uniformity and

invariance properties.

We use the following definition of a Hellinger rate in the i.i.d. case:
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Definition: A positive, non-increasing sequence δn(θ0) with limn δn(θ0) = 0 is called

a Hellinger rate at θ0 ∈ Θ if

0 < lim inf
n

H2
n(θ0 ± βδn(θ0), θ0) ≤ lim sup

n
H2

n(θ0 ± βδn(θ0), θ0) < 1 for some β > 0.

An immediate consequence of this definition is that any positive scalar multiple of a

Hellinger rate is again a Hellinger rate. The following result provides a useful characteri-

zation of Hellinger rates:

Lemma 1: A non-increasing sequence δn(θ0) with limn δn(θ0) = 0 is a Hellinger rate

at θ0 ∈ Θ if and only if

0 < lim inf
n

nh2(θ0 ± βδn(θ0), θ0) ≤ lim sup
n

nh2(θ0 ± βδn(θ0), θ0) < ∞ for some β > 0.

The proofs of this and all subsequent results are given in Appendix A of the paper.

In our analysis of the existence and properties of Hellinger rates, we employ the fol-

lowing definitions:

Definition: A bimodulus of continuity of the squared Hellinger distance at θ ∈ Θ is

a positive function λ(δ; θ) defined for 0 < δ < ν, for some ν > 0, coupled with a scalar

κ ∈ (0, 1), such that λ(δ; θ) is increasing in δ with limδ→0 λ(δ; θ) = 0 and

max{κλ(|τ |; θ), λ(κ|τ |; θ)} ≤ h2(θ + τ, θ) ≤ min{λ(|τ |; θ)/κ, λ(|τ |/κ; θ)} for all |τ | < ν.

Definition: A bimodulus rate at θ ∈ Θ is a decreasing sequence δn(θ) implicitly

defined by nλ(δn(θ), θ) = 1.

Remark: A bimodulus of continuity bounds the curvature of the Hellinger distance

above and below. It extends the conventional definition of modulus of continuity, which

gives an upper bound on curvature, and generalizes the bi-Lipschitz property that char-

acterizes isomorphisms of Lipschitz maps. If h2 is locally quadratic, h2(θ + τ, θ) =

a(θ)τ2 + o(τ2) with a(θ) > 0, then λ(δ; θ) = a(θ)δ2 is a bimodulus. If the bimodulus

satisfies λ(δ; θ) = C(θ)δα with α > 0, then λ(δ; θ) is said to be of a α-Hölder class at

θ. In such power cases, the bimodulus is proportional to the square of the inverse of the

modulus of continuity ω(ε) = sup{‖ T (f(·; θ0)) − T (f(·; θ)) ‖: h(θ0, θ) ≤ ε}, ε > 0, of

the functional T over the class {f(·; θ); θ ∈ Θ} in the parametric case T (f(·; θ)) = θ, as

employed in Donoho and Liu (1991a, 1991b).

The requirement in the definition of a bimodulus that h2(θ+τ, θ) be bounded by both

scalar multiples of the function λ(|τ |; θ) and by this function evaluated at scalar multiples

of its first argument is not restrictive for members of the α-Hölder class, where κλ(|τ |; θ)
and λ(κ|τ |; θ) are scalar multiples. However, it restricts candidate bimodulus functions in
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cases where h2(θ+τ, θ) increases at a very rapidly decreasing rate with |τ | or a very slowly

increasing rate with |τ |. An example of the first case is the function λ(|τ |; θ) = | log(|τ |)|−α,

α > 0, which approaches zero less rapidly than |τ |β for any β > 0 as |τ | → 0, and the

constraint κλ(|τ |; θ) ≤ h2(θ + τ, θ) is binding; and an example of the second case is the

function λ(|τ |; θ) = exp(−α/|τ |), α > 0, which approaches zero more rapidly than |τ |β
for any β > 0, and the constraint λ(κ|τ |; θ) ≤ h2(θ + τ, θ) is binding. An obvious case

where h2 fails to have a bimodulus with the defined properties is h2(θ + τ, θ) = |τ |α′

for τ > 0 and h2(θ + τ, θ) = |τ |α′′ for τ < 0, with 0 < α′, α′′ < 1 and α′ 6= α′′.

Another failure is h2(θ + τ, θ) = exp(−α′/|τ |) for τ > 0 and h2(θ + τ, θ) = exp(−α′′/|τ |)
for τ < 0 with α′ < α′′, where the candidate function λ(|τ |; θ) = exp(−α′/|τ |) has

λ(|τ |α′/α′′; θ) ≤ h2(θ + τ, θ) ≤ λ(|τ |; θ), but fails to satisfy κλ(|τ |; θ) ≤ h2(θ + τ, θ) for

any κ > 0.

There exists a family of probability measures associated with any candidate bimodulus

function λ(δ; θ). Consider the family f(y; θ) of uniform densities on the interval with end

points 0 and sgn(θ)(1 − λ(δ; 0))2. The affinity between f(y; θ) and f(y; 0) is ρ(θ, 0) =

1 − λ(|θ|; 0), implying h2(θ, 0) = λ(|θ|; 0). This example illustrates the sensitivity of the

Hellinger distance to the choice of parametrization of a family of probability measures.

In particular, if a parametric family of probability measures {fΘ(y; θ) : θ ∈ Θ} has a

bimodulus λΘ(|τ |; θ0) at θ0, then the parameter transformation γ = ψ(θ − θ0) = sgn(θ −
θ0)λΘ(|θ−θ0|; θ0)

1
2 defined on Γ = ψ(Θ) yields a parametric family of densities fΓ(y; γ) =

fΘ(y;ψ(γ)) with the quadratic bimodulus λΓ(|τ |; 0) = |τ |2 at γ = 0.

A useful class of parametric densities with bounds that translate into a bimodulus for

Hellinger distance is described in the following assumption:

A0: f
1
2 (y; θ + τ)f

1
2 (y; θ) has an expansion for A = {y : f(y, θ) > 0} and τ in

some interval (−ν, ν) of the form f
1
2 (y; θ + τ)f

1
2 (y; θ) = f(y; θ) + q0(y, θ, τ) − q1(y, θ, τ),

where q0(y, θ, τ) and q1(y, θ, τ) are integrable with
∫
A q0(y, θ, τ)dy = 0 for all τ and∫

A q1(y, θ, τ)dy = C(θ)(|τ |α + o(|τ |α)), with C(θ) > 0 and α > 0.

If A0 holds, then λ(δ; θ) = C(θ)δα is a Hölder-class bimodulus. If the log density

meets classical regularity conditions, as in Example 1 below, then A0 is satisfied with

bimodulus λ(δ; θ) = C(θ)δ2.

To establish the existence of Hellinger rates, the following assumptions will be main-

tained:

A1: (Y,B, µ) is a real-valued σ-finite measure space with Borel σ-field B and Lebesgue

measure µ, Θ ⊂ R is an open bounded subset of Euclidean space, {F (y; θ) : θ ∈ Θ}
is a family of probability measures that are absolutely continuous with respect to µ,
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and f(y; θ) is the Radon-Nikodym derivative of F (y; θ).

A2: yi, for i = 1, · · · , n, is i.i.d. with probability measure F (y; θ), θ ∈ Θ.

A3: (Identification) For θn, θ0 ∈ Θ, ρ(θn, θ0) → 1 only if θn → θ0.

A4: The squared Hellinger distance h2(θ0, θ) for {f(y; θ), θ ∈ Θ} has bimodulus λ(δ; θ) at

θ ∈ Θ; i.e. there exist κ ∈ (0, 1) and ν > 0, such that λ(δ; θ) is finite and increasing

in δ with limδ→0 λ(δ; θ) = 0, and

max{κλ(|τ |; θ), λ(κ|τ |; θ)} ≤ h2(θ+τ, θ) ≤ min{λ(|τ |; θ)/κ, λ(|τ |/κ; θ)} for all |τ | < ν.

The following result establishes the existence of Hellinger rates.

Lemma 2: Under A1-A4 with bimodulus λ(δ; θ0), there exists, for each θ0 ∈ Θ, a

bimodulus rate δn(θ0) satisfying

1− exp(−κ) ≤ lim inf
n

H2
n(θ0 ± δn(θ0), θ0) ≤ lim sup

n
H2

n(θ0 ± δn(θ0), θ0) ≤ 1− exp(−1/κ),

so that δn(θ0) is also a Hellinger rate.

Definition: Two Hellinger rates δ′n and δ′′n are rate equivalent, denoted δ′n ∼ δ′′n, if

δ′′n º δ′n and δ′n º δ′′n; i.e., each converges at least as fast as the other.

Since º is a partial order, rate-equivalence is an equivalence relation.

The following result establishes that Hellinger rates form unique equivalence classes.

Lemma 3: If A1-A4 hold, λ′(δ; θ0) and λ′′(δ; θ0) are bimodulus functions for h2(θ0 +

τ, θ0), and δ′n(θ0) and δ′′n(θ0) are respective bimodulus rates at θ0, then there exists a

constant K > 1, independent of n, such that 1/K ≤ λ′(δ; θ0)/λ′′(δ; θ0) ≤ K for all

0 < δ < ν, and δ′n(θ0) and δ′′n(θ0) are rate equivalent, satisfying 1/K ≤ δ′n(θ0)/δ′′n(θ0) ≤ K.

Every Hellinger rate at θ0 is rate equivalent to a bimodulus rate at θ0, implying that the

equivalence class of rate equivalent Hellinger rates at θ0 is unique.

To determine the Hellinger rate, Hellinger distance and/or Hellinger affinity need to be

calculated. Hence, in order to characterize general properties of Hellinger rates, it seems

sensible to deduce them from further conditions on Hellinger distance or affinity and to

check in applications whether these conditions are met. The following result provides a

necessary and sufficient condition on the bimodulus for the Hellinger rate to be uniform

on Θ.

Lemma 4: Suppose A1-A4 hold. A necessary and sufficient condition (H) for a

Hellinger rate to be uniform on Θ is

0 < lim inf
δ→0

λ(δ; θ)/λ(δ; θ′) ≤ lim sup
δ→0

λ(δ; θ)/λ(δ; θ′) < ∞ for any θ, θ′ ∈ Θ.
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This result covers many cases of interest, in particular the case of location and scale

parameters, as the following Corollary to Lemma 4 establishes, but also certain cases of

shape parameters, as illustrated in the next section.

Corollary 1: Suppose A1-A4 and condition H hold, and (i) θ is a location parameter,

or (ii) exp(θ) is a scale parameter. Then, the Hellinger rate does not depend on the value

of θ.

Remark: Notice that a Hölder continuity assumption on the Hellinger distance, as in

Ibragimov and Has’minskii (1981), of the form

h2(θ, θ + |τ |) ≤ E [K(y)] |τ |β for some β > 0

yields

ρ(θ, θ + |τ |) ≥ 1− E [K(y)] |τ |β

establishing, by the argument of Lemma 1, that n−1/β is a lower bound on the Hellinger

rate, but not that this bound is achieved uniformly. Thus, the Hölder continuity assump-

tion is not nested by Lemma 4.

The final result in this section shows that the Hellinger rate is invariant under trans-

formations of the random variable that do not depend on the parameter of interest.

Lemma 5: Suppose that A1-A4 hold. Consider an increasing differentiable transfor-

mation Z = g(Y ) of the random variable Y which does not depend on θ. Let DY (δn(θ))

and DZ(δn(θ)) denote the Hellinger rate equivalence classes based on the random variables

Y and Z, respectively. Then, DY (δn(θ)) = DZ(δn(θ)) for all θ.

3.2 Examples

Example 1: (Regular Case) Suppose for each θ ∈ Θ and for all y, f
1
2 (y; θ) is twice

continuously differentiable in some neighborhood of τ = 0. Then a Taylor’s expansion

gives

f
1
2 (y; θ + τ)f

1
2 (y; θ) = f(y; θ) + q0(y, θ)τ − q1(y, θ)τ2 + R(y, θ, τ),

where

q0(y, θ) =
∂

∂θ
f(y; θ)/2,

q1(y, θ) = (
∂

∂θ2
f(y; θ))2/8f(y; θ)− ∂2

∂θ2
f(y; θ)/4,

R(y, θ, τ) = (q1(y, θ′)− q1(y, θ))τ2,

with θ′ a point on the line segment between θ and θ+τ . Assume that there is an integrable

function g(y, θ) ≥ 0 that dominates ∂
∂θf(y; θ′), ( ∂

∂θf(y; θ))2/f(y; θ′), and ∂2

∂θ2 f(y; θ′) for

10



θ′ in a neighborhood of θ; that g(y, θ) · o(τ2) dominates R(y, θ′, τ) in a neighborhood of

θ and of τ = 0; and that
∫

q1(y, θ)dy = E
[

∂
∂θf(y; θ)/f(y; θ)

]2
/8 ≡ C(θ) > 0. Then,

|R(y, θ, τ)| ≤ ∫
g(y, θ)dy · o(τ2). Defining q0(y, θ, τ) = ∂

∂θf(y; θ)τ/2 + ∂2

∂θ2 f(y; θ)/4 and

q1(y, θ, τ) = ( ∂
∂θf(y; θ))2τ2/8f(y; θ) + R(y, θ, τ), one then has

∫
q1(y, θ, τ)dy = C(θ)(τ2 +

o(τ2)), so that A0 is satisfied and C(θ)τ2 is a bimodulus. Lemma 1 and 2 then imply

that δn = n−
1
2 is a bimodulus and Hellinger convergence rate, so that all limit points

of H2
n(θ ± δnβ, θ) are contained in the interior of the unit interval for 0 < β < ∞.

This can also be established directly. Integrating the Taylor’s expansion term-by-term,

h2(θ + τ, θ) = C(θ)(τ2 + o(τ2)). Then, for βn any bounded sequence with limit β,

H2
n(θ + δnβn, θ) = 1− (1− h2(θ + δnβn, θ))n = 1− (1− C(θ)(β2

n + n · o(β2
n/n))/n)n

→ 1− exp(−C(θ)β2).

Remark: In this regular case, maximum likelihood estimators are locally asymptot-

ically normal (LAN) and achieve the Hellinger rate δn = n−
1
2 . This is a special case of

locally asymptotically quadratic (LAQ) problems treated in Proposition 2 below.

Example 2: (Nonregular cases) Consider the generalized gamma density

g(z; α, β, γ) = zα−1 exp(−zβ/γ)β/γα/βΓ(α/β), z, α, β, γ, > 0.

This density has moments E[Zk] = γk/βΓ((α + k)/β)/Γ(α/β), for k > −α. Now form the

bilateral generalized gamma density about a location parameter θ,

f(y; θ, α, β, γ) = g(|y − θ|; α, β, γ)/2 = |y − θ|α−1 exp(−|y − θ|β/γ)β/2γα/βΓ(α/β).

This density has E[(Y − θ)k] = 0 for k odd, and E[(Y − θ)k] = γk/βΓ((α + k)/β)/Γ(α/β)

for k even. The square root of this density is in the same class of functions,

f(y; θ, α, β, γ)
1
2 = Cf(y; θ, (α + 1)/2, β, 2γ) = C ′|y − θ|α−1

2 exp(−|y − θ|β/2γ),

where C = β
1
2 2

α+1
2β γ

1
2β Γ((α+1)/2β)/Γ(α/β)

1
2 and C ′ = [β/2γα/βΓ(α/β)]

1
2 . The bilateral

generalized gamma includes various cases where conventional regularity conditions leading

to
√

n-LAN behavior of maximum likelihood estimators of the location parameter θ are

violated. We confine attention to the non-regular cases (1) α < 1 and β ≤ 1, in which

the density has a pole at y = θ, and (2) α = 1 and β < 1, in which it has a cusp at

y = θ. Lemma 4 implies that Hellinger rates in these cases do not depend on the value of

θ. Table 1 summarizes the results from an analysis of this example; detailed calculations

are provided in Appendix B.2.9
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α β bimodulus Hellinger rate

α < 1 any O(θα) n−
1
α

α = 1 β < 1
2

O(θ2β+1) n−
1

2β+1

α = 1 β = 1
2

O(|θ2 log(θ)|) (n log(n))−
1
2

α = 1 β > 1
2

O(θ2) n−
1
2

Table 1: Non-regular bilateral generalized gamma density

Example 3: (shape parameters) Suppose z ∼ u[−1/2, 1/2]. Consider the transfor-

mation ψ(z, λ) = |z|λsgn(z), parameterized by λ ∈ (0, 1), and let y = ψ(z, 1/λ). Then,

f(y;λ) = λ|y|λ−1 with support [−(1/2)λ, (1/2)λ]. For small |τ | the Hellinger affinity in

this example is

ρ(λ, λ + |τ |) =
∫ (1/2)

1
λ

−(1/2)
1
λ

λ
1
2 |y|λ−1

2 (λ + |τ |) 1
2 |y|λ+|τ |−1

2 dy

=

√
1 + |τ |

λ

1 + |τ |
2λ

(
1
2

) |τ |
2λ

.

Hence, the squared Hellinger distance of an i.i.d. sample is

H2
n

(
λ, λ +

1
n

)
= 1− ρ

(
λ, λ +

1
n

)n

= 1−

√
1 + |1/n|

λ

1 + |1/n|
2λ

(
1
2

) 1
2λ

→ 1−
(

1
2

) 1
2λ

∈ (0, 1),

as n →∞. In this non-regular example, there is no need to bound the Hellinger distance

to establish its convergence to an interior limit for the uniform Hellinger rate of 1
n . This

example is just a special case of a bilateral generalized gamma, for which α = λ - the

parameter of interest in this example - and β = 0, γ = 1 and θ = 0. Note that this

is an instance of a multi-parameter problem in which the Hellinger rates differ across

parameters.

Another example involving a shape parameter is the density f(y; θ) = (1−y/θ)−
1
2 /2θ,

for 0 ≤ y ≤ θ. The corresponding log likelihood ratio does not have an LAQ expansion.10

9In cases where the bimodulus does not exist, e.g. the generalized bilateral gamma with different parameters
on either side of θ, one can carry out analyses with the respective one-sided bounding functions and, with careful

attention regarding uniformity, determine the relevant rate as the minimum of the two resulting rates. In this

case, estimators converging at this rate will be stochastically bounded on one side of its support, but not on

the other.
10Here, as in Example 2 with α < 1, the second order term in the expansion of the log likelihood ratio is

negative, rather than positive as required by the LAQ definition.
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It can be shown that the bimodulus is λ(δ; θ) = O(δ
1
2 ), so that the Hellinger rate is n−2.

An estimator of θ that attains this rate is the maximal order statistic y(n).

4 Maximal Uniform Convergence Rates

This section establishes that, under assumptions A1-A4 on the data generating process,

Hellinger rates are maximal bounding convergence rates.

To provide some intuition for the arguments provided in this section, an illustrative

example, summarized in Appendix B.3, may be useful. It suggests that if an estimator Tn

attains the Hellinger rate δn (i.e. δ−1
n (Tn−θ) is stochastically bounded), then the random

Hellinger distance H2
n(Tn, θ) has a non-degenerate distribution on [0, 1]. This contrasts

with the case of an estimator T ′n that converges at a rate σn Â δn, which induces a

degenerate limiting distribution of H2
n(T ′n, θ), placing all probability mass at 1. The main

result of this section, in Proposition 1, establishes that the Hellinger rate is a maximal

speed limit when A1-A4 hold and the Hellinger rate is uniform on Θ. Then, an estimator

that attains the Hellinger rate uniformly is rate-efficient, and in the terminology of Stone

(1980) achieves an optimal or best convergence rate.

The following lemma establishes that bounding rates, defined in Section 2, are speed

limits on attainable rates, and it gives a criterion for best rates. Given this result, a useful

approach to obtaining rate-efficient estimators is to find a maximal bounding convergence

rate, and look for estimators that attain this rate.

Lemma 6: If σn is an attainable convergence rate, and σ′n is a bounding convergence

rate, then σn º σ′n. Hence, bounding convergence rates are speed limits for attainable

rates, and a convergence rate σn that is both attainable and bounding is best in the sense

that there is no faster attainable rate and σn is a maximal speed limit.

The uniformity in Θ of the conditions for attainable and bounding convergence rates

is essential. There exist non-uniform “super-convergent” estimators, a variant on Hodges’

super-efficient estimators. Suppose a sequence of estimators Tn attains a maximal bound-

ing rate σn. Given θ0 ∈ Θ and a convergence rate σ′n that is faster than σn, define a

second sequence of estimators T ′n = (σ′n/σn)Tn = (1 − σ′n/σn)θ0 if |Tn − θ0| < σ′n and

T ′n = Tn otherwise. At θ0, this estimator achieves the super-convergent rate σ′n; i.e.

(T ′n − θ0)/σ′n = (Tn − θ0)/σn is stochastically bounded.

The Proposition 1 below relates Hellinger rates to maximal bounding rates. It uses

the following auxiliary result which uses the Cauchy-Schwartz inequality to bound the

squared Hellinger distance.
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Lemma 7: Suppose A1-A3 hold. Let θn ∈ Θ, and Bn ∈
⊗

i≤n B. Then, the squared

Hellinger distance for i.i.d. data satisfies

H2
n(θn, θ) ≥ 1

2

(
P (Bn; θn)

1
2 − P (Bn; θ)

1
2

)2
,

where P (Bn; θ) ≡ ∫
Bn

∏n
i=1 f(yi; θ)dyi, and analogously for P (Bn; θn).

Proposition 1: Suppose A1-A4 and condition H hold so that the Hellinger rate δn

is uniform. Then, δn is a bounding rate and a maximal speed limit on attainable rates,

satisfying σn º δn º σ′n for each attainable rate σn and each bounding rate σ′n. For every

θ ∈ Θ and some β > 0, lim infn→∞H2
n(θ + βσn, θ) > 0 for every attainable rate σn, while

lim supn→∞H2
n(θ + σ′nβ, θ) < 1 for every bounding rate σ′n.

Comment: The proposition implies that the Hellinger rate constitutes a minimum

speed for bounding rates, as well as a speed limit on attainable rates. Thus, an esti-

mator that achieves the Hellinger rate is rate-efficient. It also establishes a necessary

condition for convergence rates σn to be attainable. One interpretation that can be

given to this condition is by its contrapositive: At a rate δ̌n faster than the Hellinger

rate δn, lim infn H2
n(θ, θ + βδ̌n) = 0 for some β > 0, and hence Proposition 1 leads to

the conclusion that no uniformly δ̌−1
n -stochastically bounded estimator can exist. Hence,

Proposition 1 implies that the Hellinger rate is an upper bound on attainable rates un-

der assumptions A1-A4 and condition H. This bound may or may not be tight, de-

pending on whether an estimator exists that attains this bound. In light of the con-

struction of Hellinger rates by means of the bimodulus, rate-efficient estimators have

(Tn − θ0)/λ−1(1/n; θ0) asymptotically stochastically bounded and non-degenerate. Note

that the bimodulus is proportional to the square of the inverse of the modulus of continuity

ω(ε; θ0) = sup{|θ − θ0| : h(θ0, θ) ≤ ε}, ε > 0, i.e.

λ(ω(ε; θ0); θ0) = Cε2, or λ(δ; θ0) = C(ω−1(δ; θ0))2,

where C is a positive constant. In fact, all rate derivations in this paper can be obtained

by substituting C(ω−1(δ; θ0))2. Donoho and Liu (1991b) show that, for linear functionals

T over a convex class {f(·; θ); θ ∈ Θ}, the implied rate ω(n−
1
2 ) is attainable under quite

general conditions.11 The remainder of this section illustrates attainability in some other

cases.

Example 2 (continued): Prakasa Rao (1968) shows that, for α = 1 and 0 < β < 1/2,

the maximum likelihood estimator for the location parameter θ converges at the (inverse)

11Donoho and Liu (1991b) also treat some nonlinear cases: estimating the rate of decay and the mode of a

density, and robust nonparametric regression.

14



Hellinger rate n
1

1+2β ; i.e. the Hellinger rate forms a tight bound on attainable rates in

this case.

Remark: Akahira (1991) and Akahira and Takeuchi (1995) provide a related result

for the special case of location parameter families. For y = (y1, . . . , yn)′, they use the

absolute variation metric (L1 norm)12

dn(θ, θ′) =
∫

y
|f(y; θ)− f(y; θ′)|dy,

and show that, if a δ−1
n consistent estimator exists, then, for each θ ∈ Θ and every ε > 0,

there exists a positive number t0 such that, for any t ≥ t0,

lim inf
n→∞ dn(θ, θ − tδn) ≥ 2− ε.

Akahira and Takeuchi (1995) show (Lemma 3.5.1) that, for any θ, θ′ ∈ Θ,

2H2
n(θ, θ′) ≤ dn(θ, θ′) ≤ 2

√
2H2

n(θ, θ′),

which implies that
1
8
d2

n(θ, θ′) ≤ H2
n(θ, θ′) ≤ 1

2
dn(θ, θ′).

Hence, convergence in the Hellinger metric is equivalent to convergence in the absolute

variation metric.

Proposition 1 applies in particular to parametric families that are locally asymptoti-

cally quadratic (LAQ), in the sense of LeCam (1980) and LeCam and Yang (2000).

Definition: The family of densities {f(y; θ), θ ∈ Θ}, Θ open and bounded, is locally

asymptotically quadratic (LAQ) at θ0 ∈ Θ at a rate δn > 0 satisfying δn → 0, if for any

M > 0, the log likelihood ratio Λn(θ0 + δnt, θ0) satisfies

sup
|t|≤M

∣∣∣∣Λn(θ0 + δnt, θ0)− δnSn(θ0)t +
1
2
δ2
nKn(θ0)t2

∣∣∣∣ = op(1),

where δnSn(θ0) is stochastically bounded and non-degenerate (i.e. it does not converge in

probability to a constant), and δ2
nKn(θ0) is asymptotically almost surely positive definite

(i.e., given ε > 0, there exists κ > 0 such that lim infn→∞ P (1/κ ≤ δ2
nKn(θ0) ≤ κ; θ0) >

1− ε).

A LAQ family is locally asymptotically normal (LAN) if in addition δn = n−
1
2 , δnSn(θ0)

is asymptotically normal, and δ2
nKn(θ0) converges in probability to a constant. The

regular case given in Example 1 above is LAN. Appendix B.1 shows that the triangular

12See also Hoeffding and Wolfowitz (1958) for a discussion of the properties of this metric.
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and quadratic densities given in the introduction are LAQ, but not LAN. The bilateral

generalized gamma family in Example 2 with α < 1 fails to be LAQ.

The next proposition establishes for a family that is LAQ at a uniform Hellinger rate

that approximate maximum likelihood estimators attain this rate, and gives conditions

under which an estimator obtained in one step from an initially consistent estimator

attains this rate.

Proposition 2: Assume A1-A4 and condition H, so that the Hellinger rate δn is

uniform. Assume for each θ0 ∈ Θ that the log likelihood ratio is LAQ at the rate δn.

Then:

(1) The infeasible estimator θn0 = θ0 + Kn(θ0)−1Sn(θ0) achieves the Hellinger rate.

(2) Assume the property (M) that θnm is a sequence of approximate maximum likelihood

estimators satisfying P (supθ∈Θ Λn(θ, θnm) > γn; θ0) ≤ ζn, where γn is a positive

sequence satisfying γn → 0, and ζn is a positive sequence satisfying
∑∞

n=1 ζn < +∞.

Then, θnm converges almost surely to θ0 and is asymptotically equivalent to θn0, i.e.

δ−1
n (θnm − θn0) = op(1), so that it attains the Hellinger rate.

(3) Assume the property (S) that δ2
nKn(θ) satisfies a stochastic Hölder condition in a

neighborhood of each θ0 ∈ Θ that bounds the error in the LAQ approximation to the

log likelihood ratio; i.e., given ε > 0, there exist a neighborhood Θ′ of θ0 and scalars

M > 0 and ψ > 0 such that

lim inf
n→∞P

(∣∣Kn(θ)−Kn(θ′)
∣∣ ≤ δ−2

n M |θ − θ′|ψ for all θ, θ′ ∈ Θ′; θ0

)
> 1− ε,

and

lim inf
n→∞P

(∣∣Λn(θ, θ′)− Sn(θ′)(θ − θ′) + Kn(θ′)(θ − θ′)2/2
∣∣

≤ δ−2
n M |θ − θ′|2+ψ for all θ, θ′ ∈ Θ′; θ0

)
> 1− ε.

Assume that there exists an initially consistent estimator θn1 for θ0 that attains

a convergence rate δ′n satisfying δ−1
n (δ′n)1+ψ = o(1). Then, the one-step estimator

θn2 = θn1 + Kn(θn1)−1Sn(θn1) achieves the Hellinger rate, and is asymptotically

equivalent to θn0.

Comment: If a maximum likelihood estimator is achieved at a finite log likelihood

ratio almost surely for a family of densities with the LAQ property, then property (M) in

result (2) holds for this estimator. More generally, if the log likelihood function has a finite

supremum almost surely, then (M) admits estimators that come within γn of achieving

this supremum. Result (2) continues to hold if the log likelihood has an infinite supremum,
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but θnm can be selected so that with probability one, eventually Λn(θnm, θ0) ≥ −γn → 0.

The Hölder property (S) in (3) implies that δ2
nKn(θ) is stochastically equicontinuous in a

neighborhood of θ0. The assumption δ−1
n (δ′n)1+ψ → 0 is satisfied, for example, if δ′n = n−

1
2

and δn = (n log(n))−
1
2 , as in the case of the α parameter in the triangular density and the

quadratic density given in the introduction. Appendix B.1 shows that these densities are

LAQ, and satisfy the conditions of (3), so that there exist one-step estimators for these

families that achieve the Hellinger rate.

5 Conclusions

This paper considers rate efficiency in parametric estimation as a criterion to judge the

quality of estimators, next to other efficiency criteria, such as e.g. the Cramér Rao

bound, within a given class of estimators converging at a specific rate, e.g.
√

n. It

addresses the question of what convergence rates parametric estimators can attain in

parametric estimation problems with i.i.d. data. The Hellinger metric is proposed as a

very convenient tool to identify the Hellinger rate as an upper bound on attainable rates

and thereby as a benchmark or gold standard for rate-efficiency. The paper also identifies

classes of parametric estimation problems in which this bound is tight, i.e. in which the

Hellinger rate is the maximal attainable rate.

This work deals only with scalar parameters of interest, or with parameter vectors

whose components converge at the same rate. Future work might deal with cases like

Examples 2 and 3, in which different components of a parameter vector converge at

different rates, and the rates of convergence of one depend on the other; and with the case

of dependent data, where convergence rates may depend on the value of the parameter of

interest.13

A Proofs

A.1 Lemma 1

We use the elementary analytic result that for any real sequence αn,

exp(− lim sup
n

αn) = lim inf
n

(1− αn/n)n ≤ lim sup
n

(1− αn/n)n = exp(− lim inf
n

αn).

13An example is, for instance, the case of the parameter of an autoregressive process of order 1. In the unit

root case, estimators converge at rate T , while otherwise they converge at rate
√

T , where T is the sample size.
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Defining αn = nh2(θ0 ± βδn(θ0), θ0), one has

H2
n(θ0 ± βδn(θ0), θ0) = 1− ρ(θ0 ± βδn(θ0), θ0)n = 1− (1− αn/n)n.

Then, δn(θ0) is a Hellinger rate at θ0 if and only if

0 < lim inf
n

H2
n(θ0 ± βδn(θ0), θ0) = exp(− lim sup

n
nh2(θ0 ± βδn(θ0), θ0)),

and

1 > lim sup
n

H2
n(θ0 ± βδn(θ0), θ0) = exp(− lim inf

n
nh2(θ0 ± βδn(θ0), θ0)),

proving the result. 2

A.2 Lemma 2

The rate δn(θ0) solves the equation nλ(δn(θ0); θ0) = 1. Then limn δn(θ0) = 0, implying

δn(θ0) ≤ ν and θn = θ0 ± δn(θ0) ∈ Θ for n sufficiently large. From the definition of a

bimodulus at θ0, κλ(δn(θ0); θ0) ≤ h2(θn, θ0) ≤ λ(δn(θ0); θ0)/κ, and hence

[1− nλ(δn(θ0); θ0)/κn]n ≤ [1− h2(θn, θ0)]n ≤ [1− κnλ(δn(θ0); θ0)]n.

Taking the limit in n of this expression using the analytic result in the proof of Lemma

1 implies that the limit points of H2
n(θn, θ0) = 1 − [1 − h2(θn, θ0)]n are bracketed by

1− exp(−κ) and 1− exp(−1/κ). 2

A.3 Lemma 3

The bimodulus rates δ′n(θ0) and δ′′n(θ0) satisfy nλ′(δ′n; θ0) = nλ′′(δ′′n; θ0) = 1 for the

bimodulus functions λ′ and λ′′. The bimodulus inequalities imply λ′(κ′δ′′n(θ0); θ0) ≤
λ′′(δ′′n(θ0); θ0) = 1/n = λ′(δ′n(θ0); θ0), and hence κ′δ′′n(θ0) ≤ δ′n(θ0). Similarly, one has

λ′′(κ′′δ′n(θ0); θ0) ≤ λ′(δ′n(θ0); θ0) = 1/n = λ′′(δ′′n(θ0); θ0), implying κ′′δ′n(θ0) ≤ δ′′n(θ0).

Therefore, κ′ ≤ δ′n(θ0)/δ′′n(θ0) ≤ 1/κ′′. Then, δ′n(θ0) and δ′′n(θ0) are rate equivalent. The

bimodulus inequalities also imply κ′λ′(δ; θ0) ≤ λ′′(δ; θ0)/κ′′ and κ′′λ′′(δ; θ0) ≤ λ′(δ; θ0)/κ′,

so that κ′κ′′ ≤ λ′(δ; θ0)/λ′′(δ; θ0) ≤ 1/κ′κ′′. So, K = 1/κ′κ′′ > 1.

If, at θ0, δ′n(θ0) is a Hellinger rate, and δn(θ0) is the bimodulus rate for a bimodulus

λ(δ; θ0), then for some β > 0, nλ(κβδ′n(θ0); θ0) ≤ nh2(θ0±βδ′n(θ0); θ0) ≤ nλ(βδ′n(θ0)/κ; θ0).

Then, Lemma 1 implies that there are positive constants α and γ such that the in-

equalities nλ(κβδ′n(θ0); θ0) ≤ γ and nλ(βδ′n(θ0)/κ; θ0) ≥ α hold for n sufficiently large.

Then, there exist scale factors ζ, η > 0 such that nλ(ζκβδ′n(θ0); θ0) ≤ 1 = nλ(δn(θ0); θ0),

implying δ′n(θ0) ≤ δn(θ0)/ζκβ, and nλ(δn(θ0); θ0) = 1 ≥ nλ(ηβδ′n(θ0)/κ; θ0), implying
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δ′n(θ0) ≥ δn(θ0)κ/ηβ. Then, δ′n(θ0) and δn(θ0) are rate equivalent, and the bimodulus

rate for any bimodulus defines a unique equivalence class. 2

A.4 Lemma 4

From Lemma 1, δn is a uniform Hellinger rate if and only if, for some β > 0 and any

θ ∈ Θ,

0 < α(θ) ≡ lim inf
n

nh2(θ ± βδn, θ) ≤ lim sup
n

nh2(θ ± βδn, θ) ≡ γ(θ) < ∞.

The bimodulus at θ satisfies κnλ(δ; θ) ≤ nh2(θ ± δ, θ) ≤ nλ(δ; θ)/κ. If δn is a uniform

Hellinger rate, then, for any θ ∈ Θ, κα(θ) ≤ nλ(βδn; θ) ≤ γ(θ)/κ. Hence, κ2α(θ)/γ(θ) ≤
λ(βδn; θ)/λ(βδn; θ′) ≤ γ(θ)/κ2α(θ), implying (H).

Alternately, if (H) holds, and δn(θ) is the bimodulus rate at θ, and hence by Lemma

3 a Hellinger rate, one has

(κ2α(θ′)/γ(θ))κnλ(βδn(θ); θ) ≤ κnλ(βδn(θ); θ′)

≤ nh2(θ′ ± βδn(θ), θ′)

≤ nλ(βδn(θ); θ′)/κ

≤ (γ(θ′)/κ2α(θ))nλ(βδ(θ); θ)/κ.

Then, by Lemma 2, δn(θ) is a Hellinger rate (with common β) for all θ′ ∈ Θ. 2

A.5 Corollary 1

Case (i) follows from the transformation y′ = y − θ, yielding

ρ(θ + δ, θ) =
∫

f
1
2 (y − θ − δ)f

1
2 (y − θ)dy =

∫
f

1
2 (y′ − δ)f

1
2 (y′)dy′ = ρ(δ, 0).

Case (ii) follows from the transformation y′ = y exp(−θ), yielding

ρ(θ + δ, θ) =
∫

f
1
2 (y exp(−θ − δ))f

1
2 (y exp(−θ))dy exp(−θ − δ/2)

= exp(−δ/2)
∫

f
1
2 (y′ exp(−δ))f

1
2 (y′)dy′

= ρ(δ, 0).

2
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A.6 Lemma 5

Since fy(y; θ) = fZ(g(y); θ)g′(y), where g′(y) denotes the derivative of g(y),

ρY (θ + δ, θ) =
∫

f
1
2 (y; θ + δ)f

1
2
Y (y; θ)dy

=
∫

fZ(g(y); θ + δ)fZ(g(y); θ)g′(y)dy

=
∫

fZ(z; θ + δ)fZ(z; θ)dz

= ρZ(θ + δ, θ).

Then, the Hellinger distance at θ + δ and θ is invariant under differentiable one-to-one

transformations of the random variable, and consequently the Hellinger rates are also

invariant. 2

A.7 Lemma 6

By the definitions of attainable and bounding rates, given ε > 0, there exist n′, M and

M ′ positive such that for n > n′,

sup
θ∈Θ

Pθ(σ−1
n |Tn − θ| > M) < ε and sup

θ∈Θ
Pθ(σ

′−1
n |Tn − θ| > M ′) > ε.

But the first condition implies supθ∈Θ Pθ(σ
′−1
n |Tn − θ| > Mσn/σ′n) < ε for n > n′, and

hence Mσn/σ′n > M ′, implying σn/σ′n > M ′/M . 2

A.8 Lemma 7

For Bn ∈
⊗

i≤n B and θn ∈ Θ,

H2
n(θn, θ) =

1
2

∫

y1

· · ·
∫

yn




√√√√
n∏

i=1

f(yi; θn)−
√√√√

n∏

i=1

f(yi; θ)




2

dy1 · · · dyn

≥ 1
2

∫

Bn




√√√√
n∏

i=1

f(yi; θn)−
√√√√

n∏

i=1

f(yi; θ)




2

dy1 · · · dyn

=
1
2
Pθn(Bn) +

1
2
Pθ(Bn)−

∫

Bn

√√√√
n∏

i=1

f(yi; θn)f(yi; θ)dy1 · · · dyn.
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By the Cauchy-Schwartz inequality,

∫

Bn

√√√√
n∏

i=1

f(yi; θn)f(yi; θ)dy1 · · · dyn ≤
[∫

Bn

n∏

i=1

f(yi; θn)dyi

] 1
2
[∫

Bn

n∏

i=1

f(yi; θ)dyi

] 1
2

= P (Bn; θn)
1
2 P (Bn; θ)

1
2 .

Hence,

H2
n(θn, θ) ≥ 1

2
P (Bn; θn)+

1
2
P (Bn; θ)−P (Bn; θn)

1
2 P (Bn; θ)

1
2 =

1
2

(
P (Bn; θn)

1
2 − P (Bn; θ)

1
2

)2

2

A.9 Proposition 1

The sequence of sample spaces with their respective product σ-fields that contain events

such as BnM = {yn ∈ Y n : σ−1
n |Tn(yn)−θ| < M}, where yn = (y1, · · · , yn), are all embed-

ded in the infinite product space Y ∞ with its product σ-field B∞, the σ-field generated

by all cylinders of the form Y N ′′ ×⊗
t∈N ′ Ct, where N ′ is a finite subset of the positive

integers, N ′′ is its complement, and Ct ∈ B. By the Kolmogorov extension theorem, there

is a unique probability P (·; θ) on Y ∞ that extends all the sample probabilities Pn(·; θ);
i.e. rewrite

BnM (θ) = {y ∈ Y ∞ : σ−1
n |Tn(yn)− θ| < M},

where y = (y1, y2, · · · ), and

Pn({yn ∈ Y n : σ−1
n |Tn(yn)− θ| < M ; θ) = P (BnM (θ); θ).

For σn an attainable rate, given 0 < ε < 1/3, there exists a sequence of estimators

Tn(yn) and a constant M > 0 such that for all n > n0 and all θ ∈ Θ,

P (BnM (θ); θ) > 1− ε.

Define θn+ = θ + 2σnM and θn− = θ − 2σnM . Then,

BnM (θ) = {y ∈ Y ∞ : −M < σ−1
n (Tn(yn)− θ) < M}

= {y ∈ Y ∞ : −3M < σ−1
n (Tn(yn)− θn+) < −M} ⊆ Y ∞ \BnM (θn+)

= {y ∈ Y ∞ : M < σ−1
n (Tn(yn)− θn−) < 3M} ⊆ Y ∞ \BnM (θn−).

Then, P (BnM (θ); θn+) ≤ ε and P (BnM (θ); θn−) ≤ ε, implying

P (BnM (θ); θ)− P (BnM (θ); θn+) > 1− 2ε > ε,

P (BnM (θ); θ)− P (BnM (θ); θn−) > 1− 2ε > ε.
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Therefore, by Lemma 7, for all n > n0 and all θ ∈ Θ,

H2
n(θ + 2σnM ; θ) ≥

(
P (BnM (θ); θ)

1
2 − P (BnM (θ); θn+)

1
2

)2

≥ min
0≤p≤ε

(
(p + ε)

1
2 − p

1
2

)2
≥ ε/6,

H2
n(θ − 2σnM ; θ) ≥

(
P (BnM (θ); θ)

1
2 − P (BnM (θ); θn−)

1
2

)2

≥ min
0≤p≤ε

(
(p + ε)

1
2 − p

1
2

)2
≥ ε/6.

From the bimodulus inequalities, this implies

ε/6 ≤ H2
n(θ ± 2σnM, θ) = 1− ρ(θ ± 2σnM, θ)n

= 1− (1− h2(θ ± 2σnM, θ))n

≤ 1− (1− nλ(2σnM, θ)/κn)n.

Therefore,

ε/6 ≤ lim
n

H2
n(θ ± 2σnM, θ) ≤ 1− exp(− lim inf

n
nλ(2σnM, θ)/κ),

implying that lim infn nλ(2σnM, θ) > 0 for all θ ∈ Θ. Since the Hellinger rates δn ∼
δ′n for rate equivalent bimodulus rates δ′n satisfying nλ(δ′n, θ) = 1, σ′n ≺ δ′n implies

lim infn nh2(θ±2σ′nM, θ) = 0 by Lemmas 1 and 3. This implies that lim infn nλ(2σ′nM, θ) =

0 for all θ ∈ Θ. Hence, σn º δ′n ∼ δn, i.e. σn º δn and the Hellinger rate is a speed limit

on attainable rates.

Since every bounding rate σ′n is declining at least as rapidly as any attainable rate,

δn º σ′n and, hence, lim supn H2
n(θ + σ′nM, θ) < 1. By the definition of Hellinger rate,

lim
M→0+

lim inf
n→∞ sup

θ
ρ(θ, θ + δnM)n = 1,

and therefore

lim
M→0+

lim sup
n→∞

sup
θ

H2
n(θ, θ + δnM) = 0.

Then, the above arguments imply that

lim
M→0+

lim inf
n→∞ sup

θ
P (BnM (θ); θ) = lim

M→0+
lim inf

n→∞ sup
θ

P (BnM (θ); θn+)

= lim
M→0+

lim inf
n→∞ sup

θ
P (BnM (θ); θn−).

Since, as M > 0 tends to zero, lim infn supθ P (BnM (θ); θ) is non-increasing, while, on

the other hand, lim infn supθ P (BnM (θ); θn+) and lim infn supθ P (BnM (θ); θn−) are non-

decreasing, the last set of equalities implies that

0 < lim
M→0+

lim inf
n→∞ sup

θ
P (BnM (θ); θ) < 1.
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Hence, δn is itself a bounding rate. It is also attainable and, therefore, a maximal bounding

rate. 2

A.10 Proposition 2

(1) The LAQ conditions that δnSn(θ0) is stochastically bounded and non-degenerate

and that δ2
nKn(θ0) is asymptotically almost surely positive definite imply by con-

struction that for any ε > 0, δ−1
n (θn0−θ0) is bracketed by the stochastically bounded

expressions δnSn(θ0)/κ and δnSn(θ0)κ with probability at least 1−ε, and is therefore

stochastically bounded.

(2) By the Borel-Cantelli Lemma, the conditions P (supθ∈Θ Λn(θ, θnm) > γn; θ0) ≤ ζn

and
∑∞

n=1 ζn < +∞ imply that, with probability one, eventually Λn(θnm, θ0) ≥ −γn.

In this event,

ρ(θnm, θ0)n = E

[
exp

(
1
2
Λn(θ, θ0)

)∣∣∣∣
θ=θnm

]
≥ exp

(
−1

2
γn

)
→ 1,

and A3 implies that with probability one, θnm converges to θ0. In this event, the

LAQ expansion implies

γn ≥ −Λn(θnm, θn0) = −Λn(θnm, θ0) + Λn(θn0, θ0)

= −δnSn(θ0)δ−1
n (θnm − θn0) +

1
2
δ2
nKn(θ0)δ−2

n (θnm − θ0)2

−1
2
δ2
nKn(θ0)δ−2

n (θn0 − θ0)2 + op(1)

= −δnSn(θ0)δ−1
n (θnm − θn0) +

1
2
δ2
nKn(θ0)δ−2

n (θnm − θn0)2

+δ2
nKn(θ0)δ−2

n (θn0 − θ0)(θnm − θn0) + op(1)

=
1
2
δ2
nKn(θ0)δ−2

n (θnm − θn0)2 + op(1).

Given ε > 0, there exists a constant κ > 1 such that δ2
nKn(θ0) > 1/κ, implying that

δ−2
n (θnm − θn0)2 ≤ κ(γn + op(1)), with probability at least 1 − ε. Then, it follows

that δ−1
n (θnm − θn0) = op(1).

(3) Let ε > 0, the neighborhood Θ′ of θ0, and the scalars M > 0 and ψ > 0 be given as

in assumption (S). Then, for θ, θ′ ∈ Θ′, one has with probability at least 1− 2ε,

Λn(θ, θ′) = Sn(θ′)(θ − θ′)− 1
2
Kn(θ′)(θ − θ′)2 + α1δ

−2
n M |θ − θ′|2+ψ,

and

Λn(θ′, θ) = Sn(θ)(θ′ − θ)− 1
2
Kn(θ)(θ − θ′)2 + α2δ

−2
n M |θ − θ′|2+ψ,
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for some α1, α2 ∈ [−1, 1]. Adding these expressions for θ 6= θ′ and using the Hölder

condition that Kn(θ) = Kn(θ′) + α3δ
−2
n M |θ − θ′|ψ for some α3 ∈ [−1, 1] yields

(?) Sn(θ) = Sn(θ′)−Kn(θ′)(θ − θ′) + α4δ
−2
n M |θ − θ′|1+ψ

= Kn(θ′)(θ′ + Kn(θ′)−1Sn(θ′)− θ) + α4δ
−2
n M |θ − θ′|1+ψ

for some α4 ∈ [−5/2, 5/2]. Taking θ = θn0 and θ′ = θ0 in (?) yields

δnSn(θn0) = α4δ
ψ
n M |δ−1

n (θn0 − θ0)|1+ψ = op(1),

since δ−1
n (θn0− θ0) is stochastically bounded by result (1) and δψ

n → 0. Next, taking

θ = θn0 and θ′ = θn1 in (?) yields

δnSn(θn0) = δ2
nKn(θn1)δ−1

n (θn1 + Kn(θn1)−1Sn(θn1)− θn0) + α4δ
−1
n M |θn0 − θn1|1+ψ

= δ2
nKn(θn1)δ−1

n (θn2 − θn0) + α4δ
−1
n (δ′n)1+ψM |(δ′n)−1(θn0 − θn1)|1+ψ.

But δnSn(θn0) = op(1), δ−1
n (δ′n)1+ψ → 0 by assumption, and

|(δ′n)−1(θn0 − θn1)| ≤ |(δ′n)−1(θn0 − θ0)|+ |(δ′n)−1(θn1 − θ0)| = Op(1),

since (δ′n)−1(θn1 − θ0) is stochastically bounded by assumption, and |(δ′n)−1(θn0 −
θ0)| ≤ |δ−1

n (θn0−θ0)|, which is stochastically bounded by result (1). Then, with prob-

ability at least 1−2ε, all terms in the expression above other than δ2
nKn(θn1)δ−1

n (θn2−
θn0) are op(1). Further, (δ′n)−1(θn1 − θ0) = Op(1), and the Hölder condition on

δ2
nKn(θ) implies that with probability at least 1 − ε, δ2

nKn(θ) ≥ 1/2κ > 0. Hence,

with probability at least 1−3ε, δ−1
n (θn2−θn0) = op(1). Since ε can be made as small

as one pleases, this proves that θn2 and θn0 are asymptotically equivalent. 2

B Miscellaneous Minor Results

B.1 Details on the Triangular and Quadratic Densities

(i) Triangular Density

Let y(1) and y(n) denote the extreme value statistics from an i.i.d. sample of size n.
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Then, for c > 0,

Pr
(
y(1) > α + cn−

1
2

)
=

(
1− F (α + cn−

1
2 ; α, β)

)n
=

(
1− c2

n(β − α)2

)n

→ exp
(
− c2

(β − α)2

)
,

Pr
(
y(n) < b− cn−1

)
= F

(
b− cn−1; α, β

)n =
(

1− c

n(β − α)

)2n

→ exp
(
− 2c

β − α

)
,

so the parameters α and β can be estimated by y(1) and y(n), respectively, at the respective

rates n−
1
2 and n−1.

The Hellinger distance between f(y; α, β) and f(y; α′, β′) with α′ ≤ α and β′ ≥ β is

h2(α, β, α′, β′) = 1−
∫ β

α
f(y;α, β)

1
2 f(y;α′, β′)

1
2 dy

= 1− 2
(β − α)(β′ − α′)

∫ β

α
(y − α)

1
2 (y − α′)

1
2 dy.

When α = α′, this simplifies to h2(β, β′) = (β′ − β)/(β′ − α). The sample Hellinger

distance between β and β′ = β + cn−1 the satisfies

H2(β, β + cn−1) = 1−
(

β′ − α− cn−1

β′ − α

)n

→ 1− exp(c/(β′ − α)) ∈ (0, 1).

This establishes that the estimator y(n) for β is rate optimal at rate n−1.

When β = β′, let ∆ = α − α′ > 0 and α′′ = (α + α′)/2. Then, α = α′′ + ∆/2, and

α′ = α′′ −∆/2. Using the inequalities 1− z ≤ (1− z)
1
2 ≤ 1− z/2 for 0 ≤ z ≤ 1,

1− h2(α, α′) =
2

(β − α)(β − α′)

∫ β

α
(y − α)

1
2 (y − α′)

1
2 dy

=
2

(β − α′′)2 −∆2/4

∫ β

α
((y − α′′)2 −∆2/4)

1
2 dy

=
2

(β − α′′)2 −∆2/4

∫ β

α
(y − α′′)(1− γ(y)∆2/4(y − α′′)2)dy,

for some γ(y) ∈ (1
2 , 1). But 2

∫ β
α (y − α′′)dy = (β − α′′)2 −∆2/4. Hence, h2 is bracketed

by

2
(β − α′′)2 −∆2/4

∫ β

α
(∆2/8(y − α′′))dy =

∆2

4(β − α′′)2 −∆2
(log(β − α′′)− log(∆/2))
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and

2
(β − α′′)2 −∆2/4

∫ β

α
(∆2/4(y − α′′))dy =

2∆2

4(β − α′′)2 −∆2
(log(β − α′′)− log(∆/2)).

Then, the bimodulus function λ(α′ + ∆, α′) = ∆2| log(∆)|/4(β − α′′)2 satisfies

1
4
λ(α′ + ∆, α′) ≤ h2(α′ + ∆, α′) ≤ 4λ(α′ + ∆, α′)

for ∆ sufficiently small. The rate δn = 4(β − α′)(2n log(n))−
1
2 satisfies

nλ(α′ + δn, α′) = 1 + (log log n)/(log n) + O(1/(log n)) → 1,

and (n log(n))−
1
2 is therefore a Hellinger rate.

The limiting distribution of the estimator α(1) = y(1) of α induces an exponential

asymptotic distribution of the statistic T(1) = n
1
2 (α(1) − α) which has a density given

by 2t exp(−t2/(β − α)2)/(β − α)2, with moments E[T k
(1)] = (β − α)kΓ(k/2 + 1). It does

not attain the best rate. In comparison, the maximum likelihood estimator (MLE) for

α is the solution α̂MLE of
∑n

i=1

(
1

yi−α̂MLE
− 2

β−α̂MLE

)
= 0. The MLE does not satisfy

conventional regularity conditions. A Taylor’s expansion of the log-likelihood ratio Λn(α+

δ, α) gives

Λn(α + δ, α) = Sn(α)δ − 1
2
Kn(α)δ2 + o(δ2),

where Sn(α) =
∑n

i=1[2/(β−α)−1/(yi−α)] and Kn(α) =
∑n

i=1[1/(yi−α)2−2/(β−α)2].

One has E[Sn(α)] = 0, but the expectations of Sn(α)2 and Kn(α) do not exist. Therefore,

n−
1
2 Sn(α) is not stochastically bounded and the triangular density does not belong to the

LAN family. This suggests that the MLE attains the best rate δn = (n log(n))−
1
2 . To see

this, let Mn > 0 and note

(1)

P (yi − α > M−1
n for i = 1, · · · , n) = P (y(1) − α > M−1

n )

= [1− (nM−2
n )/n(β − α)2]n

→ exp(− lim
n

nM−2
n /(β − α)2).

Then, the probability of the event y(1) − α > M−1
n goes to one if nM−2

n → 0 as

n →∞.

(2) Let Z = 1{y−α>M−1
n }/(y − α). Then,

E[Z] = 2(β − α−M−1
n )/(β − α)2,

E[Z2] = 2[log(β − α) + log(Mn)]/(β − α)2.
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Then, Chebyshev’s inequality implies

P

(∣∣∣∣∣δn

n∑

i=1

(Zi − E[Zi])

∣∣∣∣∣ > ε

)
< nδ2

nE[Z2]/ε2

= 2[log(β − α) + log(Mn)]/ε2(β − α)2 log(n).

This is uniformly small for ε large if log(Mn)/ log(n) is bounded.

(3) E[1/(y − α)] − E[Z] = 2M−1
n /(β − α)2. Then, δn

∑n
i=1(E[1/(y − α)] − E[Z]) =

2nδnM−1
n /(β − α)2. This remains bounded if (n/ log(n))

1
2 M−1

n remains bounded.

Together, (1)-(3) imply δnSn(α) stochastically bounded. Collecting the requirements,

nM−2
n → 0, log(Mn)/ log(n) bounded, and (n/ log(n))

1
2 M−1

n bounded. All are satisfied if

Mn = n
1
2 (log(n))γ , for any γ > 0.

The next steps obtain the properties of Kn(α). The Mn need not be the same as

above, but the first condition nM−2
n → 0 must still hold:

(4) Let W = 1{y−α>M−1
n }/(y − α)2. Then,

E[W ] = E[Z2] = 2[log(β − α) + log(Mn)]/(β − α)2,

and

E[W 2] = 2[1/(β − α)2 + M2
n]/(β − α)2.

Again by Chebyshev’s inequality,

P

(∣∣∣∣∣δ
2
n

n∑

i=1

(Wi − E[Wi])

∣∣∣∣∣ > ε

)
< nδ4

nE[W 2]/ε2,

and this is uniformly small for ε large if M2
n/n(log(n))2 remains bounded.

(5) If nδ2
n log(Mn) is bounded, then δ2

n

∑n
i=1 E[W ] is bounded, and δ2

n

∑n
i=1 Wi converges

in probability to limn nδ2
n log(Mn). This is sufficient to establish that δ2

nKn(α) con-

verges in probability to this limit. To assure that the limit points of δ2
nKn(α) are

positive and finite, one then needs nδ2
n log(Mn) to have a positive finite limit.

Collecting requirements, nM−2
n → 0, M2

n/n(log(n))2 bounded, and nδ2
n log(Mn) with

a positive finite limit. All are satisfied if Mn = n
1
2 (log(n))γ if γ ≤ 1. Then, it suffices for

the proof to take Mn = (n log(n))
1
2 throughout.

From ∂W
∂α = 2 · 1{y−α>M−1

n }/(y − α)3, one has

E
[
∂W

∂α

]
= 4[1/(β − α) + Mn]/(β − α)2.
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Then, n−
1
2 δ2

nnE[∂W/∂α] = (log(n))γ−1 when Mn = n
1
2 (log(n))γ . It follows that, starting

from a consistent estimator of α that converges at a n−
1
2 rate, e.g. y(1), the argument of

Proposition 3 applies to establish that the one-step estimator is asymptotically equivalent

to the infeasible one-step estimator and attains the best rate (n log(n))−
1
2 .

(ii) Quadratic Density

For the quadratic density f(y; θ) = 3y(2θ − y)/4θ3, 0 ≤ y ≤ 2θ, the affinity between

f(y; 1) and f(y; 1 + δ), for δ > 0, is

ρ(1 + δ, 1) =
∫ 2

0
(3y/4(1 + δ)

3
2 )((2 + 2δ − y)(2− y))

1
2 dy

=
∫ 2

0
(3y/4(1 + δ)

3
2 )((2 + δ − y + δ)(2 + δ − y − δ))

1
2 dy

=
∫ 2

0
(3y/4(1 + δ)

3
2 )(2 + δ − y)(1− δ2/(2 + δ − y)2)

1
2 dy

=
∫ 2

0
(3y/4(1 + δ)

3
2 )(2 + δ − y)dy − γδ2

∫ 2

0
(3y/4(1 + δ)

3
2 )/(2 + δ − y)dy

for some γ ∈ [1/2, 1],

= (3/4(1 + δ)
3
2 )((2 + δ)2− 8/3)

−γδ2

∫ 2

0
(3/4(1 + δ)

3
2 )(−1 + (2 + δ)/(2 + δ − y))dy

= (1 + 3δ/2)/(1 + δ)
3
2

−γδ2(3/4(1 + δ)
3
2 )(−2− (2 + δ) log(δ) + (2 + δ) log(2 + δ))

= (1− 3δ/2 + γ′δ2)((1 + 3δ/2) + γδ2((3/2) log(δ) + 3/2 + O(δ)))

for some γ′ ∈ [5/16, 15/4],

= 1− 9δ2/4 + γ′δ2 − 3γδ2/2 + 3γδ2 log(δ)/2 + O(δ3)

= 1 + O(δ2 log(δ)) + O(δ2),

and the Hellinger distance h2(1 + δ, 1) = O(δ2 log(δ)). The convergence rate δn =

(n log(n)−
1
2 satisfies

nh2(1 + δn, 1) = O

(
(log(n))−1

(
−1

2
log(n)− 1

2
log log(n)

))

= O

(
1
2

+ (log log(n))/ log(n)
)

→ const.,

so δn is the Hellinger rate.

The log likelihood is

L = n log(3/4)− 3n log(θ) +
n∑

i=1

(log(yi) + log(2θ − yi)).
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The first-order condition for a MLE θn is

0 =
n∑

i=1

(2/(2θn − yi)− 3/θn) =
n∑

i=1

(3yi − 4θn)/(2θn − yi).

Then, the MLE solves iteratively,

θn = (3/4)
n∑

i=1

y(i)wni/
n∑

i=1

wni,

where wni = 1/(2θn − y(i)). The log likelihood is continuous and bounded above for

θ > y(n)/2, and approaches −∞ as θ → y(n)/2. Then, the MLE exists.

The following steps, mimicking those for the triangular density, establish that the

quadratic family is LAQ.

Define Sn(θ) = ∂
∂θΛn(θ, θ0) =

∑n
i=1(2/(2θ − yi)− 3/θ) and Kn(θ) = − ∂2

∂θ2 Λn(θ, θ0) =
∑n

i=1[4/(2θ − yi)2 − 3/θ2). Furthermore, define Mn = (n log(n))
1
2 , as well as S?

n(θ) =
∑n

i=1(2/(max{2θ−yi,M
−1
n })−3/θ) and K?

n(θ) =
∑n

i=1(4/(max{2θ−yi,M
−1
n })2−3/θ2).

In parallel with the triangular density case, P (2θ0−y(n) > M−1
n ) → exp(−c limn nM−2

n ) =

0. Then, Sn(θ) and Kn(θ) have the needed LAQ properties if S?
n(θ) and K?

n(θ) do. But

in a neighborhood of 2θ, the density f(y; θ) behaves like the term 3(2θ − y)/2θ2, which

except for scale is the triangular density. Then, the calculations for that density establish

that δnS?
n(θ) is stochastically bounded and δ2

nK?
n(θ) converges in probability to a positive

definite limit.

B.2 Calculations for Example 2

Consider the squared Hellinger distance between f(y; 0, α, β, γ) and f(y; θ, α, β, γ) for

small, positive θ, defined as

h2(θ, 0) =
1
2

∫ +∞

−∞
η(y; θ)2dy,

where

η(y; θ) = f
1
2 (y; θ, α, β, γ)− f

1
2 (y; 0, α, β, γ)

= C ′
(
|y − θ|α−1

2 exp(−|y − θ|β/2γ)− |y|α−1
2 exp(−|y|β/2γ)

)

= R(y; θ) + S(y; θ),

and

R(y; θ) = C ′(|y − θ|α−1
2 − |y|α−1

2 ) exp(−|y|β/2γ),

S(y; θ) = C ′|y − θ|α−1
2

(
exp(−|y − θ|β/2γ)− exp(−|y|β/2γ)

)
.
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Note that R(y; θ) drops out if α = 1 (case (2)). Notice also that, in this case,

h2(θ, 0) ∝ θ2

∫ +∞

−∞

[
∂

∂θ
log f(y; θ, α, β, γ)

]2

θ=0

f(y; 0, α, β, γ)dy

= θ2

∫ +∞

−∞
β2|y|2β−2 exp(−|y|β/γ)dy

∝ θ2

∫ +∞

−∞
|z|1−1/β exp(−|z|)dz,

which is proportional to a gamma function and converges if β > 1
2 . Therefore, in case (2)

the Hellinger rate is n−
1
2 when β > 1

2 . Hereafter, we therefore concentrate on cases for

which β ≤ 1
2 .

Since η(y; θ)2 is symmetric about θ/2, the decomposition h2(θ, 0) = 2(A+B +C +D)

holds, with

A =
∫ −1

−∞
η(y; θ)2dy,

B =
∫ −θ/2

−1
η(y; θ)2dy,

C =
∫ 0

−θ/2
η(y; θ)2dy,

D =
∫ θ/2

0
η(y; θ)2dy.

Note that C ≥ D. It is straightforward to show that A = O(θ2) in all cases. We will

derive lower and upper bounds on B as well as a lower bound on D and an upper bound

on C. In doing so, we will show that in case (1) the contribution due to R(y; θ) dominates,

in the sense of exhibiting the fastest convergence to zero when θ approaches zero, while in

case (2) the contribution of S(y; θ) dominates. Note also that, since R(y; θ) and S(y; θ)

are both negative on (−∞, θ/2] when α < 1, the cross terms that emerge when completing

the square can be ignored in the derivation of the lower bounds in this case.

We will employ the inequalities14

(c− 1)[a2/c− b2] ≤ (a− b)2 ≤ 2(a2 + b2) for c > 1,

θκ|y − θ|−κ−1 ≤ |y|−κ − |y − θ|−κ ≤ θκ|y|−κ−1 for y < 0 < θ and κ > 0.

14The first inequality comes from 0 ≤ (c−
1
2 a−c

1
2 b)2 = (a−b)2− [(1−1/c)a2− (c−1)b2] and from 2(a2 +b2)−

(a− b)2 = (a + b)2 ≥ 0. The remaining inequality comes from the theorem of the mean for convex functions.
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In case (1), the contribution of R(y; θ) to the lower bound on D is
∫ θ/2

0
R(y; θ)2dy ≥ (C ′)2 exp

(
− |θ/2|β /γ

)∫ θ/2

0

[
|y − θ|α−1

2 − |y|α−1
2

]2
dy

≥ (C ′)2 exp
(
− |θ/2|β /γ

)
(c− 1)

∫ θ/2

0

[|y|α−1/c− |y − θ|α−1
]
dy

= (C ′)2 exp
(
− |θ/2|β /γ

)
(c− 1)θα 1

α

[
2−α/c + 2−α − 1

]
.

For α < 1 and c < 1/(2α−1), the term in square brackets is positive, so that
∫ θ/2
0 R(y; θ)2dy =

O(θα). The contribution of S(y; θ) to the lower bound on D is
∫ θ/2

0
S(y; θ)2dy =

∫ θ/2

0
(C ′)2|y − θ|α−1

(
exp(−|y − θ|β/2γ)− exp(−|y|β/2γ)

)2
dy

∝
∫ θ/2

0
θ2|y − θ|α−1(β/2γ)2|y − θ|2β−2 exp(−|y|β/γ)dy

≥ (β/2γ)2θ2 exp
(
−|θ/2|β/γ

)∫ θ/2

0
|y − θ|α+2β−3dy

∝ (β/2γ)2θ2 exp
(
−|θ/2|β/γ

)
θα+2β−2/|α + 2β − 2|

= (β/2γ)2 exp
(
−|θ/2|β/γ

)
θα+2β/|α + 2β − 2|.

Note that in case (2), this term is O(θ2β+1) if β < 1/2, and approaches a term of order

O(θ2 log(θ)) when β tends to 1/2. In case (1), this term converges to zero at a slower rate

than the contribution due to R(y; θ).

Turning to term C, C ≤ 2
∫ 0
−θ/2 R(y; θ)2dy + 2

∫ 0
−θ/2 S(y; θ)2dy. The contribution of

R(y; θ) to the upper bound is
∫ 0

−θ/2
R(y; θ)2dy ≤ (C ′)2

∫ 2

−θ/2

[
|y − θ|α−1

2 − |y|α−1
2

]2
dy

≤ 2(C ′)2
∫ 0

−θ/2

[|y − θ|α−1 + |y|α−1
]
dy

∝ θα.

The contribution of S(y; θ) to the upper bound on C is
∫ 0

−θ/2
S(y; θ)2dy =

∫ 0

−θ/2
(C ′)2|y − θ|α−1

(
exp(−|y − θ|β/2γ)− exp(−|y|β/2γ)

)2
dy

∝ θ2

∫ 0

−θ/2
|y − θ|α+2β−3 exp(−|y|β/γ)dy

≤ θ2

∫ 0

−θ/2
|y − θ|α+2β−3dy

∝ θα+2β/|α + 2β − 2|.
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Again, this term is O(θ2β+1) if β < 1/2, and approaches a term of order O(θ2 log(θ))

when β tends to 1/2. Also, in case (1) this term converges to zero at a slower rate than

the contribution due to R(y; θ).

Finally, with regard to term B, B ≤ 2
∫ −θ/2
−1 R(y; θ)2dy + 2

∫ −θ/2
−1 S(y; θ)2dy. Towards

an upper bound, the contribution of R(y; θ) is

∫ θ/2

−1
R(y; θ)2dy ≤ (C ′(1− α)/2)2θ2

∫ −θ/2

−1
|y|α−3dy

= (C ′(1− α)/2)2θ2[(θ/2)α−2 − 1]/(2− α)

= O(θα).

The contribution of S(y; θ) is

∫ −θ/2

−1
S(y; θ)2dy =

∫ −θ/2

−1
(C ′)2|y − θ|α−1

(
exp(−|y − θ|β/2γ)− exp(−|y|β/2γ)

)2
dy

∝ θ2

∫ −θ/2

−1
|y − θ|α+2β−3 exp(−|y|β/γ)dy

≤ θ2 exp
(
−|θ/2|β/γ

)∫ −θ/2

−1
|y − θ|α+2β−3dy

∝ θα+2β/|α + 2β − 2|,

Lower bounds can be derived in an analogous fashion, as above,

∫ −θ/2

−1
R(y; θ)2dy ≥ (C ′)2 exp(−1/γ)(c− 1)θα

[
2−α/c + 2−α − 1

]
= O(θα),

∫ −θ/2

−1
S(y; θ)2dy ≥ θ2 exp (−1/γ)

∫

−1
−θ/2|y − θ|α+2β−3dy ∝ θα+2β/|α + 2β − 2|.

The same comments apply as above: The contributions due to S(y; θ) are O(θ2β+1) if

β < 1/2, and approach terms of order O(θ2 log(θ)) when β tends to 1/2. Also, in case

(1) these contributions converge to zero at a slower rate than the contributions due to

R(y; θ).

The bimodulus rates follow immediately from the respective bimodulus functions and,

by Lemma 3, are equivalent to the Hellinger rates reported in Table 1. For the case

α = 1, β = 1
2 , the bimodulus function λ(θ, 0) is proportional to θ2| log(θ)|, so that the rate

δn ∼ (n log(n))−
1
2 satisfies nλ(δn, 0) = 1 + (log log(n))/(log(n)) + O(1/(log(n))) → 1, and

(n log(n))−
1
2 is therefore the Hellinger rate in this case.
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B.3 An Illustrative Example of Maximal Uniform Conver-

gence Rates

Consider the location parameter example yi ∼ i.i.d. u[θ− 1
2 , θ + 1

2 ]. As in Corollary 1(i),

ρ̄(τ) ≡ ρ(θ, θ + |τ |) = ρ(θ′, θ′ + |τ |) for any θ, θ′ ∈ Θ and τ ∈ R. It is easy to show that

ρ̄(|τ |) = 1− |τ |, and so H2
n(θ, θ + |τ |) = 1− (1− |τ |)n for all θ. Then, δn = 1

n .

Consider two estimators for θ in this example: (i) θ̂n = 1
2(y(1) + y(n)), where y(1) (y(n))

denotes the minimum (maximum) of the sample {yi, i = 1, . . . , n}; and (ii) θ̄n = ȳn. It is

well-known15 that

var(θ̂n) =
1

2(n + 1)(n + 2)
,

var(θ̄n) =
1

12n
,

i.e. θ̂n converges at the Hellinger rate n, while θ̄n converges at the slower rate
√

n. W.l.o.g.,

let θ = 0.

Let ε ∈ (0, 1). Then,

Pr(H2
n(0, |τ |) > 1− ε) = Pr(1− (1− |τ |)n > 1− ε) = Pr(|τ | > 1− ε

1
n ).

Note that 1 − ε
1
n = − log(ε)ε

α
n

1
n → 0, as n → ∞ for ε ∈ (0, 1) and some α ∈ (0, 1).

Consider the estimator θ̄n. Its asymptotic distribution is
√

nθ̄n
d→ N(0, 1/12). Hence,

Pr(|θ̄n| > 1− ε
1
n ) ∼ 2Φ

(√
n(ε

1
n − 1)√
12

)
→ 2Φ(0) = 1 as n →∞,

where Φ(·) denotes the cumulative distribution function of a standard normally distributed

random variable.

Next, consider θ̂n. For any ε ∈ (0, 1), by Chebyshev’s inequality

Pr(|θ̂n| > 1− ε
1
n ) ≤

[
2(n + 1)(n + 2)(1− ε

1
n )2

]−1

=
n2

2(n + 1)(n + 2)
1

ε
2α
n (log(ε))2

for some α ∈ (0, 1)

→ 1
2(log(ε))2

as n →∞.

This limit can be made as small as desired by letting ε approach zero.

15Cp., e.g., David (1970)

33



References

[1] Akahira, M. (1975): “Asymptotic Theory for Estimation of Location in Non-regular

Cases, I: Order of Convergence of Consistent Estimators”, Stat. Appl. Res., JUSE,

22(1), 8-26

[2] Akahira, M. (1991): “The amount of information and the bound for the order of

consistency for a location parameter family of densitites”, Symposia Gaussiana, Conf.

B, Mammitzsch and Schneeweiss, eds.; Berlin: Gryuter & Co.

[3] Akahira, M. and K. Takeuchi (1991): “A definition of information amount applicable

to non-regular cases”, J. Comput. Inform., 2, 71-92

[4] Akahira, M. and K. Takeuchi (1995): Non-Regular Statistical Estimation, New York:

Spinger Verlag
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