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Abstract

This paper provides a control function estimator to adjust for en-
dogeneity in the triangular simultaneous equations model where there
are no available exclusion restrictions to generate suitable instruments.
Our approach is to exploit the dependence of the errors on exogenous
variables (e.g. heteroscedasticity) to adjust the conventional control
function estimator. The form of the error dependence on the ex-
ogenous variables is subject to restrictions, but is not parametrically
speci�ed. In addition to providing the estimator and deriving its large-
sample properties, we present simulation evidence which indicates the
estimator works well.

1 Introduction

Instrumental variables (IV) is a method commonly employed in empirical
applications for estimating models with endogenous regressors. However,

�We are grateful to participants at numerous seminars over the past four years for
various comments which have resulted in improvements to the paper. We would also like
to thank Ethel Fonseca for helpful comments. We are particularly grateful to Whitney
Newey for detailed comments which led to the current formulation of the problem. Any
remaining errors are the sole responsibility of the authors.
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while there is general agreement that IV is appropriate for a large class
of models with endogeneity, there is frequently little agreement about the
exclusion restrictions that this method typically requires in speci�c empirical
applications. In fact, the di¢ culty in obtaining instruments has generated a
rapidly growing and important literature related to inference in the presence
of weak instruments (see, for example, Staiger and Stock 1999).
When the primary equation of interest contains an endogenous regressor,

it is well known that IV is equivalent to an OLS regression that includes an
additional regressor to control for endogeneity. Commonly, this additional
variable or control is the reduced form residual for the endogenous regressor.
In the linear case, as the control is a linear combination of the endogenous
regressor and exogenous variables, the model is only identi�ed in the presence
of at least one exclusion restriction.1

In the above case the impact of the control is a constant that is esti-
mated along with the parameters of interest. As a result, without further
information, identi�cation requires an exclusion restriction. However, when
the error distribution depends on the exogenous variables, we show that it
is possible and in some sense natural to develop a control whose impact is
not constant. Without providing parametric functional form assumptions,
we provide assumptions on the manner in which errors depend on exogenous
variables. In particular, as elaborated on below, we assume a generalized
form of heteroscedasticity for both errors. We then develop a "feasible"
control whose impact is not constant and show that the model is identi�ed
without exclusion restrictions.
As discussed in section 3, other papers have explored identi�cation via

second moments (e.g. Vella and Verbeek 1997, Rummery et al 1999, Sentana
and Fiorentini 2001, Rigobon 2003 and Lewbel 2004). For the model that we
consider, identi�cation depends on there being heteroscedasticity in one or
both equations of interest and that it "di¤ers" across equations in a manner
made precise below. The estimator is then based on estimating a generalized
form of heteroscedasticity in each equation. For the structural equation of
interest, such heteroscedasticity must be estimated simultaneously with the
model�s parameters as consistent residuals are unavailable. We do this in a
setting where the conditional variance of each error is an unknown function
of an index which needs to be estimated. While this semiparametric treat-
ment of the unknown functions complicates the analysis, it ensures that we

1This control function approach is equivalent to two-stage-least-squares.
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can consider a general form of heteroscedasticity without having to rely on
parametric assumptions for identi�cation.
In the following section we outline the model. In section 3 we discuss the

estimation method and how to implement it. Formal results are stated in
section 4. This section also outlines the proof strategy for obtaining these
results. Section 5 provides simulation evidence and section 6 concludes. The
Appendix contains detailed proofs of all theorems and intermediate lemmas.

2 Model and Identi�cation Sources

With �o and �o as vectors of true parameter values, consider the following
linear triangular model:

Y1i = Xi�1o + Y2i�2o + ui � Wi�o + ui (1)

Y2i = Xi�o + vi; (2)

where Y1i and Y2i are continuous endogenous variables; Xi is a vector of
variables that are mean-independent of the error components ui and vi: We
further assume that these errors are correlated. The main objective of esti-
mation is to conduct inference on �o; the vector of true parameter values in
the primary equation. We use the terms primary and secondary to refer to
the �rst and second equations respectively. Notice that the model allows
the same X 0s in both equations without imposing any restrictions on the
parameter values.
When the errors do not depend on X, the (linear) relation between errors

is captured by the following unconditional population regression:

ao = argmin
a

E [u� av]2 ) ao = cov (u; v) =V ar(v):

By construction, " � u�aov is uncorrelated with v, which provides the basis
for the controlled regression:

Y1i = Wi�o + aovi + "i:

Provided that the matrix [W; v ] has full column rank, the OLS estimator
for this regression is consistent and would be implemented in practice by
replacing vi by the corresponding residual. However, in the absence of an
exclusion restriction this full rank condition is not satis�ed.
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When the distribution of the errors depends on X, we would capture the
(linear) conditional relation between the errors by the following conditional
population regression:2

Ao (X) = argmin
A

E [u� Av j X]2 )

Ao(X) = cov (u; v j X) =V ar(v j X):

In this case, " � u�Ao (X) v is uncorrelated with v conditioned on X, which
provides the basis for the controlled regression:

Y1i = Wi�o + Ao(Xi)vi + "i:

Provided that Ao depends on X, which would be reasonable when the error
distributions depend on X, the matrix [W Ao(X)v] will have full column
rank. Accordingly, when Ao(X) is known, the above model is identi�ed
without exclusion restrictions.
As A(X) is unknown, it must be estimated and restrictions must be

imposed to obtain identi�cation. Here, we explore the restrictions implied
by a generalized form of heteroscedasticity. To this end, assume:

u � Suu
�; v � Svv

�;

where

S2u � V ar (ujX)
S2v � V ar (vjX)

E (ujX) = E(vjX) = 0:

Further, there is a constant relation between unscaled error components:3

�o � E (u�v�jX) = E (u�v�) :

Subject to the above restrictions, the error components can arbitrarily de-
pend on X. With the correlation �o constant, the control is given as:

Ao(X)v = �o [Suo=Svo] v:

2We would like to thank Whitney Newey for this interpretation of the control.
3Note that Bollerslev (1990) also employs a constant correlation assumption in a time-

series context.
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Before discussing how to implement the above control, note that if the
scaling functions are known or can be consistently estimated, then identi�-
cation holds if these scaling functions "di¤er" in that the matrix [Suo Svo]
has full column rank. As a specialized interpretation, view u� and v� as un-
observed variables with non-constant impacts on the endogenous variables.
These impacts are functions of X and are given by the functions Suo and Svo
respectively.
Other papers exploit second moment information as a source of identi-

�cation. Vella and Verbeek (1997) and Rummery et al (1999) develop an
estimation procedure based on the rank order of an individual�s position in
the reduced form residual distribution for subsets of the data. The vari-
able determining the selection of subsets is also assumed to be responsible
for the heteroscedasticity. In the context of normal factor models, Sentana
and Fiorentini (2001) examine heteroscedasticity as a source of identi�cation.
Rigobon (2003) formulates a model in which there are two known regimes.
The parameters of interest and the covariance between the equations�er-
rors do not depend on the regime indicator. However, the error variances
do depend on the known regime indicator. Employing an error covariance
restriction similar to that in Rigobon, Lewbel (2004) examines a model of
heteroscedasticity with second moment information depending on a known
vector of variables Z. As Z may coincide with X, for comparative purposes
we focus on this case and without loss of generality take E(X) = 0. He then
considers a model in which:

E (Xiuivi) = E [XiE (uivijXi)] = 0; E
�
Xiv

2
i

�
6= 0.

The model considered here di¤ers in several respects from those above.
First, for the model outlined earlier, E (uivijXi) depends on Xi . Conse-
quently, while the �rst restriction above may hold in special cases, it will not
hold in general for the model considered here. Second, with the conditional
covariance and variance functions depending onXi; here the conditional vari-
ance of each error is modeled as an unknown function of an index. In a
di¤erent model, Klein and Vella (2004) we also exploit heteroscedasticity
to estimate a triangular treatment model where the endogenous regressor
is binary. To �exibly model both the shape and conditional variance for
the error distribution in the binary model, a double index formulation is
employed. In so doing, with the estimated binary response probability as
an instrument, the model is "well-identi�ed" without exclusion restrictions.
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While the treatment paper is related to this paper the identi�cation and
estimation strategies are fundamentally di¤erent from those employed here.
Finally note that the use of instruments in the absence of exclusion re-

strictions is not limited to cases of heteroscedasticity. Dagenais and Dagenais
(1997) and Lewbel (1999) also discuss estimation of models where there are
endogenous regressors and no exclusion restrictions. They show that when
there is measurement error of a speci�c form one is able to use instruments
based on the higher powers of the included variables. The model and esti-
mator presented below both di¤er from the approach in these papers.

3 The Estimator: Implementing Strategies

Before presenting the main results, this section outlines and motivates the
estimation strategy. From the above discussion, we will require residuals and
the conditional variance function for the secondary equation. Accordingly,
�rst obtain consistent estimates of the secondary equation�s conditional mean
parameter values by regressing Y2 on X to get b�: We then estimate the
residuals as:4 bv = Y2 �Xb�:
To estimate Sv; we impose a single index structure:

S2vi � E
�
v2i j Xi

�
= E

�
v2i j Ivi (�o)

�
;

where Ivi (�o) � X1i + X2i�o. Next, estimate �o using semiparametric least
squares with bv2i as the dependent variable (see Ichimura, 1993). Namely:

�̂ = argmin
�

X
�̂ i

h
v̂2i � Ê

�
v̂2i j Ivi (�)

�i2
;

where �̂ i is a trimming functions that restricts Xi to a compact set.5 Em-
ploying the estimated index:

Ŝ2vi =
bE �bvi2 j Ivi ��̂��

where bE is a non-parametric estimator for the indicated conditional expec-
tation. Employing the above initial estimator Ŝvi, we then repeat the above

4These residuals could be obtained in a more general non-parametric or semiparametric
regression.

5Here, the set will depend on sample quantiles for the X0s.
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process in a GLS step.6 For notational convenience below, denote the vector

of parameter estimates as: �̂ �
�
�̂0 �̂

0�0
. As our focus will be on the primary

equation, we will refer to these parameters as nuisance parameters.
For the primary equation of interest, we employ an estimator for Su that

is itself a function of unknown parameters. Let Iui (bo) � X1i + X2ibo and
assume the single index assumption:

E
�
u2i j Xi

�
= E

�
u2i j Iui (bo)

�
:

As the above function can not be estimated directly, de�ne the function:

Ŝ2ui (�; b) � E
�
(Y1 �Wi�)

2 j Iui (b)
�

where the estimated expectation is obtained from a kernel-based nonpara-
metric regression of (Y1 �Wi�)

2 on Iui (b). With � � (�; �; b) and i = 1; :::; N
observations, de�ne:

Âi (�; �̂) � �
h
Ŝui (�; b) =Ŝvi

i
M̂i (�; �̂) � W� + Â (�) v̂

Ŝ (�) � 1

N

X
i

�̂ i

h
Y1i � M̂i (�; �̂)

i2
.

The estimator for the primary equation is now de�ned as:

�̂ � argmin
�

Ŝ (�) :

In the next section, we provide assumptions and de�nitions under which
these estimators are consistent and asymptotically distributed as normal.
With detailed proofs relegated to an appendix, this section also summarizes
the main results and outlines the proof strategy for obtaining them.

4 Assumptions, De�nitions, and Results

We employ the following assumptions to establish the asymptotic results
proved in the Appendix:

6While it is possible to avoid a GLS step, we have found that the estimator for Svi based
on �̂GLS is improved and that there is a corresponding improvement in the estimates of
the primary equation of interest.
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A1 The vector (Y1i; Y2i; Xi; ui; vi) is i.i.d distributed over i, with E (u4i jXi)
and E (v4i jXi) bounded.

A2 The parameter vector:  � (�; �; �; b; �) is in a compact parameter space,
�; where o is in the interior of �:

A3 Write the error components as:

u � Suu
�; S2u � V ar (ujX)

v � Svv
�; S2v � V ar(vjX):

Assume:
E (u�jX) = E (v�jX) = 0

�o � E (u�v�jX) = E (u�v�) :

A4 With Iui (bo) � X1i +X2ibo and Ivi (�o) � X1i +X2i�o :

S2u � E
�
u2jX

�
= E

�
u2 j Iui (bo)

�
> 0

S2v � E
�
v2jX

�
= E

�
v2 j Ivi (�o)

�
> 0:

For X in a compact set, these functions and their �rst four derivatives
are uniformly bounded. Further, each index depends on a continuous
variable.

A5 The conditional density g(x1jx2) is bounded away from zero on the inte-
rior of its support and has bounded derivatives up to the fourth order.

A6 For estimating expectations and densities, assume that the kernel func-
tion, K, is a symmetric density with up to 4 bounded derivatives.7

A7 The matrix [X; Y2; (Su=Sv) v] : N x (K + 2) has full column rank.

The above assumptions are somewhat standard, with the last assumption
required for identi�cation (see Theorem 2 of this section). In addition to
these assumptions, we need to de�ne the estimators and a bias reduction
device used to establish asymptotic normality. Accordingly, we adopt the
following de�nitions:

7In the simulations, K is a normal kernel.
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D1 Indicator Trimming. Let c
¯k
and c̄k be lower and upper population

quantiles for Xik; k = 1; :::; K: Let qo be the vector of these quantiles.
With x: 1xK, de�ne P �fx : c

¯k
< xk < c̄k; k = 1; :::; Kg : With Xi �

[Xi1; :::XiK ], de�ne the trimming indicator:

� io � � i (qo) � f Xi � P g :

With q̂ as a vector of sample quantiles, the estimated trimming function
is given as: �̂ i � � i (q̂) :

To insure that various estimated denominators are bounded away from
zero in large samples, the above trimming function restricts the components
of X to a compact set depending on estimated sample quantiles. As a result,
the trimming function should be viewed as being estimated rather than taken
as �xed.8 Employing this trimming function, (D2-4) provide the estimators
for the parameter values of the secondary and primary equations.

D2 Y2-Model: Let �̂ be the GLS estimator from the regression of Y2 on
X.9 De�ne the residual:

v̂ � Y2 �X�̂:

The estimated index parameters of the conditional error variance are
then given by:

�̂ = argmin
�

R̂ (�) ; R̂ (�) �
NX
i=1

�̂ i

h
v̂2i � Ê

�
v̂2i j Ivi (�)

�i2
=N;

where Ê is a nonparametric estimated expectation de�ned below. With
�̂ �

�
�̂; �̂
�
estimating �o � (�o; �o), we refer to �̂ as the (nuisance)

vector of estimates for the secondary equation.
8As discussed in Lemma G1 of the Appendix, we will be able to take estimated trimming

as known under a result due to Pakes and Pollard (1989).
9First, obtain OLS residuals v̂i. Second, obtain Ivi

�
�̂
�
; from the SLS estimator of �o.

Next, de�ne estimate Ŝ2vi :

Ŝ2vi = Ê
�
v̂2i j Iv

�
�̂
��
:

Reweighting observations in the Y2 model provides the GLS estimator of �o: All of the
results in this paper hold using the OLS estimator of �o: We have found, however, that
the �nite sample properties of the estimator for the Y1 model are improved in employing
the GLS estimator for the secondary equation.
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D3 Estimated Conditional Variance. With �̂ given in (D2):

Ŝ2vi � Ê
�
v̂2i jIvi

�
�̂
��

:

D4 Y1-Model. With the Y1� model given as:

Y1 = [X Y2] �o + u � W�o + u;

de�ne u (�) � Y1 �W� and Ŝ2ui (�; b) � Ê[u2 (�) j Iui (b)]. Then, with
� � (�; b; �) and

M̂i (�) � Wi� + �
h
Ŝui (�; b) =Ŝ

2
vi

i
v̂i,

for the primary equation:10

�̂ = argmin
�

Ŝ (�) ; Ŝ (�) � 1

2

X
�̂ i

h
Y1i � M̂i (�)

i2
=N:

Both secondary and primary equations depend on a nonparametric
estimator of a conditional expectation. De�nitions (D5-9) provide this esti-
mator and the underlying windows upon which it depends.

D5 Estimated Conditional Expectations. Let Z � X1 + X2 and
de�ne:

Ê [Y j Z = zi; ] � f̂i=ĝi;

where with the kernel function satisfying the assumptions in (A6):

f̂i � f̂
�
zi; L̂; 

�
�
X
j 6=i

YjL̂j
(N � 1)hK

��
zi � zj
h

L̂j

��

ĝi � ĝ
�
zi; �̂; 

�
�
X
j 6=i

�̂j
(N � 1)hK

��
zi � zj
h

�̂j

��
:

Here, L̂j and �̂j are estimated local smoothing parameters that are
de�ned below and are employed for bias control. Note that the local
smoothing parameters depend on a pilot window, hp; and that the
above estimators also depend on a global window, h. Restrictions on the
windows h and hp are given in (D10) after local smoothing parameters
have been de�ned.

10The factor 1/2 avoids having to account for a factor of 2 in a number of gradient
expressions examined in the Appendix.
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With the exception of the estimated local smoothing parameters, (D5) is a
standard nonparametric estimator for a conditional expectation. For reasons
detailed in Lemmas 2-3 of the Appendix, such local smoothing serves as a
device to reduce the bias in the components of this estimator. De�nitions
(D6-9) provide the components needed to de�ne estimated local smoothing
parameters.

D6 Smooth Trimming. Local smoothing parameters will be smoothly
trimmed away from zero using the smoothed trimming function:

�N (l; a) � [1 + exp [ (�Ln(N)Ln(N) ) (l � a) ] ]�1 :

D7 Pilot Estimators. The estimated smoothing parameters are based
pilot estimators. De�ne the following pilot estimators for the density
g(z) and the conditional expectation E(Y jZ = z):

ĝp (zj) �
X
k 6= j

1

(N � 1)hp
K

��
zj � zk
hp

��
Êp (Y j Z = zj) �

X
k 6= j

Yj
(N � 1)hp

K

��
zj � zk
hp

��
=ĝp (zj)

f̂p (zj) � Êp(Y jZ = zj)ĝp (zj) ;

where hp is termed a pilot window and zj is an index.

D8 Trimmed Pilot Estimators. Refer to the trimming function in (D1)
and select population quantiles:

c
¯
�
k < c¯k

; c̄�k > c̄k

De�ne P��fx : c
¯
�
k < xk < c̄�k; k = 1; :::; Kg so as to contain P in (D1)

as a proper subset. Then, de�ne:

f
¯
� inf

P�
f̂p (zj) ; g

¯
� inf

P�
ĝp (zj) :

Referring to (D7), de�ne the trimmed estimators

f̂ �i �
h
1� �N

�
f̂p (zi) ; f¯

�i
f
¯
+ �N

�
f̂p (zi) ; f¯

�
f̂p (zi)

ĝ�i �
�
1� �N

�
ĝp (zi) ; g

¯

��
g
¯
+ �N

�
ĝp (zi) ; g

¯

�
ĝp (zj) :
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D9 Estimated Local Smoothing Parameters. Letting m1 and m2 be
the geometric means of f̂ �j and ĝ� (zj) respectively; the local smoothing
parameters in (D5) are given by:

L̂j �
h
f̂ jj =m1

i1=2
; �̂j �

�
ĝ�j=m2

�1=2
:

If the local smoothing parameters were known and bounded away from
zero, then from Lemma 2-3 in the Appendix they would serve as an ap-
propriate bias reducing device. Trimming is required to insure that these
parameters are bounded away from zero. In this context, smooth rather
than indicator trimming is required for technical reasons. With a smooth
trimming function approximating an indicator, the derivative of this func-
tion must increase without bound as the sample size increases. The Ln(N)2

factor of the trimming function insures that this derivative slowly increases.

D10 Windows. Set pilot and second stage global windows such that:

hp � �̂N�rp ; h � �̂N�r;

�̂ = Op
�
N�1=2�.11 Assume:

1=8 < r < 1=6; r > rp; r + rp > 1=2:

The main asymptotic results of this paper follow from the above assump-
tions and de�nitions and are proved in the Main section of the Appendix.
In the remainder of this section, we summarize the asymptotic results and
provide a brief outline of the proof strategy. Detailed arguments are given
in the Appendix. Beginning with the secondary equation (Y2�Model); The-
orem 1 provides the large sample results for the estimators of the nuisance
parameters.

Theorem 1 (The Y2-Model): Under the above assumptions and de�-
nitions, estimates of regression and index parameters satisfy the characteri-
zations:

1)
p
N [�̂ � �o] =

p
N

NX
i=1

"�i=N

2)
p
N
h
�̂ � �o

i
=

p
N

NX
i=1

"�i=N;

11The estimated component �̂ need not be
p
N�convergent, and may di¤er for pilot

and second stage windows.
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where "�i and "�i each are i:i:d. with 0 expectation and �nite variance.

The �rst result above is immediate and the second follows from a standard
Taylor series argument and Ichimura (1993). This result also follows from the
same type of U-statistic arguments used to establish asymptotic normality
for estimates of the primary equation (Y1�Model):
For the Y1�Model, Theorem 2 below provides the consistency/identi�cation

result.

Theorem 2 (Consistency: the Y1�Model): With �o � (�o; �o; bo)

and �̂ �
�
�̂; �̂; b̂

�
, under the above assumptions and de�nitions:

�̂
p! �o:

To outline the consistency argument, which is provided in detail in the
Appendix, recall from D4 that:

�̂ = argmin Ŝ (�)
�

:

Equivalently, employing a well-known device that avoids having to establish
convergence for Ŝ (�o):

�̂ = argmin Q̂ (�) ; Q̂ (�) � Ŝ (�)� Ŝ (�o)

Referring to (D4), obtain Mi (�) from M̂i (�) by replacing all estimated
functions with their uniform probability limits. Then, de�ne Q (�) by re-
placing M̂i (�) in Q̂ (�) with Mi (�). It can be shown that���Q̂ (�)�Q (�)

��� and ���Q̂ (�)� E [Q (�)]
���

each converge in probability, uniformly in � to zero. Accordingly, consistency
will follow if E [Q (�)] is uniquely minimized at �o: With Moi � Mi (�o) ;
�i (�; �o) � 2 (Mi �Mio) ; and with �(�; �o) as the corresponding vector of
di¤erences:

E [Q (�)] = E [� (�; �o)]
0 [� (�; �o)] =N:

As �(�; �o) = 0 at � = �o; �o is a minimizer and the issue is one of
uniqueness. Under a constant correlation assumption, in the appendix we
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establish identi�cation (uniqueness) when the matrix [X; Y2; (Su=Sv)v] has
full column rank.
Theorem 3 below, which is proved in the appendix, provides the normality

result.

Theorem 3 (Normality: the Y1�Model): Under the assumptions
and de�nitions above:

p
N [�̂� �o]

d! Z; Z~N (0;�) :

To outline the argument, note that under a standard Taylor series argu-
ment for the gradient to the objective function and a uniform convergence
argument for the Hessian, normality will follow if the normalized gradient
is asymptotically distributed as normal. For expositional purposes, neglect
�rst-stage estimation uncertainty as it matters,12 but poses no technical dif-
�culties. Then, evaluating all functions at true parameter values and letting
ŵi � r�M̂oi the gradient is given as:

p
NĜ = �

p
N
X

�̂ i [Y1i �Moi] ŵi=N +
p
N
X

�̂ i

h
M̂oi �Moi

i
ŵi=N

�
p
NĜ1 (�o) +

p
NĜ2 (�o) :

With the estimated trimming function depending on sample quantiles, Lemma
G1 employs results in Pakes and Pollard (1989) to show that the trimming
function may be taken as known. A mean-square convergence argument is
then used to show that the estimated weight function, ŵi; may be taken as
known. Accordingly: with "1i � [Y1i �Moi]wi and with �"1 as the corre-
sponding sample mean:

p
NĜ1 =

p
N�"1 + op(1):

For the second gradient component, Lemma 5 shows that the estimated
trimming and weight functions may be taken as known:

p
NĜ2 =

p
N
X

� io

h
M̂oi �Moi

i
wi=N + op(1):

12See Newey and McFadden (1994).
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With M̂oi depending on estimated expectations, the bias properties of these
expectations are important to the argument. Recall that an estimated ex-
pectation, which is calculated under local smoothing, has the form:

Êi � f̂i=ĝi:

Many of the intermediate lemmas in the Appendix are concerned with show-
ing that the bias in numerator and denominator is su¢ ciently small. Once
it is established that local smoothing delivers a bias of order o(N�1=2), Lem-
mas 7 and G2 of the Appendix establish that

p
NĜ2 is close in probability to

a linear combination of U-statistics. From a standard projection argument,
it is then possible to characterize this gradient component in the same form
as the �rst component.13 Namely in the Appendix we de�ne a vector "2i
which is i.i.d. with expectation zero and �nite variance components. Then,
with �"2 as the corresponding sample mean, we show that:

p
NĜ2 =

p
N�"2 + op (1) :

With the estimation uncertainty component having a similar i.i.d. mean
characterization, asymptotic normality follows.

5 Simulation Evidence

To analyze the performance of the estimator we examine the following set-
ting. We simulated the following model where the same exogenous variables
appear in the conditional means and the conditional variances of both en-
dogenous variables. The two indices underlying the heteroscedasticity are
also highly correlated. Moreover, we use the same functional form for the
heteroscedasticity in each equation. The model has the form:

Y1i = 1 + x1i + x2i + Y2i + ui

Y2i = 1 + x1i + x2i + vi

ui = 1 + exp(:2 � x1i + :6 � x2i) � u�i
vi = 1 + exp(:6 � x1i + :2 � x2i) � v�i
u� = :33 � v�i +N(0; 1) and v�i s N(0; 1):

13See Ser�ing (1980) and Powell, Stock, and Stoker (1989).
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We examine two distributions for the x0is. In the �rst design we generate
both x1i and x2i as standard normal random variables. In the second design
we retain x1i but transform x2i into a chi-squared variable with 1 degree of
freedom. We then estimated the model by OLS and the control function
procedure developed here, which we denote CF in the tables. The simulation
results for n = 1000 and 100 replications are reported in Table 1.
An examination of Table 1 reveals a number of interesting features of the

simulations. First, turn to the left hand side of Table 1 which reports results
for the normal design. The entries in the Table represent the mean value
from the 100 replications with the standard deviation of the replications re-
ported in parentheses under the estimate. The OLS estimates for the main
equation�s parameters in this speci�cation are badly biased with respect to
their true values of 1 indicating that there is a large degree of endogeneity
in this model. The estimates for each of the x0s are approximately .7, indi-
cating a bias of around 30 percent, while the bias on the coe¢ cient for the
endogenous regressor is approximately 29 percent.
The lower panel of columns 1 shows results for the control function pro-

cedure under the normal design. For the �-parameter underlying the index
generating heteroscedasticity in the secondary equation, the mean of the es-
timates is .351. This value is reasonably close to the true value of .33, but
there is a relatively large standard deviation. The parameter b is the coe¢ -
cient in the index generating heteroscedasticity in the main equation. The
average point estimate of .261 is reasonable relative to the true value of .33,
but note that there is a very large standard deviation associated with this
estimate. Recall that this estimate is obtained simultaneously with the slope
coe¢ cients and its imprecision re�ects that it is di¢ cult to estimate this
parameter accurately while simply minimizing the squared residuals for this
model. If this parameter is of direct interest, then as described below it is
possible to exploit other sources of information to increase its precision. The
parameter � corresponds to the coe¢ cient on the control function. Given the
design the true value is .33 and thus the average estimate of .304 is good.
Most importantly, however, is that the average value of the coe¢ cients for
the x0s and Y2 are all close to 1 indicating that the inclusion of the control
function is accounting for the endogeneity bias. Moreover, while there is
more variability in the estimates, in comparison to the OLS estimates, the
estimates are generally quite accurate as indicated by their standard devia-
tions.
In the remainder of the Table we report the corresponding estimates for
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the chi-square design. The OLS estimates indicate that with the chi-squared
x the problem of endogeneity is reduced. The remaining estimates are gen-
erally consistent with the normal design.
Though not reported here, we also considered several variants on the es-

timator presented. Here, we have explored the case in which the conditional
variance of the errors is characterized by a single index. However, suppose
that the entire distribution of each error is characterized by a single index (as
is the case in the simulations). Under this more restrictive index assump-
tion, it is possible to develop a modi�ed version of the estimator presented
here with signi�cantly better �nites sample performance (especially for index
parameters).14 We have also examined several "GLS" variants of the CF
method presented here. While these resulted in a noticeable improvement
in the estimates, we judged the improvement not su¢ cient to warrant any
further (albeit minor) lengthening of the Appendix.15

14When the entire distribution of the errors depends on a single index, any function
of the squared residual will satisfy a single index assumption. Accordingly, in an SLS
regression, there will be many ways of estimating the index parameters. For the multi-
plicative heteroscedasticity employed in the monte-carlo, the (trimmed) log transform of
the squared residual would appear to a natural transformation to employ, and we found
that it resulted in a noticeable �nite sample improvement estimates of both secondary and
primary equations.
15We examined estimators based on consistent residuals from the primary equation to

estimate the conditional variance parameter in a manner similar to that employed for the
secondary equation. Not surprisingly, as the information on the conditional variance is
largely contained in the residuals, the resulting estimator for the index parameter had a
much smaller variance that obtained from the control method reported here. Indeed,
it would be interesting to combine this moment information with that in the �rst-order
conditions to the minimization problem de�ned here. We have not explored this possibility
in the present paper.
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Table 1: Simulation Results

Normal Chi-sq

OLS OLS

constant .704 .858
(.058) (.122)

x1 .706 .858
(.049) (.120)

x2 .710 .866
(.060) (.121)

Y2 1.291 1.137
(.039) (.108)

CF CF

constant 1.023 1.032
(.278) (.304)

x1 1.026 1.034
(.276) (.302)

x2 1.032 1.042
(.281) (.298)

Y2 .975 .963
(.273) (.305)

� .304 .302
(.184) (.200)

b .261 .406
(.717) (.848)

� .351 .361
(.158) (.242)
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6 Conclusion

In summary, we have examined a generalized form of heteroscedasticity
with conditional covariance and variance functions depending on exogenous
variables. For this case, we have shown that the model is identi�ed and
have formulated a method for estimating it. We have established that the
estimator is consistent and asymptotically distributed as normal. In a monte-
carlo study, across several designs, the estimator for the parameters of interest
in the primary equation performed quite well in �nite samples. As indicated
previously, there is scope for further improvements in the estimator for the
index parameters. Such improvements would come from fully exploring
index structure in the monte-carlo (see footnote 11 ) or from making use of
all available moment information (see footnote 12 ).
We have focused on the linear structure in part because it is most often

used in practice. More importantly, in the absence of other information, it
is this structure for which identi�cation fails without exclusion restrictions.
Nevertheless, it would seem relatively straight-forward to extend the model to
allow nonlinear functions of the exogenous variables to enter both primary
and secondary equations. With a modi�ed control based on E(ujv;X),
it would also seem possible to allow for nonlinearities in the endogenous
variables.
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7 Appendix

7.1 Intermediate Lemmas

The Appendix is organized into a section on intermediate lemmas and a main
section providing consistency and asymptotic normality for the proposed es-
timator. In this section of the Appendix, we provide a characterization for
the gradient from which asymptotic normality will follow. To preview the
argument, we require the following notation. Denote �̂ as the vector of esti-
mated parameters from the Y2-equation (including estimated parameters of
the conditional error variance). Write �o � (�0o; �o; b0o)

0 for the column vector
of true parameter values from the Y1-model (including correlation and condi-
tional variance parameter values). Refer to the averaged objective function
for the primary equation (Y1�model) shown in (D4). Taken with respect to
� let Ĝ (�o; �̂) and Ĥ (�o; �̂) be the corresponding gradient and Hessian.
Employing the above notation, from a Taylor series expansion:

p
N [�̂� �o] = �Ĥ

�
�+; �̂

��1p
NĜ (�o; �̂) ; (1A)

�+� [�o:�̂]. Obtain H (�; �) from Ĥ by replacing all estimated nonparamet-
ric expectations by their probability limits in Ĥ. Uniformly in the parame-
ters, it can be shown that

���Ĥ (�; �) �H (�; �)
��� and jH (�; �)� EH (�; �)j

each converge in probability to zero. Therefore, once consistency is estab-
lished, Ĥ (�+; �̂) will converge in probability to Ho � EH (�o; �o). Asymp-
totic normality will then follow if the gradient component is asymptotically
normal.
To analyze the gradient, with M̂i (�o; �̂) � Wi�o + Âi (�o; �̂) v̂i, de�ne:

M̂oi � M̂i (�o; �o) � Wi�o + Âi (�o; �o) vi

Moi � Wi�o + Ai (�o; �o) vi:

Denote ŵi � r�M̂i (�o; �o) and Ĝ3 �
h
rĜ� (�o; bo; �+)

i
[�̂ � �o]. Then,

from (D4) , the gradient with respect to � at �o is given as:

Ĝ (�o; �̂) = Ĝ (�o; �o) + Ĝ3 (2A)
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= �
X

�̂ i [Y1i �Moi] ŵi=N +
X

�̂ i

h
M̂oi �Moi

i
ŵi=N + Ĝ3

� Ĝ1 + Ĝ2 + Ĝ3:

Lemmas G1 and G2 below provide appropriate characterizations for
p
NĜ1

and
p
NĜ2: The required characterization for the third component will im-

mediately follow from Theorem 1 in the next section which characterizes
the �rst-stage estimator, �̂. The other intermediate lemmas in this section
provide results required for these characterizations.
For a number of terms, we will need to deal with the fact that the trim-

ming function depends on estimated sample quantiles. For one such term,
we provide a complete argument in Lemma G1 to show that the trimming
function may be taken as known. As a similar argument applies to other
terms, subsequently we will take the trimming function as known.
In what follows, we will make use of several standard convergence results.

First, recall from (D5) that with Z � X1 + X2, an estimated conditional
expectation has the form:

Ê � Ê [Y j Z = z; ] � f̂=ĝ:

De�ning the derivative operator on a function f as:

rd
 (f) �

@

@
f; r0

�f � f ,

it can be shown that

sup
z; 

���rd
Ê �rd

E
��� p! 0; d = 0; 1; 2:

With E � f=g; estimated local smoothing functions depend on f̂p and
ĝp; pilot estimates of f and g respectively (D8-9). Obtain f̂ � from f̂ by
evaluating local smoothing functions at the expectation of pilot estimators.
Then, for d = 0; 1; 2 and with all functions evaluated at o :Xh

rd
 f̂i �rd

 f̂
�
i

i2
=N = Op (r1) ; r1 =

1

NhdpXh
rd
 f̂

�
i � E

�
rd
 f̂

�
i

�i2
=N = Op (r2) ; r2 =

1

NhdXh
E
�
rd
 f̂

�
i

�
�rd

fi

i2
=N = O (r3) ; r3 = h4:
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The �rst rate above follows from a Taylor series expansion, Lemma 1 below,
and the rate at which the variance of a pilot estimator tends to zero. The
other rates follow from the rates at which the expectation of each sum tends
to zero. It follows that:16Xh

rd
� f̂i �rd

�i
fi

i2
=N = Op (max (ri)) ; i = 1; 2; 3:

Similar results hold for the denominator for the estimated density ĝi: Lemma
1 below provides a basic result used in analyzing gradient components based
on the above rates.

Lemma 1. Assume:

Sa �
X

â2i =N = Op
�
N�s� ; Sb �X b̂2i =N = Op

�
N�t� ;

where s+ t > 1: Then,
p
N
X

âib̂i = op(1):

Proof of Lemma 1. The result follows from Cauchy�s inequality:���pNX âib̂i=N
��� � pNS1=2a S

1=2
b :

Lemma G1 (First Gradient Component). With Wi � (Xi; Y2i)
and Y1i �Moi = ui � �o (Sui=Svi) vi :

ŵi � �

2666664
Wi + �o

�
r�Ŝui

�
vi=Ŝvi�

Ŝui=Ŝvi

�
vi

�o

�
rbŜui

�
vi=Ŝvi:

3777775 :
16With � �

h
rd� f̂i �rd� f̂i

i
; let:

�1 �
h
rd� f̂i �rd� f̂�i

i
; �2 �

h
rd� f̂�i �rd�fi

i
:

Since �21+�
2
2 > 2�1�2; �

2 � 2
�
�21 +�

2
2

�
. The rate follows by writing �2 as a sum of

appropriate terms.
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De�ne wi by replacing Ŝui with Sui and Ŝvi with Svi in ŵi:With � io � � i (qo),
let:

"1i � �� io [Y1i �Moi]wi; �"1 �
NX
i=1

"1i=N:

Then,
p
NĜ1 � �N�1=2P �̂ i [Y1i �Moi] ŵi:

p
NĜ1 � �N�1=2

X
�̂ i [Y1i �Moi] ŵ =

p
N�"1 + op (1) :

Proof of Lemma G1. With �̂ i � � i (q̂),
p
NĜ1 is the sum of the

following three terms:

A � N�1=2
X

[Y1i �Moi] [�̂ i � � io]wi

B � N�1=2
X

[Y1i �Moi] [�̂ i � � io] [ŵi � wi]

C � N�1=2
X

[Y1i �Moi] � io [ŵi � wi] :

The proof will follow if each of these terms is op (1) : Employing the same
strategy as in Klein (1993), denote qo as a vector of population quantiles
(see (D1), Section 4) and let N " � hq : jq � qoj < "i ; " = o(1): Then, A
= op(1) if

A� � sup
N"

N�1=2
X

[Y1i �Moi] [� i (q)� � i (qo)]wi = op(1)

for all " = o(1):17 From Pakes and Pollard [1989, Lemma 2.17, p. 1037],
A� = op(1):
For the term B; it su¢ ces to show that:

B� � sup
N"

N�1=2
X

[Y1i �Moi] [� i (q)� � i (qo)] [ŵi � wi] = op(1):

Letting

� �i (q) =

�
1 : � i (q) = 1 and/or � i (qo) = 1
0 : Otherwise;

;

17If uniformity holds for � � N" for all " = o(1); then uniformity holds over op (1)
neighborhoods of qo :
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it follows from the de�nition of � �i (q) and Lemma 1 that:

B� � N1=2B�1B
�
2;

B�1 = sup
N"

hX
[Y1i �Moi]

2 [� i (q)� � i (qo)]
2 =N

i1=2
B�2 = sup

N"

hX
� �i (q) [ŵi � wi]

2 =N
i1=2

:

From Klein (1993), with indicators approximated by smooth functions, it can
be shown that for any �xed � arbitrarily small : B�1 = op

�
N�1=2+�� : It can

be shown that B�2 = op
�
N��� ; which completes the argument for B.

Turning to C; the analysis is similar to that in Klein and Spady (1993).
For this term, it can be shown that ŵi�wi may be replaced by a linear com-
bination of estimated functions. The result then follows from a mean-square
convergence argument. To illustrate the argument, with "i � [Y1i �Moi] vi,
one of the components of C is given as:

D1 � N�1=2
X

� io"i

�
Ŝui � Sui

�
=Ŝvi:

From a Taylor series expansion and Lemma 1:

D1 = N�1=2
X

� io"i

h
f̂i=ĝi � fi=gi

i
=ai + op (1) ; ai � SuiSvi:

It can now be shown that

D1 = D�
1 + op(1);

D�
1 � N�1=2

X
� io"i

h
f̂i=ĝi � fi=gi

i
[ĝi=gi] =ai:

Finally, it can be shown that E
�
(D�

1)
2� ! 0: A similar argument applies to

the other terms of C, which completes the argument.

Abramson (1982) and Silverman (1986) provide a uniform bias result
density estimation under known local smoothing. Hall (1998) extends this
argument in several directions and provides a method for making explicit
bias calculations in a variety of contexts. The Lemma below examines the
extension for integrating with respect to a function that need not be a density.
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Lemma 2 . Let p(z) be a non-negative function with uniformly
bounded derivatives to order 4 and let K be a symmetric kernel with a
bounded derivatives to order 4. For t � P�; assume that p(t) > 0. Denote p

¯� inf p (t), t � P�. Employing the smooth trimming function in (D6), de�ne:

p� (z) � �
�
p (z) ; p

¯

�
p (z) + [1� � ( p (z) ; p)]p

¯
.

Then, for P a proper subset of P�, uniformly in t � P:

B (p̂ (t) ; p�) �
Z
p� (z)1=2

h
K

 
(t� z)

p� (z)1=2

h

!
p (z) dz � p(t) = O

�
h4
�
:

Proof of Lemma 2 . Make a change of variable with " � (z � t)=h)
and then take a Taylor series expansion about h = 0 to obtain:

B � p(t) =
3X
i=1

hiC�i (t) +O
�
h4
�
:

From symmetry of the kernel, terms in odd powers of h vanish. Since
� � 1 and its derivatives vanish exponentially on P, the second order term,
C�2 (t) ; is arbitrarily close to C2 (t) ; the second order term in the analogous
expansion of B [ĝ (t) ; g]. For the case in which p is a density, Abramson and
Silverman show that C2 (t) = 0. As shown by Hall, this result also holds
when p is not a density.

The estimator for E(Y j Z = t) has the form f̂ (t)/ĝ(t), with Lemma
2 providing the bias for ĝ(t): For f̂ (t) ; under known local smoothing with
Lj � f �p (zj)

1=2 (see D8-9):

f̂ (t;L) � 1

N � 1
X
j 6=i

yj

�
Lj
h
K

�
t� zj
h

Lj

��
:

Lemma 3 below, which is due to Hall (1990), examines the bias in f̂ (t;L)
with known local smoothing.

Lemma 3. De�ne f̂ (t;L) and f(t) as above as above. Assume that
f (t) has uniformly bounded derivatives up to order 4, and that the kernel
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function, K, also has uniformly bounded fourth derivative. Assume that
f � (t) > 0 for t � P�: Let P be a proper subset of P�. Then, uniformly in t
� P� :

E
�
f̂ (t;L)

�
= E(Y jZ = t)gv(t) +O

�
h4
�
.

Proof of Lemma 3. Hall has proved this result in a much more general
context. For this particular function and kernel employed here, the result
follows from Lemma 2 with p (z) � [EY (jZ = z) g (z)] :

Recall from (D7-9) that local smoothing functions depend on the pilot
estimators f̂ �p and ĝ

�
p. To deal with estimated local smoothing parameters

we pursue the following strategy. First, we show in Lemma 4 that with local
smoothing functions evaluated at their conditional expectations, then the
low order bias results of Lemmas 2-3 still hold. Subsequently, we will show
in Lemmas 5-6 that all gradient terms based on estimated local smoothing
parameters are asymptotically close to those in which local smoothing func-
tions are evaluated at the expectation of the pilot estimators. De�ne "�xed"
local smoothing parameters:

�Lj �
�
�f �j
�1=2

; ��j �
�
�g�j
�1=2

:

Here, with
�fj � E

h
f̂jjYi; Xi

i
and �gj � E [ĝjjYi; Xi] ;

�f �j and �g
�
j denote smoothly trimmed versions of these densities as given in

(D8).

An infeasible estimator forE (Y j zr) is given by �Er � f̂
�
zr; �L

�
=ĝ
�
zr; ��

�
:

f̂
�
zr; �L

�
=

NX
j 6=i

YjK

��
zr � zj
h

�
�Lj

� �Lj
(N � 1)h ;

ĝ
�
zr; ��

�
=

NX
j 6=i

K

��
zr � zj
h

�
��j

� ��j
(N � 1)h:

Below, Lemma 4 provides an appropriately low order of the bias for the
infeasible estimators �fr and �gr:
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Lemma 4. Let the pilot window for estimating local smoothing pa-
rameters be given as: hp = O(N�rp) and the window for estimating second
stage densities as: h = O (N�r) ; rp + r > 1=2: Then for P and P� as given
above:

sup
t � P�

�1 (t) � sup
���Ef̂ �t; �L�� E [Y jZ = t] g (t)

��� = o
�
N�1=2�

sup
t � P

�2 (t) � sup
��Eĝ �t; ���� g (t)

�� = o
�
N�1=2� :

Proof of Lemma 4. Referring to Lemma 4, from a Taylor series
expansion in h about h = 0:

�2 (t) =
4X
i=1

hiĈi (t) :

From symmetry of the kernel, Ĉ1 = Ĉ3 = 0: For the second order term:

h2Ĉ2 (t) = h2C2 (t) + h2
h
Ĉ2 (t)� C2 (t)

i
;

where C2 is the probability limit of Ĉ2:With Ĉ2 containing estimated density
derivatives up to order 2 and with C2 containing the corresponding expected
derivatives, it can be shown that

sup
t � P�

h2
����Ĉ2 (t)� C2 (t)

���� = h2h2p = o
�
N�1=2� :

The results now follows for �e (t) : The argument for �1 (t) is similar.

To analyze the second gradient component, Lemma 5 below shows that
the estimated trimming and weight functions in this component may be taken
as known.
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Lemma 5. With wi and ŵi de�ned as in Lemma G1, for the second
gradient component de�ned above:

N1=2Ĝ2 �
p
N
X

�̂ i

h
M̂oi �Moi

i
ŵi=N = N1=2Ĝ�2 + op (1) ;

Ĝ�2 =
X

� io

h
M̂oi �Moi

i
wi=N:

Proof of Lemma 5. From the de�nitions of Ĝ2 and Ĝ�2:

N1=2
h
Ĝ2 � Ĝ�2

i
= N1=2

Xh
M̂oi �Moi

i
[�̂ iŵi � � iowi] =N:

The result follows from repeated application of Lemma 1 and a convergence
rate for indicators in Klein (1993).

Employing Lemma 5 and earlier results, it is now possible to show that
estimated local smoothing parameters may be taken as �xed at values for
which the required degree of bias reduction holds. Let Ê1i � Ŝ2ui and Ê2i �
Ŝ2vi: Then, using notation introduced earlier, write:

Êki � f̂ki=ĝki:

Recall that f̂ki and ĝki each depend on a local smoothing functions evaluated
at pilot estimators. Further denote �fki and �gki as the corresponding quanti-
ties with local smoothing functions evaluated at the expectation of the pilot
estimators upon which they depend. Then, de�ne:

�S2ui � �E1i � �f1i=�g1i; �S2vi � �E2i � �f2i=�g2i:

Employing this notation, Lemma 6 below shows that the gradient based on
Ŝ2ui and Ŝ

2
vi is appropriately close to that based on �S

2
ui and �S

2
vi:

Lemma 6 With M̂oi de�ned as above, obtain �Moi by replacing Ŝ2ui and
Ŝ2vi with �S

2
ui and �S

2
vi respectively. In Ĝ2; replace M̂oi with �Moi to obtain �G2.

Then: p
N
h
Ĝ2 � �G2

i
= op (1) .
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Proof of Lemma 6. From Lemma 5 and the de�nition of gradient
components (1A-2A):

p
N
h
Ĝ2 � �G2

i
= �o

p
N

NX
i=1

� i

h�
Ŝui=Ŝvi

�
�
�
�Sui= �Svi

�i
viwi=N + op (1) .

The above di¤erence will depend on the estimation error in conditional vari-
ance components for u and v errors. Denoting these terms by �o�u and
�o�v respectively, each is op(1). For the former (the analysis for the latter
is identical):

�u � N�1=2
NX
i=1

viwi

�
Ŝui � �Sui

�
=Ŝvi.

From a Taylor series expansion, Lemma 1, and with  i � viwi= (2SuiSvi) :

�u = N�1=2
NX
i=1

h
Ŝ2ui � �S2ui

i
 i + op (1)

= N�1=2
NX
i=1

h�
f̂1i=ĝ1i

�
�
�
�f1i=�g1i

�i
 i + op (1) :

This term involves di¤erentials in both numerator and denominator. As
the arguments for both terms are very similar, here we show that the former
term is op (1). This term is given as:

�f = N�1=2
NX
i=1

h
f̂1i � �f1i

i
( i=g1i) + op (1) .

In more compact notation, with Yj � u2j and zj � Iui (bo) ; let:

L̂j �
h
f̂ � (zj)

i1=2
; �Lj �

�
�f � (zj)

�1=2
Kij � Yj

L̂j
h
K

�
zi � zj
h

L̂j

�
; �Kij � Yj

�Lj
h
K

�
zi � zj
h

�Lj

�
.

Then:

�f = N�1=2
NX
i=1

�
Kij � �Kij

�
Yj ( i=g1i) + op (1) .
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De�ne:

k

�
t� z

h
l

�
�

�
K

�
t� z

h
l

�
+K

�
t� z

h
l

�0�
t� z

h

�
l

�
bj � 1

2
�f
��1=2
j Yj; ai �  i=g1i

"i �
X
j 6=i

1

(N � 1)hk
�
zi � zj
h

�Lj

�
aibj

�
f̂j � �fj

�
:

From a Taylor series expansion in f̂ �j about �f
�
j and from Lemma 1:

�f = N1=2

NX
i=1

"i=N + r; r = op (1) :

For the leading term :

E (�f � r)2 = 1
N

P
r 6= s

P
E ("r"s) + 1

N

PN
i=1E ("

2
i ) :

C S

For the cross-product (C) terms:

C = O(N)E ["r"s] = C1 + C2;

C1 = O(N)E
X
j 6=r;s

1

(N � 1)2 h2
k

�
zr � zj
h

�Lj

�
k

�
zs � zj
h

�Lj

�
b2jaras

�
f̂j � �fj

�2

C2 = O(N)E
X
k

X
l 6=k

264
�

1
(N�1)hk

�
zr�zk
h
�Lk
�
bkar

�
f̂k � �fk

��
�
�

1
(N�1)hk

�
zs�zl
h
�Ll
�
blas

�
f̂l � �fl

��
375 :

Write:

f̂j � �fj =

�
f̂j [r; s]�

N � 3
N � 1

�fj

�
+
�
O
�
[Nhp]

�1� crs +O
�
N�1� �fj� ;

where f̂j [r; s] is obtained by removing the two terms from f̂j that depend on
observations r and s and where crs depends on observations r and s and is
bounded. Then, it can be shown that C1 ! 0:
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Turning to C2, with r 6= s 6= k 6= l :

C2 = O(N)E

26664
�
ar
h
k
�
zr�zk
h
�Lk
�
as
h
k
�
zs�zl
h
�Ll
�
bkbl
�

�
�h
f̂k [r; s]� N�3

N�1
�fk

i
+
�
O
�
[Nhp]

�1� crs +O (N�1) �fj
��

�
�h
f̂l [r; s]� N�3

N�1
�fl

i
+
�
O
�
[Nhp]

�1� crs +O (N�1) �fj
��

37775 :
The analysis of this term is based on the di¤erential

�
f̂ � �f

�
and on a

property of the function k. For this function, note that:

� �
Z Z

y

h
k

�
t� z

h
l

�
f (y; z) dydz = O

�
h2
�
.

To establish this rate for �; with " � [t� z] =h:

� = �
Z
y

�Z
k ["l (t� h")] f (t� h" j y) d"

�
gy(y)dy:

Take a Taylor series expansion in h about h = 0. Since k is an even function,
odd moments will vanish. The result then follows because the inner integral
of the following expression is zero:

�
Z
yf (t j y)

�Z
k ["l (t) t] d"

�
gy(y)dy = 0:

Employing the above result for the function k and an iterated expectations
argument, it can be shown that C2 = O(N)O(h4)O(h4p) vanishes under the
window conditions. A similar and somewhat simpler argument shows that
the S terms also vanish in probability, which completes the proof.

The gradient component Ḡ2 is composed of functions of estimated
conditional variances. To analyze this component, Lemma 9 below shows
that such functions can be written as U-statistics and analyzed by standard
projection arguments. To state and prove this result, we will require some
notation, some of which has already been introduced. Recall that Ŝ2ui �
f̂1i=ĝ1i and that with k1 [i; j] and k�1 [i; j] as the kernel functions underlying
m̂1i and ĝ1i respectively:

Ŝ2ui �
"

1

N � 1

NX
j 6=i

u2jk1 [i; j]

#
=

"
1

N � 1

NX
j 6=i

k�1 [i; j]

#
: (3A)
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A similar expression de�nes Ŝ2vi: For notational convenience, let I1i � Iui
and I2i � Ivi: Then, with S21i � E (u2i jI1i) and S22i � E (v2i jI2i), write:

S2ki � [Ekigk] =gki � fkii=gki; k = 1; 2: (4A)

It will also be convenient to write the vector valued weight function, shown
in Lemma G1, compactly as:

wi � r (Xi) + s (Xi) vi; (5A)

where r and s are vector-valued functions of Xi:

Lemma 7 (U-Statistic Projection). Denote rd
kf (x1; x2) as the d

th

derivative of the function f with respect to its kth argument. For (x1; x2)
bounded and c > 0 �nite, assume that the function f has bounded deriva-
tives: ��rd

kf (x1; x2)
�� � c for k = 1; 2 and d = 1; 2

de�ne:

f̂i � f
�
Ŝ2ui; Ŝ

2
vi

�
; fi � f

�
S2ui; S

2
vi

�
; dki � r1

kf
�
S2ui; S

2
vi

�
With � io as the trimming function evaluated at population quantiles and
with the weight function characterized as in 5A, let:

�ki � [s (Xi) � iodki=gki] v
2
i

��ki � E [�kijIki] ; k = 1; 2:

Then:

� � N�1=2
Xh

�̂ if̂i � � ifi

i
viwi

=
p
N�"�u +

p
N�"�v + op (1) ;

�"�u �
X�

u2i � S2ui
�
��1i=N

�"�v �
X�

v2i � S2vi
�
��2i=N:

Proof of Lemma 7. Employing the same arguments as in Lemma G1,
we may take the trimming function as known. Then, from (4A) and with
Ŝ2ui � f̂1i=ĝ1i, it follows from Lemma 1 and a Taylor series expansion that:

� = �1 +�2 + op (1) ;

�k �
p
N
X

� ioviwidki

h
f̂ki=ĝki � fki=gki

i
=N:
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Simplifying �1:

�1 = N�1=2
X

� ioviwid1i [ (m̂1i=ĝ1i)�m1i=g1i] [ ĝ1i=g1i] +

N�1=2
X

� ioviwid1i [ (m̂1i=ĝ1i)�m1i=g1i] [(ĝi � gi) =g1i] :

From Lemma 1, the second term is op(1): Therefore, from (3A) and with
��1i � � ioviwid1i=g1i :

�1 = N�1=2
X
i

��1i [ m̂1i �m1iĝi=g1i] + op (1) :

=
N1=2

N (N � 1)
X
i

X
j 6=i

��ij; �
�
ij � ��1i

�
u2jk1 [i; j]� (m1i=g1i) k

�
1 [i; j]

�
+ op (1)

= N1=2UN ; UN �
�
N
2

��1X
i

X
j>i

�ij; �ij =
�
��ij + ��ji

�
=2:

Since UN is a U-statistic and E (��1ijI1i) = ��1i, from standard projection
arguments:18

�1 =
p
N�"�u + op (1) :

Employing the same arguments as above, �2 is similarly characterized asp
N�"�v and the lemma follows .

Employing the above lemma, it is now possible to characterize the second
gradient component.
18With Zi � (Y1i; Y2i; Xi) ; under local smoothing (see Lemmas 2-3), for C(Zi) bounded

and " > 0 :
E
�
��ij jZi

�
= N�1=2�"C (Zi)) E

�
��ji
�
= o

�
N�1=2

�
:

Therefore: p
NUN � ÛN = op(1); ÛN �

1

N

X
i

E
�
��jijZi

�
:

The inner expectation has the form:

E
�
��jijZi

�
= "�ui + h

2ri; ri = O (1) ;

where E ("�ui) = 0: Further:

E
�
��ji
�
= o(N�1=2)) h2E (ri) = o

�
N�1=2

�
:

With �r � �ri=N , it can be shown that Var
�p
Nh2�r

�
! 0: The result follows.
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Lemma G2. The second gradient component has the characterization:
p
N �G2 =

p
N�"2;

where the "2i are i.i.d. with expectation 0 and �nite variance.

Proof of Lemma G2 . From Lemmas 5-8, we may evaluate
p
NĜ2 as

the true weights and with expected densities replacing estimated densities in
the local smoothing functions. Employing the same arguments as in Lemma
G1, we will also be able to take the trimming function as known. Therefore:

p
NĜ2 = �o

p
N

NX
i=1

� io

h
Ŝui=Ŝvi � Sui=Svi

i
viwi

� �o
p
N

NX
i=1

� io

h
f
�
Ŝ2ui; Ŝvi; viwi

�
� f

�
S2ui; S

2
vi; viwi

�i
:

The proof now immediately follows from Lemma 9 with �"2 � �"�u + �"�v:

7.2 Main Results
Recall that the third gradient component for the second stage estimator
depends on �̂; the estimator for the nuisance parameter vector from the Y1-
model. To analyze such �rst-stage estimation uncertainty, Theorem 1 below
characterizes the components of �̂ .

Theorem 1: First Stage Consistency and Characterization. De-
�ne:

v2i (�) � (Y2i �Xi�)
2 ;

where
E
�
v2i (�o) j Ivi (�o)

�
= E [Yi (�) j Xi] :

De�ne

R̂ (�; �) � 1

N

NX
i=1

�̂ ir̂
2
i (�; �) ; r̂i (�; �) � v2i (�)� Ê

�
v2i (�) j Ivi (�)

�
�̂ (�) = argmin

�
R̂ (�; �) ;

Ŝvi (�) �
h
E
�
(Y2i �Xi�)

2 jIvi
�
�̂ (�)

� �i1=2
:
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With �̂ols as the OLS estimator for �o; let:

X̂�
i � Xi=Ŝvi (�̂ols) ; X

�
i � Xi=Svi (�o) :

Then, with 
 � p lim
�
X�0X�=N

�
and with "�i � X�0

i vi; the GLS estimator
of �, �̂, satis�es:

1)
p
N [�̂ � �o] = 


�1
p
N
X

"�i=N + op (1) :

De�ne

R (�; �) � 1

N

NX
i=1

� ior
2
i (�; �) ; ri (�; �) � v2i (�)� E

�
v2i (�) j Ivi (�)

�
wi � 2� io

@

@�
ri (�o; �o) ; w

�
i � wi � E [wijIvi (�o)]

R11 � p lim

�
@2

@�@�0
R (�o; �o)

�
; R21 � p lim

�
@2

@�@�0
R (�o; �o)

�
:

The estimator for the index parameters, �̂ (�̂), satis�es:19

2)
p
N
h
�̂ � �o

i
= �R�111

p
N
hX

ri (�o; �o)w
�
i =N +R21 [�̂ � �o]

i
+ op (1) :

Proof of Theorem 1. For (1), the proof is immediate. For (2), ac-
counting for estimation uncertainty in �̂; the proof follows an adaptation of
Ichimura (1993) under local smoothing or from an application of the argu-
ments used in Theorem 3 below.20

Recall from (1A-2A) at the beginning of the Appendix that the second
stage estimator has three gradient components, with the �rst two being char-
acterized in Lemmas G1-2 above. Lemma G3 characterizes the third gradient
component.

19This characterization holds under a more general semiparametric formulation of the
Y2-model: Here, to emphasize identi�cation issues, we have focused on the case where the
Y2 model is linear with an unknown conditional variance function.
20With the weight rede�ned for the second-stage estimator, �rst and second-stage gra-

dients have a similar structure. The intermediate lemmas used to prove Theorem 3 could
also then be employed to prove Theorem 1 under estimated local smoothing.
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Lemma G3. Referring to (1A-2A), let Q1 � p lim (rG� (�o; bo; �o)) :
Employing the notation Theorem 1 above, de�ne:

"3i � Q1

�

�1"�i�

�R�111 [ri (�o; �o)w�i +R21

�1"�i]

� � :
Then:

p
NĜ3 =

p
N�"3 + op(1); �"3 �

NX
i=1

"3i=N:

Proof of Lemma G3. The proof follows from (1A-2A), Theorem 1, and
a standard uniform convergence result.

Theorem 2: Second Stage Consistency and Identi�cation. Let
Z be the matrix with ith row:

[Wi ( Sui (�o; bo) =Svi) vi] :

Then, the model is identi�ed under the constant correlation assumption if
Z has full column rank.

Proof of Theorem 2. Recall from (D5) that: with � � (�; �; b) :

W � [X Y2] ; Sui (�; b) � E
�
(Y1i �Wi�)

2 jIui (b)
�1=2

M (�) � W� + �Su (�; b) �M ; M (�o; �o; bo) �Mo

�̂ � arg Ŝ (�) = argmin Q̂ (�) ; Q̂ (�) � Ŝ (�)� Ŝ (�o) :

Replace all estimated functions Q̂ (�) with their uniform probability limits
to obtain Q (�), It can be shown that Q̂ (�)�Q (�) is, uniformly in �, op(1):
Further, the function Q (�) converges uniformly in the parameters to its
expectation given as: E[�1i +�2i]

2,

�1i � Wi (� � �o)

�2i � [�Sui (�; b)� �oSui (�o; bo)] vi=Svi:

With (�1i +�2i)
2 minimized at the true parameter values, consistency will

follow if this minimum is unique. If the minimum is not unique, it must be
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the case that �1i + �2i = 0 at all potential minimizing parameter values.
Then:

Wi (� � �o) + [�Sui (�; b)� �oSui (�o; bo)] vi=Svi = 0; (A)

from which it follows that:

�2S2ui (�; b)
�
v2i =S

2
vi

�
= �2oS

2
ui (�o; bo)

�
v2i =S

2
vi

�
�2�oSui (�o; bo) (vi=Svi)Wi (� � �o)

+ (� � �o)
0W 0

iWi (� � �o) :

Taking an expectation conditioned on Xi :

�2S2ui (�; b) = �2oS
2
ui (�o; bo)� 2�oSui (�o; bo)Svi (�2 � �2o) (B)

+(� � �o)
0E [ W 0

iWi j Xi] (� � �o) :

From the de�nition of S2ui (�; b) :

S2ui (�; b) = E
�
(Yi �Wi�)

2 j Xi

�
= E

�
( ui �Wi (� � �o))

2 j Xi

�
(C)

= S2ui (�o; bo)� 2E(uivijXi) (�2 � �2o) + (� � �o)
0W 0

iWi (� � �o)

= S2ui (�o; bo)� 2�oSui (�o; bo)Svi (�2 � �2o) + (� � �o)
0W 0

iWi (� � �o) :

With � � [(1� �2o) = (1� �2)]
1=2
; di¤erencing the expressions in (B) and

(C):

�2S2ui (�; b)� S2ui (�; b) = �2oS
2
ui (�o; bo)� S2ui (�o; bo) (D)

, Sui (�; b) = �Sui (�o; bo) :

Substituting (D) into (A):

Wi (� � �o) + (��� �o)Sui (�o; bo) vi=Svi = 0,

[Wi , ( Sui (�o; bo) =Svi) vi]
�

� � �o
��� �o

�
= 0:

Under a full rank assumption, � = �o and �� = �o: Since � = �o; from (C),
Sui (�o; b) = Sui (�o; bo) : Consequently, from (D), � = 1: With �� = �o; it
follows that � = �o: As shown above, S

2
ui (�o; b) = S2ui (�o; bo) : It can now also

readily be shown that b = bo when Sui is subject to a single index assumption
(Ichimura 1993).
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Theorem 3 : Asymptotic Normality of the Second Stage Esti-
mator. De�ne "ki; k = 1; 2; 3, as in Lemmas G1-3 and let:

"i � "1i + "2i + "3i:

From (1A) of the previous section and with Ho � E [H (�o; �o)]:

p
N [�̂� �o]

d! Z; Z ~ N
�
0; H�1

o E ("i"
0
i)H

�1
o

�
:

Proof of Theorem 3. With �+ � (�̂; �o), from (1A-3A) and standard
Taylor Series Arguments:

p
N [�̂� �o] = �

h
Ĥ
�
�+; �̂

�i�1 hp
N
�
Ĝ1 + Ĝ2 + Ĝ3

�i
;

For the Hessian term, from standard uniform convergence arguments: Ĥ
p!

Ho. For the gradient, from Lemmas G1-3:

p
N
�
Ĝ1 + Ĝ2 + Ĝ3

�
=
p
N�"; �" =

NX
i=1

"i=N:

The result now follows.
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