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1 Introduction

Model selection is an important component of statistical inference. It involves compar-

ing competing models based on some appropriately de�ned goodness-of-�t or selection

criterion. For the competing models that can be estimated by (conditional) maximum

likelihood estimation (MLE), there has been a vast literature on model selection proce-

dures, such as the Akaike (1973, 1974) information criterion (AIC), the Cox test (1961)

and the Vuong (1989) likelihood ratio test, to name only a few. Another important

development is the use of the encompassing principle in testing non-nested models as-

suming that one of them is correctly speci�ed. See, e.g., Mizon and Richard (1986),

and Wooldridge (1990), among others. For a comprehensive review of the literature, see

Gourieroux and Monfort (1994) and Pesaran and Weeks (2001). In light of the devel-

opment of new estimation methods in econometrics such as the generalized method of

mements (GMM) and empirical likelihood estimation methods, which o�er robust alter-

natives to the conventional MLE, recent work in model selection has attempted to develop

procedures that can be used for models estimated by other methods than the MLE. For

example, see Smith (1992) for extensions of the Cox test and the encompassing test to

non-nested regression models that are both estimated by instrumental variables, Rivers

and Vuong (2002) for the extension of Vuong's (1989) test to dynamic regression models,

Kitamura (2002) for using empirical likelihood ratio-type statistics for testing non-nested

conditional models, and Chen, Hong and Shum (2003) for likelihood ratio tests between

parametric and (unconditional) moment condition models.

These model selection tests have been found useful in some of structural microecono-

metric models, which have been developed in the last two decades and applied in such

�elds of modern economics as labor and industrial organization.1 For example Vuong's

(1989) likelihood ratio test has been used to select structural models both of which are

1Heckman (2001) gives an insightful discussion on the development and the issues on identi�cation

and inference of structural microeconometric models.
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estimated by MLE. See, e.g., Gasmi, La�ont and Vuong (1992) for testing collusive behav-

ior, Wolak (1994) for testing asymmetric information, and Li (2005) for testing binding

reservation prices in �rst-price auctions, to name only a few. Also, Chen, Hong and

Shum (2003) develop a test to distinguish between a parametric model which can be esti-

mated by the MLE and an unconditional moment model which can be estimated by the

empirical likelihood method, and then apply their procedure to choose between a sequen-

tial search model and a non-sequential model. Despite these interesting applications of

the aforementioned model selection tests, there are many other situations in which these

model selection tests may not be applicable.2 Such a gap can be mainly attributed to the

complexity associated with the nature of structural econometric models. Model selection

criteria are formulated in such ways that they are calculated using sample information

and compared between competing models. Most of the structural econometric models,

however, are constructed based on economic theory which de�nes maps between the latent

variable of interest or/and its distribution and the observables. For instance, in struc-

tural auction models, it is assumed that the observed bids are Nash-Bayesian equilibrium

strategies which are strictly increasing functions of bidders' private valuations whereas

identifying and estimating the private values distribution is one of the main objectives of

the structural approach. The presence of latent variables and the complex relationship

between the latent and observed variables de�ned by structural models make the formu-

lation of a well-de�ned model selection criterion more involved. Moreover, in many cases,

structural econometric models are constructed through moment conditions, meaning that

2For instance, La�ont, Ossard and Vuong (1995) develop a simulated nonlinear least squares estimator

to estimate a structural model of �rst-price auctions. They encounter a problem of determining between

11 and 18 potential bidders. This problem, signi�cant from an economic viewpoint as having 11 bidders

could imply the existence of a large trader and hence asymmetric bidding, calls for a formal test of

non-nested models, as the structural models with di�erent numbers of potential bidders are non-nested.

While this issue was not further pursued in La�ont, Ossard and Vuong (1995) (see footnote 21 in La�ont,

Ossard and Vuong (1995)), and cannot be addressed using the existing model selection methods, it can

be resolved using our proposed procedure, as illustrated in the empirical application.
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they are estimated not by MLE but by GMM or method of simulated moments (MSM).

Therefore, to accommodate these speci�c features arising from the nature of structural

models and the estimation methods, new model selection tests need to be developed.

Developing model selection procedures suitable in distinguishing between competing

structural models is especially relevant in using the structural approach to analyze eco-

nomic data and make policy evaluations. In the structural approach, policy analysis and

the resulting recommendations are based on a structural model that is closely derived

from economic theory assuming that the involved economic agents are in the environment

described by the theory and behave according to the theory. As a result, it is pivotal

to validate the structural model under consideration. For example, when analyzing auc-

tion data using the structural approach, an econometrician faces choices among di�erent

paradigms such as a private value model or a common value model. Even within a cho-

sen paradigm, the econometrician may also need to determine an appropriate parametric

functional form for the latent distribution. Furthermore, the researcher sometimes needs

to choose between di�erent equilibria if multi-equilibria exist, as is the case for models

of two-stage dynamic games which yield a large number of Bayesian perfect equilibria

(La�ont and Maskin (1990)).

The goal of this paper is thus to propose a new model selection test in discriminating

between competing structural econometric models. Our test is based on a comparison

of the predictability of competing structural models. In time series literature, there has

been a rich set of papers since Diebold and Mariano (1995) and West (1996) in using

predictability for model evaluation. While the proposed test in this paper is related to

this literature as it uses predictability as a model selection criterion, it di�ers signi�cantly

in various aspects. First, we formulate the null and alternative hypotheses in terms of

comparing (asymptotic) lack-of-�t of competing structural models based on a well-de�ned

population predictability or lack-of-�t criterion that is appropriate for distinguishing be-

tween competing structural models. Second, given that structural econometric models

usually contain some latent variables that are unobserved, we propose to simulate these
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latent variables in order to make the predictions on the equilibrium outcomes. Also, since

the simulation is used, when formulating the sample analog to those population quanti-

ties, we need to correct for the asymptotic bias term caused by the simulation, and hence

propose a simulated MSEP (SMSEP) as a consistent sample analog to the population

predictability criterion. As a result, while those using simulation based prediction for

model evaluations in time series framework usually require that the number of simula-

tions tend to in�nity, ours works for any �xed number of simulations. Third, our model

selection test allows for any estimators that are
p
n asymptotically normally distributed,

or are superconsistent with the rate n that can arise from some structural microecono-

metric models such as auction models and job search models (Donald and Paarsch (1993,

1996, 2002), Hong (1998), Chernozhukov and Hong (2004), Hirano and Porter (2003)).

Lastly, in a similar spirit to that of Vuong (1989) and Rivers and Vuong (2002), the test

is bi-directional and applicable to non-nested structural models which are both possibly

misspeci�ed. This adds a considerable advantage to the proposed test because in real

applications, structural econometric models can be best considered an approximation but

not exact modeling of the true data generating process. Nevertheless, with two possibly

misspeci�ed models, our model selection procedure enables one to tell which one is closer

to the truth.

While some empirical work has used predictions from structural models to validate

a particular choice of the model, because of the lack of a formal test, it has been based

on an ad-hoc comparison of the closeness between the predictions and the observed out-

comes. The statistical signi�cance of such a closeness is not assessed. In contrast, our

testing procedure provides a formal framework in which the statistical signi�cance of the

di�erence in predictability of competing structural models can be assessed. The asymp-

totic distribution of the test statistic is derived. The proposed test is general regardless

of whether the optimization criteria for estimation of competing models are the same as

the SMSEP criterion used for model selection. An easy-to-implement bootstrap based

test is proposed for practical implementation when at least one of the estimators is ob-
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tained without minimizing the selection criterion, in which case the direct estimation of

the variance of the asymptotic distribution of the test statistic may be computationally

demanding. An empirical application using timber auction data from Oregon is used to

illustrate the usefulness and generality of the proposed testing procedure.

It is worth noting that most of the recent work in model selection tests has been based

on comparing the Kullback-Leibler Information Criterion (KLIC) between two competing

models. See, e.g., Kitamura (2000, 2002), and Chen, Hong and Shum (2003). Our

approach is di�erent, as it is based on the simulated mean squared errors of predictions,

a lack-of-�t criterion. This is motivated by the fact that many structural econometric

models are estimated by GMM or MSM other than the MLE, thus the KLIC cannot be

used as a model selection criterion.3 Our model selection criterion, on the other hand,

can be used for any estimation methods that yield estimators with root-n asymptotic

normality, or with rate n superconsistency, and hence has an appealing generality.

This paper is organized as follows. Section 2 describes the general model selection

framework for structural econometric models using the SMSEP criterion. The hypothe-

ses for model selection are formulated. The asymptotic properties of the proposed test

statistic are established. The practical issues arising from the implementation of the test

are also discussed. Section 3 is devoted to an empirical application of the proposed test

to structural auction models. Section 4 concludes.

2 An SMSEP Criterion and the Resulting Model Selection Test

Two models M1 and M2 are estimated using data fyi;xig, i = 1; : : : ; n, where y is

a dependent variable and x is a 1 � K vector of covariates. Both Mj, j = 1; 2 are

structural models in the sense that for model Mj, there is a p-dimensional vector of

latent variables vj 2 Vj � IRp with the (conditional) probability density function (pdf)

3On the other hand, if the structural models considered here are estimated using empirical likelihood

or other KLIC based methods, then one can apply the recent model selection tests such as Kitamura

(2002).
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fj(�jx; �j) and the (conditional) cumulative distribution function (cdf) Fj(�jx; �j), where
�j is in �j, a compact subset of IR

Kj , such that the observed dependent variable y and

the latent variables vj have a relationship as a result of the structural model given by

y = Hj(vj; fj(vjjx; �j)) � Hj(vj;x; �j).4 As a result, the function Hj(�;x; �j) maps vj to
the equilibrium outcome y under modelMj. For instance, in structural auction models

where bidders are assumed to bid optimally according to the Nash-Bayesian equilibrium

strategies, the observed bids can be considered as an increasing function of bidders' private

valuations. See, e.g., La�ont (1997) for a review on empirical auction models. Note that in

addition to �j, the parameters that appear in the (conditional) pdf of the latent variables,

it is also possible to include in modelMj some parameters that are not associated with

the latent variable density provided that they can be identi�ed and estimated as well.

An example of this case is bidders' risk aversion parameter in auction models. Our

model selection procedure can be readily adopted to this case, in which we can have

y = Hj(vj; fj(vjjx; �j); j) � Hj(vj;x; �j; j), where j is the parameter vector that is

not associated with the latent variable denisty. Thus, for ease of exposition, we will

focus on the case where each modelMj contains only �j. We have the following random

sampling assumption.

Assumption 1. fyi;xig, i = 1; : : : ; n, are independently and identically distributed with
�nite �rst and second population moments.

Note that we make the random sampling assumption for the sake of exposition. Our

proposed selection procedure can be readily extended to (weakly) dependent data, whose

data generating process satis�es the mixing conditions, such as those given in Gallant and

White (1988).

Let �̂j be an estimator of �j using the observations fyi;xig. The estimator �̂j can be
obtained from any estimation method with

p
n asymptotic normality. Speci�cally, we

4It is clear from the set-up here that bothMj ; j = 1; 2, are allowed to be conditional structural models

with x being the variables that are used for controlling for heterogeneity, as is accounted for by most of

the structural models in microeconometric applications.

6



have the following assumptions.

Assumption 2. For j = 1; 2, there is a unique ��j inside the interior of �j, such that �̂j

converges to ��j in probability as n!1.

Assumption 3. For j = 1; 2, there exist Kj � 1 random vectors Uj;i; i = 1; : : : ; n, with

mean zero and bounded second absolute moments such that

p
n(�̂j � ��j ) = �

1p
n
Aj

nX
i=1

Uj;i + oP (1) (1)

where Aj are bounded nonstochastic symmetric Kj �Kj matrices.

Assumption 2 assumes the (weak) convergence of �̂j to a unique value �
�
j inside the in-

terior of �j. Since we allow bothMj; j = 1; 2 to be misspeci�ed, �
�
j ; j = 1; 2, are called

pseudo-true values as in Gallant and White (1988). Assumption 3 gives an asymptotic

linear representation for �̂j that is satis�ed by most of the econometric estimators pos-

sessing root-n asymptotic normality (see, e.g., Newey and McFadden (1994)). Later this

assumption will be changed to accommodate the possibility that one or both estimators

are rate-n superconsistent. We also make the following regularity assumption on the

equilibrium outcome functions Hj(vj;x; �j), j = 1; 2, which is satis�ed by most of the

structural models studied in the literature.

Assumption 4. For j = 1; 2, Hj(�;x; �) are continuously di�erentiable on both vj 2 Vj
and �j 2 �j.

To formulate a set of hypotheses that are properly de�ned in the framework of structural

econometric models, we de�ne the quantity

Qj(�
�
j ) = Ey;x(y � EMj

(yjx; ��j ))2 (2)

where Ey;x denotes the expectation taken with respect to the true but unknown joint dis-

tribution of y and x, and EMj
denotes that the expectation is taken with respect to model

Mj, which may be misspeci�ed. Thus y � EMj
(yjx; ��j ) represents the prediction error
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from the conditional modelMj. Qj(�
�) is well-de�ned and �nite because of Assumption

1.

Note that Qj(�
�
j ) can be viewed as the (asymptotic) lack-of-�t from modelMj. Then

within the classical hypothesis testing framework as adopted in Vuong (1989), Rivers and

Vuong (2002), Kitamura (2000, 2002), and Chen, Hong and Shum (2003), we can specify

the following set of null and alternative hypotheses

H0 : Q1(�
�
1) = Q2(�

�
2);

meaning thatM1 andM2 are asymptotically equivalent, against

H1 : Q1(�
�
1) < Q2(�

�
2);

meaning that M1 is asymptotically better than M2 in the sense that the former has a

smaller (asymptotic) lack-of-�t than the latter, or

H2 : Q1(�
�
1) > Q2(�

�
2);

meaning thatM2 is asymptotically better thanM1.

From the formulation of the null and alternative hypotheses above, it is clear that our

model selection is based on a comparison of the asymptotic lack-of-�t, or predictability of

the two (conditional) structural models under consideration. In essence, under the null,

both structural models have the same asymptotic predictability, while under H1, model

1 has a better asymptotic predictability than model 2, and under H2, model 2 is better

than model 1 with respect to the asymptotic predictability.

To testH0 againstH1 orH2, we need to estimateQj(�
�
j ) using the observations fyi;xig,

i = 1; : : : ; n. Let gj(�jx; �j) denote the pdf for y under modelMj. Then Qj(�
�
j ) could be

estimated consistently by

~Qj(�̂j) =
1

n

nX
i=1

(yi �
Z
Hj(vj;xj; �̂j)fj(vjjxj; �̂j)dvj)2 (3)

=
1

n

nX
i=1

(yi �
Z
ygj(yjxi; �̂j)dy)2: (4)
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However, (3) can be di�cult to compute because the functional form of Hj(�;xj; �j) can
be complicated, which leads to the computational burden in evaluating the integral. Sim-

ilarly, (4) can be computationally intractable because the functional form for gj(�jxj; �j),
the pdf for the observed equilibrium outcome y under modelMj, can be hard to obtain

as the result of the structural model leading to y = Hj(vj;xj; �j) and so is the inte-

gral in (4). To address this issue, we note that EMj
(yjxi; ��j ) =

R
ygj(yjxi; ��j )dy can

be approximated by �Yj;i(�
�
j ) �

PSj
sj=1

y
(sj)
j;i (�

�
j )=Sj, where y

(sj)
j;i (�

�
j ) � Hj(v

(sj)
j;i;��j

;xi; �
�
j ) and

v
(sj)
j;i;��j

, sj = 1; : : : ; Sj, are independent draws from fj(�jxi; ��j ) provided that ��j is known.
This is because �Yj;i(�

�
j ) is an unbiased simulator of EMj

(yjxi; ��j ). Noting that ��j are
unknown, but can be consistently estimated by �̂j, we could replace the integral in (4) by

�Yj;i(�̂j) �
PSj

sj=1
y
(sj)
j;i (�̂j)=Sj where y

(sj)
j;i (�̂j) = Hj(v

(sj)

j;i;�̂j
;xj; �̂j) and v

(sj)

j;i;�̂j
, sj = 1; : : : ; Sj,

are independent draws from fj(�jxj; �̂j). Because of its nonlinearity, however, the following
quantity

1

n

nX
i=1

(yi � �Yj;i(�̂j))
2

does not converge to Qj(�
�) for any �xed number Sj of simulations as the asymptotic bias

caused by the simulations does not vanish. To correct for the asymptotic bias caused by

the simulations, we de�ne

Q̂j(�j) =
1

n

nX
i=1

(yi � �Yj;i(�j))
2 � 1

n

nX
i=1

1

Sj(Sj � 1)

SjX
sj=1

(y
(sj)
j;i (�j)� �Yj;i(�j))

2: (5)

Then we have the following result regarding the relationship between Q̂j(�̂j) and its pop-

ulation counterpart Qj(�
�
j ).

Proposition 1. Assume Assumptions 1 and 2. For any �xed Sj, as n ! 1, Q̂j(�̂j)
converges to Qj(�

�
j ) in probability.

As justi�ed in Proposition 1, for j = 1; 2 and any �xed Sj, Q̂j(�̂j) consistently estimate

Qj(�
�
j ). Furthermore, S1 does not necessarily equal S2. As a result, we propose to use
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Q̂j(�̂j) in practice to estimate Qj(�
�
j ) and hence to test H0 against H1 or H2. Q̂j(�̂j) is

thus the SMSEP we propose for model Mj. It can be viewed as an in-sample SMSEP

as it is calculated from the same sample that is used in the estimation. Alternatively,

we can consider an out-of-sample SMSEP in the sense that the original data set is split

into two parts, one part is used for estimation of the competing models, and the other

part is used for calculating Q̂j(�̂j) and hence for model selection test. Since within the

framework considered here, the asymptotic properties of the tests based on in-sample

and out-of-sample are the same, we will focus on the in-sample test based on (5) for

ease of exposition. It is worth noting that using Q̂j(�̂j) has the computational advantage

as it can be readily obtained from the sample information with the help of simulations.

Besides, as given in Proposition 1, it converges to the population lack-of-�t criterion as the

sample size approaches in�nity for any �xed number of simulations. This feature makes

it a basis for constructing our test statistic below. Note that bias corrections similar

to (5) were �rst used in La�ont, Ossard and Vuong (1995) and subsequently in Li and

Vuong (1997) in constructing objective functions to be minimized that produce simulated

nonlinear least squares estimators which are consistent for a �xed number of simulations

in estimating structural auction models. A novelty of this paper is to use (5) for a

di�erent purpose, that is to use it as a consistent sample analog to the population lack-

of-�t criterion in constructing a general test statistic for choosing between rival structural

econometric models, not limited to auction models, as long as the structural models under

consideration allow one to generate predictions from simulations.

In order to propose our test statistic, we de�ne Tn �
p
n(Q̂1(�̂1)� Q̂2(�̂2)). Then the

next theorem establishes asymptotic properties of Tn under our speci�ed hypotheses H0,

H1 and H2.

Theorem 1. Assume Assumptions 1-4.

(i) Under H0, Tn ) N(0; �2), where

�2 = lim
n!1

[(1;�B1;n; B2;n)Vn(1;�B1;n; B2;n)0];
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Vn =
1

n

nX
i=1

Var

0BB@
Ci

U1;i

U2;i

1CCA ;

Ci = (yi � �Y1;i(�
�
1))

2 � 1

S1(S1 � 1)

S1X
s1=1

(y
(s1)
1;i (�

�
1)� �Y1;i(�

�
1))

2

� (yi � �Y2;i(�
�
2))

2 +
1

S2(S2 � 1)

S2X
s2=1

(y
(s2)
2;i (�

�
2)� �Y2;i(�

�
2))

2;

Bj;n = Aj
@Q̂j
@�0j

j��j ;

and Aj and Uj;i are de�ned in (1) of Assumption 3.

(ii) Under H1, Tn !p �1.
(iii) Under H2, Tn !p 1.

Theorem 1 is valid in a general sense in that while the SMSEP criteria Q̂j(�̂j); j = 1; 2, are

used in constructing Tn, the estimation methods that are used to obtain �̂j; j = 1; 2, can be

any resulting in estimators with
p
n asymptotic normality. The estimators include those

commonly used in practice such as the GMM estimators, the MSM estimators surveyed

in Gourieroux and Monfort (1996), as well as some semiparametric estimators surveyed

in Powell (1994). Moreover, the criteria that are optimized in estimation can be di�erent

from the SMSEP used as our model selection criterion. Such a general feature of our

selection procedure leads to the consequence that the asymptotic variances of �̂j, j = 1; 2

in general contribute to the asymptotic variance �2 of Tn, as reected in the presence of

Aj; Uj;i like terms in �
2. On the other hand, in some applications one or both �̂j; j = 1; 2

can be obtained by minimizing the same SMSEP criterion de�ned in (5) which is used as

our model selection criterion. In these situations, the expression for �2 can simplify, as

indicated in the following corollary.

Corollary 1. Assume Assumptions 1-4.
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(i) If �̂1 is obtained by minimizing (5), then under H0, Tn ) N(0; �2), where

�2 = lim
n!1

[(1;0; B2;n)Vn(1;0; B2;n)
0];

where B2;n and Vn are de�ned in Theorem 1.

(ii) If �̂2 is obtained by minimizing (5), then under H0, Tn ) N(0; �2), where

�2 = lim
n!1

[(1;�B1;n;0)Vn(1;�B1;n;0)0];

where B1;n and Vn are de�ned in Theorem 1.

(iii) If both �̂1 and �̂2 are obtained by minimizing (5), then under H0, Tn ) N(0; �2),

where

�2 = lim
n!1

1

n

nX
i=1

Var(Ci);

where Ci is de�ned in Theorem 1.

Corollary 1 gives simpli�ed expressions for �2 when one or both �̂j, j = 1; 2, are ob-

tained from minimizing (5), the SMSEP criterion. This can occur when one or both

structural models are speci�ed using the �rst moment conditions, and one or both esti-

mators are simulated nonlinear least squares estimators resulting from minimizing (5).

Related examples are La�ont, Ossard and Vuong (1995) and Li and Vuong (1997). Most

interestingly, if both estimators are obtained from minimizing (5), then �2 is the same as

if ��j , j = 1; 2, were known. As a result, �
2 does not depend on the asymptotic variances

of �̂j, j = 1; 2, meaning that the sampling variability attributed to the estimation of �
�
j is

(asymptotically) irrelevant in using Tn to test H0.

As can be seen from Theorem 1 and Corollary 1, in order to propose a test statistic

that is operational, one needs a consistent estimator for �2, the asymptotic variance of

Tn. Provided that one can �nd such a consistent estimator, say �̂
2, we have the following

result.

Corollary 2. Assume Assumptions 1-4. Let T̂n = Tn=�̂.
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(i) Under H0, T̂n ) N(0; 1).

(ii) Under H1, T̂n !p �1.
(iii) Under H2, T̂n !p 1.

As stated in Corollary 2, our test statistic T̂n has a nice asymptotic property in that under

H0, it has a standard normal distribution asymptotically. Therefore, given a consistent

estimate �̂ for �, our model selection procedure involves computing T̂n and then comparing

it with critical values from a standard normal distribution. Speci�cally, let � denote the

speci�ed asymptotic signi�cance level of the test and Z�=2 � ��1(1� �=2), where ��1(�)
denotes the inverse cumulative standard normal distribution. If jT̂nj � Z�=2, then we

accept H0. Otherwise, if T̂n < �Z�=2, we reject H0 in favor of H1; if T̂n > Z�=2, we reject
H0 in favor of H2.

It now remains to discuss how to consistenly estimate �2. In principle a consistent

estimator of �2 can be obtained by replacing the quantities in Theorem 1 or Corollary

1 by their empirical counterparts. In particular, in case (iii) of Corollary 1, when both

estimators are obtained from minimizing (5) and their sampling variation is asymptot-

ically irrelevant to �2, �2 can be straightfowardly estimated from the sample variation

of Ci; i = 1; : : : ; n. This simplicity, however, disappears as soon as at least one of the

estimators is obtained from some optimization procedure other than minimizing (5), as

computational complications can arise from the need to estimate the terms Bj in Theo-

rem 1 that are associated with the derivatives of Q̂j(�). To overcome the computational
burden in estimating �2, we propose to use a bootstrap procedure as a computationally

convenient alternative. Speci�cally, in the general case where at least one of the estima-

tors �̂j are obtained without minimizing (5), the bootstrap procedure in estimating �
2

consists in the following steps.

Step 1. Resample fyi;xig; i = 1; : : : ; n, with replications to get fy(b)i ;x
(b)
i g; i = 1; : : : ; n

with b = 1; : : : ; B.

Step 2. Use the sample fy(b)i ;x
(b)
i g; i = 1; : : : ; n to get estimates �̂

(b)
j ; j = 1; 2; b = 1; : : : ; B,

13



the same way as obtaining �̂j; j = 1; 2, using the original data.

Step 3. For the simulated sample fy(sj)j;i (�̂
(b)
j )g; sj = 1; : : : ; Sj, resample it with replications

to get fy(sj ;m)j;i (�̂
(b)
j )g; sj = 1; : : : ; Sj with m = 1; : : : ;M . For each b = 1; : : : ; B, calculate

T
(b)
n =

p
n(Q̂

(b)
1 (�̂

(b)
1 )� Q̂

(b)
2 (�̂

(b)
2 )), where Q̂

(b)
j (�̂

(b)); j = 1; 2, are the bootstrapped version

of Q̂j(�̂j), and de�ned as follows

Q̂
(b)
j (�̂

(b)
j ) =

1

n

nX
i=1

(y
(b)
i � �Yj;i(�̂

(b)
j ))

2� 1
n

nX
i=1

1

Sj(Sj � 1)

24 1
M

MX
m=1

SjX
sj=1

(y
(sj ;m)
j;i (�̂

(b)
j )� �Yj;i(�̂

(b)
j ))

2

35 :
Step 4. Calculate �̂2B �

PB
b=1(T

(b)
n � Tn)2=(B � 1).

Note that the nonparametric boostrap is used in step 1, as under the null, both

models can be misspeci�ed. Also, in step 3, to account for the variation associated with

the simulation, the simulated sample fy(sj)j;i (�̂
(b)
j )g needs to be resampled in order to get

the boostraped version of the test statistic:

By now we have maintained Assumption 3 that assumes the root-n asymptotic nor-

mality for the estimators obtained under competing models Mj, j = 1; 2. Maintaining

this assumption simpli�es the presentation and discussion. While most of the estimators

that are used in estimating structural models satisfy this assumption, another class of

estimators, relevant to some structural models where the support of the dependent vari-

able also depends on the structural parameters, can have n consistency, a rate faster than

root-n. These estimators include those based on likelihood (Donald and Paarsch (1993,

1996)), Hong (1998), Chernozhukov and Hong (2004), Hirano and Porter (2003)), and

those based on the extreme order statistics (Donald and Paarsch (2002)). It is worth

noting that when one or both competing models are estimated by these rate-n consistent

estimators, Theorem 1 not only remains valid, but also simpli�es in a similar way to that

in Corollary 1. The next corollary gives the corresponding results.

Corollary 3. Assume Assumptions 1-2.

(i) If �̂1 is rate-n superconsistent, but �̂2 is root-n and satis�es Assumption 3, then

14



under H0, Tn ) N(0; �2), where

�2 = lim
n!1

[(1; B2;n)W2;n(1; B2;n)
0];

where B2;n is de�ned in Theorem 1, and

W2;n =
1

n

nX
i=1

Var

0@ Ci

U2;i

1A :
(ii) If �̂2 is rate-n superconsistent, but �̂1 is root-n and satis�es Assumption 3, then

under H0, Tn ) N(0; �2), where

�2 = lim
n!1

[(1;�B1;n)W1;n(1;�B1;n)0];

where B1;n is de�ned in Theorem 1, and

W1;n =
1

n

nX
i=1

Var

0@ Ci

U1;i

1A :
(iii) If both �̂1 and �̂2 are n superconsistent, then under H0, Tn ) N(0; �2), where

�2 = lim
n!1

1

n

nX
i=1

Var(Ci);

where Ci is de�ned in Theorem 1.

As reected in Theorem 1 and Corollary 3, our proposed model selection procedure can

be used when the competing models are estimated by estimators that are either rate-

n superconsistent, or have root-n asymptotic normality. Thus, it has generality and

wide applicability. Moreover, when both models are estimated by rate-n superconsistent

estimators, Corollary 3 indicates that the sampling variability attributed to the estimation

of ��j , j = 1; 2, does not a�ect (asymptotically) �
2, thus calculation of �2 greatly simpli�es

in the same way as in the case when both estimators are obtained from minimizing (5),

though the reasons are di�erent.
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3 An Empirical Application

To illustrate the usefulness and feasibility of our proposed model selection procedure,

we present an application from analyzing the timber sale auctions in Oregon organized

by Orgeon Department of Forest (ODF). This data set has been analyzed in Li (2003),

which estimates a structural model within an independent private value (IPV) paradigm.

A particular feature of the timber auctions in Oregon, as noted in Li (2003), is the presence

of the publicly announced reserve prices. As is well known, a structural auction model

derived from the game theory assumes that bidders draw their bids dependent of the

number of potential bidders. Speci�cally, within the IPV paradigm, as shown by Riley

and Samuelson (1981) among others, the symmetric Nash-Bayesian equilibrium strategy

bm for the m-th bidder with a private value vm above the reserve price p is given by

bm = vm �
1

(F (vm))N�1

Z vm

p

FN�1(x)dx; (6)

where N is the number of potential bidders and F (�) is the private value distribution.
As in Li (2003), we consider 108 lots with di�erent species grades and in di�erent

regions. Table 1 gives summary statistics on the data such as the appraised volumes

measured in thousand board feet (MBF), the reserve prices, the regional dummies to

indicate where the lots are located, the bids per MBF and the log grades. For more

details on these variables, see Li (2003). Also, following Li (2003), we assume that the

private value density at the `-th lot be speci�ed as

f`(vm`jz`) =
1

exp(`)
exp

�
� 1

exp(`)
vm`

�
; (7)

where vm` is the private value for the m-th bidder at the `-th auction, ` = 0+1grade`+

2region1`+ 3region2&3`, and z` denotes the heterogeneity vector consisting of variables

\grade", \region1" and \region2&3", where \grade" is for log grade to measure the quality,

\region1" and \region2&3" are both regional dummies.

Table 1
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Summary Statistics of the Timber Sale Data

Variable Number of Mean S.D. Min Max

Observations

Bid 451 331.62 136.70 119.67 2578.3

Winning Bid 108 382.5 231.13 157.86 2578.3

Reserve Price 108 273.19 77.32 118.32 463.96

Volume 108 3165.22 2894.31 256.74 20211

Grade 108 2.1653 0.3837 1.2727 3.0199

Region1 108 0.8448 0.3625 0 1

Regions2&3 108 0.1397 0.3471 0 1

Number of Submitted Bids 108 4.1759 2.0178 1 10

As indicated from (7), to conduct the structural analysis, one needs to know the

number of potential bidders. With the timber auction data in our case, however, we only

observe the number of actual bidders, which is not the same as the number of potential

bidders due to the fact that the bidders whose valuations are below the reserve prices will

not submit their bids. In essence, when reserve prices are binding, the number of potential

bidders, if assumed to be a constant across auctions, can be regarded as a structural

parameter that cannot be identi�ed from the bidding model but from elsewhere.5 To

resolve the issue of not observing the number of potential bidders, Li (2003) assumes that

the number of potential bidders is 10, which is the maximum number of actual bidders in

the data set. To illustrate the application of the proposed model selection procedure, we

consider another alternative assumption about the number of potential bidders which is

N = 50. This assumption comes from the fact that there are in total 50 di�erent bidders

in the data.6 Note that the resulting structural models from (7) with di�erent number of

5Determining the number of potential bidders in auctions with the presence of reserve prices is indeed

a common problem facing empirical economists when analyzing auction data. See also the discussion in

footnote 1.
6My discussion with the expert at ODF also con�rms that there are about 50 �rms that could be
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bidders N = 10 and N = 50 are non-nested. Assuming that N = 10, Li (2003) estimates

the structural model under the speci�cation (8) for the private value distribution using an

estimation method based on the indirect inference principle originally suggested by Smith

(1993), Gourieroux, Monfort and Renault (1993), and Gallant and Tauchen (1996).7 Now

assuming N = 50, we re-estimate the structural model using the same method. Table 2

reports the estimation results.8 It is interesting to note that only comparing the estimates

from these two models with N = 10 and N = 50, respectively, does not allow us to

distinguish between these two models, as the two sets of estimates are similar in both

magnitudes and signi�cance levels. Thus, to determine the number of potential bidders

that better describes the bidding process, we apply our model selection procedure and

obtain that the test statistic is T̂n = 11:96, with the formulation of H1 as the model

with N = 50 being preferred and H2 as the model with N = 10 being preferred.9 As

a result, at the 95% signi�cance level, N = 10 is preferred to N = 50. Also, note that

it is possible that neither N = 10 nor N = 50 could be a correct description of the

true number of potential bidders. For instance, we maintain the assumption that the

number of bidders is a constant across the auctions. In reality, however, the number of

potential bidders may vary across auctions. Nevertheless, since our model selection test

allows both models to be misspeci�ed, we can conclude from the test that N = 10 is a

better approximation than N = 50 for the number of potential bidders. In other words,

the competition e�ect is better measured by N = 10 than N = 50. This application

demonstrates the usefulness of our model selection procedure in selecting the competing

structural econometric models.10

potentially interested in timber auctions.
7The procedure proposed in Li (2003) consists in the OLS estimation at the �rst step and simulation

and parameter calibration at the second step. See Li (2003) for details.
8For completeness and comparison, we also include the results reported in Li (2003) for the case of

N = 10.
9We obtain this T̂n by setting S1 = S2 = 100 in calculating Tn, and setting B = 800 and M = 100 in

obtaining �̂.
10Note that the use of the indirect inference type estimators in estimating our structural models and
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Table 2

Estimates for Structural Parameters in Timber Sale Auctions

Parameter 0 1 2 3

N = 50 Estimate 4.6932 0.2576 0.2250 -0.0678

Standard Error 0.3247 0.1082 0.2032 0.2352

N = 10 Estimate 4.9042 0.2642 0.2070 -0.0865

Standard Error 0.3017 0.0962 0.1927 0.2203

4 Conclusion

This paper develops a general framework for testing between competing non-nested struc-

tural econometric models. Our method allows for any estimators that are either root-n

asymptotically normally distributed or superconsistent, and can be used for distiguishing

between two models that are both possibly misspeci�ed. The statistical signi�cance of

the di�erence between two models under consideration is assessed through a simulation

based lack-of-�t criterion, taking into account the complex nature of structural economet-

ric models. As such, our approach provides a new model selection method for choosing

between competing structural models.

We apply our testing procedure to determine the number of potential bidders in the

timber auctions in Oregon. Such an application illustrates the usefulness and generality

of our test, and also demonstrates the importance of developing model selection tests in

structural econometric models.

As previously mentioned, this paper is motivated by the need to develop a general

model selection test for structural models when the estimation methods used do not allow

one to use the existing procedures. On the other hand, because of its generality, our

proposed method can also be applied to the cases in which the existing model selection

the complex feature of the structural model itself make it di�cult to apply the existing model selection

procedures here. This application demonstrates the generality of our proposed selection procedure.
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tests work as well. For instance, when two competing structural models are estimated by

the MLE, we can use the Vuong (1989) likelihood ratio test as well as our test for model

selection. Thus, it would be interesting in this case to compare the asymptotic properties

of both tests as well as their �nite sample performances. This is left for future research.
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Appendix

Proof of Proposition 1:

By using a strong law of large numbers such as Theorem 3.3.1 in Amemiya (1985), we

have

Q̂j(�
�
j )� lim

n!1

1

n

nX
i=1

E
y;x;y

(sj)

j

[qi;j;Sj(�
�
j )]!a:s: 0;

where

qi;j;Sj(�j) = (yi � �Yj;i(�j))
2 � 1

Sj(Sj � 1)

SjX
sj=1

(y
(sj)
j;i (�j)� �Yj;i(�j))

2:

On the other hand,

E
y;x;y

(sj)

j

[qi;j;Sj(�
�
j )] = E

y;x;y
(sj)

j

[(yi � �Yj;i(�
�
j ))

2]� E
y;x;y

(sj)

j

[
1

Sj(Sj � 1)

SjX
sj=1

(y
(sj)
j;i (�

�
j )� �Yj;i(�

�
j ))

2]

= E
y;x;y

(sj)

j

[(yi � EMj
(yjxi; ��j ))2] + Ex;y(sj)j

[ �Yj;i(�
�
j )� EMj

(yjxi; ��j )]2

� 1

Sj
ExVarMj

y
(sj)
j;i (�

�
j )

= Ey;x[(yi � EMj
(yjxi; ��j ))2];

where VarMj
(�) denotes the conditional variance given x under model Mj, the second

equality follows from the unbiased estimation of VarMj
�Yj;i(�

�
j ), and the conditional inde-

pendence of yi and the simulations y
(sj)
j;i given xi leading to Ey;x;y(sj)j

[(yi�EMj
( �Yj;ijxi; ��j ))( �Yj;i�

EMj
( �Yj;ijxi; ��j ))] = 0. As a result,

Q̂j(�
�
j )!a:s: Qj(�

�
j ): (A.1)

Then Proposition 1 follows from (A.1) above and Assumption 2 that �̂j converges to �
�
j

in probability as n!1. 2

Proof of Theorem 1:

A Taylor expansion of Q̂j(�̂j) around �
�
j yields

Q̂j(�̂j) = Q̂j(�
�
j ) +

@Q̂j
@�0j

j��j(�̂j � �
�
j );
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where ��j is a value between �̂j and �
�
j , j = 1; 2. We then have

p
nQ̂j(�̂j) =

p
nQ̂j(�

�
j ) +

@Q̂j
@�0j

j��j
p
n(�̂j � ��j )

+

 
@Q̂j
@�0j

j��j �
@Q̂j
@�0j

j��j

!
p
n(�̂j � ��j )

=
p
nQ̂j(�

�
j ) +

@Q̂j
@�0j

j��j
p
n(�̂j � ��j ) + oP (1); (A.2)

where the second equality follows from that ��j � ��j ! 0 in probability because �̂j �
��j ! 0 in probability as assumed in Assumption 2, and that

p
n(�̂j � ��j ) = OP (1) from

Assumption 3, as well as @Q̂j(��j)=@�
0
j � @Q̂j(��j )=@�0j ! 0 in probability which is a result

of Assumption 4. It then follows that

p
nfQ̂1(�̂1)� Q̂2(�̂2)� (Q1(��1)�Q2(��2))g =

p
nfQ̂1(��1)� Q̂2(��2)� (Q1(��1)�Q2(��2))g

+
@Q̂1
@�01

j��1
p
n(�̂1 � ��1)

� @Q̂2
@�02

j��2
p
n(�̂2 � ��2) + oP (1)

=
1p
n

nX
i=1

(Ci � A1U1;i + A2U2;i)

�
p
n(Q1(�

�
1)�Q2(��2)) + oP (1); (A.3)

where the second equality follows from Assumption 3 and the de�nition of Q̂j(�
�
j ), j = 1; 2.

Then (i), (ii) and (iii) follow from (A.3) and application of central limit theorem after

some algebra. 2

Proof of Corollary 1:

If �̂j is obtained by minimizing (5), then @Q̂j(�̂j)=@�
0
j = 0 by the �rst-order condition

of the minimization problem. On the other hand, noting that ��j is the probability limit

of �̂j, limn!1 @Q̂j(�
�
j )=@�

0
j = 0. As a result, limn!1Bj = 0. Then (i), (ii), (iii) follow

directly. 2
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Proof of Corollary 2:

The result directly follows from Theorem 1 and the assumption that �̂2 is a consistent

estimator for �2. 2

Proof of Corollary 3:

If �̂j is rate-n superconsistent, then
p
n(�̂j � ��j ) = oP (1). As a result, (A.2) becomes

p
nQ̂j(�̂j) =

p
nQ̂j(�

�
j ) + oP (1): (A.4)

(i) Now if �̂1 is superconsistent, but �̂2 is root-n and satis�es Assumption 3, then (A.4)

holds for �̂1 while (A.2) holds for �̂2. It then follows that (A.3) becomes

p
nfQ̂1(�̂1)� Q̂2(�̂2)� (Q1(��1)�Q2(��2))g =

1p
n

nX
i=1

(Ci + A2U2;i)

�
p
n(Q1(�

�
1)�Q2(��2)) + oP (1):(A.5)

Then the result follows from (A.5) after some algebra.

(ii) Now if �̂2 is superconsistent, but �̂1 is root-n and satis�es Assumption 3, then (A.4)

holds for �̂2 while (A.2) holds for �̂1. The result follows from an argument similar to that

of (i).

(iii) Now if both �̂1 and �̂2 are superconsistent, then (A.4) holds for both �̂1 and �̂2. As a

result, (A.3) becomes

p
nfQ̂1(�̂1)� Q̂2(�̂2)� (Q1(��1)�Q2(��2))g =

1p
n

nX
i=1

Ci

�
p
n(Q1(�

�
1)�Q2(��2)) + oP (1):(A.6)

Then the result follows from (A.6) after some algebra. 2
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